An L(1/3) algorithm for the discrete logarithm $${\rm problem}$$ in low degree curves

Andreas Enge (joint work with Pierrick Gaudry)

INRIA Futurs & Laboratoire d'Informatique (LIX) École polytechnique France enge@lix.polytechnique.fr http://www.lix.polytechnique.fr/Labo/Andreas.Enge

The 10th Workshop on Elliptic Curve Cryptography — ECC 2006 September 19, 2006 The discrete logarithm problem (DLP)

Given $b = a^x$ in some group, find x. Given $b = x \cdot a$ in some group, find x.

Andreas Enge	(INRIA Futurs)
--------------	----------------

L(1/3)

L(1/3)

1 Discrete logarithms in L(1/2)

- $\mathbb{F}_{2^{g}}$
- Algebraic curves
- 2 Finding relations in L(1/3)
 - F₂
 - Algebraic curves

Computing discrete logarithms

- Optimally unbalanced curves
- More balanced curves

Subexponential algorithm for \mathbb{F}_{2^g} — ingredients

Problem: Given $b = a^x \in \mathbb{F}_{2^g}^{\times}$, find x; $\mathbb{F}_{2^g} = \mathbb{F}_2[X]/(f(X))$

elements

prime elements

polynomials over \mathbb{F}_2 of degree < g

irreducible polynomials

- size function $\longrightarrow \mathbb{R}^+$, homomorphic deg
- · factor base of prime elements up to some smoothness bound B

$$\mathcal{F} = \{p_1, ..., p_n\}$$

non-unique decomposition into prime elements

$$\begin{split} r(X) &= & \prod p_i^{e_i} \\ r(X) + (X^4 + 1) f(X) &= & \prod p_i^{f_i} \\ \text{relation} & \prod p_i^{e_i - f_i} &= & 1 \end{split}$$

Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006
Subexponential algo	prithm for \mathbb{F}_{2^g}		Complexity		

• Take random α_i , $\beta_i \in \mathbb{Z}$ and compute

 $a^{\alpha_j} b^{\beta_j} \mod f$, a polynomial over \mathbb{F}_2 of degree < g

• Sometimes, the result is *F*-smooth (or *B*-smooth)

$$\begin{array}{lcl} a^{\alpha_j} b^{\beta_j} & = & \prod_{i=1}^n p_i^{\alpha_{ij}} \\ \alpha_j + \beta_j x & = & \sum \alpha_{ij} \log_a p \end{array}$$

• Linear algebra yields x (and the $\log_a p_i$)

Depends on the choice of \mathcal{F}

- $\mathcal F$ too small
 - small probability of smoothness
- \mathcal{F} too large
 - too many relations needed
 - linear algebra infeasible
- good compromise:

•
$$B = \log_2 L_{2g}(1/2, \sqrt{2}/2) \approx g^{1/2}$$

•
$$|\mathcal{F}| = L_{2^g}(1/2, \sqrt{2}/2) \approx 2^{g^{1/2}}$$

- smoothness probability $1/L_{2^g}(1/2,\sqrt{2}/2)$
- total complexity

 $L_{2^{g}}(1/2,\sqrt{2})$

Discrete logarithms in L(1/2) • F₂₉

- Algebraic curves
- Pinding relations in L(1/3)
 - F₂
 - Algebraic curves

Computing discrete logarithms

- Optimally unbalanced curves
- More balanced curves

Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006
"Less simple" algebra	aic curves		Divisors over $\overline{\mathbb{F}_{a}}$		

• superelliptic curves $Y^n = f(X) = X^d + \cdots, g = \frac{(n-1)(d-1)}{2}$ in particular: $Y^3 = X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0, g = 3$

C_{n,d} curves

 $Y^n+h(X,Y)=X^d,$ terms in h of small degree, $g=\frac{(n-1)(d-1)}{2}$ in particular: $Y^3+h(X)Y=X^4+f(X),$ $\deg h\leq 2,$ $\deg f\leq 3$

- divisors = finite formal sums of points $D = \sum_{P \in C} m_P P$, $m_P \in \mathbb{N}$, almost all zero
- prime elements = points
- Mumford representation

$$\begin{array}{lll} D &=& (x_1, y_1) + \dots + (x_g, y_g) \\ &=& (u, \, Y - v), \\ &u = (X - x_1) \cdots (X - x_g), \\ &v \text{ of degree } g - 1 \text{ s.t. } v(x_i) = y \end{array}$$

