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ABSTRACT. There is a well known shortcut for modular multiplication
modulo a Mersenne number, performing modular reduction without inte-
ger division. We generalize this technique to a larger class of primes, and
discuss parameter choices which are particularly well suited for machine
implementation.
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INTRODUCTION

It has long been known that certain integers are particularly well
suited for modular reduction. The best known examples (e.g., [1]) are the
Mersenne numbers m = 2% — 1. In this case, the integers (mod m) are
represented as k-bit integers. When performing modular multiplication,
one carries out an integer multiplication followed by a modular reduction.
One thus has the problem of reducing modulo m a 2k-bit number. Modular
reduction is usually done by integer division, but this is unnecessary in the
Mersenne case. Let n < m? be the integer to be reduced (mod m). Let T
be the integer represented by the k& most significant bits of n, and U the &

least significant bits; thus
n=2.T+U,
with 7" and U each being k-bit integers. Then
n=T+U (mod m).

Thus the integer division by m can be replaced by an addition (mod m),
which is much faster.

The main limitation of this scheme is the special multiplicative struc-
ture of Mersenne numbers. The above technique is useful only when one
intends to perform modular arithmetic with a fixed long-term modulus. For
most applications of this kind, the modulus needs to have a specific mul-
tiplicative structure, most commonly a prime. The above scheme proves
most useful when k£ is a multiple of the word size of the machine. Since
this word size is typically a power of 2, one must choose k£ which are highly

composite. Unfortunately, the Mersenne numbers arising from such k are



never primes (see Proposition 13). It is therefore of interest to generalize
the above technique to families of numbers containing primes.

One such family is due to Richard Crandall [2], namely, the integers
2% — ¢ for ¢ positive and small enough to fit into one word. In this paper, we
generalize in a different direction. Although there is some overlap, many of

the generalized Mersenne numbers presented here are not Crandall numbers.

§1. AN EXAMPLE

As an example of the generalization we will pursue, let p be a prime

of the form
(1) p=2%%_2F 4 1.

The integers (mod p) are represented as 3k-bit integers. Represent a positive

integer n < p? as the 6k-bit expression

5
n= ZAJ' ’ 2jkv
Jj=0

where 0 < A; < 2% for each j. Our goal is to find B;’s, each a linear

combination of the A;’s, such that

2
n= ZBJ- -27%  (mod p).
=0

This is done as follows.

We regard the expression (1) as



where

fit)=t>—t+1.

We now base a linear feedback shift register over Z on f(t¢) and step 3 times

the fill [0][0][1]

-1 1 0
O|l— | O|—| 1
—-1|— 1|{— 0
O|l— |-1|— 1
-1|— 1|— |—-1

The entries of the register provide the coefficients for the congruences

3 =_14+1¢
tt = —t +¢2

P =—1+4+t—t

modulo f(¢). The matrix form of these congruences is

3 -1 1 0 1
ttl= 0 -1 1 t (mod f(t)).
t5 -1 1 -1 2

It follows that

5 1 t3
Y At =(A0 A Ag) |t | +(As As A5) |t
=0 t2 t°

-1 1 0

S

If

(AO Aq A2)+(A3 Ay A5) 0 -1 1
-1 1 -1 12



modulo f(t). Therefore

(2) D A=) Bt/ (mod f(t),

where the B;’s are given by
(BO Bl B2):(AO Al A2)+(A3 A4 A5) 0 —1 1

Evaluating (2) at ¢ = 2%, we obtain

5 2
ZAj'ijEZBj'ij (modp).

We have thus found our rule for fast modular reduction. Explicitly,
the rule is this:

5

2
3 A -2 =N"B..27% (mod 2% — 2k 4+ 1),
J J

=0 =0

By = Ag — A3 — As,
(4) By = A1+ A3 — Ay + As,
By = Ay + Ay — As.
It remains to determine how many modular additions and subtrac-

tions are necessary to implement this rule. We rearrange the terms of (4)

to group together the additions and the subtractions:
BO = AO —(A3 —+ A5),

B1 = A1 ‘|‘A3 ‘|‘A5 _A47
By = Ay + Ay —As.



