Identity-Based Cryptography: Panacea or Pandemonium?

Kenny Paterson
Information Security Group
Royal Holloway, University of London
kenny.paterson@rhul.ac.uk
Definitions

Panacea:
A remedy for all diseases, evils or difficulties; a cure-all.

Pandemonium:
“...Pandemonium, Citie and proud seate
Of Lucifer...”

Paradise Lost, John Milton, 1667.

(Colloquially, any noisy or unpleasant place.)
Overview

- Public key cryptography.
- Why is PKI so hard?
- Identity-based cryptography – a panacea?
 - Basic description and features.
 - Example applications.
- Advertising break.
- Identity-based cryptography – pandemonium?
 - A more detailed look at identity-based cryptography.
 - Patents.
- Conclusions
Public Key Cryptography (PKC)

- Also known as asymmetric cryptography.
- Each user has two keys: public and private.
- Alice's public key typically used for:
 - encryption to Alice by Bob
 - verification of Alice's signatures by Bob
- Alice's private key typically used for:
 - decryption by Alice
 - signing by Alice
- No need for Alice and Bob to share a common key before they begin secure communications!
 - Compare with symmetric key cryptography.
The Need for PKI

- We need some way of enabling Bob to actually find Alice’s key.
 - A directory service for encryption applications.
 - Or delivered as part of a protocol, or along with a signature.

- But how does Bob know that Alice's public key really is Alice's (and not Eve's)?
 - We need some way of binding public keys with identities.
 - Certificates in most circumstances.

- We will also need some way of signalling that a public key is no longer to be relied upon.
 - Alice’s private key might become exposed, or she might leave the company.
 - A revocation mechanism.
PKI Components

• Registration Authority (RA)
 – Authenticates individuals/entities, optionally checks for possession of private key matching public key.
 – Passes off result to Certification Authority.

• Certification Authority (CA)
 – Issues certificates: CA issues signatures binding public keys and identities.
 – Relying parties need authentic copy of CA’s public key…

• Directory Service

• Revocation Service
 – May involve distribution of Certificate Revocation List (CRL) or on-line certificate status checking (OCSP).
Using the Infrastructure

RA

“Issue Cert”

CA

Directory

CRL

Key Pair

Directory

Key Pair

Directory

Key Pair

Key Pair

Key Pair

Key Pair

Key Pair

Key Pair
Example PKIs

- **SSL server certificates, authenticated via root certificate embedded in browser**
 - Certificate hierarchy.
 - Provides server (not client!) authentication for e-commerce.
 - Rare example of open PKI.

- **IPSec certificates**
 - Gateway-gateway VPN and remote access solutions.
 - PKC enables authentication of endpoints via IKE protocol.
 - Generally closed PKI.

- **Identrus PKI**
 - Trust for b2b commerce, banks acting as CAs.
 - Complicated set of rules and contracts needed to define roles, responsibilities and liabilities.
 - Closed PKI.
Some PKI Problems

- Infrastructure should be largely invisible, but PKI often isn’t.
- Legal and regulatory concerns.
- Interoperability and standards.
- Deployment and on-going management of costly and complex infrastructure.
- Commercial/business issues.
- The bottom line: in commercial circles, PKI has come to be seen by many as an over-hyped technology which has not lived up to its promise.
Complexity and PKI

- There is a massive complexity gap between the concept of public key cryptography and its realisation in the form of a traditional PKI.
- From an application perspective, the ability to provide non-repudiation seems to be the unique feature separating public key from symmetric key.
 - Once one appreciates the real-world complexities, symmetric key systems appear equally attractive in many circumstances!
- Certificates and their management are the source of some problems.
 - So somehow getting rid of certificates might help?
Identity-based Cryptography

Original idea due to Shamir (1984):

- Public keys derived directly from system identities (e.g. an e-mail address or IP address).
- Private keys generated and distributed to users in by a trusted authority (TA) who has a *master key*.
- As long as:
 - Bob is sure of Alice’s identity and
 - The TA has given the private key to the right entity,
then Bob can safely encrypt to Alice without consulting a directory and without checking a certificate.
Identity-based Cryptography

Private Key

TA

Alice’s ID

Public Key
Identity-based Cryptography

- Apparently, elimination of certificates produces a far simpler infrastructure.
 - We’ll examine this in more detail soon…

- Identifier often used in place of identity.
 - Reflecting idea that any string can be used to derive public keys.

