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Overview

• Introduction to elliptic and hyperelliptic curves.
• Specific restraints in smart card environments.
• Example: signature algorithms based on elliptic curves.
• Some experiments with hyperelliptic curves on smartcards.
• Focus on efficient implementations.
• Secure implementations are considered in the next talk.
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Elliptic curves

• Consider the equation 

over a finite field GF(qn).
• E defines an elliptic curve over the finite field GF(qn)

(certain technical conditions have to be fulfilled).
• The set E(GF(qn)) of points (x,y) satisfying 

the equation E form an abelian group.
• The group law on E(GF(qn)) can be expressed in simple 

algebraic formulae.
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Elliptic curves

• In any abelian group we can formulate 
the discrete logarithm problem:

• Discrete logarithm problem in E(GF(qn)):
Given P∈E(GF(qn)) and kP, compute k.

• Advantage:
for “general” elliptic curves no subexponential attacks are 
known.

• Consequence:
– smaller group sizes possible (160-190 bits)
– slow increase in group size
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Digital signatures based
on elliptic curves
ECDSA Signature Generation
• Signature generation for message M:

private key d, hash value h=Hash(M), order l of base point P    

Find random k

Compute kP = (x,y)

Compute r = x mod l

Compute s = k-1(h+dr) mod l Signature (r,s) of M
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Digital signatures based
on elliptic curves
ECDSA Signature Verification
• Signature verification for message M, signature (r,s), hash h:

base point P, public key Q=dP, order l of base point P

Compute w=s-1 mod l

u1= hw mod l,u2 = rw mod l

Compute u1P+u2Q = (x,y)

Compute v = x mod l Check v = r to verify signature
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Analysis of
Signature algorithms
• Two main parts:

– scalar multiplication on elliptic curve
– computations modulo order l of the basepoint P 

in order to generate signature

• Consequence:
• Modulo arithmetic is needed even if the elliptic curve is 

defined over GF(2n).
• Computation of modular inverses is required.
• Computation of x mod l required.
• For verification double scalar multiplication u1P+u2Q 

is needed.
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ECC:
Implementational choices

Choice of ground field (GF(p),GF(qn),special primes,OEF etc)

Point Operations (affine/projective coordinates, point halving)

Scalar multiplication (recoding, precomputations, subfield curves
special automorphisms etc)
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ECC:
Implementational choices
• The choice of special curves can lead to 

substantial performance gains:
• Subfield curves defined over GF(q) 

considered over GF(qn):
Use of Frobenius automorphism
can speed up scalar multiplication. 

• Curves with special automorphisms:
Similarly to the usage of the Frobenius,
special automorphisms of a curve can considerably
speed up the scalar multiplication.
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ECC:
Implementational Choices
• Implementation using a 

dedicated arithmetic coprocessor:
– long integer arithmetic and modular arithmetic 

handled by coprocessor
– high performance
– extra chip area

• Implementation using only a standard CPU:
– long integer arithmetic and modular arithmetic handled by CPU
– special field structures (e.g. optimal extension fields) or

special moduli (e.g. generalized Mersenne primes)
can be used to speed up the the field arithmetic considerably

– Performance of 1- 2 s for ECDSA can be reached
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ECC:
Implementational Choices
• Question:

which operations and features should be
supported in hardware ?

• Absolutely necessary:
Modular arithmetic
GF(2n) arithmetic for elliptic curve calculations.

• Modular inversion is most time critical single operation.
• Support for special curves, special fields etc 

in hardware ? 
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Design philosophies

• Hardware supporting one specific type of field,
one specific type of curve, 
even only one specific field 
or even only one curve over one specific field:
very high performance ⇔ very low flexibility

• Flexible hardware supporting general arithmetic 
will allow flexible use of different crypto systems
as well as easy adjustment of parameters:
still high performance ⇔ very high flexibility
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Standard Smart Card IC Design

EEPROM

RAM

ROM

C
PU

C
oprocessors

Logic

complete area

less than 25 mm2

complete area

less than 25 mm2
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Arithmetic in Hardware

• Long-integer multiplication and addition is well suited 
for hardware implementation.

