
Towards an exact cost analysis

of index-calculus algorithms

ECC 2006

Nicolas Thériault
ntheriau@fields.utoronto.ca

Fields Institute

Work in progress with Roberto Avanzi



Elliptic Curve DLP

For an elliptic curve E(Fq̃), the fastest known method to
solve the discrete logarithm problem is Pollard’s Rho
algorithm, which takes an expected

(√
π

2
+ ǫ

)

√

group order group operations.

[⇐] – p.1 .



Elliptic Curve DLP

For an elliptic curve E(Fq̃), the fastest known method to
solve the discrete logarithm problem is Pollard’s Rho
algorithm, which takes an expected

(√
π

2
+ ǫ

)

√

group order group operations.

If ℓ is the largest prime divisor of the group order, this

means ≈ 0.8862
√

ℓ group operations (Pohlig–Hellman).

[⇐] – p.1 .



Elliptic Curve DLP

For an elliptic curve E(Fq̃), the fastest known method to
solve the discrete logarithm problem is Pollard’s Rho
algorithm, which takes an expected

(√
π

2
+ ǫ

)

√

group order group operations.

If ℓ is the largest prime divisor of the group order, this

means ≈ 0.8862
√

ℓ group operations (Pohlig–Hellman).

This is often stated as O(
√

q̃), hiding the constant
√

π
2

(assuming a group of prime order).

[⇐] – p.1 .



Genus 2 HEC DLP

For a hyperelliptic curves H of genus 2 defined over the
field Fq, the fastest known method to solve the discrete log
is still Pollard Rho, which is often stated as O(q).

[⇐] – p.2 .



Genus 2 HEC DLP

For a hyperelliptic curves H of genus 2 defined over the
field Fq, the fastest known method to solve the discrete log
is still Pollard Rho, which is often stated as O(q).

To get the same security as an elliptic curve over Fq̃, we ask
that q has half the number of bits as q̃ (abusing notation,

we ask that O(
√

q̃) = O(q)).

We then compare the efficiency of Jac(H)(Fq) with E(Fq̃).

[⇐] – p.2 .



Genus 2 HEC DLP

For a hyperelliptic curves H of genus 2 defined over the
field Fq, the fastest known method to solve the discrete log
is still Pollard Rho, which is often stated as O(q).

To get the same security as an elliptic curve over Fq̃, we ask
that q has half the number of bits as q̃ (abusing notation,

we ask that O(
√

q̃) = O(q)).

We then compare the efficiency of Jac(H)(Fq) with E(Fq̃).

Since the security of both group depends on the same
algorithm, the hidden constants are the same, so we might
expect a fair comparison.

[⇐] – p.2 .



Group Operations

But we are making a very big assumption: the group
operations have the same cost when we attack the DLP as
they have in the scalar multiplication.

[⇐] – p.3 .



Group Operations

But we are making a very big assumption: the group
operations have the same cost when we attack the DLP as
they have in the scalar multiplication.

This might not be true!

The fastest algorithm to do the group operation for the
scalar multiplication might not the the best choice for
Pollard Rho (Montgomery’s trick for inversion, etc).

[⇐] – p.3 .



Group Operations

But we are making a very big assumption: the group
operations have the same cost when we attack the DLP as
they have in the scalar multiplication.

This might not be true!

The fastest algorithm to do the group operation for the
scalar multiplication might not the the best choice for
Pollard Rho (Montgomery’s trick for inversion, etc).

We need to take into account the difference in the cost of
the group operations.

Convention: We define the average group operation as the
average cost per group operation in a NAF.

[⇐] – p.3 .



Genus 1 vs Genus 2

In characteristic 2, we find

≈ 0.5653
√

q̃

for E(Fq̃) of order 2 · prime at 157 bits, and at 223 bits:

≈ 0.5625
√

q̃ .

[⇐] – p.4 .



Genus 1 vs Genus 2

In characteristic 2, we find

≈ 0.5653
√

q̃

for E(Fq̃) of order 2 · prime at 157 bits, and at 223 bits:

≈ 0.5625
√

q̃ .