- IBE = Identity/Identifier-based encryption.
- ID-PKE = ID-based public key encryption.
- ID-PKC = ID-based public key cryptography.
IBE – A Short History

• Shamir devised only an ID-based signature scheme.
• Construction of truly practical and secure ID-based encryption scheme an open problem until 2001.
 – Several insecure/inefficient proposals.
• Sakai, Ohgishi and Kasahara (SCIS, Jan. 2001)
 – Written in Japanese.
 – Pairing-based scheme, but no security model or proofs.
• Boneh and Franklin (Crypto, August 2001)
 – Written in English.
 – Pairing-based scheme, practical and provably secure.
• Cocks’ scheme (IMA Conference, Dec. 2001)
 – Scheme based on quadratic residuosity, not bandwidth efficient.
 – Research done in mid 1990’s at UK government agency.
 – B&F paper prompted publication of Cocks’ work.
Apparent Benefits of ID-PKC

- **Certificate-free.**
 - No processing, management or distribution of certificates.
- **Directory-less.**
 - Bob can encrypt for Alice without looking-up Alice’s public key first.
 - Indeed, Alice need not have her private key when she receives Bob’s encryption.
Apparent Benefits of ID-PKC

- **Automatic revocation.**
 - Simply extend identifier to include a validity period.
 - Alice’s private key becomes useless at end of each period.
 - Alice needs to obtain private for current period in order to decrypt.
 - No need for CRLs or OCSP.

- **Built-in support for key recovery.**
 - When Alice leaves the organisation (or is run over by a bus).
 - Also enables applications like content scanning of e-mail at server.
Applications of ID-PKC

- **ID-PKC and pairing-based crypto have undergone an extraordinarily rapid development since 2001.**
 - Paulo Baretto’s Pairing Based Crypto Lounge (no longer being updated?)
 - Apparent extensive use of Bellare’s crypto topic generator.
 - http://www-cse.ucsd.edu/users/mihir/crypto-topic-generator.html
 - Growing commercial interest.

- **Potential applications for ID-PKC**
 - Secure e-mail.
 - Cryptographic workflow.
 - Domain-based security, GRID security architecture, securing router advertisements, ad hoc networks,…
ID-PKC and Secure e-mail

- ID-PKC seems well-suited to encryption for e-mail and other messaging technologies in corporate environments.
 - Natural candidate for TA.
 - Low interaction with infrastructure for sender.
 - Recipient of encrypted e-mail need not be pre-enrolled.
 - Key recovery feature allows message hygiene services to be conducted at mail server/organisational boundary.
 - Potential for lower costs through lightweight infrastructure requirements (compared to PKI-based solution).
 - Seems likely to be first mass-market application of ID-PKC:
 - Voltage Security: www.voltage.com
ID-PKC and Secure e-mail

• Is secure e-mail the killer application?
• Voltage Security certainly hope so:
 “IBE easily solves some of the problems that have traditionally made implementing and supporting encryption technology difficult and expensive.”

ID-PKC and Secure e-mail

But…

- Difficult to build non-repudiation services.
- May need to integrate with existing PKI-based authentication services.
- Voltage Security whitepaper, March 2005:
 - “Combining IBE with PKI enables a secure messaging environment to benefit from the advantages of both systems.”
- Do we really need secure e-mail anyway?
 - Lots of hype around SOX, HIPAA, GLBA,…
Cryptographic Workflow

- Identifier could be *any* string
- What if public key determined before private key?
 - Bob selects identifier string expressing a policy.
 - Bob encrypts message of value to Alice using public key matching the identifier.
 - Bob relies on TA to only release matching private key if conditions expressed in policy met by Alice.
- TA becomes a *decryption policy enforcer*.
Example of Workflow

- Bob selects identifier for Alice:
 Identifier = “Alice && over 18 && transaction value < $100”.

- Bob sends Alice content encrypted under public key derived from this identifier.

- Alice convinces TA she satisfies conditions expressed in the identifier – age and limit on transaction value.

