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Abstract

The dangers of using RSA with small private exponents has been
known for more than a decade (see Wiener [7]). Knowing these dan-
gers, but still wanting to substantially decrease decryption time, a user
might try using a small negative private exponent which corresponds to
a very large private exponent. We show that the attacks against small
private exponent RSA by Wiener [7], Boneh & Durfee [3], and Blömer &
May [1], and their corresponding attacks on multi-prime RSA, also work
for very large private exponents.

1 Introduction

It is common to think that all RSA computations are performed in the positive
representation (i.e., all values are always positive). If the public and private ex-
ponents are in the symmetric representation, however, the computational cost of
exponentiation can be substantially reduced by using small negative exponents.
In fact, if d is a small positive exponent then the cost of computing m−d modulo
N is simply the cost of computing md modulo N plus one inversion modulo N .

Knowing the dangers of using small positive private RSA exponents a user
may be temped to use a small negative private exponent in order to speed up
the time for decryption. In the next few sections, we will show that using small
negative private exponents is just as dangerous as using small positive private
exponents in RSA and multi-prime RSA.

Before considering the dangers of using very large private exponents we
consider another simple observation that arises when thinking in the symmet-
ric representation rather than the positive representation. Consider RSA with
public exponent e = 3. An obvious weakness of textbook RSA without ran-
dom padding is that ciphertexts corresponding to very small plaintext mes-
sages, 0 < m < N1/3, can be decrypted by simply computing the cube root of
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c = m3 mod N over the integers. This works, of course, since m3 < N . Sim-
ilarly, ciphertexts of very large plaintexts can be decrypted too. Consider any
plaintext in the range N − N1/3 < m < N . In the symmetric representation,
this corresponds to −N1/3 < m < 0. Letting c = m3 mod N , we can recover
the plaintext by simply negating the cube root of −c mod N over the integers.
That is, m = − 3

√
−c, where the cube root computation is over the integers, but

everything else is reduced modulo N .

2 Continued Fraction Attack

Wiener’s continued fraction attack on small private exponent RSA [7] is easily
extended to very large private exponent RSA.

Theorem 1. Let N be an RSA modulus with balanced primes and let d be a
private exponent satisfying

√
6 (φ(N)−d) < N1/4. Given the public key, (N, e),

the private exponent can be recovered in time polynomial in log2 N .

The proof is essentially the same as that given by Boneh in [2], and relies on
the following facts.

Fact 1 (Hardy-Wright [5]). Let a, b be integers and x a real number. If
|a/b− x| < 1/(2b2) then a/b is a convergent of x.

Fact 2 (Balanced Primes). Let N = pq be an RSA modulus where the primes
satisfy 4 < 1

2N1/2 < p < N1/2 < q < 2N1/2. Then, Euler’s totient function
evaluated at N satisfies N−φ(N) < 3N1/2−1. These primes are called balanced
primes.

Proof. Proof (Theorem 1) By construction, we know ed ≡ 1 (mod φ(N)) which
is equivalent to e(d − φ(N)) ≡ 1 (mod φ(N)). Letting D = φ(N) − d, we can
write this as

eD = −1 + kφ(N), (1)

for some positive integer k < D. The bound on k is due to e being bounded
above by φ(N). Using equation (1), Fact 2, k > 1, and

√
6D < N1/4 we see

that∣∣∣∣ e

N
− k

D

∣∣∣∣ =
∣∣∣∣eD − kN

ND

∣∣∣∣ =
∣∣∣∣ (−1 + kφ(N))− kN

ND

∣∣∣∣ =
∣∣∣∣1 + k(N − φ(N))

ND

∣∣∣∣
≤ 1 + k(3N1/2 − 1)

ND
≤ k

ND
3N1/2 ≤ 3

N1/2
<

1
2D2

.