For genus 2, we find

≈ 0.5283
√

q

for Jac(H)(Fq) of order 2 · prime at 79 bits and at 109 bits:

≈ 0.5348
√

q .

[⇐] – p.4 .



Genus g

When we look at hyperelliptic curves H of genus g > 2
(but not too large) over Fq, asymptotically, Pollard Rho is
not the fastest method to solve the discrete log, index
calculus is.

[⇐] – p.5 .



Genus g

When we look at hyperelliptic curves H of genus g > 2
(but not too large) over Fq, asymptotically, Pollard Rho is
not the fastest method to solve the discrete log, index
calculus is.

Different versions of index calculus have different running
times, for example:

O
(

q2− 2

g
+ǫ

)

for the double large prime method (2LP)

[⇐] – p.5 .



Genus g

When we look at hyperelliptic curves H of genus g > 2
(but not too large) over Fq, asymptotically, Pollard Rho is
not the fastest method to solve the discrete log, index
calculus is.

Different versions of index calculus have different running
times, for example:

O
(

q2− 2

g
+ǫ

)

for the double large prime method (2LP), and

O
(

q2− 2

g+1/2
+ǫ

)

for the single large prime method (1LP).

[⇐] – p.5 .



Problems

It is very difficult to obtain a fair comparison with ECC if
we only know the asymptotic form.

We could be dealing with constants 1000, 7.23, 0.002, etc,
and these constants could change from one method to the
other (and in fact they do).

[⇐] – p.6 .



Problems

It is very difficult to obtain a fair comparison with ECC if
we only know the asymptotic form.

We could be dealing with constants 1000, 7.23, 0.002, etc,
and these constants could change from one method to the
other (and in fact they do).

The impact of index calculus at cryptographic sizes
depends a lot on the value of the constant.

The smaller the constants are, the lower the security of
Jac(H)(Fq) really is. If the constant is too large Pollard Rho
could still be the fastest method to solve the DLP.

[⇐] – p.6 .



Problems

It is very difficult to obtain a fair comparison with ECC if
we only know the asymptotic form.

We could be dealing with constants 1000, 7.23, 0.002, etc,
and these constants could change from one method to the
other (and in fact they do).

The impact of index calculus at cryptographic sizes
depends a lot on the value of the constant.

The smaller the constants are, the lower the security of
Jac(H)(Fq) really is. If the constant is too large Pollard Rho
could still be the fastest method to solve the DLP.

Index calculus does not exclude security, but it could
exclude efficiency!

[⇐] – p.6 .



Problems

Index calculus should be nicer to analyze: the standard
deviation of the running time is tiny when compared with
the expected value (by an order of magnitude).

In comparison, for Pollard Rho we have a standard
deviation of almost 1/2 of the expected value.

[⇐] – p.7 .



Problems

Index calculus should be nicer to analyze: the standard
deviation of the running time is tiny when compared with
the expected value (by an order of magnitude).

In comparison, for Pollard Rho we have a standard
deviation of almost 1/2 of the expected value.

But there is currently no detailed analysis of the constant
for index calculus available in literature:

[⇐] – p.7 .



Problems

Index calculus should be nicer to analyze: the standard
deviation of the running time is tiny when compared with
the expected value (by an order of magnitude).

In comparison, for Pollard Rho we have a standard
deviation of almost 1/2 of the expected value.

But there is currently no detailed analysis of the constant
for index calculus available in literature:

The algorithm is more complicated

Not all costs involved are group operations

[⇐] – p.7 .



Problems

Index calculus should be nicer to analyze: the standard
deviation of the running time is tiny when compared with
the expected value (by an order of magnitude).

In comparison, for Pollard Rho we have a standard
deviation of almost 1/2 of the expected value.

But there is currently no detailed analysis of the constant
for index calculus available in literature:

The algorithm is more complicated

Not all costs involved are group operations

We haven’t finished writing it up...

[⇐] – p.7 .



