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Abstract - Applying the matrix-vector product idea of the Mastrovito multiplier to 
the GF(2m) Montgomery multiplication algorithm, we present a new multiplier for 
irreducible trinomials. This multiplier and the corresponding shifted polynomial basis 
(SPB) multiplier have the same circuit structure for the same set of parameters. 
Furthermore, by establishing isomorphisms between the Montgomery and the SPB 
constructions of GF(2m), we show that the Montgomery algorithm can be used to 
perform the SPB multiplication without any changes, and vice versa. 
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1  INTRODUCTION 

Efficient VLSI implementation of multipliers for the finite field GF(2m) is 
important for many cryptosystems. To this end, several algorithms and hardware 
architectures have been proposed in the literature (see, for example, [1_13]). Among 
the existing algorithms and architectures, the use of a polynomial basis (PB) to 
represent elements of GF(2m) appears to be more common than other bases, such as 
normal and dual bases. 

For hardware implementation of a GF(2m) multiplier using PB, there are two types 
of approaches: 

1) Type-I: multiplication of two binary polynomials, each of degree m-1 or less, 
followed by a modulo reduction operation using an irreducible polynomial f(x) of 
degree m. 

2) Type-II: formation of a binary mm  matrix, which depends on one input and 
the reduction irreducible polynomial, followed by a multiplication of the matrix and 
the other input vector. 

Type-II approach is suitable when the reduction polynomial is fixed or is chosen 
from a small set of polynomials.  

For the purpose of representing elements of GF(2m), a generalization of PB is the 
so-called shifted polynomial basis (SPB) proposed in [11]. As the name implies, for 
any integer v, the set {xi-v| 10 mi } is a SPB. For GF(2m) multiplication, the use 
of SPB also results in two approaches, which are similar to those of PB, namely, type-
I and type-II. 

For multiplication C=AB, where )2(, mGFBA , whether PB or SPB is used, both 

type-I and type-II approaches generate C as the output, which is represented in the 
same basis as the inputs. A slightly different kind of multiplication scheme exists, 
known as the Montgomery multiplication for finite fields, where for inputs A and B, 
the output is RAB

~
 mod f(x) with R

~

 

being the inverse of a carefully chosen field 
element ).2( mGFR

 

This type of multiplication scheme is hereafter referred to as 

the Montgomery form (MF). The existing MF algorithms for GF(2m) in [6], [7] fall 
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under the type-I approach mentioned earlier. Although the type-II approach is 
possible, there appears to be no mention of this in the literature. One of the 
contributions of the report is a multiplication scheme based on this approach. The 
following table summarizes the three representations and the available approaches for 
the multiplication in GF(2m).  

TABLE 1: Approaches for PB, SPB and MF multiplications  

PB SPB MF 

Type-I [4, 5, 9, 10] [11] [6, 7, 13, 14] 

Type-II [1, 2, 3, 8] [11] This work 

 

Each of SPB and MF can be described in terms of a number of parameters. Using 
irreducible trinomials, we first show that if SPB and MF have the same parameters 
then the type-II approach results in the same multiplier structure for these two 
representations. We then use the field isomorphism to investigate this phenomenon 
further. The homomorphism is not only a powerful method to study algebraic 
relationship of different algebraic structures but also an important tool to design 
efficient algorithms, e.g., the Discrete Fourier Transform based polynomial 
multiplication algorithm. We determine all isomorphisms among three representations 
of GF(2m): the PB representation, the Montgomery representation, and the SPB 
representation. The main result of this report is that the Montgomery multiplication 
algorithm can be used to perform the SPB multiplication without any change for the 
same parameters, and vice versa. 

This report is organized as follows: In Section 2, we summarize the previous work 
on PB and SPB multiplication algorithms. Details of the type-II approach based 
multiplier using MF is proposed in Section 3. The relationship between the 
Montgomery multiplication and the SPB multiplication is presented in Section 4. 
Finally, concluding remarks are made in Section 5. 

2  PREVIOUS WORK 

2.1  PB Multiplication Algorithms 

Let f(u) be an irreducible polynomial over GF(2). All elements of 
GF(2m)=GF(2)[u]/(f(u)) can be represented using a PB {xi| 10 mi }, where x is a 

root of f. Given two field elements 1

0110 ),...,,(
m

i

i
i

T
m xaaaaA and 

1

0110 ),...,,(
m

i

i
i

T
m xbbbbB , where )2(, GFba ii

, the PB type-I multiplication 

algorithm computes the product 1

0110 ),...,,(
m

i

i
i

T
m xccccC of A and B using the 

following two steps: 
(i) Polynomial multiplication: 

22

0

m

i

i
i xtABT , where  

;22                   

,10                    

1

1

0

1,0
    mimba

miba

bat
m

mij
jij

i

j
jij

mhj
ijh

jhi    
      (1) 
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(ii) Reduction modulo the irreducible polynomial f : 

)(  mod   
1

0

xfTxcC
m

i

i
i

. 