Thus

2
(5) > B;-2* =T +85+5,— Dy — Dy,
7=0

where

T = A +A1°2k+A2’22k,

S, = Ag - 28 4 A, 22F
Sy = As -2k,

Dy = As +A,-2F + A5 - 2%,
Dy = As.

If Ag,...,As are k-bit integers, then (3) and (5) give a method of
reducing a 6k-bit integer (mod 23* — 2% + 1) using 2 modular additions and
2 modular subtractions, or a total of 4 modular operations.

It should be further noted that modular additions and subtractions are
simpler modulo a generalized Mersenne number than for a general modulus.
This is due to the simple binary expansion of the prime as well as the prime
being close to a power of 2.

We can also obtain the number of modular operations directly from
the square matrix, avoiding the explicit calculations. The number of mod-
ular additions is found by summing the positive terms in each column and
taking the maximum. The number of modular subtractions is found by
summing the absolute values of the negative terms in each column and
taking the maximum.

Thus the middle column has positive entries summing to 2, so that 2
modular additions are required. (Note that both S;’s contain a 2* term.)
Similarly, the left column has negative entries summing to —2, so that 2
modular subtractions are required. (Note that both D;’s contain a constant

term.)



§2. THE MODULAR REDUCTION WEIGHT

We now address the general case. As in the above example, we need
only step a shift register and examine the resulting entries.

Let f(t) be a monic integral polynomial of degree d. Let

Xoo o+ Xod-1
x=| :

Xa—10 - Xg-1,d-1

be the d-by-d matrix whose i*" row is the result of stepping ¢ + 1 times the
shift register based on f(t) with initial fill @ o @ In other words, the

entries X; ; are generated as follows. Let

(6) fit) =t —ci 4t — o — ¢y,

a notation we will retain throughout this paper. Then
(7) Xo,j = Cd—; for 0 <j<d

and, for 1 <3 < d,

Xi1j-1+ Xi—1,d-1¢c4—; forj >0,
(8) ij =

Xi—l,d,—l Cd for ] =0.

Let Ag,...,Asq_1 be integers, and define By, ..., B;s_1 by the matrix equa-

tion
(BO Bd—l):(AO Ad_1)+(Ad A2d—1)X'

Then



If p= f(2%), then
2d—1 | d—1 ‘

(9) > A;-2%=%"B; 2% (mod p).
7=0 J=0

For each j, let
and

Computing the right-hand side of (9) requires
Yimax = max Y}
J

modular additions and

Zmax = mjax Zj

modular subtractions. Thus the total number of modular operations is
Wt(f) = Ymax + Zmax-

We call wt(f) the modular reduction weight of f.

§3. MACHINE IMPLEMENTATION

Given a monic degree d integral polynomial f(¢) and an integer k,
we can reduce 2kd-bit integers modulo the kd-bit integer p = f(2*) using
wt(f) modular operations by the above method. This method is especially

efficient when implemented on machines whose word size divides k. This is



because the numbers S; and D; (as in the above example) can be formed by
combining words in the appropriate way. If the word size does not divide
k, it is necessary to shift bits within words.

For instance, let & = 8 in the above example. Then p is the prime

16776961. In binary this is
11111111 11111111 00000001.
Now let n = 5863761194200. This is less than p?. In binary, it is
00000101 01010101 01000011 01100111 00101100 11011000.

To reduce n modulo p, we add and subtract (mod p) the binary numbers

01100111 00101100 11011000

+ 01010101 01000011
+ 00000101
- 00000101 01010101 01000011

— 00000101

The result is 12001168, which is n (mod p).
Note that we have formed the numbers to be added and subtracted
without disturbing the bits within the 8-bit bytes. Thus, this calculation is

especially efficient on a machine whose word size divides 8 bits.

§4. REDUCED POLYNOMIALS

Our next goal is to find families of polynomials f(¢) with small mod-
ular reduction weight. We will do this by searching all integral polynomials
of sufficiently small degree and coefficients. We first establish three results

which will shorten our search.



