Practical Aspects of Identity-Based Encryption

Xavier Boyen

Voltage

ECC'2006

Outline

- 1. The What and the Why?
- 2. Pairings & Assumptions
- 3. Crypto Schemes
- 4. Deployment Issues

Purpose of IBE

Communicate securely (e.g., via email)

based on actual names - IBE Public Key: alice@gmail.com

rather than, say - RSA Public Key:

Public exponent=0x10001

Modulus=135066410865995223349603216278805969938881 4756056670275244851438515265106048595338339402871 5057190944179820728216447155137368041970396419174 3046496589274256239341020864383202110372958725762 3585096431105640735015081875106765946292055636855 2947521350085287941637732853390610975054433499981 1150056977236890927563

No Certificates

- Certificates bind xyz@ab.c to 0x1350664108...
- ID-based crypto: Identities = Public Keys
 - No certificate management
 - No revocation lists*
 - No pre-enrollment
 - * with short-lived public keys: alice@gmail.com|week#42

Traditional PKI

IBE System

Outline

- 1. The What and the Why?
- 2. Pairings & Assumptions
- 3. Crypto Schemes
- 4. Deployment Issues

Brief History

- Crypto favorite: groups with hard DL
 - subgroup of Z_q^* , prime order $p \mid q-1$
 - Elliptic Curves $E(F_q)$: $y^2 = x^3 + ax + b \pmod{q}$
- Extra structure on special <u>EC</u>: bilinear maps
 - 1946: Weil definition ("Weil pairing")
 - 1984: Miller algorithm
 - → 1993: MOV attack
 - 2000-today: many creative uses

Bilinear Maps

a.k.a. (bilinear) pairings

- G , G_t prime order p
- \bullet e : $G \times G \rightarrow G_{t}$
 - → bilinear: $\forall a,b \in Z \quad \forall g \in G \quad e(g^a, g^b) = e(g, g)^{ab}$
 - non-degenerate: g gen. G ⇒ e(g, g) gen. G₊
 - efficiently computable
- general case $e : G \times G' \rightarrow G_t$

Some Consequences

```
→ D-Log reduction from G to G_t [MOV'93]

find x \in Z DL in G DL in G_t

given g, g^x \in G \Rightarrow e(g,g), e(g,g)^x \in G_t
```

Decision-DH easy in G [Joux'00, JN'01]
 given g, g^a, h, h^b ∈ G
 decide if a = b by testing e(g, h^b) = e(g^a, h)

New Class of 'Bilinear" Assumptions

- Gap-DH minimalistic
 given g, g^a, g^b ∈ G can't compute g^{ab} (CDH)
 despite pairing (acting as DDH oracle)
- * (Decision) Bilinear DH a new classic given g, g^a, g^b, g^c ∈ G can't compute e(g, g)^{abc} (or disting. from rand.)
- many others: Linear, SDH, BDHI, BDHE, ...

Pairing-proof Assumptions Road Map

Why So Many Assumptions?

How about a single "pairing" assumption...
Which one?

- Too weak -> useless
 - e.g., assume only that pairing is non-invertible
- Too strong -> risky
 - e.g., interactive "oracle-based"
 - or, assume bilinear group is generic (= opaque)
 - (and even that is false under Subgroup!)

Sensible approach: prefer weak assumptions

© 2006 Xavier Boyen - 13

Picturing the Weil Pairing

Weil-Miller magic:

 $e_{\text{Weil}}(Q_1,Q_2)$ efficiently computable given just Q_1,Q_2

Bilinear Group Classification

Type-1 : G = G' a.k.a. "symmetric"

- DDH easy: can be good or bad
- supersingular curves do not scale well

Type-2 : $G \leftarrow G'$ one way

- → DDH easy in G'
- short element representation in G
- difficult to hash into G'