- TA then gives Alice private key matching identifier.

- Finally, Alice can decrypt to obtain content.
Workflow Extensions

- Bob selects identifier for Alice:

 Identifier = “Alice && over 18 && transaction value < $100”.

- Now each component of policy corresponds to private key from different TA.
 - TA vouching for identity.
 - TA vouching for age.
 - TA handling payments.

- Alice convinces each TA in turn that she satisfies conditions expressed in the identifier.

- Alice gets a private key component from each TA and combines them to produce her final private key.

- Alice can decrypt to obtain content.

- Arbitrary Boolean expressions can be handled
 - Smart; Al-Riyami, Malone-Lee and Smart; Bagga and Molva,...
Workflow via PKI

• Cryptographic workflow is a nice idea, but it doesn’t actually require ID-PKC …
 – TA has become policy enforcer, trusted to perform certain actions.
 – Now high degree of interaction between Alice and TA.
 • Each new policy is likely to be unique and require fresh private key.
• Alternative approach with same trust assumptions and message flows:
 – Bob encrypts content under TTP’s (ordinary) public key and sends to Alice along with policy for decryption.
 – Alice takes encrypted content to TTP who decrypts it for Alice, provided Alice satisfies policy.
Further Applications of ID-PKC

- Domain-based security (Smetters and Durfee, 12th USENIX Security Symposium, 2003).
 - Each DNS domain acts as TA for clients in the domain.
 - Use DNSSEC PKI to authenticate TA parameters.
 - Adapt DNS to transport TA public parameters between domains.
 - Support for inter- and intra-domain IP and e-mail security.
 - Various mechanisms for private key distribution including:
 - SSL (possibly with client certificates based on PKI!)
 - Distribution via e-mail to authenticate clients.
 - Or transmission over trusted network segment.
 - Proof of concept coded in Java on Linux.

Further Applications of ID-PKC

• GRID security (Lim and P., preprint).
 – Pure-ID-PKC architecture designed to meet security requirements for GRIDs:
 • Single Sign-On.
 • Delegation via proxying.
 • Secure channels.
 – Use of Gentry-Silverberg hierarchical ID-PKC to handle hierarchy of root TA, local TA, user, and user proxy.
 – Exploit identifiers to specify delegation policies, reduce round-trips and ease revocation.
 – ID-based version of SSL handshake protocol.
 – Select ID-PKC parameters to minimise bandwidth and computation.
Advertising

- Advances in Elliptic Curve Cryptography
- ISBN 0 521 60415 X.
- Editors: I.F. Blake, G. Seroussi, N.P. Smart.

“Other elliptic curve cryptography books are available.”
ID-PKC – Pandemonium?

• Focus so far on positive aspects of ID-PKC: certificate-free, directory-less, automatic revocation and key recovery.

• We’ve not really examined the operational issues associated with ID-PKC.
 – Only hinted at difficulties of private key distribution and the non-repudiation issue.

• Now we take a closer look…

 …and discover that ID-PKC is not as straightforward as it at first appears.
Public Parameters

- Bob needs an *authentic copy* of the TA’s public parameters before he can safely encrypt to Alice.
 - To prevent man-in-middle attacks.
- One solution is to hard-code TA parameters into client applications.
 - Could be OK for closed applications, but not very flexible.
 - Could use hierarchical approach to support multiple applications and parties.
- Another solution:
 - Certify TA parameters using a PKI.
 - A hybrid solution, as adopted in Smetters and Durfee.
 - Still need to distribute and check these certified parameters.
Registration

• A secure enrollment process is still needed.
 – Pre-enrollment can be avoided, but Alice does need to enroll at some point!
 – Secure process needed to ensure that Alice’s private key is really being delivered to Alice.
 • PKI only needs an authentic channel.
 • ID-PKC needs a channel that is both authentic and confidential.
Registration

- A secure channel is needed for registration and delivery of private keys.
 - How is this to be achieved in practice?
 - How often will the channel be used?
 - What security level does it need to provide?
 - For example, is delivery via e-mail appropriate?
 - If we have such a channel, what alternative uses might be found for it?
 - Where should we store private keys once we’ve distributed them?
Reality of ID-based cryptography

- Secure channel
- Authentic public parameters
- Alice’s ID
Effect of Catastrophic Compromise

What is the cost of compromise of the master secret?