1LP vs 2LP

Asymptotically, the 2LP method is faster than the 1LP

method by a factor of O(q1/(g2+g/2)+ǫ).

[⇐] – p.8 .



1LP vs 2LP

Asymptotically, the 2LP method is faster than the 1LP

method by a factor of O(q1/(g2+g/2)+ǫ).

But:

Even rough estimates give a bigger constant for 2LP.

The analysis is tighter for 1LP.

For genus ≥ 4, 1LP could win.

[⇐] – p.8 .



1LP vs 2LP

Asymptotically, the 2LP method is faster than the 1LP

method by a factor of O(q1/(g2+g/2)+ǫ).

But:

Even rough estimates give a bigger constant for 2LP.

The analysis is tighter for 1LP.

For genus ≥ 4, 1LP could win.

At cryptographic sizes, some of the approximations
used to obtain the asymptotic form have a big impact
on the constant.

One improvement does not apply to 2LP (so far).

[⇐] – p.8 .



Analysis of 1LP

To simplify notation on the slides, we let g = 4.

[⇐] – p.9 .



Analysis of 1LP

To simplify notation on the slides, we let g = 4.

The cost of the single large prime index calculus is
dominated by two things:

The random Walk (to find 1-almost-smooth divisors)

The Linear algebra solver (find a vector of the kernel)

[⇐] – p.9 .



Analysis of 1LP

To simplify notation on the slides, we let g = 4.

The cost of the single large prime index calculus is
dominated by two things:

The random Walk (to find 1-almost-smooth divisors)

The Linear algebra solver (find a vector of the kernel)

which gives, for a factor base of size B:

T (B) = (1 + ǫ)

(

cW · 3
√

2B−5/2q7/2 + cL · 3

2
B2

)

[⇐] – p.9 .



Analysis of 1LP

To simplify notation on the slides, we let g = 4.

The cost of the single large prime index calculus is
dominated by two things:

The random Walk (to find 1-almost-smooth divisors)

The Linear algebra solver (find a vector of the kernel)

which gives, for a factor base of size B:

T (B) = (1 + ǫ)

(

cW · 3
√

2B−5/2q7/2 + cL · 3

2
B2

)

All other parts of the algorithm can be put in the +ǫ (so we
ignore them).

[⇐] – p.9 .



Analysis of 1LP

To minimize, we differentiate T (B), solve d
dB

T (B) = 0 and

substitute back into T (B).

[⇐] – p.10 .



Analysis of 1LP

To minimize, we differentiate T (B), solve d
dB

T (B) = 0 and

substitute back into T (B).

After playing around, we obtain a minimum of

Tmin = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9q14/9

[⇐] – p.10 .



Analysis of 1LP

To minimize, we differentiate T (B), solve d
dB

T (B) = 0 and

substitute back into T (B).

After playing around, we obtain a minimum of

Tmin = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9q14/9

To find the exact cost of 1LP, all we need is cW and cL...

[⇐] – p.10 .



Analysis of 1LP

To minimize, we differentiate T (B), solve d
dB

T (B) = 0 and

substitute back into T (B).

After playing around, we obtain a minimum of

Tmin = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9q14/9

To find the exact cost of 1LP, all we need is cW and cL...

To improve the running time, we can:

[⇐] – p.10 .



Analysis of 1LP

To minimize, we differentiate T (B), solve d
dB

T (B) = 0 and

substitute back into T (B).

After playing around, we obtain a minimum of

Tmin = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9q14/9

To find the exact cost of 1LP, all we need is cW and cL...

To improve the running time, we can:

1. Improve cL

[⇐] – p.10 .



Analysis of 1LP

To minimize, we differentiate T (B), solve d
dB

T (B) = 0 and

substitute back into T (B).

After playing around, we obtain a minimum of

Tmin = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9q14/9

To find the exact cost of 1LP, all we need is cW and cL...

To improve the running time, we can:

1. Improve cL

2. Improve cW

[⇐] – p.10 .



Analysis of 1LP

To minimize, we differentiate T (B), solve d
dB

T (B) = 0 and

substitute back into T (B).

