
Curve based cryptography -
The state of the art

in smart card environments

Kim Nguyen
Cryptology Competence Center

Business Unit Identification
Philips Semiconductors GmbH

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 2

Overview

• Introduction to elliptic and hyperelliptic curves.
• Specific restraints in smart card environments.
• Example: signature algorithms based on elliptic curves.
• Some experiments with hyperelliptic curves on smartcards.
• Focus on efficient implementations.
• Secure implementations are considered in the next talk.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 3

Elliptic curves

• Consider the equation

over a finite field GF(qn).
• E defines an elliptic curve over the finite field GF(qn)

(certain technical conditions have to be fulfilled).
• The set E(GF(qn)) of points (x,y) satisfying

the equation E form an abelian group.
• The group law on E(GF(qn)) can be expressed in simple

algebraic formulae.

64
2

2
3

31
2: axaxaxyaxyayE +++=++

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 4

Elliptic curves

• In any abelian group we can formulate
the discrete logarithm problem:

• Discrete logarithm problem in E(GF(qn)):
Given P∈E(GF(qn)) and kP, compute k.

• Advantage:
for “general” elliptic curves no subexponential attacks are
known.

• Consequence:
– smaller group sizes possible (160-190 bits)
– slow increase in group size

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 5

Digital signatures based
on elliptic curves
ECDSA Signature Generation
• Signature generation for message M:

private key d, hash value h=Hash(M), order l of base point P

Find random k

Compute kP = (x,y)

Compute r = x mod l

Compute s = k-1(h+dr) mod l Signature (r,s) of M

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 6

Digital signatures based
on elliptic curves
ECDSA Signature Verification
• Signature verification for message M, signature (r,s), hash h:

base point P, public key Q=dP, order l of base point P

Compute w=s-1 mod l

u1= hw mod l,u2 = rw mod l

Compute u1P+u2Q = (x,y)

Compute v = x mod l Check v = r to verify signature

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 7

Analysis of
Signature algorithms
• Two main parts:

– scalar multiplication on elliptic curve
– computations modulo order l of the basepoint P

in order to generate signature

• Consequence:
• Modulo arithmetic is needed even if the elliptic curve is

defined over GF(2n).
• Computation of modular inverses is required.
• Computation of x mod l required.
• For verification double scalar multiplication u1P+u2Q

is needed.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 8

ECC:
Implementational choices

Choice of ground field (GF(p),GF(qn),special primes,OEF etc)

Point Operations (affine/projective coordinates, point halving)

Scalar multiplication (recoding, precomputations, subfield curves
special automorphisms etc)

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 9

ECC:
Implementational choices
• The choice of special curves can lead to

substantial performance gains:
• Subfield curves defined over GF(q)

considered over GF(qn):
Use of Frobenius automorphism
can speed up scalar multiplication.

• Curves with special automorphisms:
Similarly to the usage of the Frobenius,
special automorphisms of a curve can considerably
speed up the scalar multiplication.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 10

ECC:
Implementational Choices
• Implementation using a

dedicated arithmetic coprocessor:
– long integer arithmetic and modular arithmetic

handled by coprocessor
– high performance
– extra chip area

• Implementation using only a standard CPU:
– long integer arithmetic and modular arithmetic handled by CPU
– special field structures (e.g. optimal extension fields) or

special moduli (e.g. generalized Mersenne primes)
can be used to speed up the the field arithmetic considerably

– Performance of 1- 2 s for ECDSA can be reached

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 11

ECC:
Implementational Choices
• Question:

which operations and features should be
supported in hardware ?

• Absolutely necessary:
Modular arithmetic
GF(2n) arithmetic for elliptic curve calculations.

• Modular inversion is most time critical single operation.
• Support for special curves, special fields etc

in hardware ?

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 12

Design philosophies

• Hardware supporting one specific type of field,
one specific type of curve,
even only one specific field
or even only one curve over one specific field:
very high performance ⇔ very low flexibility

• Flexible hardware supporting general arithmetic
will allow flexible use of different crypto systems
as well as easy adjustment of parameters:
still high performance ⇔ very high flexibility

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 13

Standard Smart Card IC Design

EEPROM

RAM

ROM

C
PU

C
oprocessors

Logic

complete area

less than 25 mm2

complete area

less than 25 mm2

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 14

Arithmetic in Hardware

• Long-integer multiplication and addition is well suited
for hardware implementation.