• Potentially higher than cost of compromise of CA signing key in PKI:
 – CA in PKI could re-issue all certificates under new signing key.
 – No client private keys are compromised.
 – Only temporary exposure to threat of rogue certificates being used by encrypting/verifying party.
 – Meanwhile, in ID-PKC, all past encrypted messages are exposed and all old signatures become worthless.

• In reality, a CA/TA compromise is unacceptable in either architecture.
 – In both cases, appropriate steps to prevent occurrence are needed.
Key Escrow

The other side of key recovery:

- TA can calculate all the private keys in the system.
- PKI is more flexible in this respect.
- May limit applicability of ID-PKC to certain applications where some degree of trust in TA is inherent.
 - In fact, open PKIs are largely a myth and many PKIs operate under similar trust assumptions anyway.
- Split TA or certificateless PKC as possible solutions.
Inability to Provide Non-repudiation

- Another consequence of key escrow.
- TA *could* forge signatures if an ID-based signature were adopted.
 - So need to trust TA not to do that.
- However, EU electronic signature legislation requires private key to be under “sole control” of signer in order for signatures to be fully recognised.
 - So may be incompatible with some legislative regimes.
- Since certificate can always be sent along with signature, ID-PKC does not seem to have a big advantage here anyway.
- Then why do we have so many ID-based signature algorithms???
Non-repudiation (ctd.)

- In fact, use of ID-based signatures would be reasonable in some (many?) applications:
 - True non-repudiation is not always needed.
 - Non-repudiation rarely enforced using legislation, but rather by PKI scheme rules and contracts.
 - ID-PKC scheme rules could permit use of ID-based signatures, provided appropriate trust relationships in place.
 - (But we still don’t need 27 different signature algorithms!)
Revocation in ID-PKC

- A revocation mechanism is needed in ID-PKC just as in traditional PKI.
 - In event of key compromise or change of status of entity related to identifier.
 - But how can you revoke an identifier?
- The simple “automatic revocation” solution:
 - Bob simply extend Alice’s identifier to include a validity period.
 - Granularity of expiry times determines rate of private key issuance (yearly, weekly, daily, …).
 - Could conveniently specify expiry policy in TA’s parameters.
- Hence “no need for CRLs or OCSP”.
Reality of Revocation in ID-PKC

- Granularity also determines maximum length of exposure period between compromise of private key and update of public key.
- So higher security application would need shorter validity period and hence higher rate of private key issuance.
 - Extra workload on TA.
 - TA may need to be highly available.
 - Secure channel needs to be used at frequent intervals.
 - Should be invisible to users.
 - Could use previous identifier and private key if not compromised.
Reality of Revocation in ID-PKC

- In a PKI, a (delta) CRL can be pushed out at regular intervals limiting exposure period.
 - Or even every time a key is compromised,

- This is not true of the automated revocation mechanism.

- Ultimately, in high security applications, real-time information concerning status of identifiers/private keys will be needed.

- Then an OCSP-like solution will be required.

- Where is the cross-over point where OCSP becomes more cost-effective than automatic revocation?
 - Detailed comparison needed.

- Reality: an effective revocation mechanism requires the timely distribution of authentic status information, irrespective of which public key technology is used.
 - Automatic revocation may not always be appropriate for ID-PKC.
A Thought Experiment

- Imagine situation where fine-grained identifiers are in use.
 - E.g. workflow application or frequent automated revocation.
- Then TA is on-line and frequent use is made of secure channel between TA and clients.
- If the channel is sufficiently secure and convenient to support this, what else could it be used for?
A Thought Experiment

A radical proposal: turn the TA into a KDC distributing symmetric keys to Alice and Bob.

