Curve based cryptography -The state of the art in smart card environments

> Kim Nguyen Cryptology Competence Center Business Unit Identification Philips Semiconductors GmbH

Overview

- Introduction to elliptic and hyperelliptic curves.
- Specific restraints in smart card environments.
- Example: signature algorithms based on elliptic curves.
- Some experiments with hyperelliptic curves on smartcards.
- Focus on efficient implementations.
- Secure implementations are considered in the next talk.

Elliptic curves

• Consider the equation

$$E: y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$$

over a finite field $GF(q^n)$.

- E defines an elliptic curve over the finite field GF(qⁿ) (certain technical conditions have to be fulfilled).
- The set E(GF(qⁿ)) of points (x,y) satisfying the equation E form an abelian group.
- The group law on E(GF(qⁿ)) can be expressed in simple algebraic formulae.

Elliptic curves

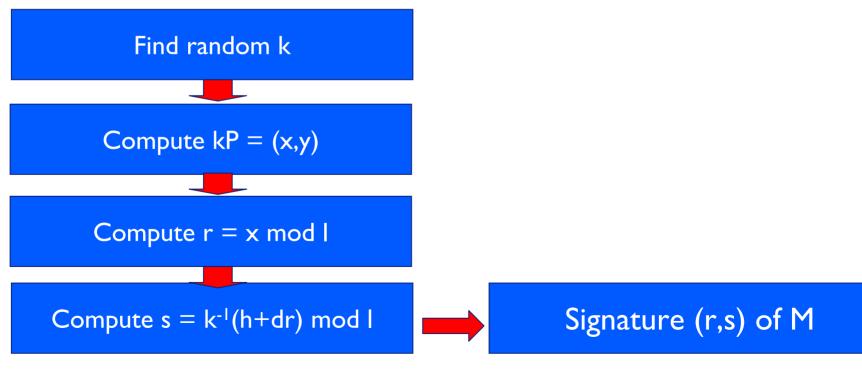
- In any abelian group we can formulate the discrete logarithm problem:
- Discrete logarithm problem in E(GF(qⁿ)): Given P∈E(GF(qⁿ)) and kP, compute k.
- Advantage:

for "general" elliptic curves no subexponential attacks are known.

- Consequence:
- smaller group sizes possible (160-190 bits)
- slow increase in group size

Digital signatures based on elliptic curves

 Signature generation for message M: private key d, hash value h=Hash(M), order I of base point P

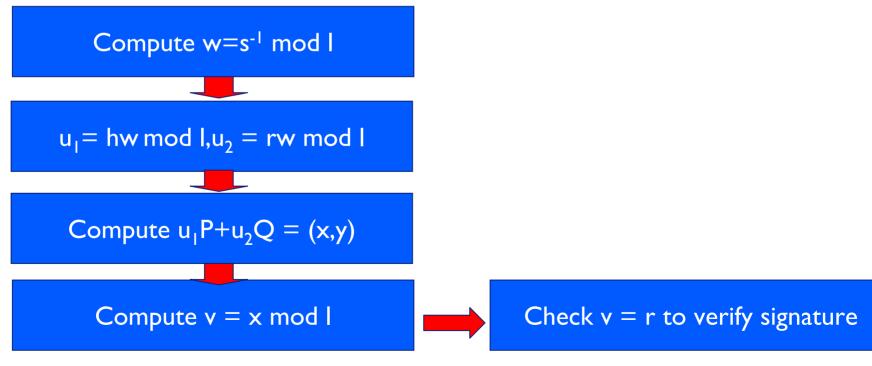


Semiconductors, BUID, CCC

Kim Nguyen, Essen, 2002-09-23

Digital signatures based on elliptic curves

 Signature verification for message M, signature (r,s), hash h: base point P, public key Q=dP, order I of base point P



