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The discrete logarithm problem (DLP)

Given b = ax in some group, find x .
Given b = x · a in some group, find x .
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The subexponential function L

LN (α, c) = e(c+o(1))(log N )α(log log N )1−α
, α ∈ (0, 1), c > 0

α = 0: (log N )c

α = 1: N c

LN (α, c1) · LN (α, c2) = LN (α, c1 + c2)

(log N )k ∈ LN (α, 0)

Lqg (α, c) ≈ qcgα ≈ qgα
number of elements

logq Lqg (α, ·) ≈ gα degree of elements
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Subexponential algorithm for F2g — ingredients

Problem: Given b = ax ∈ F
×

2g , find x ; F2g = F2[X ]/(f (X ))

elements
polynomials over F2 of degree < g

prime elements
irreducible polynomials

size function −→ R
+, homomorphic

deg

factor base of prime elements up to some smoothness bound B

F = {p1, . . . , pn}
non-unique decomposition into prime elements

r(X ) =
∏

pei

i

r(X ) + (X 4 + 1)f (X ) =
∏

p
fi
i

relation
∏

p
ei−fi
i = 1
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Subexponential algorithm for F2g

Take random αj , βj ∈ Z and compute

aαj bβj mod f , a polynomial over F2 of degree < g

Sometimes, the result is F -smooth (or B -smooth)

aαj bβj =

n∏

i=1

p
αij

i

αj + βj x =
∑

αij loga pi

Linear algebra yields x (and the loga pi )
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Complexity

Depends on the choice of F
F too small

I small probability of smoothness

F too large
I too many relations needed
I linear algebra infeasible

good compromise:
I B = log2 L2g (1/2,

√
2/2) ≈ g1/2

I |F| = L2g (1/2,
√

2/2) ≈ 2g1/2

I smoothness probability 1/L2g (1/2,
√

2/2)

total complexity
L2g (1/2,

√
2)
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“Simple”algebraic curves

elliptic curves
Y 2 = X 3 + aX + b, g = 1

hyperelliptic curves of genus g

Y 2 = f (X ) = X 2g+1 + · · ·
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“Less simple”algebraic curves

superelliptic curves
Y n = f (X ) = X d + · · · , g = (n−1)(d−1)

2
in particular: Y 3 = X 4 + f3X

3 + f2X
2 + f1X + f0, g = 3

Cn,d curves

Y n + h(X ,Y ) = X d , terms in h of small degree, g = (n−1)(d−1)
2

in particular: Y 3 + h(X )Y = X 4 + f (X ), deg h ≤ 2, deg f ≤ 3
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Divisors over Fq

divisors = finite formal sums of points
D =

∑

P∈C mPP , mP ∈ N, almost all zero

prime elements = points

Mumford representation

D = (x1, y1) + · · · + (xg , yg)

= (u,Y − v),

u = (X − x1) · · · (X − xg),

v of degree g − 1 s.t. v(xi) = yi

prime elements = irreducible u

adding
(u1, v1) + (u2, v2) = (u1u2, v3)

with v3 the Lagrange interpolation polynomial
(extended Euclidian algorithm)

decomposition = factoring u
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Jacobians

P

Q

S T

U

R

Prin =
{

∑

P∈f∩C mPP : f a polynomial
}

J = Div /Prin

(P + Q) + (R + S ) = (−T ) + (−U ) = T + U in J (reduction)

non-unique prime decomposition
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Jacobians over Fq

prime divisor = orbit of points under the Galois group (Frobenius)

degree = number of points in the divisor
example

I (x , y) ∈ Fqk × Fqk

I set of k points (x q i

, yq i

)
I prime divisor of degree k :

(u,Y − v), u minimal polynomial of x over Fq

adding
∑

(ui ,Y − vi) = (u,Y − v)
I u =

∏
ui

I v s.t. v ≡ vi mod ui

+ reduction

prime decomposition = factoring u
(u,Y − v) =

∑
(ui ,Y − vi)

I u =
∏

ui

I vi = v mod ui
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Subexponential algorithm