- prime elements = irreducible u
- adding

$$(u_1, v_1) + (u_2, v_2) = (u_1 u_2, v_3)$$

with v_3 the Lagrange interpolation polynomial (extended Euclidian algorithm)

decomposition = factoring u

Jacobians

• Prin = $\left\{\sum_{P \in f \cap C} m_P P : f \text{ a polynomial}\right\}$ • $J = \text{Div} / \text{Prin}$ • $(P + Q) + (R + S) = (-T) + (-U) = \overline{T} +$ • non-unique prime decomposition	\overline{U} in J (reduction)	• prime divisor = orbi • degree = number of • $(x, y) \in \mathbb{F}_{q^k} \times \mathbb{F}$ • set of k points (• prime divisor of (u, Y - v), u an • adding $\sum(u_i, Y - v_i) = (u$ • $v \in \Pi u_i$ • $v \in S.t. v \equiv v_i$ nuc + reduction • prime decomposition $(u, Y - v) = \sum(u_i$ • $u = \Pi u_i$ • $v_i = v \mod u_i$	t of points under the Galo f points in the divisor x^{q^i}, y^{q^i}) degree k : inimal polynomial of x over u, Y - v) dd u_i n = factoring u $, Y - v_i$)	is group (Frobenius)
Andreas Enge (INRIA Futurs) L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 20
Subexponential algorithm		History		

- Riemann–Roch: $\deg u \leq g$
- Hasse-Weil:
 - number of points over $\mathbb{F}_{q^k} \approx q^k$
 - number of prime divisors of degree $k \approx q^k/k$
 - $\#J \approx q^g = q^{g^1} \approx L_{q^g}(1, \cdot)$

The algorithm of \mathbb{F}_{2^g} applies... ... and has complexity $L_{q^g}(1/2, \sqrt{2})$

- at least for q fixed, $g \to \infty$
- more precisely for g > log q

- Adleman–DeMarrais–Huang 1994
 - · first subexponential algorithm for hyperelliptic curves
 - heuristic

Jacobians over \mathbb{F}_a

- Müller-Stein-Thiel 1999
 - > algorithm for infrastructure of real quadratic function fields
 - heuristic, since smoothness result missing
- E. 2002
 - first subexponential algorithm for hyperelliptic curves with proven complexity (smoothness result in E.–Stein 2002)
- e E.-Gaudry 2002
 - unified framework for discrete logarithm algorithms in L(1/2) (finite fields, class groups of number fields, Jacobians)
- Couveignes 2001, Hess 2004
 - proven L(1/2)-algorithms for all major classes of curves
- exponential, but fast algorithms for smallish genus

Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 200

Construction kit smoothness result

L(1/3)

L(1/3)

 L_{2g}(1/3) for the finite field 𝔽_{2g} uses a curve over the base field F₂

We already have a curve!

- Finding relations in L(1/3) double representation of F₂₀ as residual field, rational and algebraic
 - Algebraic curves

Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006
$C_{n,d}$ curves			Relations = divisor	s of polynomials	

degree d of the curve gives additional degree of freedom

- $Y^n + h(X, Y) = X^d$ terms in h of the form $X^i Y^j$ with ni + di < nd
- unique place at infinity
- $g = \frac{(n-1)(d-1)}{2} \approx n \cdot d$
- $n \approx a^{1/3}$, $d \approx a^{2/3}$

- $\mathcal{C}: Y^n + h(X, Y) = X^d$
- $n \approx a^{1/3}$, $d \approx a^{2/3}$
- $\varphi = a(X)Y + b(X)$
- deg a, deg b ≈ q^{1/3}
- # affine zeroes = $\deg_X N_{\mathbb{F}_q[\mathcal{C}]/\mathbb{F}_q[X]}(\varphi)$
 - ▶ $N(\varphi) = \operatorname{Res}_V(\varphi, C)$
 - $\deg N(\varphi) \le \deg_X \varphi \cdot \deg_Y C + \deg_Y \varphi \cdot \deg_X C \approx 2g^{2/3}$
- affine divisor of degree $q^{2/3}$
- sum of prime divisors of degree $g^{1/3}$ with probability 1/L(1/3) \Rightarrow relation

$$C: Y^n + h(X, Y) = X^d$$

- Adleman–DeMarrais–Huang 1994, applied to a special class of curves
- for small genus, essentially Diem 2006