After playing around, we obtain a minimum of

Tmin = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9q14/9

To find the exact cost of 1LP, all we need is cW and cL...

To improve the running time, we can:

1. Improve cL

2. Improve cW

3. Introduce a new factor

[⇐] – p.10 .



Linear Algebra

Almost-all smooth relations involve 6 points.

The density of the matrix is very low, Wiedemann is
faster than Lanczos.

[⇐] – p.11 .



Linear Algebra

Almost-all smooth relations involve 6 points.

The density of the matrix is very low, Wiedemann is
faster than Lanczos.

All entries are ±1. If some ±2 appear in the system
(around O(9) times), they are done as two ±1.

We use Horner’s trick to evaluate p(M)x.
(no multiplications!)

[⇐] – p.11 .



Linear Algebra

Almost-all smooth relations involve 6 points.

The density of the matrix is very low, Wiedemann is
faster than Lanczos.

All entries are ±1. If some ±2 appear in the system
(around O(9) times), they are done as two ±1.

We use Horner’s trick to evaluate p(M)x.
(no multiplications!)

cL is the cost of all the operations associated to one
matrix entry for three matrix–vector multiplications.

Berlekamp–Massey can be done in sub-quadratic
time, so we ignore that cost (for now).

[⇐] – p.11 .



Linear Algebra

Almost-all smooth relations involve 6 points.

The density of the matrix is very low, Wiedemann is
faster than Lanczos.

All entries are ±1. If some ±2 appear in the system
(around O(9) times), they are done as two ±1.

We use Horner’s trick to evaluate p(M)x.
(no multiplications!)

cL is the cost of all the operations associated to one
matrix entry for three matrix–vector multiplications.

Berlekamp–Massey can be done in sub-quadratic
time, so we ignore that cost (for now).

To reduce cL, we need block Wiedemann (in progress).

[⇐] – p.11 .



Filtering

Filtering in the Number Field Sieve:
Remove equations and variables that do not contribute to
the kernel

Columns of zeros (variables not in use).

Singletons (variables appearing only in one equation).

Removing superfluous equations.

[⇐] – p.12 .



Filtering

Filtering in the Number Field Sieve:
Remove equations and variables that do not contribute to
the kernel

Columns of zeros (variables not in use).

Singletons (variables appearing only in one equation).

Removing superfluous equations.

Merging (preprocessing): if a variable appears in very few
equations (2, 3, maybe 4) we can use one of the equations
to cancel the variable from the system.

[⇐] – p.12 .



Filtering

Filtering in the Number Field Sieve:
Remove equations and variables that do not contribute to
the kernel

Columns of zeros (variables not in use).

Singletons (variables appearing only in one equation).

Removing superfluous equations.

Merging (preprocessing): if a variable appears in very few
equations (2, 3, maybe 4) we can use one of the equations
to cancel the variable from the system.

Very limited impact for HEC index calculus.

In progress...

[⇐] – p.12 .



Extended Filtering

The impact of filtering is quite limited for our systems.
We decided to extend the idea:

[⇐] – p.13 .



Extended Filtering

The impact of filtering is quite limited for our systems.
We decided to extend the idea:

We find many more equations (smooth relations) than
the number of variables (elements of the factor base)

For a subset of the variables, we might be able to
remove all the equations containing those variables.

The filtered system can be much smaller than the
original system.

[⇐] – p.13 .



Extended Filtering

The impact of filtering is quite limited for our systems.
We decided to extend the idea:

We find many more equations (smooth relations) than
the number of variables (elements of the factor base)

For a subset of the variables, we might be able to
remove all the equations containing those variables.

The filtered system can be much smaller than the
original system.

Finding the smallest consistent set of variables and
equations is most likely NP-hard.

A good approximation can be found in linear time.

[⇐] – p.13 .



Extended Filtering

The impact of filtering is quite limited for our systems.
We decided to extend the idea:

We find many more equations (smooth relations) than
the number of variables (elements of the factor base)

For a subset of the variables, we might be able to
remove all the equations containing those variables.