• Modular arithmetic:
– “traditional” modular arithmetic is not well suited 

for hardware implementation.
– Reason: “school book” division with remainder is costly.
– Much more efficient modular reduction techniques are available, 

which utilize computations modulo “transformed” moduli.
– For example:

Montgomery multiplication,
uses the fact the reduction modulo perfect powers of two is easy.
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Arithmetic in Hardware

• Important topic:
Modular inversion.

• Basically two ways to implement this:
– Computation of x-1 using Fermat’s Little Theorem:

x-1mod p = xp-2 mod p (modular exponentiation)
– Computation of x-1 using the Extended Euclidean Algorithm:

Gcd(x,p)=1 =>  1=a*p+b*x => 1=b*x mod p.

• Modular exponentiation:
slow, but easy to implement. 

• Extended Euclidean Algorithm:
fast, but more costly to implement.
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Modular Inversion

• Ratio Modular Inversion/Modular Multiplication
is critical for the implementation of ECC systems:

• Known values from software implementations 
(Menezes et.al. 2000)
– GF(p): 80 to 1
– GF(2n): 10 to 1 

• Comparison affine/projective coordinates:
projective coordinates are preferred
for a ratio of 10 to 1 or higher.

• Smaller ratios are possible in hardware,
for typical smartcard coprocessors this is not feasible
due to area and power consumption restrictions.
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History of Philips Coprocessors
• CORSAIR (COprocessor for RSA In a Rush) - 1991 

– optimized for 512 bit RSA
– signature generation in less than 1 sec (512 bit)

• Fame (Fast Accelerator for Modular Exponentiation) (1995)
• FameX (eXtended) (1997)

– optimized for 1024 bit RSA, less than 400 ms 
– flexible usage for other Public Key Crypto systems
– scalable length of operands up to 2048 bit and higher

• FameX+GF(2n) prototype (2000): Cooperation with Oberthur

• FameXE (ECC) (2002): part of new SmartMX platform
– 1024 bit RSA, 100 ms  
– optimized for ECC based algorithms
– GF(2n), scalable length of operands



Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 18

FameXE
Crypto Coprocessor

• Flexible approach to arithmetic:
based on wordwise 32bit approach

• Freely scalable computations possible.
• Hardware support for:

– Logical operations
– Long integer arithmetic
– Modular arithmetic
– GF(2n) arithmetic
– Modular inversion
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Implementation of 
Signature algorithms on FameXE
• Basefield GF(2n), polynomial base.
• “General” curves
• The following timings were achieved 

for ECDSA signature generation 
using projective coordinates without precomputations 
(based on simulator results) :

191 bits 157 bits
Scalar multiplication 14.7 ms 10.8 ms
Total time 15.8 ms 11.5 ms
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Implementation of 
Signature algorithms on FameXE
• The following timings were achieved for

ECDSA signature verification
using projective coordinates without precomputations:

191 bits 157 bits
Scalar multiplication 27.6 ms 24.5 ms
Total time 28.8 ms 25.6 ms
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Implementation of
ECDSA on HiPerSmart
• HiPerSmart: Philips Semiconductors new 32 bit platform 

based on a SmartMIPS core
• Implementation of ECDSA based on curves over GF(2n) 

without crypto coprocessor.
• Results for signature generation using projective coordinates 

without precomputations:

191 bit 163 bit
Signature generation ~ 35 ms ~ 30 ms
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Further topics

• Parallelism can be exploited when performing the 
group operations on an elliptic curve. 
This can lead to substantial speedup if
the hardware supports this.