- Assume Alice and Bob each have secure channel with TA/KDC.
- Use secure channels between KDC and users to distribute session keys.
- Session keys then used to protect application data between Alice and Bob.
- Canonical example: Needham-Schroeder protocol.
 - Similar message flow to ID-PKC approach.
 - Can be done without Bob ever contacting KDC.
A Symmetric Approach

\[\{K\}_K, \{K\}_B \]

\[K_A, K_B \]
Analysis of Thought Experiment

- What have we lost with this symmetric approach?
- Apparently, only the ability to provide non-repudiation services!
 - Recall, we agreed earlier that this was the unique feature separating public key from symmetric key.
- But ID-PKC doesn’t provide true non-repudiation!
 - In fact, KDC can provide arbitrated non-repudiation through use of symmetric key only.
 - Similar level of trust required in KDC as in TA.
- So we’ve lost nothing at all?
 - Maybe only a few extra protocol flows.
 - And no pairing calculations needed (sorry Mike and Paulo!)
Patents

Warning!

Warning!

Warning!

Warning!

- I am not a patent attorney, just an interested bystander.
- Nothing I am about to say concerning patents should be interpreted as a legal opinion.
- Nothing here is intended to be against the interests of any particular party or parties.
Patents

• “Systems and methods for identity-based encryption and related cryptographic techniques”.
• Inventors: Dan Boneh and Matthew Franklin.
• US application 10/218,697.
• Provisional application filed August 13th 2001.
• Published May 1st 2003 (Pub No US 2003/0081785).
• Available for free from US patent office.
• Not yet granted.
• 82 claims in published version.
• Most claims concerned purely with IBE using bilinear maps.
Patents

• Claim 70:
 “A method of providing system parameters for a cryptographic system comprising: providing a system parameter representing an algebraic group \(G_1\) and an algebraic group \(G_2\) and providing a system parameter representing a bilinear map \(\hat{e}\) mapping pairs of elements of \(G_1\) to elements of \(G_2\).”

• Appears to attempt to cover all pairing based cryptography using modified pairings!

• Yet there appears to be significant prior art using modified pairings in cryptographic settings.
 – At least Verheul’s paper at EUROCRYPT 2001.
 – This paper is referenced in Boneh and Franklin’s CRYPTO 2001 paper.
Patents

- Quite common for claims to cover more than has actually been demonstrated in a patent application.

- But:
 - Existence of Verheul’s work may technically invalidate broadest claims covering pairing-based cryptography.
 - The work of Sakai et al. from SCIS 2001, if regarded as having been in the public domain prior to August 13th 2001, could potentially invalidate all the claims.

- Even so, the US patent may still be granted intact.
- Detailed analysis of US 6886096 (granted patent) may also be interesting.
Patents

• It is perfectly reasonable for inventors to seek intellectual property protection for their work.

• But legal uncertainty surrounding the technology may actually hinder its widespread adoption.
 – Haven’t we all been here before with ECC?
 – Lack of standardisation also an issue here.
 – P1363 activity now proposed.

• Alternative approaches to ID-PKC which seek to avoid existing patents/patent applications are under development.
Complexity and ID-PKC

• There is a complexity gap between the concept of ID-PKC and its realisation in real-world applications.
 – Doesn’t this sound familiar?

• This makes certain initially attractive applications less compelling in practice.

• Getting rid of certificates helps.
 – But maybe not as much as we’d like to think…
Conclusions

- Traditional PKI has well documented problems and has not met (unrealistic) market expectations.
- Identity-based cryptography as an alternative
 - Solves some problems but introduces others.
 - Not the right choice for every application.
 - May be best suited to “corporate” or domain-restricted/closed applications where there is a natural choice for the TA.
- Lessons from history:
 - Avoid over-egging the pudding with unsupportable claims for the technology.
 - Don’t misjudge the size of the gap between cryptographic theory and security practice.
 - Patents are legitimate tools, but can decelerate uptake of technology.
 - Don’t forget about symmetric key cryptography.
Acknowledgements

- Talk based on joint research over last few years with: Sattam Al-Riyami, Hoon Wei Lim, Fred Piper, Geraint Price.
- PKI club: a research forum sponsored by Abbey, APACS, Barron McCann, beTRUSTed, BT exact Technologies, CESG, Hewlett-Packard Laboratories Bristol, Indicii Salus, Mondex and Prudential.
 - http://www.isg.rhul.ac.uk/research/projects/pkiclub
- Thanks also to the organisers of ECC9.