
Third Order Differential Analysis and A Split Mask
Countermeasure For Low Energy Embedded Processors

Catherine H. Gebotys

Department of Electrical and
Computer Engineering,
University of Waterloo

cgebotys@uwaterloo.ca

ABSTRACT

Future wireless embedded devices will be increasingly powerful supporting many more
applications including one of the most crucial, security. Although many embedded devices offer
more resistance to bus probing attacks due to their compact size, susceptibility to power or
electromagnetic analysis attacks must be analyzed. This paper presents a new split mask
countermeasure to thwart low order differential power analysis (DPA) and differential EM
analysis (DEMA). For the first time real power and EM measurements are used to analyze the
difficulty of launching new 3rd order DPA and DEMA attacks on a popular low energy 32-bit
embedded ARM processor. Results show that the new split mask countermeasure provides
increased security without large overheads of energy dissipation compared to previous research.
With the emergence of security applications in PDAs, cellphones, and other embedded devices,
low energy countermeasures for resistance to low order DPA/DEMA is crucial for supporting
future wireless internet enabled devices.

1. Introduction and Related Research

Wireless devices such as PDAs, cellphones, etc now encompass a wide range of security
functions demanding low energy. For example internet purchases, private company network access,
authentication, and computations with confidential information will become increasingly common
security functions in PDAs. Additionally a wide range of embedded security will proliferate in
automobile electronics, security for IP core protection in FPGAs and ASIC technologies, and other
areas. The cryptographic algorithms which are essential for these applications are typically run by
embedded processors in these wireless devices. Unfortunately cryptographic algorithms are already
known to consume significant amounts of energy [2]. Even worse, cryptographic algorithms which are
resistant to attacks are known to have latency overheads up to 1.9 times[5]. These attack resistant
algorithms have been developed for smartcard applications, where energy dissipation is not viewed as
important. As more security applications migrate to the wireless device, resistance to attacks on the
PDA or cellphone will become a necessity. These attacks may not only arise from device theft or loss
but also during everyday use where unintentional electromagnetic (EM) waves radiated from the
wireless device during cryptographic computations may leak confidential data to a nearby attacker. For
example an attack may be successful in obtaining the secret keys stored in confidential memory in a
wireless device. This attack may be possible through loss or theft of the device, or alternatively through
temporary access to the device by monitoring the EM waves emanating from the device while

performing cryptographic computations. In the latter case the attack may be able to extract the
encryption keys (typically not even accessible to the user of the PDA), making all wireless
communications insecure. Researchers have already demonstrated that this new attack is viable[7,10,29]
on a 8-bit processor. Since EM waves are highly correlated with power, ensuring wireless devices are
secure from power analysis attacks is important. Nevertheless large overheads in energy to achieve this
resistance may not be practical. Outside of smartcard research (which typically has been in the past
limited to cheaper 8-bit or 16-bit processors) [6,7], few researchers have examined secure
implementations of cryptographic software under the threat of power attacks on 32-bit processors. For
example a very popular embedded processor is the ARM which is suitable for portable devices ranging
from game devices to PDAs to cryptographic applications [5,16,17]. There is an important need to study
energy optimized countermeasures for wireless portable devices, such as PDAs, cellphones, etc.

 Currently research in power attacks of smart cards, have utilized 8-bit general purpose
processors [5,3,12] and 5V processors running at 4MHz[4,1]with an average current consumption of
10mA[3]. Typically smart card applications are not time critical and energy dissipation is not a major
concern since power is attained from the card reader (or ATM machine, etc). The measurement of power
while a processor is executing an application (or a power trace) has been used in power-attacks of
cryptographic devices, such as smart cards[1]. In particular the analysis of the variation of power, and
computations on a number of power traces can be used to detect data and algorithmic dependencies[1].
This research studied the correlation of power variation with data values being manipulated and
instruction sequencing. In the former case, known as differential power attacks (DPA), encryption[1]
and public key encryption[22] applications were analyzed[1]. Differential power attacks of embedded
low power processors have not been reported in the literature. Higher order differential attacks[15] are
an extension of the 1st order DPA which involve using joint statistics on multiple points within power
traces.

Random sequencing of instructions (desynchronization), randomized power noise (through
hardware circuits) and balancing methods[11,13] are some suggested countermeasures against power
analysis. In the later technique computations are performed not only on the data but also on the
complement of the data (where words contain for each of the data bits, it’s complement [11]). Although
researchers have suggested the balancing method may fail[13] due to the difference in the two
complementary values, few researchers have used real power measurements in conjunction with DPA to
verify this claim. Other researchers designed bus complement techniques in conjunction with bus
precharging to resist DPA attacks [7]. Only a few researchers [7] have demonstrated this with simulation
techniques, however none have verified this countermeasure using real power measurements. Other
techniques which combine desynchronization and randomization have also been researched such as
clock gating to protect against DPA [6]. However the impact of power randomization on DPA has also
not been published with real power measurements.

In addition to the above countermeasures, other approaches have been suggested such as secret

splitting[9], duplication method[18], multiplicative masking[19] and random masking[5]. Secret
splitting, involves splitting the secret data into smaller pieces and combining them with random data [9].
Then the cryptographic algorithm is run on each word, which is composed of random and secret data. To
attack the splitting method, a kth order differential attack is required[9] (where secret data is split into k
shares), however no statistics were derived to be used in this attack. The duplication method[18] was
used to support secure computations with multiple split variables for input to the cryptographic tables or

Sboxes (S[x]). These researchers also used table duplication such that one table contained a randomly-
chosen secret transformation on x, A[x], and the alternate table contained A[x]^S[x]. Multiplicative
masking was also defeated by a DPA attack[19]. In the random masking countermeasure, each secret
piece of data is exclusive-or’d with a random data value (called a mask). To thwart a DPA attack the
random data value must be changed periodically. However this involves remasking the tables (or
exclusive-or the complete table data with a mask) within the algorithm. Countermeasures have been
reported to run up to 1.9 times slower [5] for Rijndael (or AES, an advanced encryption standard [27]).
These overheads are largely due to remasking of tables, so some researchers have investigated storing a
limited number of masked tables [14] (referred to as the fixed value masking approach). The authors
define the terms key xoring DPA and Sbox DPA. The key xoring DPA was an attack on the result of
exclusive-oring the plaintext with the (masked or unmasked) key as shown in figure 1a). The Sbox DPA
was an attack on the (masked or unmasked) output of the Sbox table (or output of the table look-up in
figure 1a)). In both attacks it is assumed that the attacker has control over the input plaintexts which are
exclusive-or’d with the key to index the Sbox table. Using probabilistic DPA the authors[14] proved that
the fixed-value masking approach was secure as long as the masks were chosen appropriately (the
probability of the ith bit of a fixed mask being equal to zero is ½). However results using real power
measurements were not performed to verify the fixed value masking approach. Later a second order
DPA attack was developed [15], to thwart the random masking countermeasure (also known as “data
whitening”) as shown in figure 2a). A heuristic for the 2nd order DPA statistic was developed and
applied with real power measurements to a 8-bit processor at 3.57MHz using a sampe rate of 1G
samples per second. The 2nd order DPA converged slowly for some bits requiring approximately 2500
power traces. A 2nd order DEMA attack was launched in [10] on a 8-bit processor with 500 EM traces
and it was shown to produce better results than the 2nd order DPA. Attacks using power samples of data
and correlating them with the hamming weight of the data were studied in [23] for Rijndael, however
masking was not considered.

Countermeasures must be energy optimized for wireless device implementation. Furthermore if
these countermeasures can be defeated then they must require high order DPA/DEMA in that a large
number of power/EM traces must be required making the attack very difficult. The use of real power
and real EM measurements of low power embedded 32-bit processors is important to verify these
countermeasures for portable applications. This paper presents differential power and EM analysis
results for a popular low power embedded processor, the ARM7TDMI. For the first time real power
measurements are used to analyze low energy countermeasures such as data complementing, power
randomization, and fixed-value masking. New statistics are derived for 2nd order DPA/DEMA and 3rd
order DPA/DEMA. The numbers of power and EM traces required in the attacks on a 32-bit processor
are computed for both real power and real EM measurements. The next section will provide an
introduction to DPA/DEMA followed by the proposed split mask countermeasure and it’s application to
Rijndael.