Semiconductors, BUID, CCC

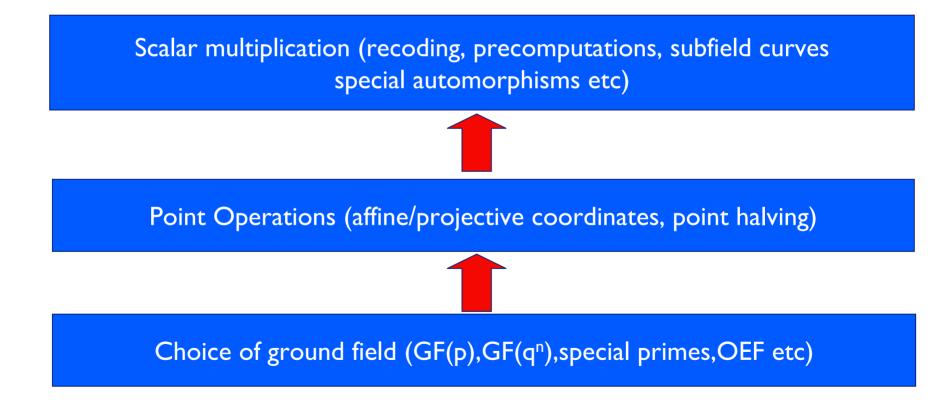
Kim Nguyen, Essen, 2002-09-23

Analysis of Signature algorithms

- Two main parts:
 - scalar multiplication on elliptic curve
 - computations modulo order I of the basepoint P in order to generate signature
- Consequence:
- Modulo arithmetic is needed even if the elliptic curve is defined over GF(2ⁿ).
- Computation of modular inverses is required.
- Computation of x mod I required.
- For verification double scalar multiplication u_1P+u_2Q is needed.

Semiconductors, BUID, CCC

ECC: Implementational choices



Semiconductors, BUID, CCC

ECC: Implementational choices

- The choice of special curves can lead to substantial performance gains:
- Subfield curves defined over GF(q) considered over GF(qⁿ):
 Use of Frobenius automorphism can speed up scalar multiplication.
- Curves with special automorphisms: Similarly to the usage of the Frobenius, special automorphisms of a curve can considerably speed up the scalar multiplication.

ECC: Implementational Choices

- Implementation using a dedicated arithmetic coprocessor:
 - long integer arithmetic and modular arithmetic handled by coprocessor
 - high performance
 - extra chip area
- Implementation using only a standard CPU:
 - long integer arithmetic and modular arithmetic handled by CPU
 - special field structures (e.g. optimal extension fields) or special moduli (e.g. generalized Mersenne primes) can be used to speed up the the field arithmetic considerably
 - Performance of I-2 s for ECDSA can be reached

Semiconductors, BUID, CCC

ECC: Implementational Choices

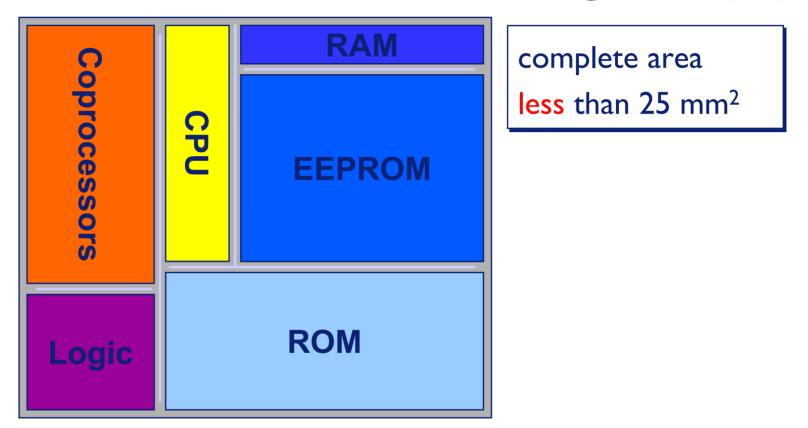
- Question: which operations and features should be supported in hardware ?
- Absolutely necessary: Modular arithmetic
 GF(2ⁿ) arithmetic for elliptic curve calculations.
- Modular inversion is most time critical single operation.
- Support for special curves, special fields etc in hardware ?