•
$$n \approx g^{1/2}$$
, $d \approx g^{1/2}$

•
$$\varphi = a(X)Y + b(X)$$

- deg a, deg $b \approx g^0$
- # affine zeroes = $\deg_X N_{\mathbb{F}_q[\mathcal{C}]/\mathbb{F}_q[X]}(\varphi)$

- ► $\deg N(\varphi) \le \deg_X \varphi \cdot \deg_Y C + \deg_Y \varphi \cdot \deg_X C \approx 2g^{1/2}$
- affine divisor of degree g^{1/2}
- sum of prime divisors of degree $g^{1/4}$ with probability 1/L(1/4)

Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006
Therefore not $L(1/4)$	l)!		Application: Group	structure computati	on

- class of curves C : $Y^n + h(X, Y)$ with h of degree d in X, < n in Y
 - ▶ not necessarily C_{n,d}
 - $n \le n_0 g^{1/3} \dot{M}^{-1/3}$

•
$$d \le d_0 g^{2/3} \mathcal{M}^{1/3}$$

• $d \le \log(g \log q)$

$$\mathcal{M} = \frac{\log q}{\log q}$$

$$g > \log^{-10} q$$

- algorithm
 - Compute an approximation to h = #J(C) within a factor of 2.
 - Fix smoothness bound B = log_q L_{q^g}(1/3, ρ).
 - ► Enumerate factor base *F*.
 - Fill a matrix of size L_{q^g}(1/3, ρ) with relations.
 - Compute the Smith normal form of the matrix.
 - Return h and generators of the group.
- running time depends on n₀ and d₀
 L_{q^g}(1/3, > 25/24)

۹	size	of	the	search	space:
---	------	----	-----	--------	--------

$$\underbrace{q^{g^{1/3}}}_{\#a} \cdot \underbrace{q^{g^{1/3}}}_{\#b} = q^{2g^{1/3}} \approx L(1/3) = \#trials$$

Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006
Special Q-sieve			Solution: Spend so	me more time $L(1/3)$	$+\varepsilon$)

$$Q = \text{div}(u, Y - v), \quad \text{deg } u, \text{deg } v = g^{2/3}$$

 $\bullet \ \varphi$ going through Q

•
$$\varphi = au + b(Y - v) = (au - bv) + bY$$

- $\deg_X \varphi \approx g^{2/3}$
- ${\ensuremath{\,\circ\,}}$ affine divisor of degree g^1
- broken into pieces of degree $g^{2/3}$ in time L(1/3)

• divisor of degree g broken into pieces of degree $g^{2/3-\varepsilon}$ in time $L(1/3+\varepsilon)$

special Q-sieve

- Q = (u, Y − v), deg u, deg v = g^{2/3-ε}
- $\varphi = au + b(Y v) = (au bv) + bY$
- $\deg_X \varphi \approx g^{2/3-\varepsilon}$
- affine divisor of degree g^{1-ε}
- \bullet broken into pieces of degree $g^{2/3-2\varepsilon}$ in time $L(1/3+\varepsilon)$

• tree of special Q• height $\leq 1 + (1/3)/\varepsilon$ • fan-out bounded by g (on average $g^{1/3}$) • number of nodes $\approx g^{1/(3\varepsilon)}$ polynomial in g!

 $L_{q^g}(1/3 + \varepsilon, c + o(1))$

 $L(1/3 + \varepsilon/2, c + o(1)) \subseteq L(1/3 + \varepsilon, o(1))$

Solution: Increase t	he degree in V		Running time		
Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006

 \bullet smoothing in time L(1/3) towards $g^{\alpha/2+1/6}$

 $L_{q^g}(1/3, c + o(1))$

Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006	Andreas Enge (INRIA Futurs)	L(1/3)	ECC 2006
Conclusion					

First algorithm solving the discrete logarithm problem for algebraic curves in ${\cal L}(1/3)$

Outlook

- further class of curves by Diem
- characterise all curves with an algorithm in L(1/3)?