1.1 A Brief Introduction to Differential Power Analysis

A brief introduction to the differential analysis attack is presented in this section. Power traces
are used to describe the attack however it is also applicable to electromagnetic traces (or the
demodulated EM traces as described in [10]).

Consider figure 1 which illustrates a common part of many cryptographic algorithms, especially
when executed on 32-bit processors (where table look-ups provide a much faster implementation of bit

level computations). Typically the input data or plaintext and key are involved in some computation
whose result is indexed into a table look-up. Assume for now that the plaintext and key are exclusive-
or’d together and then indexed into a table, as in the table method of the Rijndael advanced encryption
standard[28] or fast implementation of DES. The attacker has control over the plaintext and knows the
values in the table (according to some well published encryption algorithm). The attacker wishes to
determine the key value.

The measurement of instantaneous current drawn from a device (known as a power trace when
multiplied by the supply voltage of the device) while the device is executing an application has been
used in power-attacks of cryptographic devices, such as smart cards[1]. In particular the analysis of the
variation of power, and computations on a number of power traces can be used to detect data and
algorithmic dependencies[1]. For example the DPA attack correlates the measured power signals to data
being computed or accessed at the attack point in figure 1.
 First the power trace emanating from the device (PDA, etc) is recorded while the device is
computing the cryptographic algorithm. The following variables will be used to describe the subsequent
processing: Ci(t) represents the instantaneous power signal at time t of the ith power trace, where
i=1,…,n; and j is the bit of the data resulting from the exclusive-or of the plaintext and key in the ith
execution of the algorithm. The attacker partitions the power traces into two groups according to bit j of
the plaintext. One group contains all power traces where bit j, or bj, of the plaintext is equal to 0 and the
other group contains all power traces whose bit j of the plaintext is equal to 1.
Let }0,1,..1|)({)(1 ==∀= ji bnitCtx and }1,2,..1|)({)(2 ==∀= ji bnitCtx be the two groups of power
traces. The mean of each group of power traces is computed (to average out the impact of the other non-
j bits). The difference of means or differential power trace is obtained by subtracting the two averaged
power traces. This subtraction attempts to remove the algorithmic impact on the power trace thus
leaving only the jth bit effect on the power trace. The differential power trace is equal to :

)(2)(1 txtx −

This difference of means is significant if it is much greater than the standard deviation of the difference
of means. In this paper we define the DPA characteristic for the guessed key as the maximum value of
the absolute differential power trace minus 2 standard deviations (of the difference of means) at that
time. In other words the DPA characteristic (for each key guess) is equal to:

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+−−

2
)(

1
)(2)()(max

2
2

2
1

21 n
t

n
ttxtx σσ

where kσ is the standard deviation of group k and nk is the number of samples in group k (where k=1 or
k=2).

In figure 1 the mean of each group is represented by a: and b: (as an illustration of the means of
x1(t) and x2(t)). In DPA attacks on the exclusive-or operation in cryptographic applications, (key xoring
DPA), two peaks will normally be seen. The first represents the effect of loading the plaintext itself (see
the plaintext input in figure 1b), where the peak is represented by a-b = {x…0…x} – {x…1…x}). The
second peak (located at the attack point) will be a similar peak (a-b = {x…0…x} – {x…1…x}) or a peak
in the opposite direction (a-b = {x…1…x} – {x…0…x}) depending upon the key bit. This second peak is
used to determine whether the jth bit of the secret key (the ? in x…?...x of figure 1b)) was a zero or a one.

a) b)
Fig. 1. attack point in a) and grouping of plaintexts in b).

The next section will present the split mask countermeasure for the key xoring DPA/DEMA in a

general example. The detailed implementation of the split mask countermeasure for Rijndael is then
presented in the following section. Finally experimental results are presented using real power and EM
measurements for popular ARM 32-bit processor.

2. The Split Mask Countermeasure
Figure 2 illustrates the general differences between the previously proposed random masking[15]

in a) and the proposed split masking countermeasure in b). Note that only the attack on the input of the
table, or key xoring is considered. In figure 2a) the ‘table look up’ has masked input where
masked_table(i^mask)=table(i). Whenever a new random mask is used, a new table must be
regenerated. However in figure 2b) a number of split masks are used. When new masking is required, a
new set of split masks are generated, however table regeneration is not required since the exclusive-or of
the set of random masks does not change. Let n1t represent the random mask 1 used at time t, where the
cryptographic application in figure 2b) can be described as : output = masked_table(plaintext^n1t
^…^nmt ^key), where masked_table(plaintext^n1t ^…^nm t ^key)=table(plaintext^key). After a new set of
masks are generated the cryptographic application can be described as : output =
masked_table(plaintext^n1t+1 ^…^nmt+1 ^key), where n1t ^…^nm t = n1t+1 ^…^nm t+1 .

a) b)
Fig. 2. Previous random masking in a) compared to split mask countermeasure in b).

A 2nd DPA attack [15] on figure 2 a) involves two power samples, specifically a power sample of

the random mask and a power sample of the plaintext exclusive-or’d with the key and random mask. In
figure 2b) a nth order DPA would involves n power samples, specifically a power sample of each (n-1)
random masks and a power sample of the plaintext exclusive-or’d with the key and random masks.

key min1 min2

 Key Mask
m

mkey

r2 r1

plaintext cipher textmasked
table

Fig. 3. Key, table, and split masks shown as m, min1 and min2, and r1 and r2.

The implementation of the split mask countermeasure (using two split masks) is shown in more
detail in figure 3 (where circles represent exclusive-or operations). The original secret or master key,
key, is immediately masked after it is received or derived. Key mask m is exclusive-or’d with the master
key and the masked key, mkey, is stored (the unmasked master key is not stored or ever used again).
Stored values are indicated in figure 3 using a black rectangle. The key mask, m, is a randomly selected
fixed value and it is unchanged for different plaintexts. Key mask m is exclusive-or’d with the two table
input masks, min1,min2, and the result is also stored. The result is exclusive-or’d with r1, where r1 is a
random value generated for each new plaintext. The exclusive-or result is defined to be the value r2
(where mathematically r2=m^min1^min2^r1). The result of the masked key exclusive-or’d with r1 and
r2 is then exclusive-or’d with the plaintext and input to the masked table. Mathematically the
cryptographic application in figure 3 can be described as : output =
masked_table(plaintext^r1^r2^mkey)= masked_table(plaintext^r1^ (m^min1^min2^r1)^ (m^key)) =
masked_table(plaintext^min1^min2^key).

The masks whose names start with a ‘m’ (ie. m, min1, and min2) are generated only once per
key. The other masks whose names start with ‘r’ (ie. r1,r2) are randomly generated with every plaintext.
The split masks r1 and r2 are exclusive-or’d together to form a final fixed mask for the table input.
These two masks can be randomized for each invocation of the cryptographic process. For example, one
can generate a random r1 value and use the computation shown in figure 3) in order to generate a new
r1,r2 pair. However to avoid table regeneration, the final fixed mask for the table input is not changed.
The masked table (shown as table look-up in figure 3) is generated from an original unmasked table,
table(i), using a two-part mask comprising min1 and min2. The table is defined as :
table(i)=masked_table(i^min1^min2).

Since the master key is masked and stored immediately after it is derived and during this time
min1 and min2 are accessed only once per new master key, even a 3rd order DPA (with 3 power samples
of min1, min2 and plaintext^min1^min2^key) is difficult to launch since power samples have to be
attained immediately after the new key is received. Alternatively a 4th order DPA would involve power
samples of r1, r2, m, and r1^r2^m^key^plaintext which again may be difficult since m is only accessed

with each new master key. With each new plaintext and subsequent running of the encryption algorithm
alone (for the same master key), an attacker cannot obtain sufficient information to launch a high order
DPA since min1, min2 and m are never reloaded (unless a new master key is required). Furthermore
since min1^min2 or r1^r2^m are never computed on their own, a 2nd order DPA is not possible.
Figure 4 is a further generalization of the split mask countermeasure (using n split masks). To provide
further security the input table masks are split into n masks and there are also k random masks used per
plaintext. Hence a (n+1)th order DPA would be required in the attack assuming the attacker has access
to power samples of all n input table masks. In this application, the masked key, n input table masks, and
the final masked combined value need to be stored. The table does not need to be regenerated.
 In all schemes described, it is also possible to employ the proposed split mask countermeasure in
conjunction with some previously researched countermeasures, for example where table regeneration is
required [5] or where several masked tables [14] are used. The combination of both countermeasures
can be used to provide increased security. For example a higher order DPA attack on the random
masking countermeasure by extending it with the proposed split mask countermeasure, would be
required. For example all masks r1 through rk would be randomly generated (instead of defining rk
using r1 through rk-1). In this application it would be assumed that the zeroth address of the table
regeneration would be protected such that the value r1^r2^…^rk is never computed on it’s own,
otherwise a 2nd order DPA could be launched. For the application of the proposed split mask
countermeasure to the x stored masked tables, then x values of r^min1^min2 would be stored and the
countermeasure would work the same as shown in figure 3 by accessing the proper r^min1^min2 which
corresponds with the current masked table selected.

