Theindex calculus attack

for hyperédliptic curves
of small genus

Nicolas Thériault

nicolast@math.toronto.edu

University of Toronto

TheDiscrete Log Problem

Let C' be an imaginary quadratic curve of genus ¢ defined over the

finite field ¥, 1.e. a nonsingular hyperelliptic curve with a single point
at infinity.

Let Dy, D, be two elements of Jac(C')(F,) such that D, € (D).

The discrete log problem for the pair (D;, Dy) on Jac(C')(F,) consist
In computing the smallest integer A € N such that

Dy = AD;.

Hyperelliptic Jacobians

® ('is a Nonsingular hyperelliptic curve of the form
C:Y?+h(X)Y = f(X)

with deg(h) < g and deg(f) = 2g + 1 (g is the genus of C).

® Jac(C)(FF,) is the divisor class group, which is isomorphic to the
ideal class group.

® (7—1)" < |Jac(O)F,)| < (Va+1)7, ie.

Jac(C)(F,)| = g7 + O (9a"~%)

® Reduced divisors in Jac(C)(F,) can be added in O (¢g*(log ¢)*) bit
operations (Cantor).

Hyperelliptic Jacobians

To apoint P € C(F,) we associate the divisor
D(P) =P — .

® For every reduced divisor

D=Y"" D(P)
(with P; = (z;,y;) € C(F,)), there is a unique representation by a
),

pair of polynomials [a(z), b(x)], a(x),b(z) € F,[z], with
k
a(@) =[], ()

and b(x;) = y; satisfying deg(b) < deg(a) < g and
b(x)? + h(z)b(x) — f(x) divisible by a(x).

Hyperelliptic Jacobians

® Areduced divisor D = [a(z),b(z)] isin Jac(C)(F,) if and only if
a(x),b(x) € F,lz].

® To know if the points P, associated to a reduced divisor are in
C(F,), we can check if a(x) splits completely in F,|x].

® To find the points P; associated to a reduced divisor, we need to
completely factor a(x).

Generic attacks

® Three main types of attack:

® Shank’s Baby Step - Giant Step
algorithm;

® Pollard’s p method,;
® Pollard’s A (kangaroo) method.

® They work for every abelian group.
® They require

O (\/group order)

group operations to solve the discrete log.

Attacksfor hyperelliptic curves

®» Well descent attack:
® Frey/ Gaudry, Hess and Smatrt,
® for some curves defined over field extensions.

® [ndex calculus attack for large genus:
® Adleman, DeMarrais and Huang

® [ndex calculus attack for small genus:
® Gaudry,
for curves of genus > 4,
variation (Harley) for curves of genus > 3,

o o 0

can be improved for curves of genus > 2.

| ndex calculus

We want to find a good set of points (the factor base)
P17P27"'7Pt

and “random” linear combinations

t

o, D1+ B;Dy = ZCZ']'P]'.
=1

We then find ~;’s such that for every j

Z Yicij = 0.
i=1

| ndex calculus

This gives us

If o # 0, we can solve for D, :

l.e.

| ndex calculus

Smooth divisors

Let P = C(IF,), i.e. P is the set of points of C over . Let B be a
subset of P.

A divisor Is smooth relative to B if it Is reduced and it can be written
In the form

with the P’sin Band k£ < g.
In this case, B is called the factor base.

A potentially smooth divisor is smooth relative to P.

o o ©

Theindex calculus attack

We look for reduced divisors associated to points in C(F,,).
From C(F,), we define a factor base.

We use a random walk to get a sequence (7;) where the T;'s can
be written as

T = a; Dy + 3 Ds.

From the sequence (7;), we extract a subsequence (R;) of
smooth divisors.

To a smooth divisor I?; we can associate a vector v;
corresponding to its factorisation over the factor base.

The vectors v; are put together into a matrix M.

Theindex calculus attack

® When the size of M is large enough, we use linear algebra to find
a nonzero vector in the kernel of M.

» We can then write

and substituting R; = a;D; + (3, D3, we get
aDy+ 3Dy =0

from which we get Dy = AD;.

Wor king with the factor base

Make use of the equality D(—P) = —D(P).

If P is in the factor base, — P is also in the factor base, but we use
only P for the factorization.

Example of representation:

D(Pl) + D(—ng) + D(—Plog) = D(Pl) — D(ng) — D(Plog)

The “size” of the factor base is |B|/2 for the linear algebra.