DEFINITION. We say that the integral polynomial f(t) is reduced if, for each
¢ with 1 < ¢ < d we have ¢; # 0 for some j # 0 (mod ¢).

We now show that we can restrict our attention to reduced polynomials.

PROPOSITION 10. Suppose that p = f(2*), where f(t) € Z[t]. Then there
exists a reduced polynomial g(t), having the same modular reduction weight
as f(t), and an integer n such that p = g(2"). If k is a multiple of a given

word size, then so is n.

Proof: We need only consider the case in which f(¢) is not reduced. If
cj = 0 for all § # 0 (mod ), then f(t) = g(t) for some polynomial g.
Thus, if p = f(2%), then p = ¢(2%), and if k is a multiple of our word size,
then so is /k.

It remains to show that f(¢) and g(¢) have the same modular reduction
weight. If X is the d-by-d matrix for f(¢) and X' the (d/{)-by-(d/{) matrix
for g(t), then

Xi,j

. { X?f',j’ lf’L E] (mOd 6),
Lo if i £ j (mod ¢).

where
It follows that

for all 5, so that

Yimax = Y, and Zmax = 2!

max max-*

Thus
wt(f) = wt(g).

If g is not reduced, we can repeat this construction. [



The above proposition tells us that we lose no generality in assuming
that f(¢) is reduced. We will therefore make that assumption throughout

this paper. Needless to say, we will search only reduced polynomials.

§5. POLYNOMIALS WITH CONSTANT TERMS

PROPOSITION 11. If f(t) =t g(t), then wt(f) > wt(g).

Proof: If X is the d-by-d matrix for f(¢) and X' the (d — 1)-by-(d — 1)
matrix for g(t), then for i < d — 1,

{ X; ;4 forj>o0,

0 for 7 = 0.

X ;
Thus, for 5 > 0 we have
Y, = Yj' + Xa,; and Z; = Z;-
if X4_1,; >0, and
V=Y and 2 =2+ Xl
if Xq_1,; <0. Since X4_10 =0, then Yy = Zy = 0. Therefore

Ymax Z Y,

max

and Zmax > 2.

max’

from which the result follows. O

As a result, we can restrict at first our search for low-weight polyno-
mials to those with ¢4 # 0. Suppose that we want a list of polynomials of
weight at most B. We first search the polynomials with ¢4 # 0 and list
those with weight at most B. For each f(¢) in our list, we then check ¢ f(¢),
t2 f(¢), t f(¢),... until we find an integer n for which wt(t" f(¢)) < B and
wt(t" T £(t)) > B. It follows from (11) that wt(t* f(¢)) < B for k < n and
wt(t* f(t)) > B for k > n. Thus we append t f(t),t> f(t),...,t" f(t) to our

list. This shortcut saves our looking at most polynomials divisible by ¢.



§6. POSITIVE POLYNOMIALS

An important special case occurs if ¢; > 0 for all j. (We say in this
case that f(t) is positive.) In this case, it follows from (7) and (8) that
X;; > 0 for all 2 and 5. Thus Zn.x = 0, so that our modular reductions
involve only modular additions; no modular subtractions are required. This
makes the positive case preferable, all other things being equal.

For a final shortcut, we define the modular reduction complement of

the polynomial f(¢) defined in (6):
d . .
Frgy =t = " (=1)7 ;4.
=1

Since we are assuming f(¢) reduced, then c; # 0 for some odd j; thus
f*(t) is reduced and not equal to f(¢). By (7) and (8), the matrices of the

two polynomials are related by

* +3+1

[Z¥)

PROPOSITION 12. If f(t) is positive, then wt(f) < wt(f*).

Proof: Since f(t) is positive, then X; ; > 0 for all 7 and j. Since Z; =0,

v+ 2; =Y IX,

= Z |1 X5,

=Y;.

Thus

max Y; < maxY;" + max Z7,
J J j

from which the result follows. O



As before, this shortens the list of polynomials we need to check for low
weight. We can skip at first all the complements of the positive polynomials
for which the highest-degree nonzero term has j even, and check later the

complements of the those positive polynomials which have low weight.