2.1 Application of Split Mask Countermeasure to Rijndael

An application of the split mask countermeasure will now be presented in detail for Rijndael. In the
previous section, the countermeasure was applied before/to the (de)encryption process, however it can
also be applied to the key generation process as will be illustrated for Rijndael. In the general
application presented in the previous section, the countermeasure provides a initial masking of the
master key and during each encryption, only the stored masked key is accessed. However in Rijndael,
the key generation algorithm takes as input the master key and produces several other keys, known as
round keys, which are then used in the encryption algorithm. When key generation algorithms exist, the
countermeasure can be applied before key generation, such that masked round keys are generated, and
during each (de) encryption, only the stored masked round keys are accessed. Typically key generation
is performed only once per master key, whereas (de)encryption may be performed several times for
various plaintexts. Hence by moving the masking to the key generation, the attacker may have a more
difficult time obtaining the necessary power samples (hence better security may be attained), since only
one power trace is available per master key. Typically in most attacks, many power traces are obtained
from encryption runs.

(input table masks)
key min1 minn

 (key mask)
m

mkey

r1

r2

rk-1
rk

plaintext cipher textmasked
table

Fig. 4. Key, table, and split masks shown as m, min1,…, minn, and r1,…, rk.

In Rijndael there is a key generation algorithm which produces 44 32-bit round keys from an
initial 128-bit master key. The split mask countermeasure provides split masks to be used in the
generation of this set of 44 masked round keys. The initial 128-bit master key is represented in figure 5
as four 32-bit keys, key0, key1, key2, and key3. The Rijndael key generation algorithm makes use of a
function that may be implemented as a table look-up (shown as mtable0 in figure 5). The table look-up
is masked and is defined with respect to the original table in the Rijndael algorithm as :
mtable0(i^M)=table0(i). For 32-bit processor implementation, the table look up method for encryption
[28] requires five 256 by 32-bit tables.

The master key in Rijndael is masked using a key mask comprising four random 32-bit values
n0,n1,n2,n3. The masked master key is stored (mkey0, mkey1, mkey2, mkey3). The masked master key is
then exclusive-or’d with random values r0, r1, r2, r3 to produce rk0, rk1, rk2, rk3 for input to the
Rijndael key generation algorithm. If key generation is invoked many times on the same master key,
new random values of r0, r1, r2, r3 will be generated, and exclusive-or’d with the original stored master
key, mkey0, mkey1, mkey2, mkey3. The table look-up is shown as a separate step in figure 5 in order to
illustrate the use of intermediate masks (mi()). The intermediate mask for each round key is given in
table 1. In general the mask of the round key is generated from the exclusive-or of other masked round

keys within Rijndael algorithm. The intermediate mask is generated to be the equivalent of the
additional masks that, when combined by an exclusive-or with the generated mask for the round key,
produces a resultant mask that is equal to the table input mask. The table input mask is M and therefore
the intermediate mask for each round key value is defined such that the combination of the mask applied
to generate the round key value and the intermediate mask will be the exclusive-or product. By applying
the intermediate masks defined in this way, the input to the masked table, mtable0, will effectively be
M. However it is not limited to M, and further split mask representation for M could also be used as in
the previous section. The value r3 is generated as r3= n0^r0^n1^r1^n2^r2^n3^M.

As an example, the Rijndael key generation algorithm computes the fourth to seventh round keys
using round key 0 to round key 3 using the following algorithm (where table0 represents a key rotation):

rk4 = table0(rk3) ^ rcon(0) ^ rk0
rk5 = rk1 ^ rk4
rk6 = rk2 ^ rk5
rk7 = rk3 ^ rk6
…
rk40 = table0(rk39) ^ rcon(9) ^ rk36
rk41 = rk37 ^ rk40
rk42 = rk38 ^ rk41
rk43 = rk39 ^ rk42

In the split mask countermeasure, since rk0 through rk3 are masked with n0^r0, n1^r1, n2^r2, n3^r3
respectively, masks will be produced automatically on round keys rk4 through rk7. These masks will be
n0^r0, n0^r0^n1^r1, n0^r0^n1^r1^n2^r2, and n0^r0^n1^r1^n2^r2^n3^r3 respectively. These generated
masks for round keys are given in the second column of table 1, where for simplicity mx represents
nx^rx, and mxmy represents nx^rx^ny^ry, etc. A pattern of masks on the round keys will emerge
according to the Rijndael and the proposed masking produces a pattern which repeats every 16 round
keys as shown in table 1. The third column represents the intermediate masks (mi() in figure 5) which
are exclusive-or’d with the masked round keys to provide a final set of round keys all having a mask of
m0m1m2m3 or n0^r0^n1^r1^n2^r2^n3^r3=M. As round keys are generated, intermediate masks are
loaded and used for any round keys that are defined by a look-up access of mtable0 (in the example of
figure 5, these round keys rki are for i= 3,7,11,15,19,23,27,31,35,39). Round keys are automatically
masked when they are defined with different values to provide a countermeasure for power analysis. As
part of AES key generation, rk3, for example is further exclusive-or’d with the intermediate mask mi(3),
mi(3)=n0^r0^n1^r1^n2^r2 (see table 1), since it accesses table mtable0. The round key rk4 is then
defined as follows: rk4=mtable0(rk3)^rcon(0)^rk0, where rcon(0) is a constant defined for Rijndael and
mtable0 is the masked table value (table0(i)=mtable(M^i), for mask M). All round keys, except those
which were input to mtable0 (which are already fully masked), are exclusive-or’d with their
intermediate masks according to table 1. These masked round keys are then stored and available to the
encryption algorithm. Each round key has a final mask of M, the input table mask. The use of split or
multiple masks in the masking that was carried out makes the Rijndael key generation more secure from
DPA attacks.

The Rijndael encryption steps shown in figure 6 make use of the masked round keys in
conjunction with a set of defined mask tables to encrypt plaintext data. The set of masked tables that are
used with masked round keys are defined to have an input mask with a value of
n0^r0^n1^r1^n2^r2^n3^r3=M. As shown in figure 6, the plaintext is exclusive-or’d with masked round
keys in accordance with the Rijndael process. The result is used as input for the appropriate table look-
up in masked tables. The result of the Rijndael encryption process carried out using masked round keys,
plaintext and masked tables is a set of four values that are shown as s0,s1,s2,s3 in figure 6. The output

values s0,s1,s2,s3 are masked . To increase the security of Rijndael encryption, the output values are
unmasked in a two-step process. Initially, the output values are each exclusive-or’d with the value
n0^r0^n1^r1 (an intermediate mask, mi(15)). A second exclusive-or is then carried out on the result,
using the value n2^r2^n3^r3 (an intermediate mask, mi(13)). The split mask approach which provides
for increased security for key generation in the Rijndael process and the encryption step, using the
masked round keys, is itself made more secure. The unmasking step, carried out after the masked
encryption tables have been accessed, is done using what is effectively a split mask, adding to the
security of the encryption of the plaintext.