Type-3: $G \times G'$ separated

- * cross-group "DDH-like" only
- absence of homomorphism hurts some proofs

Also: composite order $N = p_1 p_2 = |G|$

Type-1 Groups

on supersingular curves

e.g.:
$$y^2=x^3+x \pmod{q}$$
 for $q=3 \pmod{4}$

Distortion function: $\Psi : G \rightarrow E(F_q^k)$

Define: $e(Q_1,Q_2) = e_{Weil}(Q_1,\psi(Q_2))$

Symmetric Pairing: e : G × G → G_t

© 2006 Xavier Boyen - 16

Type-2 and Type-3

e.g., on MNT

[Miyaji+Nakabayashi+Takano'01] or BN curves [Barreto+Naehrig'05]

 $G' \subset E(F_q^k)$

- Asymmetric Pairing:
- $e_{\text{Weil}}: G \times G' \rightarrow G_{_{\scriptscriptstyle{+}}}$
- Fewer assumptions, smaller representations
- Less powerful, more notation

Composite Order

Domain & Range of order $N = p_1 p_2$:

 \bigcirc 2006 Xavier \bigcirc e(\bigcirc 1, \bigcirc 2) has order N (or dividing N) in $(\bigcirc$ 2)*

Outline

- 1. The What and the Why?
- 2. Pairings & Assumptions
- 3. Crypto Schemes
- 4. Deployment Issues

Identity-Based Encryption

(systempars, masterk) = Setup()
 ciphtx = Encrypt(systempars, "Bob", message)
 privk = Issue(masterk, "Bob")
 msg = Decrypt(privk, ciphtx)
 system params

privkey

Encryption / KEM / Key Exchange

the practitioner's viewpoint

- Full Encryption most flexible
 - black box, but can waste bandwidth if hybrid
- Key Encapsulation neat and clean
 - but, 2 or 3 dependent layers (multi-recipient)
- Key Exchange -- special uses
 - but, cross-domain operation can be tricky

Classes of Known IBE Schemes

Quadratic Residuosity [c'01] (factoring-based)

"Full Domain Hash"

(pairing-based)

[BF'01] → [GS'02] [YFDL'04]

→ BDH with mandatory RO

"Exponent Inversion"

```
([MSK'02]) → [SK'03] [BB04,#2] , [G'06]

* "large" BDHI or similar
```

"Commutative Blinding"

```
[BB04,#1] → [BBG'05] [SW'05] [W'05] [N'05] [BW'06] ... 
 * BDH or Linear
```

[Boneh+Franklin'01] Basic 'BF' IBE

full-domain HashToPoint

```
    Setup - MsK: x ∈ Z<sub>p</sub> Pars: u=g<sup>x</sup>
    Issue(x,id) - PvK: d=H(id)<sup>x</sup>
    Encrypt(y,id,m) - pick r ∈ Z<sub>p</sub> Sessk: k= e(u,H(id))<sup>r</sup>
```

```
CT: a = g^r
b = \{m\}_{H'(k)}
e(g^r, H(m))^r
e(g^r, H(m)^r)
```

Decrypt(d,a,b) - Sessk: k= e(a,d)

© 2006 Xavier Boyen - 23

ISakai+Kasahara'031 Basic "SK" IBE

exponent inversion

```
    Setup - MsK: x ∈ Z<sub>p</sub> Pars: u=g<sup>x</sup>
    Issue(x,id) - PvK: d=g<sup>1/(x+H(id))</sup>
    Encrypt(y,id,m) - pick r ∈ Z<sub>p</sub> Sessk: k= e(g,g)<sup>r</sup> CT: a= u<sup>r</sup>g<sup>H(id).r</sup> b= {m}<sub>H'(k)</sub>
```

Decrypt(d,a,b) - Sessk: k= e(a,d)

© 2006 Xavier Boven - 24

BDH Assumption

to prove BF-IBE in RO model

Bilinear DH

[BF'01]

given g, g^a , g^b , $g^c \in G$ output $e(g, g)^{abc} \in G_t$

BDHI Assumption

typical of "exponent inversion" schemes

Bilinear DH Inversion

[MSK'02,BB'04]

given $g, g^x, g^{x2}, g^{x3}, ..., g^{xm} \in G$ output $e(g, g)^{1/x} \in G_t$

Adversary gets tons of data

 $\Omega(p^{1/3})$ generic attack complexity [BB'04] $\Theta(p^{1/3} \log p)$ best-case algorithm [Cheon'06] Compare: $\Theta(p^{1/2})$ generic d-log