Competer

Design philosophies

- Hardware supporting one specific type of field, one specific type of curve, even only one specific field or even only one curve over one specific field: very high performance \(\Leftarrow very low flexibility)\)
- Flexible hardware supporting general arithmetic will allow flexible use of different crypto systems as well as easy adjustment of parameters: still high performance very high flexibility

Standard Smart Card IC Design



Semiconductors, BUID, CCC

Kim Nguyen, Essen, 2002-09-23

Arithmetic in Hardware

- Long-integer multiplication and addition is well suited for hardware implementation.
- Modular arithmetic:
- "traditional" modular arithmetic is not well suited for hardware implementation.
- Reason: "school book" division with remainder is costly.
- Much more efficient modular reduction techniques are available, which utilize computations modulo "transformed" moduli.
- For example:
 - Montgomery multiplication,
 - uses the fact the reduction modulo perfect powers of two is easy.

Arithmetic in Hardware

- Important topic: Modular inversion.
- Basically two ways to implement this:
- Computation of x^{-1} using Fermat's Little Theorem: x^{-1} mod $p = x^{p-2}$ mod p (modular exponentiation)
- Computation of x⁻¹ using the Extended Euclidean Algorithm: Gcd(x,p)=1 => 1=a*p+b*x => 1=b*x mod p.
- Modular exponentiation: slow, but easy to implement.
- Extended Euclidean Algorithm: fast, but more costly to implement.

Modular Inversion

- Ratio Modular Inversion/Modular Multiplication is critical for the implementation of ECC systems:
- Known values from software implementations (Menezes et.al. 2000)
 - GF(p): 80 to I
 - $GF(2^{n}): I0 to I$
- Comparison affine/projective coordinates: projective coordinates are preferred for a ratio of 10 to 1 or higher.
- Smaller ratios are possible in hardware, for typical smartcard coprocessors this is not feasible due to area and power consumption restrictions.

Semiconductors, BUID, CCC

History of Philips Coprocessors

- CORSAIR (COprocessor for RSA In a Rush) 1991
 - optimized for 512 bit RSA
 - signature generation in less than I sec (512 bit)
- Fame (Fast Accelerator for Modular Exponentiation) (1995)
- FameX (eXtended) (1997)
 - optimized for 1024 bit RSA, less than 400 ms
 - flexible usage for other Public Key Crypto systems
 - scalable length of operands up to 2048 bit and higher
- FameX+GF(2ⁿ) prototype (2000): Cooperation with Oberthur
- FameXE (ECC) (2002): part of new SmartMX platform
 - 1024 bit RSA, 100 ms
 - optimized for ECC based algorithms
 - GF(2ⁿ), scalable length of operands

FameXE Crypto Coprocessor

- Flexible approach to arithmetic: based on wordwise 32bit approach
- Freely scalable computations possible.
- Hardware support for:
 - Logical operations
 - Long integer arithmetic
 - Modular arithmetic
 - GF(2ⁿ) arithmetic
 - Modular inversion

Implementation of

Signature algorithms on FameXE

- Basefield GF(2ⁿ), polynomial base.
- "General" curves
- The following timings were achieved for ECDSA signature generation using projective coordinates without precomputations (based on simulator results) :

	191 bits	157 bits
Scalar multiplication	14.7 ms	10.8 ms
Total time	15.8 ms	11.5 ms

Implementation of

Signature algorithms on FameXE

 The following timings were achieved for ECDSA signature verification using projective coordinates without precomputations:

	191 bits	157 bits
Scalar multiplication	27.6 ms	24.5 ms
Total time	28.8 ms	25.6 ms

Implementation of ECDSA on HiPerSmart

- HiPerSmart: Philips Semiconductors new 32 bit platform based on a SmartMIPS core
- Implementation of ECDSA based on curves over GF(2ⁿ) without crypto coprocessor.
- Results for signature generation using projective coordinates without precomputations:

	191 bit	163 bit
Signature generation	~ 35 ms	~ 30 ms

Further topics

- Parallelism can be exploited when performing the group operations on an elliptic curve. This can lead to substantial speedup if the hardware supports this.
- Key generation on smart cards is an interesting topic. For prime fields this does not seem promising (SEA algorithm, CM method), in characteristic 2 much more efficient methods are available due to Satoh, Skjeerna, Gaudry, Harley and others.