In Rijndael, the split mask countermeasure requires additional storage of nine unique
intermediate masks, and the mask for generating r3 (ie. n0^n1^n2^n3^M^r0^r1^r2, the rectangle in
figure 5 shown above the first exclusive-or of r0). The number of tables required for storage does not
increase over the normal Rijndael algorithm, unlike [14], since only one set of masked tables needs to be
generated before the algorithm is downloaded to the portable device. After the code is downloaded to
the device the tables never need to be regenerated unlike [5]. For each new master key, five exclusive-or
operations are required in order to generate the masked master key and r3 generating mask. For each
new set of random r0-r2 values , the key expansion performs an additional 47 exclusive-or operations
(the three exclusive-ors, or xors, with r1-r3 and one per masked round key). In addition to this eight
exclusive-or operations are required to generate the nine intermediate masks (mi()).

TABLE 1. Key Generation Intermediate Masking.

Round key (rk#) Generated Mask of round key Intermediate mask, mi(#)

 0, 16, 32
 1, 17, 33
 2, 18, 34
 3, 19, 35
 4, 20, 36
 5, 21, 37
 6, 22, 38
 7, 23, 39
 8, 24, 40
 9, 25, 41
10, 26, 42
11, 27, 43
12, 28
13, 29
14, 30
15, 31

m0

m1

m2
m3
m0
m0 m1
m0 m1 m2
m0 m1 m2 m3
m0
m1
m0 m2
m1 m3
m0
m0 m1
m1 m2
m2 m3

m1 m2 m3 *
m0 m2 m3 *
m0 m1 m3 *
m0 m1 m2 *
m1 m2 m3 *
m2 m3 *
m3 *
-
m1 m2 m3 *
m0 m2 m3 *
m1 m3
m0 m2
m1 m2 m3 *
m2 m3*
m0 m3 *
m0 m1*

* updated with ^w1and/or ^w2

(input table mask)
key0 key1 key2 key3 M

(key mask)
n0 n1 n2 n3 n0,1,2,3

r0

r1

r2
r3

rk0 rk1 rk2 rk3 mi(.)

…
mi(.)

…

masked round keys # 0,1,...…43

AES Key
Generation mtable0

Figure 5. The split mask countermeasure applied to Rijndeal key generation.

The proposed split mask countermeasure requires a 3rd order DPA to attack the key xoring
during encryption. For example an attacker may be able to obtain a power sample of m0m1 (mi(15)) and
m2m3 (mi(13)) to be used along with the power sample of rk0^m0^m1^m2m3^plaintext over many power
traces and use joint conditional probabilities (as will be derived in Appendix A) to predict the value of
the key rk0. A 1st order DPA is not possible since only the masked key can be obtained using this attack
and it is assumed that the attacker does not have access to the mask value M. A 2nd order DPA is only
possible if during the master key processing a power sample of M is obtained. Since this master key
processing is only performed once immediately after the master key is received, it is highly unlikely that

this power sample could be obtained. However M could also be split into multiple masks whose
exclusive-or’d value is never computed. A 3rd order DPA may be possible if the user can obtain proper
power samples during key generation or encryption. For example the attacker would have to know
where to obtain a power sample of m0m1 and m2m3 (the mi()’s in figure 5), either during key generation
or during the last part of the encryption process (last two xor’s before the cipher output in figure 6). To
further increase the security, the masks could be randomized during each invocation of the encryption
process. For example new values of r0,r1,r2 could be randomly generated before each encryption and
used to compute r3 and the new intermediate masks. For example, the masks can be changed (ie. ra rb
rc rd in place of r0 r1 r2 r3) as long as the intermediate masks are also recomputed and the final mask is
the same (ra^rb^rc^rd = r0^r1^r2^r3), so that the masked tables do not need to be regenerated.
Alternatively r0 and r2 could be randomized through exclusive-or’ing with a random value, w1, and r1
and r3 randomized with w2 (ie. given random values w1,w2, r0^=w1, r2^=w1, r1^=w2, r3^=w2). For
example the two intermediate masks , mi(13) and mi(15), would be updated as mi(15)^w1^w2 and
mi(13)^w1^w2. The intermediate masks shown with a * in table 1 indicates that during randomization of
the masks they must be exclusive-or’d with w1 or w2. Using this scheme the masked tables again do not
have to be regenerated. Using this fixed masking scheme, the final mask on input to the table is never
computed (hence an attacker can never get the power sample of this mask). The table mtable0() has an
input mask of m0^m1^m2^m3 and no output mask for this scheme in figure 1. However other masking
schemes are also possible including masking of the table output and adding additional exclusive-or’ing
before the cipher output is produced, both requiring higher order DPA.

Masked Round Keys rk0,…rk43

…

pt0
pt1
pt2
pt3

s0 s1 s2 s3

n0^n1^m0^m1

n2^n3^m2^m3

Cipher Output

AES Encryption

Figure 6. The split mask countermeasure applied to Rijndeal encryption.

In Rijndael the split mask countermeasure could be used in conjunction with other
countermeasures as well. For example to be used with the previous countermeasure which stores a
number of masked Sbox tables[14], a different value of M^n0^n1^n2^n3 would be accessed depending

upon which set of masked Sbox tables was going to be used. This would be the only change to the split
mask countermeasure for use with the countermeasure in [14]. Additionally the random masking
countermeasure which regenerates tables[5,15], could be used in conjunction with the split mask
countermeasure as well. In this case r3 would not be generated as shown in figure 5 from r0,r1,r2, and
M^n0^n1^n2^n3. Instead r3 would be a completely new random value similar to r0,r1,r2. No other
changes would be necessary to the implementation of the split mask countermeasure with the
countermeasure in [5,15].

The next section will present the experimental setup and the experimental results using real
power and EM measurements to quantify security and energy dissipation. Analysis of possible hamming
weight attacks on the round key fixed masking (see Appendix C) is also presented.

3. Experimental Setup

A high sample rate oscilloscope, a trigger probe, an EM probe, an inductive probe and an
ARM7TDMI evaluation board (providing access to the core’s power supply) were used to acquire
power and EM traces. The inductive probe measured the instantaneous current drawn on the 3.3V
ARM7TDMI processor core power supply line. In this paper we will refer to the processor current as the
power consumed (since the supply voltage was assumed to be stable at 3.3V). The EM probe (consisting
of a 1cm loop passive magnetic field probe) was placed on top of the ARM7TDMI packaged chip. A
broadband preamplifier was also used to boost the signal to noise ratio of the EM signals. The trigger
signal was controlled by software and measured with a probe in order to synchronize the measurements.
The scope sampled at rates up to 2.5Gsamples/sec, and allowed many power and EM traces to be
acquired automatically. The evaluation board had the 16/32-bit ARM7TDMI RISC processor core on
one chip separate from the memory. Hence all the power measurements reflect the processor core power
consumption only and not the input/output buffer power

a) b)

c)

Figure 7. DPA of bit 0 at 40MHz, 2MHz and bit 9 at 40MHz, in a)b)c) respectively.

or memory power. The ARM7TDMI could be set to different clock frequencies (up to 56MHz) and
utilized a three stage pipeline. This ARM processor core is often referred to as a low power processor
consuming on average 0.6mA/MHz at 3V.

Each scope run acquired up to 6000 power or EM traces (referred to as a frameset) and
acquisitions were repeated three times to ensure high reliability and reproducibility in the results. The
ARM7TDMI processor was programmed to use a 40MHz clock for all experiments. All results were
repeatable and where possible the same set of plaintexts (or input data to the cryptographic algorithm)
was used to compare results of different DPAs/DEMAs and countermeasures. All DPAs/DEMAs were
verified as significant using two standard deviations.

To acquire the multiple samples in each power/EM trace for the 2nd and 3rd order DPA/DEMA
experiments, the cryptographic programs were first characterized. Specifically DPAs/DEMAs were run
to identify the best power sample points within the specific load and stores within the cryptographic
program. Figures 7a) and c) illustrate two DPAs on different bits for the 32-bit processor (where the red
lines indicate +/- two standard deviations of the difference of means). The highest point of the positive
DPA characteristic was used to identify the sample point in the power trace which would be used as the
power samples (b1k, b2 k, c k from Appendix A,B) in the high order DPAs. Each frameset of power/EM
traces acquired from the scope was characterized wth DPAs to determine the best sample point. Those
sample points were then fixed for all experiments utilizing that cryptographic program. The next section
will present the DPA and statistic results utilizing real power measurements obtained with the
ARM7TDMI and high sampling rate scope. Unlike [10] no demodulation of the EM signals were
performed.

