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Definition The weight of an integer N is
the smallest w such that

N =
w∑

i=1

εi2ci ,

with εi ∈ {1,−1}.

It is tempting to use such primes in cryp-
tographic protocols, for example in pairing
based cryptography. (Solinas)

Question When the security of a system
depends on the difficulty of computing dis-
crete logarithms in a finite field of charac-
teristic p, how is that security affected by
the weight of p?



Example. (Koblitz, Menezes) Let

p = 215474 − 214954 + 214432 + 1

and assume we are interested in computing
discrete logarithms in Fp.

The “NFS-security” in this case is 13180
bits. In other words, you might as well be
working with a general prime of 13180 bits.



The number field sieve for computing loga-
rithms in a finite field F :

i) Find two number rings O1 and O2 and
ring homomorphisms

φ1 : O1 → F

φ2 : O2 → F.

ii) Search for many pairs (δ1, δ2) ∈ O1×O2

such that

∗ φ1(δ1) = φ2(δ2)

∗ the norms of δ1 and δ2 in Z are
smooth.

iii) Use linear algebra to find discrete loga-
rithms.



The running time of the method depends
on the size of the norms being tested for
smoothness.

Assume |F | = p.

Let d + 1 be the sum of the degrees over
Q of the fraction fields of O1 and O2. Let
M2 be the number of smoothness candi-
dates tested. In the SNFS (for primes of the
from re+s with r and s small), the numbers
tested for smoothness are bounded by

Md+1p
1
d .

The resulting conjectural running time, for
p →∞, is

Lp[1/3; (32/9)1/3 + o(1)].

(Lp[s; c] = exp(c(log p)s(log log p)1−s.)



In the general case, the numbers tested for
smoothness are bounded by

Md+1p
2

d+2 .

The resulting conjectural running time is

Lp[1/3; (64/9)1/3 + o(1)],

for p →∞.



In the low-weight example given earlier, we
can let

O1 = Z

and
O2 = Z[α],

where α is a root of

f = (2520 − 1)x14 + 2547x13 + 1.

Note that p|f(21069).

Let φ1 be the usual projection, and let φ2

be the map that sends α to 21069 mod p.

The pairs tested for smoothness are

a− b21069, a− bα,

with a, b ∈ Z. The norm of a− bα is

b14f(a/b).



We find that the numbers tested for smooth-
ness are bounded by

M1521619.

This value is between the SNFS and general
NFS bounds given earlier.

More specific questions:

What is the running time of our method as
a function of the weight?
Is the weight a good predictor of the run-
ning time for a particular prime?



Assume

p =
w∑

i=1

εi2ci .

For a given e, we can find a polynomial f
such that

∗ f(2e) ≡ 0 mod p

∗ the coefficients of f are bounded
by e−γ, where γ is the largest gap
occurring in the sequence obtained
by listing in increasing order the
residues of the ci mod e. (We
include 0 and e in the sequence.)



Back to our example:

p = 215474 − 214954 + 214432 + 1

e = 1069.

The sequence of residues is

1, 508, 535, 1057, 1069.

(1, 15474, 14432, 14954, 1069)

The largest gap is between 535 and 1057.

We find that 212p =

2520(21069)14− (21069)14 +2547(21069)13 +1.



Rough analysis:

In the worst case, the largest gap is

e

w − 1.

Let
θ =

2w − 3
w − 1

.

In the worst case, the numbers tested for
smoothness are bounded by

Md+122e− e
w−1 ≈ Md+1p

θ
d .

The resulting conjectural running time is

Lp[1/3; (32θ/9)1/3 + o(1)],

for p →∞.



A closer look reveals that one can always do
better than a gap size of e/(w−1). However,
one cannot improve much on the running
time just given.

Let

τ =
√

2w − w
√

2 + 1
w − 1

.

There exists an infinite set of integers of
weight w with the property that the con-
jectural running time of our method is at
least

Lp[1/3; (32τ2/9)1/3 + o(1)],

for p →∞.



(32τ2/9)1/3 (32θ/9)1/3

w = 2 1.526 1.526
w = 3 1.730 1.747
w = 4 1.796 1.810
w = 5 1.828 1.839
w = 6 1.847 1.857
w = 7 1.860 1.868
w = 8 1.869 1.876
w = 9 1.876 1.882
w = 10 1.881 1.887



These results are deceptive.

For a given weight w, the asymptotic gain
over the general NFS is only realized for
large p.

The gap in the sequence of residues is usu-
ally much larger than e/(w − 1).

Proposition. Let S be the set of sequences
of length w− 2 of non-negative integers less
than e. For s ∈ S, let γ(s) be the largest
gap in the sequence obtained by ordering
the elements of s, together with 0 and e.
Then the average value of γ(s) is

MESS.



The chart below gives values of

MESS
e

and the value 1/(w − 1) for comparison.

e = 200 e = 1000 e = ∞ 1
w−1

w = 3 .753 .751 .750 .500
w = 4 .604 .610 .611 .333
w = 5 .508 .518 .521 .250
w = 6 .439 .453 .457 .200
w = 7 .386 .404 .408 .167
w = 8 .340 .364 .370 .143
w = 9 .301 .332 .340 .125
w = 10 .268 .305 .314 .111

End of Part I.