The filtered system can be much smaller than the
original system.

Finding the smallest consistent set of variables and
equations is most likely NP-hard.

A good approximation can be found in linear time.

The result: Harvesting!

[⇐] – p.13 .



Harvesting

Assume that we find k times as many equations as
variables, and let p(k) be the proportion of the factor base
left after harvesting.

[⇐] – p.14 .



Harvesting

Assume that we find k times as many equations as
variables, and let p(k) be the proportion of the factor base
left after harvesting.
If k is not too big, we get

Tk(B) = cW · 3
√

2
√

kB−5/2q7/2 + cL · 3

2
p(k)2B2

and the minimal value is

Tk,min = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9
(

kp(k)5
)2/9

q14/9

[⇐] – p.14 .



Harvesting

Assume that we find k times as many equations as
variables, and let p(k) be the proportion of the factor base
left after harvesting.
If k is not too big, we get

Tk(B) = cW · 3
√

2
√

kB−5/2q7/2 + cL · 3

2
p(k)2B2

and the minimal value is

Tk,min = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9
(

kp(k)5
)2/9

q14/9

The good news: f(k) = kp(k)5 is strictly decreasing.

[⇐] – p.14 .



Harvesting

Assume that we find k times as many equations as
variables, and let p(k) be the proportion of the factor base
left after harvesting.
If k is not too big, we get

Tk(B) = cW · 3
√

2
√

kB−5/2q7/2 + cL · 3

2
p(k)2B2

and the minimal value is

Tk,min = 3

(

27/9

55/9
+

54/9

211/9

)

cL
5/9cW

4/9
(

kp(k)5
)2/9

q14/9

The good news: f(k) = kp(k)5 is strictly decreasing.
The bad news: hard to analyze and decreases slowly.

[⇐] – p.14 .



Harvesting

To simplify, we will only use k = 4.

[⇐] – p.15 .



Harvesting

To simplify, we will only use k = 4.

For q = 253, we have some interference due to the field size,
and we need to increase k by 3.29% in the random walk
side, giving us

f̃(4)2/9 = (4 · 1.0329 · p(4)5)2/9 ≈ 0.7142

For q = 273, the interference is close to 0, and we are very
close to

f(4)2/9 ≈ 0.7090

[⇐] – p.15 .



Harvesting

To simplify, we will only use k = 4.

For q = 253, we have some interference due to the field size,
and we need to increase k by 3.29% in the random walk
side, giving us

f̃(4)2/9 = (4 · 1.0329 · p(4)5)2/9 ≈ 0.7142

For q = 273, the interference is close to 0, and we are very
close to

f(4)2/9 ≈ 0.7090

We get a time-memory trade-off.
Harvesting has a similar impact on 0LP, but we don’t
know how to predict the impact on 2LP.

[⇐] – p.15 .



Random Walk

For index calculus, the goal of the random walk is very
different from its goal in Pollard Rho:

1. Index calculus only cares about the factorization of
group elements, not how we get to them (or where we
would go afterwards).

[⇐] – p.16 .



Random Walk

For index calculus, the goal of the random walk is very
different from its goal in Pollard Rho:

1. Index calculus only cares about the factorization of
group elements, not how we get to them (or where we
would go afterwards).

2. At each divisor considered, we have to see if it splits
completely over Fq.

3. If a divisor splits (1 : 24), we have to factor it and see if
it is smooth, 1-almost-smooth, etc.

[⇐] – p.16 .



Random Walk

For index calculus, the goal of the random walk is very
different from its goal in Pollard Rho:

1. Index calculus only cares about the factorization of
group elements, not how we get to them (or where we
would go afterwards).

2. At each divisor considered, we have to see if it splits
completely over Fq.

3. If a divisor splits (1 : 24), we have to factor it and see if
it is smooth, 1-almost-smooth, etc.

Point 1 will affect how we do the random walk.

[⇐] – p.16 .