Figure 8 illustrates the noise in the power and EM trace acquisitions. The averaged power/EM
trace (averaged over 1487 traces) is shown in blue, whereas one power/EM trace is shown in red. It is
interesting to note that there is slightly less noise in the EM acquisition than in the power.

a) b)
Figure 8. Power and averaged power trace in a) and EM and averaged EM trace in b) respectively.

4. Experimental Results

This section will illustrate results of the proposed split mask countermeasure and high order
DPA/DEMA attacks using both real power/EM measurements. The assumptions made to support a
higher order DPA/DEMA derived in Appendix A and Appendix B were also evaluated with real power
measurements. The statistics derived in Appendix A and B in conjunction with the new low energy
countermeasure are used with both real power and EM measurements. All probabilities referred to in
this section are actually estimated probabilities using the statistics from Appendix A and B.

Figure 7 illustrates a DPA attack on the load data instruction on from the ARM7TDMI. Random
data was loaded from memory using the same memory address and surrounded by no-instruction (or
nop) instructions. Over 2000 power traces were acquired for each run of the experiment. These power
traces were split into two groups according to the value of bit i of the 32-bit random words. The
difference of means was computed and is illustrated in the figures along with plus or minus two standard
deviations (shown in red). The power analysis was performed at 40MHz, in figure 7a), as well as 2MHz,
in figure 7b), both for the same bit 0. Figure 7c) illustrates the DPA at 40MHz, for bit 9. The DPA peak
was negative in this case for bit 9 compared to the generally higher positive peaks for bit 0 at 40MHz in
a) and bit 0 at 2MHz in b). The sample resolution at 40MHz was scaled down proportionately for the
2MHz case (so for one clock cycle, the same number of samples was captured). The DPA in figure 7b)
is much narrower. The DPA peaks at this sample resolution for 2MHz processor clock were often
missed due to the need for both higher resolution and wider time frame required due to the slower clock
speed. The narrow or missed DPA peak occurs because the processor’s logic delays do not change, thus
high sampling rate is still required to see the DPA even using a lower clock frequency for the processor.

The previously researched bus complement and power randomization countermeasures [11,13]
were found to be very ineffective on the ARM7TDMI processor. In both cases the DPAs were still
evident. For example in the bus complement experiment 16-bit data values, (d)15..0, were utilized on the
32-bit bus in different arrangements including (d)0..15||(d)15..0 . The power randomization technique
loaded random 32-bit data before and after the sensitive data (such as key value). Although the
countermeasures were successful in reducing the DPA peaks by up to 60%, the DPAs were still
significant (or greater than two standard deviations).

The key xoring DPA attack is illustrated with real power and EM measurements in figure 9. In
the ARM7TDMI processor, although both a DPA and DEMA attack on the xor operation was not
successful (likely due to the lower average power dissipation of a xor instruction compared to the load
or store instruction), DPA and DEMA attacks on all load and store instructions were very successful.
Hence to demonstrate a key xor DPA/DEMA attack, the xor result was stored to memory and loaded
back again. The whole DPA trace and power traces for the sequence of loading plaintext, (loading key
and) computing the xor (of the key and the plaintext), storing the xor and loading the xor is shown in
figure 9a). The dark blue (and red) line is the differential (and two times standard deviation) trace and
the larger yellow (and hidden green) traces are the two averaged power traces. The nop instructions
were used to separate the instructions for clarity. Figure 9b) illustrates a close up view of the DPA of the
plaintext load. Figure 9c) and 9d) illustrate the

a)

b) c) Samples

A
A

d) e)
Figure 9. Key xoring DPAs and power traces in a), DPA of load plaintext b), DPA of xor result in c) and d) for keybit of 0 and 1

respectively, and DEMA of xor with keybit of 1 in e).

DPA of the xor result for a key bit of 0 and 1 respectively. The first spike on loading plaintext is clearly
a positive rise which is also apparent for the key bit=0 load. The first spike for keybit=1 is a negative
rise as expected. It is interesting to note that as opposed to a clearly positive or negative DPA
characteristic, we see both positive and negative dual spikes. The dual peaks appear likely due to the
capacitance of the processor causing the effect to last over several clock cycles. Hence the attacker can
examine the DPAs to see if they initially rise similar to the plaintext load (indicating a key bit of zero)
or if they rise in opposite direction to the plaintext load (indicating a key bit of one). The EM result,
DEMA, in Figure 9e) is very similar to the DPA in figure 9d) as expected.

The energy dissipation overhead and memory overhead of the split mask countermeasure was
also evaluated and compared to previous research overheads. Using the current meter connected to the
core power of the ARM7TDMI chip, real averaged power dissipation measurements were made. The
energy dissipation of Rijndael key generation for a 128-bit key with no countermeasures on the
ARM7TDMI is 0.354uJ. With the proposed split mask countermeasure, where the masked round keys
are updated with intermediate masks during key generation, the total energy is 0.509uJ per master key
(13% higher energy dissipation than without any countermeasure for key expansion alone). In this
scheme the AES encryption is run with no additional operations and does not require any further
memory storage (since only one set of masked tables is required). In this scheme all round keys will
have the same fixed mask. To increase security of the encryption algorithm and by using different
random values for r0-r2, the key generation and encryption could be run together on each set of
plaintexts. This would require 16% more energy dissipation (0.572mJ per 8KB of plaintext) compared
to key generation and encryption without any countermeasures. There is a 20% overhead in energy
dissipation if masked round keys are exclusive-or’d with mi() during the encryption process compared to
regular unmasked encryption. The previously researched random masking technique [15], where the
Sbox tables are regenerated for each new random mask, required 8 times overhead in energy dissipation
for the unmasked encryption algorithm alone using the same ARM7TDMI processor. In [14] several sets
of tables have to be stored for each new mask used with the round keys, where each set has 5 tables,
each of 256x32-bit size using the table method in [28].

Hamming weight attacks (for a non-randomized implementation) were also analyzed on the 32-
bit processor. Although our real power measurements were unable to correlate the power to hamming
weights, assuming it may be possible with other processors, the security was evaluated. Figure 10a)
illustrates the number of possible key guesses for a single mask case where three hamming weights are

Samples

V
A

available, specifically the hamming weights of the key, the mask and the exclusive-or result, key^mask.
This illustrates an attack possible using the previously researched countermeasure illustrated in figure
2a). In the proposed split mask countermeasure case, the number of key guesses possible given the four
hamming weights, that of the first mask (mA), the second mask (mB), the key, and the exclusive-or
result, (mA^mB^key) is illustrated in figure 10b). For example to illustrate this attack consider the
Rijndael implementation in section 2, where round key rk0 has a final fixed mask of m0m1m2m3.
Hence we assume the attacker may be able to calculate the four hamming weights from the four power
samples of rk0, mi(15) (where mi(15)=m0m1 from table 1, to represent mA), mi(13) (where mi(13)=
m2m3 from table 1, to represent mB), and the final masked round key. In both cases the maximum
number of possible solutions is 601 million solutions (for a number of hamming weight combinations).
The average number and the sum of the number of key guesses increased by 8 and 280 times
respectively in b) over a). Hence there are more combinations of masks which require larger number of
key guesses for the split mask countermeasure compared to the single mask case. Appendix C derives
the explicit equations used to obtain these results.

a) b)
Figure 10. Number of key guesses for one a), and two split masks b).

In some power trace acquisitions, the means and standard deviations assumptions made after
normalization and detailed in Appendix A and Appendix B, (for example

),
2

()01|1(11 σε
−≈==− Nrbff ikbb and),

2
()11|1(11 σε
+≈==− Nrbff ikbb) did not always hold.

Although in most cases they were found to be valid, we did obtain acquisitions such as:
)99.0,037.0()01|1(11 −===− Nrbff ikbb ,)00.1,038.0()11|1(11 +===− Nrbff ikbb and

)99.0,0577.0()0|(Nmrescff ikcc ===− ,)00.1,055.0()0|(−===− Nmrescff ikcc for a power acquisition of 4000
power traces.