Riemann–Roch: deg u ≤ g

Hasse-Weil:
I number of points over Fqk ≈ qk

I number of prime divisors of degree k ≈ qk/k
I #J ≈ qg = qg1 ≈ Lqg (1, ·)

The algorithm of F2g applies...
... and has complexity Lqg (1/2,

√
2)

at least for q fixed, g →∞
more precisely for g > log q
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History

Adleman–DeMarrais–Huang 1994
I first subexponential algorithm for hyperelliptic curves
I heuristic

Müller–Stein–Thiel 1999
I algorithm for infrastructure of real quadratic function fields
I heuristic, since smoothness result missing

E. 2002
I first subexponential algorithm for hyperelliptic curves

with proven complexity (smoothness result in E.–Stein 2002)

E.–Gaudry 2002
I unified framework for discrete logarithm algorithms in L(1/2)

(finite fields, class groups of number fields, Jacobians)

Couveignes 2001, Hess 2004
I proven L(1/2)-algorithms for all major classes of curves

exponential, but fast algorithms for smallish genus
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Construction kit smoothness result

Assume there are ≈ qk/k bricks of size k .

Consider random towers of height logq Lqg (α, ·).
Interest yourself in those constructed from
small bricks of size up to logq Lqg (β, ·).
Then their proportion is

1/Lqg (α− β, ·)

Application: α = 1, β = 1/2 ⇒ L(1/2)

α = 1, β = 2/3 ⇒ L(2/3)

α = 2/3, β = 1/3 ⇒ L(1/3)
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Function field sieve for F2g

C : Y d = F (X ), F ∈ F2[X ],deg F ≈ d

F2[C] = F2[X ,Y ]/(Y d − F ) F2[X ]

F2[C ]/f F2[X ]/(f )

��
�

�

�

�

�

�

�

�

//
Y 7→m(X )

��
�

�

�

�

�

�

�

�

'

f = (f (X ),Y −m(X )) with f |md − F

a(X ) + b(X )Y 7→ a(X ) + b(X )m(X )
|| ||

∏
p
fj
j

∏
pei

i
∑

fj log(pj ) =
∑

ei log pi
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Complexity of the function field sieve

d = gδ

deg m = g/d = g1−δ

deg a, deg b = gδ

rational sieve

deg(a + bm) = max(deg a,deg b + deg m)

= gγ + g1−δ

= gmax(γ,1−δ)

algebraic sieve

NF2[C]/F2[X ](a + bY ) = (−a)d − bdF

deg div(a + bY ) = deg N

= d deg b + deg F

= gδ+γ

γ = δ = 1/3 ⇒ g2/3 for both
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Lectures from the function field sieve

L2g (1/3) for the finite field F2g

uses a curve over the base field F2

I double representation of F2g as residual field, rational and algebraic
I degree d of the curve gives additional degree of freedom

We already have a curve!
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Cn,d curves

Y n + h(X ,Y ) = X d

terms in h of the form X iY j with ni + dj < nd

unique place at infinity

g = (n−1)(d−1)
2 ≈ n · d

n ≈ g1/3, d ≈ g2/3
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Relations = divisors of polynomials

C : Y n + h(X ,Y ) = X d

n ≈ g1/3, d ≈ g2/3

ϕ = a(X )Y + b(X )

deg a, deg b ≈ g1/3

# affine zeroes = degX NFq [C]/Fq [X ](ϕ)
I N(ϕ) = ResY (ϕ, C)
I deg N(ϕ) ≤ degX ϕ · degY C + degY ϕ · degX C ≈ 2g2/3

affine divisor of degree g2/3

sum of prime divisors of degree g1/3 with probability 1/L(1/3)
⇒ relation
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Related work

Adleman–DeMarrais–Huang 1994, applied to a special class of curves

for small genus, essentially Diem 2006
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Why not L(1/4)?