• Modular arithmetic:
– “traditional” modular arithmetic is not well suited

for hardware implementation.
– Reason: “school book” division with remainder is costly.
– Much more efficient modular reduction techniques are available,

which utilize computations modulo “transformed” moduli.
– For example:

Montgomery multiplication,
uses the fact the reduction modulo perfect powers of two is easy.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 15

Arithmetic in Hardware

• Important topic:
Modular inversion.

• Basically two ways to implement this:
– Computation of x-1 using Fermat’s Little Theorem:

x-1mod p = xp-2 mod p (modular exponentiation)
– Computation of x-1 using the Extended Euclidean Algorithm:

Gcd(x,p)=1 => 1=a*p+b*x => 1=b*x mod p.

• Modular exponentiation:
slow, but easy to implement.

• Extended Euclidean Algorithm:
fast, but more costly to implement.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 16

Modular Inversion

• Ratio Modular Inversion/Modular Multiplication
is critical for the implementation of ECC systems:

• Known values from software implementations
(Menezes et.al. 2000)
– GF(p): 80 to 1
– GF(2n): 10 to 1

• Comparison affine/projective coordinates:
projective coordinates are preferred
for a ratio of 10 to 1 or higher.

• Smaller ratios are possible in hardware,
for typical smartcard coprocessors this is not feasible
due to area and power consumption restrictions.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 17

History of Philips Coprocessors
• CORSAIR (COprocessor for RSA In a Rush) - 1991

– optimized for 512 bit RSA
– signature generation in less than 1 sec (512 bit)

• Fame (Fast Accelerator for Modular Exponentiation) (1995)
• FameX (eXtended) (1997)

– optimized for 1024 bit RSA, less than 400 ms
– flexible usage for other Public Key Crypto systems
– scalable length of operands up to 2048 bit and higher

• FameX+GF(2n) prototype (2000): Cooperation with Oberthur

• FameXE (ECC) (2002): part of new SmartMX platform
– 1024 bit RSA, 100 ms
– optimized for ECC based algorithms
– GF(2n), scalable length of operands

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 18

FameXE
Crypto Coprocessor

• Flexible approach to arithmetic:
based on wordwise 32bit approach

• Freely scalable computations possible.
• Hardware support for:

– Logical operations
– Long integer arithmetic
– Modular arithmetic
– GF(2n) arithmetic
– Modular inversion

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 19

Implementation of
Signature algorithms on FameXE
• Basefield GF(2n), polynomial base.
• “General” curves
• The following timings were achieved

for ECDSA signature generation
using projective coordinates without precomputations
(based on simulator results) :

191 bits 157 bits
Scalar multiplication 14.7 ms 10.8 ms
Total time 15.8 ms 11.5 ms

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 20

Implementation of
Signature algorithms on FameXE
• The following timings were achieved for

ECDSA signature verification
using projective coordinates without precomputations:

191 bits 157 bits
Scalar multiplication 27.6 ms 24.5 ms
Total time 28.8 ms 25.6 ms

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 21

Implementation of
ECDSA on HiPerSmart
• HiPerSmart: Philips Semiconductors new 32 bit platform

based on a SmartMIPS core
• Implementation of ECDSA based on curves over GF(2n)

without crypto coprocessor.
• Results for signature generation using projective coordinates

without precomputations:

191 bit 163 bit
Signature generation ~ 35 ms ~ 30 ms

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 22

Further topics

• Parallelism can be exploited when performing the
group operations on an elliptic curve.
This can lead to substantial speedup if
the hardware supports this.

• Key generation on smart cards is an interesting topic.
For prime fields this does not seem promising
(SEA algorithm, CM method),
in characteristic 2 much more efficient methods are available
due to Satoh, Skjeerna, Gaudry,
Harley and others.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 23

Hyperelliptic curves

• A hyperelliptic curve of genus g over a finite field k
is given by

C: v2+h(u)v=f(u) with f and h polynomials over k

where:
– h(u) is of degree at most g
– f(u) is a monic polynomial of degree 2g+1
– certain technical conditions have to be satisfied.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 24

The Jacobian of C

• A divisor on C is a formal sum D=∑mPP of points P of C.
• Its degree is deg(D)= ∑mP.
• Set Div=group of all divisors on C.
• Let denote Div0=divisors of deg zero (subgroup of Div).
• To an element f of the function field of C we

associate the divisor div(f)= ∑P∈CordP(f) P.
• A divisor D is called principal if D=div(f) for some f.