To illustrate the increased difficulty of mounting a 3rd order DPA/DEMA attack , as possible in
the proposed split mask countermeasure, results were compared to a 2nd order DPA/DEMA attack (such
as proposed with the random masking countermeasure in [15]). The number of incorrect key bit guesses
versus the number of traces was plotted in figures 11 and 12 for power and EM signals respectively.
The same ARM7TDMI processor and experimental setup (including sample rate) was used in both

cases. The statistics
ikeyΛ from Appendix A and Appendix B were used to predict the key bits for the 3rd

order and 2nd order analysis respectively. In the 2nd order differential analysis, power and EM samples of
the 32-bit random data (r), and the 32-bit exclusive-or result (r^key^plaintext) were used. In the 3rd order
differential analysis the power and EM samples of the 32-bit random data (r1), the second 32-bit random
data (r2), and the 32-bit exclusive-or result (r1^r2^key^plaintext) were used. It was assumed that the
split masks were randomized as r1^=r, r2^=r, where r is a random value, as discussed in section 2.1.
For example in section 2, the round key rk0 has a final fixed mask of mi(13)^mi(15), and through
randomizing the split masks, the split masks are updated as mi(15)^=r, mi(13)^=r, where r=w1^w2 (as
indicated by * in table 1). To show how the number of incorrect key bits decreased over time, all 32 key
bits were predicted from an initial 100 power and EM traces using the statistic

ikeyΛ . Then after every 25
power/EM traces another prediction of all 32 key bits was calculated using the same statistic but using
all cumulative power/EM traces.

The third order DPA results (using the split mask countermeasure), figure 11b) was compared to
a 2nd order DPA (using random masking technique as described in [15]), figure 11a). The DEMA results
are shown in figure 12, for a second order and third order DEMA in a) b) respectively. The same set of
plaintexts, and key, were used for both sets of power and EM traces and 2nd and 3rd order analysis. For
each power and EM figure, 9000 power traces and 9000 EM traces were acquired using several
framesets (or scope acquisitions). The x-axis refers to the total number of power or EM traces in a
group, where the traces are partitioned into two groups according to the plaintext bit (as detailed in
Appendix A and B). For example 4500 on the x-axis refers to 9000 (x-axis value multiplied by two)
total traces used in the prediction of the number of incorrect key bits. Clearly the 2nd order DPA and
DEMA results converge much faster than the 3rd order DPA and DEMA results. It is also interesting to
note that the DEMA results converge much faster than the DPA results for the same order differential
analysis. This could be due to the preamplifier used helping to improve signal to noise ratios as evident
in figure 8. After 9000 power traces, the 3rd order analysis still predicts 14 key bits incorrectly, whereas
the 2nd order analysis predicts 4 key bits incorrectly. After 9000 EM traces, the 3rd order analysis
predicts 12 key bits incorrectly, whereas the 2nd order analysis predicts 3 key bits incorrectly.

a) b)

Figure 11. In a) The 2nd order DPA, and b) the 3rd order (split mask) DPA, showing number of incorrect key bits
versus number of real power traces.

a) b)
Figure 12. In a) The 2nd order DEMA, and b) the 3rd order (split mask) DEMA, showing number of incorrect key bits

versus number of real EM traces.

5. Discussion and Conclusions

Employing masking before and/or within key generation provides more complexity for the
attacker in finding where the masks are loaded in the power trace of the key generation and/or
encryption, in order to launch a high order DPA or DEMA attack. However it is also possible to perform
the split mask exclusive-oring explicitly at the beginning of the Rijndael encryption algorithm. This
alternative approach requires more exclusive-or computations than the proposed split mask
countermeasure approach described in section 2.1. The split mask countermeasure is similar to the secret
splitting method [18] in that a higher order differential analysis is required, however unlike [18] the key
is not split into shares. Hamming weight attacks as described in [23] which do consider attacks on the
key generation stage for Rijndael are also made more difficult using this split masking technique since
unlike other countermeasures, most round keys (all but the initial secret master key) are automatically
masked upon definition and hence the hamming weight of each round key is never available nor is the
round key ever unmasked during the key generation or encryption stages. Other countermeasures [25]
only consider the encryption algorithm and not the key generation stage. Whereas other studies of DPA
have been researched for the Sbox or table look-up attacks[26], and do not consider attacks on the key
generation stage. Although the split mask countermeasure was demonstrated for Rijndael, it can easily
be applied in general to other encryption algorithms including key generation of other ciphers such as
DES. The attack at the output of the Sbox or table look-up was not addressed in this paper, however this
split mask countermeasure could be used in conjunction with other countermeasures which address the
Sbox attack such as [14,5,15] as described in section 2. Previously these countermeasures [5,15] could
be defeated with a 2nd order DPA or DEMA, however in conjunction with the proposed split mask
countermeasure a higher 3rd order DPA or DEMA would be required, making the attack more difficult to
mount. Since the DPA/DEMA attacks using this embedded processor were only possible during load or
stores similar to research findings in [14], it may be more secure to exclusive-or the masked round keys
with their intermediate masks during encryption (which typically is executed more frequently than key
expansion), to avoid loading all round keys with the same fixed masked value. In this way the hamming
weight of the final masked round keys would not be made available for a possible SPA attack. As
evident from the experimental results in section 4, the larger number of traces required for the 3rd order
DPA or DEMA indicates that the proposed split mask countermeasure increases the security. The faster
convergence of 2nd order DEMA compared to DPA as demonstrated in section 4, is also supported by

previous research findings on a 8-bit processor [10]. Results with real power and EM measurements for
the ARM7TDMI processor core showed that finding all bits of the secret key required more than 9000
power traces (unlike previous research which investigated only a few bits on an 8-bit processor[10,15]).

Furthermore results showed that the DPA assumptions (for example),
2

(σε
+≈+ Nfc) made in

Appendix A and B as well as in [15] did not always hold.

This paper presented for the first time 3rd order key xoring DPA and DEMA results for a 32-bit
low power embedded processor using real power and EM measurements with a new split mask
countermeasure. This is unlike previous research which has investigated only 2nd order DPA [15] or 2nd
order DEMA [10], both on 8-bit processors, or previous research which investigated theoretical variants
of 2nd order analysis [30] without real measurements. Results of the new 3rd order DPA/DEMA statistics
on the new proposed split mask countermeasure found that a larger number of power and EM traces are
required, making the split mask countermeasure very effective. The countermeasure requires negligible
additional energy dissipation compared to previous countermeasures [5,15] and smaller storage
overhead compared to [14]. Hamming weight attacks are still difficult due to the split masks. The split
mask countermeasure can trade off memory for security, thus supporting a higher nth order DPA with
additional memory for storing the additional split masks. This research is crucial for supporting low
energy security for embedded systems which will be prevalent in wireless IP-enabled devices designed
with nanometer technologies of the future.
REFERENCES
[1] P.Kocher “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems”, LNCS 1109, 1996.
[2] P.Kocher, J.Jaffe, B.Jun “Differential Power Analysis” Crypto’99, LNCS 1666, 1999
[3] J.Coron, P.Kocher, D.Naccache “Statistics and secret leakage” LNCS 1962, 2001, pp.157-173.
[4] T.Messerges, etal. “Investigations of Power analysis attacks on Smartcards” USENIX workshop on Smartcard Technology, 1999.
[5] T.Messerges, “Securing the Rijndael finalists against power analysis attacks” LNCS 1978, 2001, pp.150-164.
[6] H.Saputra, etal. “Masking the energy behavior of DES encryption”, Proceedings of DATE 2003.
[7] D.Agrawal et al. “The EM side-channel(s)” CHES 2002, 2002, pp.29-45.
[8] E.Biham, A.Shamir “Power analysis of the key scheduling of the Rijndael candidates”, 2nd Rijndael conference, 1999.
[9] S.Chari, etal. “Towards sound approaches to counteract power-analysis attacks”, LNCS 1666, 1999, pp.398-412.
[10] D.Agrawal, etal. “The EM side-channel…methodologies” at http ://www.research.ibm.com/intsec/emf.html
[11] J.Daemen, V.Rijmen “Resistance against implementation attacks”, 2nd Rijndael conference, 1999.
[12] M.Akkar, etal. “Power analysis, what is now possible…”, LNCS 1976, 2000, pp489-502.
[13] S.Chari etal. “A cautionary note regarding evaluation of Rijndael candidates on smart-cards”, 2nd Encryptn. Std. Cand. Conf, March
1999.
[14] K.Itoh M.Takenaka, N.Torii “DPA countermeasure based on the masking method”, LNCS 2288, 2002,pp.440-456.
[15] T.Messerges “Using 2nd Order Power Analysis to attack DPA resistant software”, LNCS 1965, 2000 pp.238-251.
[16] M.Aydos, T.Yanik, C.K.Koc “An high speed ECC-based wireless authentication protocol on an ARM Microprocessor”, Proc of 16th
Annual Comp. Sec. Appl. Conf. 2000.
[17] G.Hachez, F.Koeune, J.-J. Quisquater “cRijndaelar results: Implementation of four Rijndael candidates on two smart cards”, 2nd
Rijndael conference, 1999.
[18] L.Goubin, J.Patarin “DES and Differential power analysis- the duplication method” CHES 2001.
[19] J.Golic “Multiplicative Masking and power analysis of Rijndael”, CHES 2002.
[20] J.Daemen M.Peeters, G.V.Assche “Bitslice ciphers and power analysis attacks” Proc of Fast software encryption workshop, 2000.
[21] J.Coron, L.Goubin “On Boolean and arithmetic masking against differential power analysis”, CHES 2000.