Random Walk

For index calculus, the goal of the random walk is very
different from its goal in Pollard Rho:

1. Index calculus only cares about the factorization of
group elements, not how we get to them (or where we
would go afterwards).

2. At each divisor considered, we have to see if it splits
completely over Fq.

3. If a divisor splits (1 : 24), we have to factor it and see if
it is smooth, 1-almost-smooth, etc.

Point 1 will affect how we do the random walk.

Point 2 and 3 have a huge impact on cW , and they depend
on algorithms to factor polynomials.

[⇐] – p.16 .



Random Walk

D

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

2(D + D1)

2(D − D1)

2(D + D2)

2(D − D2)

2(D + D3)

2(D − D3)

2(D + D4)

2(D − D4)

×2

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

2(D + D1)

2(D − D1)

2(D + D2)

2(D − D2)

2(D + D3)

2(D − D3)

2(D + D4)

2(D − D4)

×2

4(D + D1)

4(D − D1)

4(D + D2)

4(D − D2)

4(D + D3)

4(D − D3)

4(D + D4)

4(D − D4)

×2

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

2(D + D1)

2(D − D1)

2(D + D2)

2(D − D2)

2(D + D3)

2(D − D3)

2(D + D4)

2(D − D4)

×2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

×2

16(D + D1)

16(D − D1)

16(D + D2)

16(D − D2)

16(D + D3)

16(D − D3)

16(D + D4)

16(D − D4)

×2

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

2(D + D1)

2(D − D1)

2(D + D2)

2(D − D2)

2(D + D3)

2(D − D3)

2(D + D4)

2(D − D4)

×2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

×2

16(D + D1)

16(D − D1)

16(D + D2)

16(D − D2)

16(D + D3)

16(D − D3)

16(D + D4) =: D
′

16(D − D4)

×2
add

sub

D
′ + D1

D
′
− D1

D
′ + D2

D
′
− D2

D
′ + D3

D
′
− D3

D
′ + D4

D
′
− D4

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

2(D + D1)

2(D − D1)

2(D + D2)

2(D − D2)

2(D + D3)

2(D − D3)

2(D + D4)

2(D − D4)

×2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

×2

16(D + D1)

16(D − D1)

16(D + D2) =: D
′

16(D − D2)

16(D + D3)

16(D − D3)

16(D + D4)

16(D − D4)

×2
add

sub

D
′ + D1

D
′
− D1

D
′ + D2

D
′
− D2

D
′ + D3

D
′
− D3

D
′ + D4

D
′
− D4

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

2(D + D1)

2(D − D1)

2(D + D2)

2(D − D2)

2(D + D3)

2(D − D3)

2(D + D4)

2(D − D4)

×2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

×2

16(D + D1)

16(D − D1)

16(D + D2)

16(D − D2)

16(D + D3) =: D
′

16(D − D3)

16(D + D4)

16(D − D4)

×2
add

sub

D
′ + D1

D
′
− D1

D
′ + D2

D
′
− D2

D
′ + D3

D
′
− D3

D
′ + D4

D
′
− D4

[⇐] – p.17 .



Random Walk

D

D + D1

D + D2

D + D3

D + D4

add

D − D1

D − D2

D − D3

D − D4

sub

2(D + D1)

2(D − D1)

2(D + D2)

2(D − D2)

2(D + D3)

2(D − D3)

2(D + D4)

2(D − D4)

×2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

×2

16(D + D1) =: D
′

16(D − D1)

16(D + D2)

16(D − D2)

16(D + D3)

16(D − D3)

16(D + D4)

16(D − D4)

×2
add

sub

D
′ + D1

D
′
− D1

D
′ + D2

D
′
− D2

D
′ + D3

D
′
− D3

D
′ + D4

D
′
− D4

Courtesy of Roberto Avanzi

[⇐] – p.17 .



Group Operation

Once D + Di is computed, we can re-use some of the
operations to compute D − Di (saves up to half of the
cost of an addition).

[⇐] – p.18 .