P=set of all principal divisors.
• The Jacobian of C is defined by Jac(C)= Div0/P.
• Jac(C) is an abelian group,

hence we can base a DL system on this group.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 25

Implications for Cryptography

• Need to determine cardinality of Jac(C)
(see talks by Kedlaya, Lauder, Vercauteren)

• Assume k=GF(q), and C curve of genus g.
• Then |Jac(C)|~qg (Weil).
• We want |Jac(C)| around 2160.
• Higher genus allows to go to smaller size of ground field.
• Hence for g>=5 fieldsize around 232 would suffice !?
• Index Calculus tells us: only g=1,2,3 allowed.
• For genus 3 a field size of ~ 64 bits suffices.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 26

Representation of
Elements of Jac(C)
• Each element of Jac(C) can be represented by

a pair of polynomials over k:
(a(u),b(u)) with a(u) normalized.

• Call such an element reduced if deg(a(u))<=g.
• Main Operation is Addition of two reduced elements.

This falls into two parts:
Composition : result is semi-reduced divisor.
Reduction : input semi-reduced, output reduced.

• Both steps can represented
by operations on polynomials (Cantor algorithm).

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 27

Analysis of
Cantor Algorithm
• Need polynomial arithmetic over finite field k:

– Gcd(a,b): Greatest common divisor.
– Div/Mod: Polynomial division with remainder.

• These are complicated algorithms.
• Very efficient field arithmetic is needed (esp. inversion!).
• Efficiency of complete implementation in hardware

is unclear (see Th. Wollingers M.Sc. thesis, WPI 2001).
• Active research on optimal hardware environment

done by Philips Semiconductors
in EU IST project AREHCC.

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 28

Explicit formulae

• For genus two we have explicit formulae which can replace
the general Cantor algorithm:

• Spallek (Ph.D. thesis, Essen 1996)
• Harley
• Takahashi (SCIS 2002)
• Miyamoto,Doi,Matsuo,Chao,Tsuji (SCIS 2002)
• Boston, Clancy (CHES 2002)
• Lange (Preprint, 9-2002)
• For genus three first results

were obtained by Pelzl, Paar (Uni Bochum).

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 29

Explicit formulae

• Especially interesting for smartcard applications:
We have “affine” and “projective” formulae

– affine meaning one inversion for each addition
or doubling step is used

– projective meaning one inversion is used at the end of the
scalar multiplication

• Idea behind “projective” computations:
use representation of divisor
with non-normalized polynomials
Normalize at the very end of scalar multiplication.

• This idea can also be applied to the
Cantor algorithm itself (Diploma thesis U. Krieger,1997)

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 30

Implementation of
HEC based systems on FameXE

• Using the projective formulae by Lange (17-09-2002)
the following timings were achieved
(based on simulator results):
Jacobian of a general hyperelliptic curve of genus 2
over a field GF(2n) of ~ 90 bits
Scalar multiplication k*D using Double-and-Add
without precomputations on FameXE:

Field size 90 bit
Scalar multiplication ~ 30 ms

Semiconductors, BUID, CCC Kim Nguyen, Essen, 2002-09-23 31

Thank you for your attention !

	Curve based cryptography - The state of the art in smart card environments
	Overview
	Elliptic curves
	Elliptic curves
	Digital signatures basedon elliptic curves
	Digital signatures basedon elliptic curves
	Analysis ofSignature algorithms
	ECC:Implementational choices
	ECC:Implementational choices
	ECC:Implementational Choices
	ECC:Implementational Choices
	Design philosophies
	Arithmetic in Hardware
	Arithmetic in Hardware
	Modular Inversion
	History of Philips Coprocessors
	FameXECrypto Coprocessor
	Implementation of Signature algorithms on FameXE
	Implementation of Signature algorithms on FameXE
	Implementation ofECDSA on HiPerSmart
	Further topics
	Hyperelliptic curves
	The Jacobian of C
	Implications for Cryptography
	Representation of Elements of Jac(C)
	Analysis of Cantor Algorithm
	Explicit formulae
	Explicit formulae
	Implementation ofHEC based systems on FameXE
	