IGentry'061 Gentry's Basic IBE

exponent inversion in target group

© 2006 Xavier Boyen - 27

IBoneh+B.'041 Basic 'BB-1" IBE

Setup

- params : [g , A=g^a , B=g^b , V=e(g,g)
- master-key : Y = gV

Issue(Y,id)

dual blinding

"commutative"

$$+ K_{id} = [K_1 = Y.A^{id}.B^{r}, K_2 = g^{r}]$$

Encrypt(id,M)

$$+ C = [C_0 = MV^{s}, C_1 = g^{s}, C_2 = A^{id}.B^{s}]$$

$Decrypt(K_{id},C)$

+
$$C_0$$
. $e(C_1, K_2) / e(C_1, K_3) = M$

30,000-foot Comparison

best approach in practice?

- → BF-IBE: slow Encrypt, requires HashToPoint
- SK-IBE: severely limited, but very fast scheme (provided Cheon's best case is avoided)
 - → Need G < E(F_a) , prime p=|G| \approx q , (p-1)/2 , (p+1)/2
 - In business once parameters are selected
- Gentry-IBE: equally limited, nice proof
- BB1-IBE: very flexible, very fast, somewhat more b/w
 - Efficient hierarchy → practical forward-security
 - → Threshold keygen → no central key escrow
 - ◆ Special applications: anonymous IBE → encrypted search

Outline

- 1. The What and the Why?
- 2. Pairings & Assumptions
- 3. Crypto Schemes
- 4. Deployment Issues

Practical Considerations

- Choosing an algorithm
 - Security: model & assumptions, ...
 - Performance: w.r.t. exact security!
 - Flexibility: bare-bones vs. useful extensions
 - Compatibility:
- Curves & pairings
 - Speed / Bandwidth / well studied or Hot New Stuff
 - → SS/MNT/BN curves , Weil/Tate/Eta/Ate pairing , char.
 - Do we need...
 - Fast curve generation?
 - → Hashing?
 - Homomorphism?
 - DDH?

© 2006 Xavier Boyen - 31

The Need for Speed

- More for Encryption than Decryption
 - single sender can blast to 10-s of recipients
 - typical user decrypts & reads 1 email at a time
- Key Issuance?
 - central server: expected bottleneck...
 - mitigated by staggering key expirations week#42 - Alice's starts on Monday Bob's starts on Wednesday
- In reality: not just Alice & Bob...

Typical Architecture

Deploying an IBE System

- IBE / PKI complementarity
 - PKI strengths: backbone & signature chains (SSL)
 - IBE better for encryption at the edges (end users)
- Critical features
 - Cross-domain communication
 - Policy-based mandatory encryption
 - "Gateway" decryption (e.g., for virus scanning)
 - * "Zero-download" web decryption (access anywhere)
- Nice to have
 - Forward security, personal delegation (hierarchy)
 - Distributed key authority

© 2006 Xavier Boyen - 34

Incoming Content Scanning

Outgoing Mandatory Encryption

© 2006 Xavier Boyen - 36

Cross-domain "Federation"

User Authentication

Crucial: on it rests the whole system
 (Also true for PKI, but less conspicuously so...)

BY DAME Yaviar Rayan a RR

The Authentication Gradient

IBE Systems are Extremely Scalable

- "Stateless" key servers
 - No growing store of certificates
 - No growing store of private keys
 - No revocation lists

- Just put two of them next to each other
- Easy backup and disaster recovery
 - Only master secret (+ policy & configuration) needs to be backed up
 - Size: < 100 kByte, fits on floppy disk
 - Master secret is long lived : put it once in a safe
 - Same for 100 or 100,000 users

Thank You!

Any Questions

Credits to

Guido Appenzeller & Voltage for selected slides & artwork

© 2006 Xavier Boven - 41