Therefore, by Fact 1, k/D is a convergent of e/N . Using the continued fraction
algorithm we can compute all the convergents of e/N and test for the correct
k/D. Let k′/D′ be a given convergent of e/N . Since k′/D′ and k/D are in
their lowest terms (property of continued fraction algorithm and gcd(k,D) = 1,
respectively) we can compute φ′ = (eD′ + 1)/k′ and try to factor N . When
k′/D′ = k/D we have φ′ = φ(N) and the factorization of N will be obtained.
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Having factored N , we compute compute d = e−1 (mod φ(N)). Of course,
d = φ(N)−D also. Since there are at most log2(N) convergents of e/N and all
arithmetic is done with numbers bound by N the result follows.

Some experimental results of Weiner’s continued fraction attack against large
private exponent is shown below in Figure 1.

δ (d = −N δ) 0.01 0.05 0.10 0.15 0.20 0.25
convergent 10 28 66 86 118 150

Figure 1: Weiner’s continued fraction attack against RSA with very large private
exponent. A different 1024-bit modulus was used for each trial. The top row
shows the size of d in the symmetric representation with respect to N . The
bottom row shows the number of convergents needed to recover k/D.

3 The Small Inverse Attacks

The small private exponent attacks of Boneh & Durfee [3] are based on solving
the so-called small inverse problem. That is, given integers A and M find an
x0 and y0 such that x0(A + y0) ≡ 1 (mod M), where x0 and y0 are small (in
some sense). In particular, for RSA, let e = Nα with α ≈ 1, d < N δ, and
f(x, y) = x(N + y)− 1. We then wish to find x0 and y0 such that

f(x0, y0) ≡ 0 (mod e) , |x0| < X = N δ , |y0| < Y = 3N1/2. (2)

One solution of (2) is (x0, y0) = (k, φ(N) −N), where k is the positive integer
defined by ed−kφ(N) = 1. Finding this solution reveals φ(N) and so the private
exponent can be computed as d = e−1 (mod φ(N)). In [3], Boneh & Durfee
present attacks that find the desired solution of (2) provided that d < N0.284

or d < N0.292. Another attack, by Blömer & May [1], finds the desired solution
provided d < N0.290. All of these results are asymptotic in the size of N and
the dimension of the lattice used in the attack. We leave the details of the
actual attacks to [3] and [1]. Also, as these attacks use Coppersmith’s method
of finding small roots of bivariate modular polynomials they are only heuristic.
In practise they seem to work quite well though. Each of these attacks also
work for very large private exponents as well.

Theorem 2. For each attack against small private exponent RSA based on
solving the small inverse problem in [3] and [1], if the attack works for all
d < N δ for some δ then the attack also works all d > φ(N)−N δ.

In the proof of this theorem, we only consider the α ≈ 1 case as this simplifies
the bounds on X and Y . The more general case is essentially identical except
that the bounds are slightly more complicated as they explicitly depend on α.
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Proof. Proof (Theorem 2) By construction, we know ed ≡ 1 (mod φ(N)) which
is equivalent to e(d− φ(N)) ≡ 1 (mod φ(N)). This can be written as

e(d− φ(N)) = 1− κφ(N), (3)

where κ is a positive integer. Since e < φ(N) we have that κ < |d−φ(N)| < Nδ.
Letting φ(N) = N − Λ and reducing equation (1) modulo e gives

κ(N − Λ) ≡ 1 (mod e), (4)

where |κ| < N δ and, by Fact 2, |Λ| < 3N1/2. But, this is exactly the same
starting point as in the attacks of Boneh & Durfee [3] and Blömer & May [1].
The correctness of their attacks finishes this proof.

To illustrate the attack on small negative private exponent RSA, we used
Boneh & Durfee’s attack for d < N0.284 and Blömer & May’s attack for d <
N0.290 on RSA with a 1024-bit modulus and private exponent d = −N0.265.
Figure 2 shows the lattice dimensions and time required for the successful at-
tacks.