Decreases running time for the search by 2 and time for the linear
algebra by 4.

Large primes

Given a factor base B C P, apoint P € P is called a large prime if
P ¢ B.

A reduced divisor

IS said to be almost-smooth if:

® all but one of the P;’'s are In B;

® theremaining P, is a large prime.

| nter sections

Let T; be an almost-smooth divisor with the large prime P.

T; 1s called an intersection if one of the previous T (5 < z) Is an
almost-smooth divisor with large prime +P.

If T} Is an intersection with 7’;, we can use 7; and 7 to build a
non-reduced divisor that factors over the factor base.

Intersections are used to decrease the time required to build the
linear algebra system.

T; 1S an intersection with at most one of the previous
almost-smooth Tj’s.

Cancdlling large primes

Let 17,715 be two almost-smooth divisors with large prime P, i.e. 11, 15
are of the form

k1—1 ko—1
Ty=D(P)+ > D(Py;) and To= D(P)+ Y D(Py)
1=1 1=1

with Py ;, P,; € B. We can use the divisor

ki1—1 ka—1

T'=Ty—To=Y D(Pr;)— Y D(P).
1=1 1=1

Cancdlling large primes

Let 17,15 be two almost-smooth divisors such that 7 has large prime
P and T; has large prime —P, i.e. T}, Ty are of the form

ki—1 ko—1
Ty=D(P)+ > D(P;) and Ty=D(—P)+) D(Py;)
1=1 1=1
with P, ;, P»; € B. We can use the divisor

ki—1 ko—1
T'=Ti+Ty =Y D(Pry)+ Y D(Pyy).
1=1 1=1

Algorithm

Using a smaller factor base:

1. Search for the elements of the factor base
2. Initialization of the random walk

3. Search for smooth divisors (random walk)
® Search for potentially smooth divisors
® Factorization of the potentially smooth divisors

® Construction of the linear algebra system
4. Solution of the linear algebra system

5. Final solution

Algorithm

Using large primes:

1. Search for the elements of the factor base
2. Initialization of the random walk
3. Search for smooth and almost-smooth divisors (random walk)
® Search for potentially smooth divisors
® Factorization of the potentially smooth divisors
® Cancellation of the large primes (for intersections)
® Construction of the linear algebra system
4. Solution of the linear algebra system

5. Final solution

Running time analysis

Assume classical arithmetic.
Assume ¢q > g!.
Assume the size of the factor base Is ¢", % <r<l.
Find the expected running time with a factor base of that size.
Choose r to “minimize” the running time.

[C(Fq)|

. . .
When using large primes, also assume ¢" < —5*~.

Factor base

We try values of x; € I, to see if they correspond to z-coordinates of
points of C'(FF,).

We add points of C(F,) in B until the factor base has the desired size.

This can be done in O (¢g*¢(log ¢)*) bit operations.

| nitialization

We choose the state function

R : Jac(C)(F,) x{1,2,...,n} — Jac(C)(F,)
(D,i) — D+TW

We take n = O (log(|Jac(C)(F,)|))-

We choose n random o(9’s and 5(’s and compute

7)) — @(i)Dl 4+ 5(’6’)1)2_

This can be done in O (¢g*(log ¢)*) bit operations.

Linear algebra

We need a nonzero vector in the kernel of the matrix M.
The matrix is sparse with weigth O (gq").
Operations are done modulo |Jac(C)(F,)|.

Using algorithms by Lanczos or Wiedemann, this can be done in

O (9°¢” (log q)*)

bit operations.

Final solution

We compute

and

The computations are done modulo |J,|.

This can be done in O (¢g*¢"(log ¢)?) bit operations.

Potentially smooth divisors

Proposition: There are 4 + O (%) potentially smooth divisors in
Jac(C)(F,).

The proportion of potentially smooth divisors in Jac(C)(F,) is then

o) 1)
94

¢+ 0 (gqg‘%)

We expect to have a potentially smooth divisor for every O(g!) divisors
computed in the search.

Smooth divisors

Proposition: For % < r <1, there are qg%g + O (92%(;‘7_1)) smooth

divisors in Jac(C)(F,).

We expect to have to look at O (glq(!="9) divsiors for each smooth
divisor found in the search.

Search

® We need O(q") smooth divisors.

® We expect to look at O (glq(!="9+) divisor, each taking:
® O(g*(logq)?) bit operations to compute the reduced divisor;
® O(glogq) bit operations to compute «; and j;;
® O(g*(logq)?) bit operations to check if a(z) splits completely.