Part II: A modification for logarithms in
non-prime fields:

Example (degree 2). Let

p = 2520 + 2230 + c,

where c = 260 + 220 + 29 + 13.

Observe that 2 is a quadratic non-residue
mod p.

Assume we want to compute logarithms in
Fp2 .

Option 1: Using the method already dis-
cussed, obtain

f = 260x5 + 246x2 + c.

Let
O1 = Z[

√
2]

O2 = Z[
√

2, α],

where f(α) = 0.



Test pairs of the form

(a1 + a2

√
2)− (b1 + b2

√
2)292,

(a1 + a2

√
2)− (b1 + b2

√
2)α,

with a1, b1, a2, b2 bounded by
√

M in abso-
lute value.

The norm bound is

M62304.



Option 2: Joux, Lercier, Smart, and Ver-
cauteren observe that we can let O1 be the
ring obtained by adjoining to Z a root of an
irreducible quadratic f ∈ Z[x] and then let
O2 be obtained by adjoining to Z a root of
an irreducible polynomial g of degree ≥ 2,
having the property that f divides g mod
p.

Modification: Write

p =
√

2
1040

+
√

2
460

+ c.

Applying the same procedure as before, we
obtain

g = 259x4 + x2 + 2c,

which has
√

2
231

as a root mod p.
In other words, g is divisible by x2 − 2231

mod p.



Let β be a root of g.

Assuming that we test for smoothness pairs
of the form

a− b
√

2
231

, a− bβ,

with a, b ∈ Z bounded by M in absolute
value, we obtain a norm bound of

M62292.

We have an improvement . . . and we did not
even take into account, in the first option,
the contribution coming from the basis of
Z[
√

2] and the cost of working in a degree
10 extension.



Example (SNFS).

Let

p =
360 + 5

2
and consider the logarithm problem in Fp18 .

Note that x18 − 3 is irreducible mod p.

Option 1: Let f = x5 + 5, in which case
f(312) ≡ 0 mod p.

Let O1 be any ring with residue field Fp18 .
Let O2 = O1[α], where α is a root of f .

We test for smoothness pairs of the form

a− b312, a− bα,

with a, b ∈ O1.

If we choose the M2 smallest a, b, we obtain
a norm bound of

M6(p18)1/5.



Option 2: Let µ = 18
√

3, and write

2p = µ1080 + 5.

Let

f = x4 + 5µ4 = x4 + 5( 9
√

3)2,

and observe that µ271 is a root of f mod p.

We let O1 = Z[µ] and O2 = Z[ 9
√

3, α], where
α is a root of f .

We test for smoothness pairs of the form

a− bµ271, a− bα,

with a, b in Z[ 9
√

3].

If we choose the M2 smallest such a, b, we
obtain a norm bound of

M6(p18)1/4.



The first bound is clearly much better than
the second. However, in the former case,
the extensions being used are of degree 18
and 90. In the latter case they are of degree
18 and 36.

The increase in norm size resulting from
working in the degree 90 field may outweigh
the difference between these bounds.



Example. (Barreto, Naehrig) Let

c = 280 + 99

f = 36x4 + 36x3 + 24x2 + 6x + 1

p = f(c).

Assume we are interested in computing log-
arithms in Fp12 .

Note that c is a quadratic non-residue mod
p.



Let O1 be any number ring with residue
field Fp12 . It is tempting to run the NFS
with O2 = O1[α], where α is a root of f .
The pairs tested for smoothness would then
be

a− bc, a− bα,

with a, b ∈ O1.

The norm bound for M2 candidates would
be

M5c12 ≈ M5(p12)1/4.

This is the SNFS bound for d = 4, with p
replaced by p12.

However, for the p under consideration, the
optimal value of d is 8.



Let O1 be a number ring containing
√

c and
having Fp12 as a residue field.

Let g = 36x8 + 36x6 + 24x4 + 6x2 + 1 and
let O2 = O1[β], where β is a root of g.

We test for smoothness pairs

a− b
√

c, a− bβ,

where a, b ∈ O1.

The norm bound for M2 candidates is

M9c6 ≈ M9(p12)1/8.

Thus we have again taken advantage of the
special representation of p.

Of course, this bound completely ignores
the significant impact of working in exten-
sions of degree 12 and 96.



We obtain the analogous result, under the
assumption that c is an appropriate non-
residue mod p, for various values of d.

Below is a list of all cases. For each degree,
the accompanying range indicates the field
sizes, in bits, for which that value of d is op-
timal. Note that these values are obtained
from an asymptotic formula and are very
rough. In particular, for d = 4, I expect
they are too low.

d = 4 250− 500

d = 8 3200− 4700

d = 12 13, 500− 17, 500

d = 16 36, 500− 44, 500

d = 24 144, 000− 164, 000

d = 48 1, 430, 000− 1, 520, 000