§7. FURTHER CONDITIONS

The search for appropriate prime moduli can be further shortened if
we restrict our attention to proper polynomials: integral polynomials whose
second-largest-degree term has negative coefficient.

The proper polynomials are the appropriate ones for our modular
reduction methods. For if f(¢) is proper, then for large £ we will have
p < 2F4; thus the integers (mod p) are always kd-bit numbers (rather than
kd + 1 bits). This is particularly important if k& is a multiple of the word
size.

Since all positive polynomials are proper, the searching shortcut men-
tioned at the end of the previous section is unnecessary when searching only
for proper polynomials.

Since proper polynomials are the appropriate ones for our reduction
technique, we shall restrict our attention to them from now on.

We shall also attach two further conditions:

e The integral polynomial f(t) should be irreducible. If this is not true,
then the modulus m = f(2*) will certainly be composite.
e The constant term of f(t) must be odd. If not, then m = f(2%) is

even and therefore composite.

We shall describe an integral polynomial as being suitable for the
Mersenne reduction method if it is reduced, proper, irreducible, of low

weight, and has odd constant term.



§8. FAMILIES OF LOW-WEIGHT POLYNOMIALS

We now prepare to list specific suitable polynomials. We first list

some families of polynomials whose weights are easy to compute.
e The polynomial ¢ — b has weight |b|.

e If ¢ and d are relatively prime, then the polynomial ¢t — t¢ — 1 is

reduced. This polynomial is positive and has weight

d
=1 .
w —l—[d_c-‘

Given w, the polynomials t* — t¢ — 1 with weight w are those with

(w—1)(w—-3)d< (w—-1)(w—-2)c< (w-2)7d.

o If d > 1, then t¢ — t¥~1 + 1 is reduced and has weight 2d — 1.

e If ¢ and d are relatively prime and ¢ < d — 1, then the polynomial

t4 — ¢ + 1 is reduced. Its weight is

=t

Given b, the polynomials ¢t — t° + 1 with weight 2b are those with

b(b—2)d<b(b—1)c< (b—1)*d.

§9. LIST OF LOW-WEIGHT POLYNOMIALS

The following list of suitable polynomials was obtained by direct

search. The list includes members of the above families.



Weight 1:

e The polynomial ¢ — 1.
Weight 3:
e The polynomial ¢ — 3.

e The polynomials t¢ — ¢t — 1, where 0 < 2¢ < d and ¢ and d relatively

prime.

e For d > 1, the polynomials

td—d7t gl 1 = td+1+(_1)d.
t+1

Weight 4:

e The polynomials t?—t°—1, where 3d < 6 ¢ < 4d and c and d relatively

prime.

e The polynomials ¢ — ¢° + 1, where 0 < 2¢ < d and c and d relatively

prime.

e The polynomial t* — 3 + 2 + 1.

§10. SMALL-WEIGHT PRIME MODULI

We now list the following families of kd-bit prime moduli which are
suitable for Mersenne modular reduction. All of these arise from the poly-

nomials listed in the previous section.

Weight 1:

e p=2F—1 (Mersenne primes) for k prime (see Proposition 13).

Weight 3:
o p=29 _3 (Crandall numbers)



o p=24F _92ck _ ] where 0 < 2¢ < d and GCD(c,d) = 1,
° p:2dk_2(d—1)k+2(d—2)k_.”_2k_|_1

for d even and k # 2 (mod 4) (see Proposition 14 and 15).

Weight 4:
o p=2% _9ck where 3d < 6¢ < 4d and GCD(c,d) = 1,

o p=2%k _2ck 4 where 0 < 2¢ < d and GCD(c,d) =1,

° p:24k_23k+22k+1

§11. COMPOSITE MODULI

The results of this paper can sometimes be applied usefully to com-
posite moduli. More specifically, the modulus can also be almost prime,
i.e., the product of a large prime and a small integer. For example, the
generalized Mersenne number m = 2384 — 2320 _ 1 factors into m = 19p,
where p is a prime. For applications in which many computations are to be
done modulo p, one can work modulo m instead, using the techniques of

this paper. The final result will be in terms of integers modulo 19 p; these

can then be reduced to integers (mod p) by repeated subtraction.