Hyperelliptic curves

- A hyperelliptic curve of genus g over a finite field k is given by
 - C: $v^2+h(u)v=f(u)$ with f and h polynomials over k

where:

- -h(u) is of degree at most g
- f(u) is a monic polynomial of degree 2g+I
- certain technical conditions have to be satisfied.

The Jacobian of C

- A divisor on C is a formal sum $D=\sum m_P P$ of points P of C.
- Its degree is deg(D) = $\sum m_{P}$.
- Set **Div**=group of all divisors on C.
- Let denote Div₀=divisors of deg zero (subgroup of Div).
- To an element f of the function field of C we associate the divisor $div(f) = \sum_{P \in C} ord_P(f) P$.
- A divisor D is called principal if D=div(f) for some f.
 P=set of all principal divisors.
- The Jacobian of C is defined by $Jac(C) = Div_0/P$.
- Jac(C) is an abelian group, hence we can base a DL system on this group.

Implications for Cryptography

- Need to determine cardinality of Jac(C) (see talks by Kedlaya, Lauder, Vercauteren)
- Assume k=GF(q), and C curve of genus g.
- Then $|Jac(C)| \sim q^g$ (Weil).
- We want |Jac(C)| around 2¹⁶⁰.
- Higher genus allows to go to smaller size of ground field.
- Hence for g>=5 fieldsize around 2³² would suffice !?
- Index Calculus tells us: only g=1,2,3 allowed.
- For genus 3 a field size of ~ 64 bits suffices.

Representation of Elements of Jac(C)

- Each element of Jac(C) can be represented by a pair of polynomials over k: (a(u),b(u)) with a(u) normalized.
- Call such an element reduced if $deg(a(u)) \le g$.
- Main Operation is Addition of two reduced elements. This falls into two parts:

Composition :result is semi-reduced divisor.Reduction :input semi-reduced, output reduced.

• Both steps can represented by operations on polynomials (Cantor algorithm).

Analysis of Cantor Algorithm

- Need polynomial arithmetic over finite field k:
 - Gcd(a,b): Greatest common divisor.
 - Div/Mod: Polynomial division with remainder.
- These are complicated algorithms.
- Very efficient field arithmetic is needed (esp. inversion!).
- Efficiency of complete implementation in hardware is unclear (see Th. Wollingers M.Sc. thesis, WPI 2001).
- Active research on optimal hardware environment done by Philips Semiconductors in EU IST project AREHCC.

Explicit formulae

- For genus two we have explicit formulae which can replace the general Cantor algorithm:
- Spallek (Ph.D. thesis, Essen 1996)
- Harley
- Takahashi (SCIS 2002)
- Miyamoto, Doi, Matsuo, Chao, Tsuji (SCIS 2002)
- Boston, Clancy (CHES 2002)
- Lange (Preprint, 9-2002)
- For genus three first results were obtained by Pelzl, Paar (Uni Bochum).

Explicit formulae

- Especially interesting for smartcard applications: We have "affine" and "projective" formulae
- affine meaning one inversion for each addition or doubling step is used
- projective meaning one inversion is used at the end of the scalar multiplication
- Idea behind "projective" computations: use representation of divisor with non-normalized polynomials Normalize at the very end of scalar multiplication.
- This idea can also be applied to the Cantor algorithm itself (Diploma thesis U. Krieger, 1997)

Implementation of HEC based systems on FameXE

- Using the projective formulae by Lange (17-09-2002) the following timings were achieved (based on simulator results):
 - Jacobian of a general hyperelliptic curve of genus 2 over a field $GF(2^n)$ of ~ 90 bits
 - Scalar multiplication k*D using Double-and-Add without precomputations on FameXE:

Field size	90 bit
Scalar multiplication	~ 30 ms

Thank you for your attention !

Semiconductors, BUID, CCC

Kim Nguyen, Essen, 2002-09-23