Group Operation

Once D + Di is computed, we can re-use some of the
operations to compute D − Di (saves up to half of the
cost of an addition).

If doublings are cheaper than additions, we can do
several blocks of doublings between each blocks of
additions (we stopped at four).

[⇐] – p.18 .



Group Operation

Once D + Di is computed, we can re-use some of the
operations to compute D − Di (saves up to half of the
cost of an addition).

If doublings are cheaper than additions, we can do
several blocks of doublings between each blocks of
additions (we stopped at four).

We can use Montgomery’s trick for the inversions
(and adapt our group operations).

[⇐] – p.18 .



Group Operation

The Di are selected wisely:

They are random linear combinations of Da and
Db of the form [ui(x), vi(x)] with ui(x) irreducible
of degree 3 = g − 1.

[⇐] – p.19 .



Group Operation

The Di are selected wisely:

They are random linear combinations of Da and
Db of the form [ui(x), vi(x)] with ui(x) irreducible
of degree 3 = g − 1.

A group addition when ui has degree 3 costs
about 2/3 of a general group addition.

From D + D1, computing D − D1 takes about 2/5
of a general group addition.

Choosing ui irreducible minimizes the risk of
having gcd(u, ui) 6= 1.

[⇐] – p.19 .



Group Operation

The Di are selected wisely:

They are random linear combinations of Da and
Db of the form [ui(x), vi(x)] with ui(x) irreducible
of degree 3 = g − 1.

A group addition when ui has degree 3 costs
about 2/3 of a general group addition.

From D + D1, computing D − D1 takes about 2/5
of a general group addition.

Choosing ui irreducible minimizes the risk of
having gcd(u, ui) 6= 1.

It takes ≈ 3q steps of pre-random-walk to find
each Di (goes into the +ǫ).

[⇐] – p.19 .



Factorization

Given a polynomial of small degree d over Fq, the standard

factorization algorithms take O(d2 log2(q)) field operations
to test if it splits, and to factor it into linear terms when
possible.

For fields of characteristic two, we can improve on the
standard methods.

[⇐] – p.20 .



Factorization

Given a polynomial of small degree d over Fq, the standard

factorization algorithms take O(d2 log2(q)) field operations
to test if it splits, and to factor it into linear terms when
possible.

For fields of characteristic two, we can improve on the
standard methods.

Taking advantage of the Frobenius over F2, we can get an
algorithm which takes

O(d3 log2(log2(q))) field operations

with a nice constant in the O(. . .)

[⇐] – p.20 .



Factorization

Given a polynomial of small degree d over Fq, the standard

factorization algorithms take O(d2 log2(q)) field operations
to test if it splits, and to factor it into linear terms when
possible.

For fields of characteristic two, we can improve on the
standard methods.

Taking advantage of the Frobenius over F2, we can get an
algorithm which takes

O(d3 log2(log2(q))) field operations

with a nice constant in the O(. . .) (preprint in progress).

[⇐] – p.20 .



constants

After several hours of fun, and many pages of operation
counts and implementation (finding ratios between the
different operations), we found

Field size step of random walk average group op.

53 ≈ 178.187 M ≈ 50.139 M

73 ≈ 194.688 M ≈ 49.813 M

[⇐] – p.21 .



constants

After several hours of fun, and many pages of operation
counts and implementation (finding ratios between the
different operations), we found

Field size step of random walk average group op.

53 ≈ 178.187 M ≈ 50.139 M

73 ≈ 194.688 M ≈ 49.813 M

giving us

cW (53) ≈ 3.554 cL(73) ≈ 3.9084

cL(53) ≈ 0.1546 cL(73) ≈ 0.083125

[⇐] – p.21 .



constants

After several hours of fun, and many pages of operation
counts and implementation (finding ratios between the
different operations), we found

Field size step of random walk average group op.

53 ≈ 178.187 M ≈ 50.139 M

73 ≈ 194.688 M ≈ 49.813 M

giving us

cW (53) ≈ 3.554 cL(73) ≈ 3.9084

cL(53) ≈ 0.1546 cL(73) ≈ 0.083125

Combining everything to get cT in T4,min = cT q14/9, we find

cT (53) ≈ 2.105 cT (73) ≈ 1.547

[⇐] – p.21 .