Note that ordinary Mersenne numbers m = 2¥ — 1 cannot be used in
this way if k£ is a multiple of a typical word size. For, since k is even, the

factorization

2k — 1= (282 — 1)(2¥/? 4+ 1)

into two nearly equal factors shows that m is not almost prime.
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APPENDIX 1: FOUR EXAMPLES

The following four generalized Mersenne primes appear in the docu-

Y

ment “Recommended Elliptic Curves for Federal Government Use,” issued

July 1999 by NIST and available on their website
http://csrc.nist.gov/encryption
In each case, A represents an integer less than p?, and B the result of

reducing A modulo p.

Example 1.

Let p = 2192 — 264 _ 1, Every integer A less than p? can be written
A:A5‘2320—|—A4°2256+A3°2192—|—A2'2128—|—A1°264—|—A0,

where each A; is a 64-bit integer. As a concatenation of 64-bit words, this

can be denoted by

A=A || Aa || - || Ao)-
The expression for B is

B:=T+ 51+ S5 + 53 mod p,

where the 192-bit terms are given by

T=(A || A [ 4o )
Si=( 0 | As || As )
So=( A¢s || Ag || 0 )
Ss=(A4 || A || A5 )



Example 2.

Let p = 2224 — 296 1 1. Every integer A less than p? can be written

A=Ay -2%16 4 AL, 2384 4 A4, 2352 4 A . 23204
Ag - 2288 4 Ay . 9256 4 4. 9224 4 A .2192 4 4, . 9160

A4°2128+A3'296—|—A2~264+A1°232—|—A0,

where each A; is a 32-bit integer. As a concatenation of 32-bit words, this

can be denoted by
A=(Aws || Az || - |l Ao).
The expression for B is
B: =T+ 5 +5,—D;— Dy mod p,

where the 224-bit terms are given by

S
I
&

As || Ad || As || A | A || Ao )
Ay || As || A7 | O [ O [ 0 )
Aig || Az | A | O ] O [ 0 )
)
)

2
I
i

>

S
I
e

A || A || Aw || A || As || Az
o [ o | 0 | 0 | Aiz| Al Au

N
[\
I
N N N N~
=}

S
I



Example 3.

Let p = 2256 — 2224 4 2192 4 996 _ 1 TFyery integer A less than p? can

be written

A=Ay 280 4 A, .28 L 4, 980 L 4 . 9384 L 4 9352
Agg- 2320 4 Ay . 2288 4 A, . 9256 4 4. 9224 L 4, . 9192

As - 2100 4 4, . 2128 4 A5 . 296 1 4,260 4 4, . 232 4 A,

where each A; is a 32-bit integer. As a concatenation of 32-bit words, this

can be denoted by
A= (A5 || A [[ - |l Ao).
The expression for B is
B:=T+25+25+85+54—Dy—Dy — D3 — Dy mod p,

where the 256-bit terms are given by

&
I

A || 0 || Aw || Ao || As || Aus || A || Ass
A || 0 || A || Awo || A9 || O || Ais || Aua

T=(Ar | A | As || As || As [ A2 [ A1 [ 4o )
S1=( A || Ara || Az || Az | A | O || O || 0 )
So=( 0 || A5 || Ara || Az f| A2 | O || O || 0 )
Ss=( A || Aua || O [[ O [ O || Ao |l A9 || As )
Sa=1( As || Az || Ais [ Ara [| Az || Aux || Ao || A9 )
Di=( Ao || A || 0 [[ 0 [ 0 [ A | Az || Aux)
Dy=( Air || A9 || 0 [[ 0 [ A5 [| Awa || Ass || Ar2)

( )

( )

S
I



Example 4.