• Key generation on smart cards is an interesting topic.
For prime fields this does not seem promising 
(SEA algorithm, CM method),
in characteristic 2 much more efficient methods are available 
due to Satoh, Skjeerna, Gaudry, 
Harley and others.
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Hyperelliptic curves

• A hyperelliptic curve of genus g over a finite field k
is given by

C: v2+h(u)v=f(u) with f and h polynomials over k

where:
– h(u) is of degree at most g
– f(u) is a monic polynomial of degree 2g+1
– certain technical conditions have to be satisfied.
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The Jacobian of C

• A divisor on C is a formal sum D=∑mPP of points P of C.
• Its degree is deg(D)= ∑mP. 
• Set Div=group of all divisors on C.
• Let denote Div0=divisors of deg zero (subgroup of Div).
• To an element f of the function field of C we 

associate the divisor div(f)= ∑P∈CordP(f) P.
• A divisor D is called principal if D=div(f) for some f.

P=set of all principal divisors.
• The Jacobian of C is defined by Jac(C)= Div0/P.
• Jac(C) is an abelian group, 

hence we can base a DL system on this group.
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Implications for Cryptography

• Need to determine cardinality of Jac(C) 
(see talks by Kedlaya, Lauder, Vercauteren)

• Assume k=GF(q), and C curve of genus g.
• Then  |Jac(C)|~qg (Weil).
• We want |Jac(C)| around 2160. 
• Higher genus allows to go to smaller size of ground field.
• Hence for g>=5 fieldsize around 232 would suffice !?
• Index Calculus tells us: only g=1,2,3 allowed.
• For genus 3 a field size of ~ 64 bits suffices.
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Representation of 
Elements of Jac(C)
• Each element of Jac(C) can be represented by 

a pair of polynomials over k: 
(a(u),b(u)) with a(u) normalized.

• Call such an element reduced if deg(a(u))<=g.
• Main Operation is Addition of two reduced elements.

This falls into two parts:
Composition : result is semi-reduced divisor.
Reduction : input semi-reduced, output reduced.

• Both steps can represented 
by operations on polynomials (Cantor algorithm).
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Analysis of 
Cantor Algorithm
• Need polynomial arithmetic over finite field k:

– Gcd(a,b): Greatest common divisor.
– Div/Mod: Polynomial division with remainder.

• These are complicated algorithms.
• Very efficient field arithmetic is needed (esp. inversion!).
• Efficiency of complete implementation in hardware 

is unclear (see Th. Wollingers M.Sc. thesis, WPI 2001).
• Active research on optimal hardware environment

done by Philips Semiconductors 
in EU IST project AREHCC.
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Explicit formulae

• For genus two we have explicit formulae which can replace 
the general Cantor algorithm:

• Spallek (Ph.D. thesis, Essen 1996)
• Harley
• Takahashi (SCIS 2002)
• Miyamoto,Doi,Matsuo,Chao,Tsuji (SCIS 2002)
• Boston, Clancy (CHES 2002) 
• Lange (Preprint, 9-2002)
• For genus three first results 

were obtained by Pelzl, Paar (Uni Bochum).
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Explicit formulae

• Especially interesting for smartcard applications:
We have “affine” and “projective” formulae

– affine meaning one inversion for each addition 
or doubling step is used

– projective meaning one inversion is used at the end of the  
scalar multiplication

• Idea behind “projective” computations:
use representation of divisor
with non-normalized polynomials
Normalize at the very end of scalar multiplication.

• This idea can also be applied to the 
Cantor algorithm itself (Diploma thesis U. Krieger,1997)
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Implementation of
HEC based systems on FameXE

• Using the projective formulae by Lange (17-09-2002)
the following timings were achieved
(based on simulator results):
Jacobian of a general hyperelliptic curve of genus 2 
over a field GF(2n) of ~ 90 bits
Scalar multiplication k*D using Double-and-Add
without precomputations on FameXE:

Field size 90 bit 
Scalar multiplication ~ 30 ms
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Thank you for your attention !
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