Method Lat. Dim. m t Time (sec)
Boneh & Durfee 33 5 2 177 / 56
Blömer & May 18 5 2 77 / 70

Figure 2: Small private exponent attacks on RSA with 1024-bit modulus and
private exponent d = −N0.265. The parameters m and t define the lattice used
in the attack. The last column shows the time needed for the attack. The
time needed for lattice reduction (first) and resultant computations (second)
are given.

4 Multi-prime RSA

In [6], Hinek, Low, and Teske extend most of the small private exponent attacks
against RSA to multi-prime RSA. The only attack not extended is Boneh &
Durfee’s attack using geometrically progressive matrices (see [3]) that give the
d < N0.292 bound. This attack, however, was extended to multi-prime RSA
for the α ≈ 1 case in [4] by Ciet et al. All of these attacks that have been
extended to multi-prime RSA, just as with RSA, also work with very large
private exponent.

Theorem 3. Let N be an r-prime RSA modulus with balanced primes and let
d be a private exponent satisfying

√
2(2r − 1) |φ(N)− d| < N1/(2r). Given the

public key, (N, e), with non-negligible probability the private exponent can be
recovered in time polynomial in the size of N .

The proof of this result relies Fact 1 and on the following bound on N−φ(N)
for balanced primes when the modulus has more than 2 primes.
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Fact 3 (Balanced Primes). Let N =
∏r

i=1 pi be the product of r prime
numbers satisfying pi < pi+1 and 4 < 1

2N1/2 < p1 < N1/r < pr < 2N1/r. Then,
Euler’s totient function evaluated at N satisfies N−φ(N) < (2r−1)N1−1/r−1.
These primes are called balanced primes.

Proof. Sketch Proof (Theorem 3) The proof is essentially the same as that for
Theorem 1 except that we can no longer deterministically factor the modulus
given φ(N). For r = 3 or 4, a probabilistic method for factoring N given a
multiple of φ(N) is given by Hinek, Low, and Teske [6]. Alternatively, one can
use a different test for each convergent. Let k′/D′ be a given convergent of e/N .
Since k′/D′ and k/D are in their lowest terms we know D′. And, by definition
of D (D = φ(N) − d), we know that −eD ≡ 1 (mod φ(N)). So, for random
0 < m < N we can test if m ≡ m−eD′

(mod N). If m 6≡ m−eD′
(mod N) we

know D′ 6= D and try another convergent. If m ≡ m−eD′
(mod N) for several

values of m it is very likely that −eD ≡ 1 (mod φ(N)) and so we have found the
private exponent in symmetric representation. For the positive representation
we then compute d′ = φ′ −D′ where φ′ = (eD′ + 1)/k′.

Theorem 4. For each attack against small private exponent multi-prime RSA
based on solving the small inverse problem in [6] and [4], if the attack works for
all d < N δ for some δ then the attack also works all d > φ(N)−N δ.

The proof follows from the proof of Theorem 2.

5 Conclusions

By simply considering the private exponent in the symmetric representation
modulo φ(N) we have shown that very large private exponents are just as unsafe
as small private exponents. In particular, for RSA, it is provably unsafe to use
any private exponent |d| < N1/4/

√
6 and heuristically unsafe to use any private

exponent |d| < N0.292.
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[1] J. Blömer and A. May. Low secret exponent RSA revisited. In Cryptography
and Lattices – Proceedings of CALC ’01, volume 2146 of Lecture Notes In
Computer Science, pages 4–19. Springer-Verlag, 2001.

[2] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of
the American Mathematical Society (AMS), 46(2):203–213, 1999.

[3] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than
N0.292. IEEE Transactions on Information Theory, 46(4):1339–1349, July
2000.

5



[4] M. Ciet, F. Koeune, F. Laguillaumie, and J.-J. Quisquater. Short private
exponent attacks on fast variants of rsa. UCL Crypto Group Technical
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