[22] J.Coron “Resistance against differential power analysis for ECC” CHES 1999.
[23] S.Mangaard, “A Simple Power-Analysis Attack on Implementations of the AES Key Expansion”, ICICS 2002 , LNCS 2587, pp.343-
358, 2003.
[25] E.Trichina, L.Korkishko “Secure and efficient AES software implementations for smart cards”, Cryptology ePrint Archive, 2004/149
http://eprint.iacr.org/2004/149.pdf , 2004.
[26] E.Brier, C.Clavier, F.Olivier “Correlation power analysis with a leakage model” CHES 2004, LNCS 3156, pp16-29, 2004.
[27] J.Daemen, V.Rijmen “AES Proposal: Rijndael” http://csrc.nist.gov/encryption/aes, 1999.
[28] B. Gladman, “A Specification for Rijndael, the AES Algorithm”, at fp.gladman.plus.com /cryptography_technology /rijndael
/aes.spec.311.pdf, 15 April 2003 (pages 18-19).
[29] K.Gandolfi etal. “Electromagnetic analysis: concrete results” , CHES 2001, LNCS 2162, pp.251-261, 2001.
[30] J.Waddle, D.Wagner “Towards efficient second-order power analysis” CHES 2004, LNCS 3156, pp1-15, 2004.

Appendix A: Derivation of 3rd order DPA Statistic
Let the masked round key, and two masks be represented by mres, and r1, r2 respectively. In our
example of table 1, r1=m1m3 (assumes the attacker can get a power sample of accessing mi(10) of table
1 or during unmasking of cipher text), r2=m0m2, (assumes the attacker has complete knowledge of the
algorithm and can get a power sample of accessing mi(11) of table 1 or during unmasking of cipher
text), and the attacker is trying to determine rki, mres (which has a resultant mask of m0m1m2m3). For
example consider the following lines of code:
Line 1. load r1
Line 2. key1 = key ^r1
Line 3. load r2
Line 4. key2 = key1^r2
Line 5. load p
Line 6. mres = key2^p=key^r1^r2^p
Let the kth normalized power consumption of the random mask r1 (line 1.), the random mask r2 (line 3.),
and the masked round key mres (line 6.), be represented by b1k, b2k and ck respectively. The
distribution for these values is assumed to be Gaussian with mean of zero and standard deviation of one
(due to normalization,)1,0(),(NN =σµ))1,0()1(1 Nbf kb ≈ ,)1,0()2(2 Nbf kb ≈ , and)1,0()(Ncf kc ≈ .

Let),
2

()01|1(11 σε
−≈==− Nrbff ikbb represent the distribution of the power consumption values of

b1k such that the ith bit of r1 is zero. Assume it is also a Gaussian distribution. Similarly let the following
distributions of power consumption exist (similar to

[15])),
2

()0|(,),
2

()02|2(22 σεσε
−≈==−≈== −− NmrescffNrbff ikccikbb . Let

),
2

()11|1(11 σε
+≈==+ Nrbff ikbb represent the distribution of the power consumption values of b1k

such that the ith bit of r1 is one. Similarly let the following distributions of power consumption exist

),
2

()1|(,),
2

()12|2(22 σεσε
+≈==+≈== ++ NmrescffNrbff ikccikbb . Next one can calculate the

following joint conditional probability distributions of b1k, b2k and ck (and b1k, b2k are equally likely to
be a 0 or 1):

)(
4
1)(

4
1)0|,2,1(

)(
4
1)(

4
1)1|,2,1(

21212121,2,1

21212121,2,1

+−+++−−++−−−

−−+−+−++++−−

+++==⊕

+++==⊕

cbbcbbcbbcbbiikkkcbb

cbbcbbcbbcbbiikkkcbb

ffffffffffffpkeycbbf

ffffffffffffpkeycbbf

next one can substitute using the normal distribution :
2)(

2
1

2
1)(σ

µ

πσ
η

−
−

=
x

ex and factor out the constant

πσ 2
1 to obtain the following expression for the probability of 1=⊕ ii pkey given all power traces Ψ :

∏
−

= ⎟
⎠

⎞
⎜
⎝

⎛ ++++−−⎟
⎠

⎞
⎜
⎝

⎛ ++−++−

⎟
⎠

⎞
⎜
⎝

⎛ −+−+−−⎟
⎠

⎞
⎜
⎝

⎛ −++++−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

≈

=⊕Ψ

1

0)
2

()
2

2()
2

1(
2

1)
2

()
2

2()
2

1(
2

1

)
2

()
2

2()
2

1(
2

1)
2

()
2

2()
2

1(
2

1

222
2

222
2

222
2

222
2

)1|Pr(

N

k cbbcbb

cbbcbb

ii

kkkkkk

kkkkkk

ee

ee

pkey

εεε
σ

εεε
σ

εεε
σ

εεε
σ

For the rest of the analysis let ε represent 22σ
ε

()() ()() ()() ()()

() ()()() () ()()()[]∏

∏
−

=

−−−+−++−−−−−

−

=

++−−+−−−−−−−+−

+++≈

+++≈

=⊕Ψ

1

0

21212121

1

0

21212121

)1|Pr(

N

k

bbbbcbbbbc

N

k

cbbcbbcbbcbb

ii

kkkkkkkkkk

kkkkkkkkkkkk

eeeeee

eeee

pkey

εεεεεεεεεε

εεεεεεεεεεεε

Next we substitute using the following trigonometric identity ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

−

2
)cosh(

xx eex to obtain the

following:

() ()()() () ()()()

∏

∏

∏

−

=

+−

−

=

−

−

=

++−++−−+−−

+−++≈

=⊕Ψ

+++−≈

+++≈

=⊕Ψ

1

0

1

0

1

0

21212121

)))21(cosh())21(cosh((

)0|Pr(

)))21(cosh())21(cosh((

)1|Pr(

N

k
kk

c
kk

c

ii

N

k
kk

c
kk

c

N

k

bbbbcbbbbc

ii

bbebbe

pkey

bbebbe

eeeeee

pkey

kk

kk

kkkkkkkkkk

εε

εε

εε

εε

εεεεεεεεεε

Now one can further use the following trigonometric identities
)sinh()sinh()cosh()cosh()cosh(yxyxyx +=+ ,)cosh()cosh(),sinh()sinh(xxxx =−−=− , and

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−

2
)sinh(

xx eex , so the equation can be rewritten as:

[]

[]

[]C
1

0

1

0

1

0

1

0

)sinh()2sinh()1sinh()cosh()2cosh()1cosh(

)0|Pr(

)2sinh()1sinh()sinh()2cosh()1cosh()cosh(

)2sinh()1sinh()()2cosh()1cosh()(

))2sinh()1sinh()2cosh()1(cosh())2sinh()1sinh()2cosh()1(cosh(

)1|Pr(

−

=

−

=

−

=

−−

−

=

−

−≈

=⊕Ψ

+≈

+−++≈

++−≈

=⊕Ψ

∏

∏

∏

N

k
kkkkkk

ii

N

k
kkkkkk

N

k
kk

cc
kk

cc

N

k
kkkk

c
kkkk

c

ii

cbbcbb

pkey

bbcbbc

bbeebbee

bbbbebbbbe

pkey

kkkk

kk

εεεεεε

εεεεεε

εεεε

εεεεεεεε

εεεε

εε

Next we can further extend the expressions to directly solve for probabilities. Thus
the probability of the key bit being equal to zero is a product of two probabilities:

)1(),0()),1(Pr)0((Pr

)0,1|,2,1()1,0|,2,1()1(Pr

)1,1|,2,1()0,0|,2,1()0(Pr

,2,1,2,1

,2,1,2,1

===>=

==⊕×==⊕==

==⊕×==⊕==

iiii

iiikkkcbbiiikkkcbbi

iiikkkcbbiiikkkcbbi

keyelsekeykeyobkeyobif

ppkeycbbfppkeycbbfkeyob

ppkeycbbfppkeycbbfkeyob

The following notation is used to indicate partitioning of the power traces. Specifically
let }0|{0},1|{1 ==== ii pkpk δδ . The statistic, 0=∆

ikey , represents the probability that the key bit is a
zero:

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

1|

0|
0

0|

1|
1

∏

∏

∏

∏

∈

∈
=

∈

∈
=

+

×−≈∆

+

×−≈∆

δ

δ

δ

δ

εεεεεε

εεεεεε

εεεεεε

εεεεεε

kk
kkkkkk

kk
kkkkkkk

kk
kkkkkk

kk
kkkkkkkey

cbbcbb

cbbcbb

cbbcbb

cbbcbb
i

Alternatively one can represent the statistic Λ as given below, where the statistic is positive or negative
to indicate the key value is a 1 or 0 respectively.

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

)))sinh()2sinh()1sinh()cosh()2cosh()1(cosh(

1|

0|

0|

1|

01

∏

∏

∏

∏

∈

∈

∈

∈

==

+

×−−

+

×−=

∆−∆=Λ

δ

δ

δ

δ

εεεεεε

εεεεεε

εεεεεε

εεεεεε

kk
kkkkkk

kk
kkkkkk

kk
kkkkkk

kk
kkkkkk

keykeykey

cbbcbb

cbbcbb

cbbcbb

cbbcbb
iii

Appendix B: 2nd Order DPA derivation

Let the masked round key, and masks be represented by mres, and r1, respectively. For example
consider the following lines of code:
Line 1. load r1
Line 2. key1 = key ^r1
Line 3. load plaintext
Line 4. mres = key1^p=key^r1 ^p
Let the kth normalized power consumption of the random mask r1 (line 1.), and the masked round key
mres (line 4.), be represented by b1k, and ck respectively. The distribution for these values is assumed
to be Gaussian with mean of zero and standard deviation of one (due to normalization,

)1,0(),(NN =σµ))1,0()1(1 Nbf kb ≈ , and)1,0()(Ncf kc ≈ . Let),
2

()01|1(11 σε
−≈==− Nrbff ikbb

represent the distribution of the power consumption values of b1k such that the ith bit of r1 is zero.
Assume it is also a Gaussian distribution. Similarly let the following distributions of power consumption

exist (similar to [15])),
2

()0|(σε
−≈==− Nmrescff ikcc . Let),

2
()11|1(11 σε
+≈==+ Nrbff ikbb represent

the distribution of the power consumption values of b1k such that the ith bit of r1 is one. Similarly let the
following distributions of power consumption exist),

2
()1|(, σε
+≈==+ Nmrescff ikcc . Next one can

calculate the following joint conditional probability distributions of b1k, and ck (and b1k is equally likely
to be a 0 or 1):

)(
2
1)(

2
1)0|,1(

)(
2
1)(

2
1)1|,1(

11,1

11,1

++−+

−+++

+==⊕

+==⊕

cbcbiikkcb

cbcbiikkcb

ffffpkeycbf

ffffpkeycbf

next one can substitute using the normal distribution :
2)(

2
1

2
1)(σ

µ

πσ
η

−
−

=
x

ex and factor out the constant

πσ 2
1 to obtain the following expression for the probability of 1=⊕ ii pkey given all power traces Ψ :

∏
−

=

⎟
⎠

⎞
⎜
⎝

⎛ ++−−⎟
⎠

⎞
⎜
⎝

⎛ −++−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≈

=⊕Ψ

1

0

)
2

()
2

1(
2

1)
2

()
2

1(
2

1 22
2

22
2

)1|Pr(

N

k

cbcb

ii

kkkk
ee

pkey

εε
σ

εε
σ

For the rest of the analysis let ε represent 22σ
ε

()() ()()∏
−

=

+−−−− +≈

=⊕Ψ
1

0

11

)1|Pr(
N

k

cbcb

ii

kkkk ee

pkey

εεεε

Next we substitute using the following trigonometric identity
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

−

2
)cosh(

xx eex to obtain the following:

∏

∏
−

=

−

=

+≈=⊕Ψ

−≈=⊕Ψ

1

0

1

0

))1(cosh()0|Pr(

))1(cosh()1|Pr(

N

k
kkii

N

k
kkii

cbpkey

cbpkey

ε

ε

So far these results are identical to those found in [15]. They derive a theorem which states the decision

problem as)cosh()cosh(
1

0

1

0
k

N

k
kk

N

k
k cborcb −><+ ∏∏

−

=

−

=

. Then the previous research suggests using a heuristic

approximation, ∑
−

=

−
1

0

N

k
kk cb , to use in the attack. Unlike the research in [15], we will derive a different

statistic to use in the attack.
We can further extend the expressions to directly solve for probabilities. Thus the probability of the key
bit being equal to zero is a product of two probabilities:

)1(),0()),1(Pr)0((Pr

)0,1|,1()1,0|,1()1(Pr

)1,1|,1()0,0|,1()0(Pr

,1,1

,1,1

===>=

==⊕×==⊕==

==⊕×==⊕==

iiii

iiikkcbiiikkcbi

iiikkcbiiikkcbi

keyelsekeykeyobkeyobif

ppkeycbfppkeycbfkeyob

ppkeycbfppkeycbfkeyob

The following notation is used to indicate partitioning of the power traces. Specifically
let }0|{0},1|{1 ==== ii pkpk δδ . The statistic, 0=∆

ikey , represents the probability that the key bit i is a
zero:

)))1((cosh()))1((cosh(

)))1((cosh()))1((cosh(

0|1|
1

1|0|
0

∏∏

∏∏

∈∈
=

∈∈
=

−×+≈∆

−×+≈∆

δδ

δδ

εε

εε

kk
kk

kk
kkkey

kk
kk

kk
kkkey

cbcb

cbcb

i

i

Alternatively one can represent the statistic Λ as given below, where the statistic is positive or negative
to indicate the key value is a 1 or 0 respectively.

)))1((cosh()))1((cosh()))1((cosh()))1((cosh(
1|0|0|1|

01

∏∏∏∏
∈∈∈∈

==

−×+−−×+=

∆−∆=Λ

δδδδ

εεεε
kk

kk
kk

kk
kk

kk
kk

kk

keykeyikey

cbcbcbcb

ii

Appendix C: Hamming Weight Attack on Fixed Masks

Attack Problem 1. Given the hamming weight of a mask, the hamming weight of the key and the value
of the mask^key (obtained from 1st order DPA), how many possible key values exist?

Attack Problem 2. Given the hamming weight of mask 1, m1, the hamming weight of mask 2, m2, the
hamming weight of the key and the value of the m1^m2^key (obtained from 1st order DPA), how many
possible key values exist?

Solution to Attack problem 1:
Let the hamming weight of a value x be represented by hwt(x). Let i be the number of ‘1’s in k which
combine with ‘1’ in m to produce a ‘0’ in m^k. It can be formulated as:
i=(hwt(m) + hwt(k) –hwt(m^k))/2
The number of possible key values =
 [(word_size – hwt(m^k)) choose i] × [hwt(m^k) choose (hwt(k) – i)]

Solution to Attack problem 2:
Let min_hwt(m1,m2) be the minimum hamming weight value possible of the exclusive-or of m1 and m2.
Similary let max_hwt(m1,m2) be the maximum hamming weight value possible by the exclusive-or of
m1 and m2.
The number of possible key values =

∑
=

−×−
)2,1(max_)2,1(min_

] choose))^2^1(word_size[()])((choose)^2^1([
mmhwttommhwti

ikmmhwtikhwtkmmhwt