Let p =238 _ 2128 _ 996 4 932 _ 1 TEvery integer A less than p? can

be written
A=Ay 270 4 Aoy 270 4 Aoy - 2672 4 Ay 2640 4 A, 20084
Ag - 92576 A - 9544 A - 9512 4 A - 2480 4 4., .98
Agg - 2M6 4 4, . 9384 L 4, . 2352 4 A, 9320 L 4 . 9288

Ag - 2256 4 A . 9224 1 4, . 2192 4 4. 9160 4 4 . 9128
A 29 4+ A, . 2% 4 4,232 4 A,

where each A; is a 32-bit integer. As a concatenation of 32-bit words, this

can be denoted by
A= (Ags || A2z [| -+ || Ao).
The expression for B is
B:=T+25 +S,4 534+ 54+ S5+ S¢ — D1 — Dy — D3 mod p,

where the 384-bit terms are given by

T = (A1 || Awoll Ao || As || A7 || A6 || A5 [| Aa || As || A2 || A1 [| Ao )
Si=(0 | of O0f O] 0] Assll Aozl A21 O O O] 0)
SQ = (A23 H AQQH A21H AQOH A19H AlSH A17H AlGH A15H A14H A13H Al?)
53 = (AQO H A19H AlSH A17H AlGH A15H A14H A13H AlQH A23H AQQH A21)
Sa = (A1 || Arsl| Aurl Aell Ars| Arall Arsll Ar2]| Azoll 0 || A2zl 0 )
Ss=(0 | 0] 0] 0] Axs| A2z A2t] A2| 0] 0] 0] 0)
Ss=(0 | of of 0f 0 0] Azl A22|[ A1l 0| 0 [ Azo)
Dl :(A22 || A21|| A20H A19H AlSH A17H AlGH A15H A14H A13H A12H A23)
Do=(C0 [[ 0f of 0ff 0f 0] 0f[ Ass| Ax2fl Ao1|l A2ol[ 0)
Dy=(0 || off off off 0f O0fl O] Ass|l Ass]| O] 0] 0)



APPENDIX 2: PRIME-PRODUCING PROPER POLYNOMIALS

Many of the families of low-weight polynomials can assume prime
values only when the parameters satisfy certain conditions. We present
some elementary conditions for this, for two of the families of polynomials

from §9.
PROPOSITION 13. If p = 28 — 1 is prime, then k is prime.

Proof: If a > 1 and b > 1, then each factor of
200 _1=(2%—1) (22D 4 ... 429 41)

is greater than 1; hence 2%® — 1 is composite. Thus p = 2* — 1 is composite

if k is composite. [

PROPOSITION 14. Ifd > 1 is odd and k > 0, then
m = 2dk . 2(d—1)k + 2(d—2)k et 2k -1

is composite (except for the case d =3, k =1).

Proof: We factor
m = (28 — 1) 20Dk £ o(d=3)k ... 4 92k 4 1),

If £ > 1, then both factors are greater than 1, so that m is composite. If
k =1, then

m=1+2%+2"4... 42471
= (24 —1)/3
= (2044172 _ 1) (2(+1)/2 4 1) /3.



If d > 5, then 2(¢t1)/2 4 1 > 2(d+1)/2 _ 1 5 3 50 that m has at least two

factors greater than 1. [

PROPOSITION 15. Ifd > 1 is even and k = 2 (mod 4) is positive, then

m = 20k _ 9(d=1k 4 o(d=2)k _ . _ ok 4 |
is composite.
Proof: Since
2(d+Dk 4
2F+1

it suffices to factor the numerator into two factors, each larger than 2% 4 1.

Let w = (k — 2)/4; then w > 0, and

2(d-|—1)k + 1= 24w—|—2 + 1

(22dw+2w+d+1 _ gdwtwtltd/2 | 1)

. (22dw+2w+d+1 4 gdwtwtl4d/2 1) .

Thus we need to prove that
24w+2 < 22dw—|—2w—|—d _ 2dw—|—w—|—1—|—d/2
(16) _ gdwtwtl+d/2 (2dw-|—w—1+d/2 _ 1) '

If d > 4, then
dw+2<dw+w+14+4d/2,

so that (16) holds. In the case d = 2, (16) becomes
AW <4aW? (4W? -1),
where W = 2%. This holds for all w > 0 because
W <4Ww?® -1

forall W >1. 0O