C : Y n + h(X ,Y ) = X d

n ≈ g1/2, d ≈ g1/2

ϕ = a(X )Y + b(X )

deg a, deg b ≈ g0

# affine zeroes = degX NFq [C]/Fq [X ](ϕ)
I N(ϕ) = ResY (ϕ, C)
I deg N(ϕ) ≤ degX ϕ · degY C + degY ϕ · degX C ≈ 2g1/2

affine divisor of degree g1/2

sum of prime divisors of degree g1/4 with probability 1/L(1/4)
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Therefore not L(1/4)!

size of the search space:

qg1/3

︸ ︷︷ ︸

#a

· qg1/3

︸ ︷︷ ︸

#b

= q2g1/3 ≈ L(1/3) = #trials
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Application: Group structure computation

class of curves C : Y n + h(X ,Y ) with h of degree d in X , < n in Y

I not necessarily Cn,d

I n ≤ n0 g1/3 M−1/3

I d ≤ d0 g2/3 M1/3

I M = log(g log q)
log q

I g > log2+ε q

algorithm
I Compute an approximation to h = #J (C) within a factor of 2.
I Fix smoothness bound B = logq Lqg (1/3, ρ).
I Enumerate factor base F .
I Fill a matrix of size Lqg (1/3, ρ) with relations.
I Compute the Smith normal form of the matrix.
I Return h and generators of the group.

running time depends on n0 and d0

Lqg (1/3, > 25/24)
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What is the problem?

C : Y n + h(X ,Y ) = X d

n ≈ g1/3, d ≈ g2/3

Given E = xD , find x .

need relations with D and E (or a linear combination of them)

problem: fixed divisors of degree g = g 1

broken into pieces of degree g2/3 in time L(1/3)
(construction kit lemma)
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Special Q-sieve

Q = div(u,Y − v), deg u,deg v = g2/3

ϕ going through Q

ϕ = au + b(Y − v) = (au − bv) + bY

degX ϕ ≈ g2/3

affine divisor of degree g1

broken into pieces of degree g2/3 in time L(1/3)
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Solution: Spend some more time L(1/3 + ε)

divisor of degree g broken into pieces of degree g 2/3−ε

in time L(1/3 + ε)

special Q -sieve

Q = (u,Y − v), deg u, deg v = g2/3−ε

ϕ = au + b(Y − v) = (au − bv) + bY

degX ϕ ≈ g2/3−ε

affine divisor of degree g1−ε

broken into pieces of degree g2/3−2ε in time L(1/3 + ε)
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Running time

tree of special Q

height ≤ 1 + (1/3)/ε

fan-out bounded by g (on average g 1/3)

number of nodes ≈ g1/(3ε)

polynomial in g!

Lqg (1/3 + ε, c + o(1))
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What is the constant? 0!

L(1/3 + ε/2, c + o(1)) ⊆ L(1/3 + ε, o(1))
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Solution: Increase the degree in Y

Q = (u,Y − v)
= [u,Y − v1,Y

2 − v2,Y
3 − v3, . . .], vi = v i mod u

deg u = deg vi = gα

ϕ =
k∑

i=1
ri (Y

i − vi) = −
∑

rivi
︸ ︷︷ ︸

g1/3 deg

+
∑

riY
i

︸ ︷︷ ︸

dg1/3+kg2/3

; deg ri = d

put d = kg1/3

degree of
∑

rivi : d + gα

degrees of freedom: kd

need kd = gα

k = gα/2−1/6, d = gα/2+1/6, degree of divisor gα/2+1/2

smoothing in time L(1/3) towards gα/2+1/6
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Running time

tree of special Q

height ≤ g2/3

fan-out bounded by g

number of nodes ≤ g4/3

polynomial in g!

Lqg (1/3, c + o(1))
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More balanced curves

C : Y n + h(X ,Y ) = X d

n ≈ gα, d ≈ g1−α, α ∈ [1/3, 1/2]

ϕ = a0(X ) + a1(X )Y + · · ·+ ak (X )Y k

deg ai = g2/3−α, k = gα−1/3

deg N(ϕ) ≤ degX ϕ · degY C + degY ϕ · degX C ≈ 2g2/3

relations and group structure in L(1/3)

discrete logarithms in L(α + ε)
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Conclusion

First algorithm solving the discrete logarithm problem
for algebraic curves in L(1/3)

Outlook

further class of curves by Diem

characterise all curves with an algorithm in L(1/3)?
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