Back to 2LP

If we try to apply the same approach to 2LP (without the

filter), we find for cT̃ in T̃min = cT̃ q3/2:

cT̃ (53) ∼ 9.133

cT̃ (73) ∼ 8.524

[⇐] – p.22 .



Back to 2LP

If we try to apply the same approach to 2LP (without the

filter), we find for cT̃ in T̃min = cT̃ q3/2:

cT̃ (53) ∼ 9.133

cT̃ (73) ∼ 8.524

However, those numbers hide a few problems:

The analysis uses some approximations which are too
rough at these field sizes

Some of the bounds may not be tight

[⇐] – p.22 .



Back to 2LP

If we try to apply the same approach to 2LP (without the

filter), we find for cT̃ in T̃min = cT̃ q3/2:

cT̃ (53) ∼ 9.133

cT̃ (73) ∼ 8.524

However, those numbers hide a few problems:

The analysis uses some approximations which are too
rough at these field sizes

Some of the bounds may not be tight

We are ignoring the cost of working in the graph of
large primes

[⇐] – p.22 .



Comparison

At 53 bits, we find a total of ≈ 283.518 average group

operations for 1LP and ∼ 282.691 for 2LP.

[⇐] – p.23 .



Comparison

At 53 bits, we find a total of ≈ 283.518 average group

operations for 1LP and ∼ 282.691 for 2LP.

This is closer to the security of an elliptic curve over a
binary field of 166 to 168 bits than the 159 bits we would
have expected from the O(. . .) (putting aside issues of Weil
descent).

[⇐] – p.23 .



Comparison

At 53 bits, we find a total of ≈ 283.518 average group

operations for 1LP and ∼ 282.691 for 2LP.

This is closer to the security of an elliptic curve over a
binary field of 166 to 168 bits than the 159 bits we would
have expected from the O(. . .) (putting aside issues of Weil
descent).

At 73 bits, we find a total of ≈ 2114.185 average group

operations for 1LP and ∼ 2112.59 for 2LP.

We get a security level between E(F2226) and E(F2229)
instead of E(F2219) (from the O-notation of 2LP).

[⇐] – p.23 .



Comparison

At 53 bits, we find a total of ≈ 283.518 average group

operations for 1LP and ∼ 282.691 for 2LP.

This is closer to the security of an elliptic curve over a
binary field of 166 to 168 bits than the 159 bits we would
have expected from the O(. . .) (putting aside issues of Weil
descent).

At 73 bits, we find a total of ≈ 2114.185 average group

operations for 1LP and ∼ 2112.59 for 2LP.

We get a security level between E(F2226) and E(F2229)
instead of E(F2219) (from the O-notation of 2LP).

Ignoring the constants leads us to underestimate the
security of hyperelliptic curve of genus four by a few bits.

[⇐] – p.23 .



Genus 3

Preliminary results for 2LP in genus 3 at 59 bits gives

∼ 7.903
(

259
)4/3 ∼ 281.649

average group operations.

[⇐] – p.24 .



Genus 3

Preliminary results for 2LP in genus 3 at 59 bits gives

∼ 7.903
(

259
)4/3 ∼ 281.649

average group operations.

Note: This estimates suffers from similar issues as those
for 2LP in genus 4, on top of which the computations have
to be checked...

[⇐] – p.24 .


	
	Elliptic Curve DLP
	Genus 2 HEC DLP
	Group Operations
	Genus 1 vs Genus 2
	Genus g
	Problems
	Problems
	1LP vs 2LP
	Analysis of 1LP
	Analysis of 1LP
	Linear Algebra
	Filtering
	Extended Filtering
	Harvesting
	Harvesting
	Random Walk
	Random Walk
	Group Operation
	Group Operation
	Factorization
	constants
	Back to 2LP
	Comparison
	Genus 3