® Of these, we expect O (¢!!=79") to be potentially smooth (and
must be factorized);

® each factorization takes O(g*(log q)?) bit operations.

® Total of O (g%¢!¢?~9=Y(log ¢)?) bit operations.

Almost-smooth divisors

Proposition: For 2 < r < 1, there are q(). + 0 (().)

almost-smooth dIVISOI’S in Jac(C)(F,).

The proportion of almost-smooth divisors in Jac(C)(F,) is

qrg—{—l—r qrg
(g—1)! +0 ((g—l)!> _ q—(l—r)(g—l) o <q(1r)g>

. (=M=}
T (g —1)! |

During the search, we can expect to look at O ((g — 1)!gt=")9=D)
divisors for each almost-smooth divisors found.

| nter sections

Let Q(n, s, i) be the probability of having 7 intersections out of a
sample of size s drawn with replacement from a set of n elements and
let £, s be the expected number of intersections, I.e.

s—1
E,s= Z iQ(n, s,).
i=0

Theorem: If 3 < s < n/2, then E, is between 23%2 and %

If we let n be the number of large primes (i.e. n = ¢ — ¢" + O(,/q)) and
ask that £, s = O(q"), then we need s = O (¢"+1)/2). It will then take

O (8(9 — 1)!(1(9‘1)(1‘”) =0 ((9 — 1)!q(9—1><1—r>+r‘51)

steps of random walk to build the linear algebra system.

| nter sections

Sketch of proof:

By definition, >>°2) Q(n,s,i) = 1 and Y.°-) iQ(n, s,1) = Ey.s.
If we consider the probability of having ¢ intersections after s + 1
draws, we have

— 2(s — 1 2061+ 1
Qlnos +1,0) = "2 =D g0, iy + 25T D g i),
n mn
which gives us
n— 2 28
En,s—I—l — En,s + g

Solving for £, s (using £, ; = 0), we get

o122 Lo ons(s) (22
’ 2 n 2 24 1 n

Search

We expect to look at O ((g - 1)!q(9—1)(1—r)+r7+1) divisors;

® each divisor takes O(g*(log q)?) bit operations.

r+1

Of these, we expect O (q(g—l)(l—”+ 2/ g) to be potentially smooth

each taking an extra O(g*(log ¢)*) bit operations.

We expect to also get O (qr_12_r / g) smooth divisors.

r4+1

Total of O (gg!q(g_l)(l_rH 2 (log(q))2) bit operations.

Running times

Using a smaller factor base:
1. O (g%q(logq)?)

2. O (g*(logq)*)

3. O (g%gl¢?~ 9=V (log q)?)
4. O (9°¢*" (log q)?)

5. 0 (¢%q"(logq)*)

The total running time is then

0 (929!~ (10g(a))?) + O (g°4™ (log(0))?) .

bit operations.

Running times

For the original index calculus attack by Gaudry, ¢" = |C(F,)
gives a running time of

, which

O (g3q2—|—e) + O (929!q1—|—6)

bit operations.

To optimize the running time, we choose

g+1

)

which gives us
O (ﬂf‘ﬁ“)

bit operations.

Running times

Using a smaller factor base:

1. O (g*q(logq)?)

2. O (94(1ogq)4)

3. 0 (gg gl D=+ (10g(Q))2)

4. O (9°¢*" (log q)?)
5. 0 (¢%q"(logq)?)

The total running time is then

O (gg q(g 1)(1—r)+2H (log(q))2> —l—O(3 2r(10g()))

bit operations.

Running times

To optimize the running time, we choose

. _ 9~ 3 +log,((9 = 1)!/g)
g+ 3

)

which gives us

O (g5q2_ 2gi1 +6)

bit operations.

For small genus, we have:

Comparison

sguare original smaller with
g root Index factor large

attacks calculus base primes
3 q3/2 qz q3/2 q10/7
A e > q8/5 q14/9
5 q5/2 q2 q5/3 q18/11
6 q3 qz q12/7 q22/13

Memory

One of the biggest problems of the index calculus attack is the
memory requirement.

® For the original index calculus: O (gg'*€) bits.
® For the linear algebra.

® Using a smaller factor base: O (g%ﬁ“) bits.
® For the linear algebra.
® Using large primes: O (g%ﬂc%*e) bits.
® For the storage of the almost-smooth divisors.

® The linear algebra requires O (nggg—:“) bits.