Mastrovito proposed a structure for the VLSI implementation using the type-II 
approach based on the matrix-vector product, i.e., C=(c0,c1,...,cm-1)

T =Z(a0,a1,...,am-1)
T  

[8]. The structure is somewhat modular. The mm  matrix 
1,0, )( mjijizZ , which is 

referred to as the Mastrovito matrix [1], depends on both B and f. In order to compute 
C=Z(a0,a1,...,am-1)

T, Z is computed first, then ct ( 10 mt ) is computed in a vector 

inner-product module whose output is 1

0 ,

m

i itit zac . 

2.2  SPB Multiplication Algorithm 

The SPB of GF(2m) over GF(2) is a modification of the PB, and it is defined as 
follows [11]: 

Definition 1. Let v be an integer and the ordered set M={xi| 10 mi } be a 
polynomial basis of GF(2m) over GF(2). The ordered set x-vM := {xi-v| 10 mi } 
is called the shifted polynomial basis (SPB) with respect to M. 

Using SPB, an element )2( mGFA

 

can be represented as 1

0

m

i

i
i

v xaxA . 

Corresponding to the two PB parallel multipliers as given in subsection 2.1, two SPB 
analogues for the irreducible trinomial are proposed in [11], namely, the SPB type-I 
and type-II multipliers. 

2.3  Montgomery Multiplication Algorithm for Finite Fields 

The GF(2m) Montgomery multiplication algorithm is presented in [7], and a 
generalized version is proposed in [6]. They follow the type-I approach. Let f(u) be 
an irreducible polynomial over GF(2) and {xi| 10 mi } be a PB of 
GF(2m)=GF(2)[u]/(f(u)) over GF(2), where x is a root of f.  Let R

~

 

be the 
multiplicative inversion of )2( mw GFxR

 

( 10 mw ). We known that there 

exists )2()(
~ mGFxf

 

such that 1)()(
~~

xfxfRR . The type-I Montgomery 

multiplication algorithm is as follows [6]:  

Algorithm A1: Type-I Montgomery multiplication algorithm for GF(2m) 
Input: A, B, R, )(

~
xf  represented in PB and f(x). 

Output: RABD
~

 mod f(x) represented in PB.  

S1: )()()(
22

0

xtxxtxxtxtABT H
wm

M
w

L

m

h

h
h

,    where 
1

0

)(
w

h

h
hL xtxt ,  

1

)(
wm

wh

wh
hM xtxt  and 

.10

,10
)(

22

mw

mwxt
xt

m

wmh

wmh
h

H  

S2: U = tL(x) )(
~

xf  mod R;  

S3: D' = (T+Uf(x))/R;  
S4: If deg(D')>m-1 then D = D'  mod f(x) else D= D' .  

Since the output of algorithm A1 is not AB mod f(x) but RAB
~

 mod f(x), which is 
represented in PB, some pre- and post-processings are likely to be required in the 
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case of exponentiation operation. This is similar to the integer case [16, 17], i.e., we 
may first change inputs of algorithm A1 from A and B to AR mod f(x) and BR mod 
f(x), respectively, and then perform the Montgomery multiplication. The output, 
which is RARBR

~

 
mod f(x) = ABR

 
mod f(x), may now be used as an input to a 

subsequent multiplication. 
We note that no conversion is required for exponentiation operations using PB or 

SPB multiplication algorithms, since the output of each of these algorithms is the 
exact product represented in the same basis as the inputs. 

3  TYPE-II MONTGOMERY MULTIPLIER FOR IRREDUCIBLE 
TRINOMIALS 

In this section we assume that f(u)=um+uk+1 is an irreducible trinomial. In [11], it is 
shown that the best values of the SPB parameter v are k and k-1 for the 
implementation of the irreducible trinomial-based bit parallel multiplier. We now 
determine the best values of w in Montgomery multiplication algorithm A1.  

If f(u)=um+uk+1 then )(
~

xf =1, and steps S2, S3 and S4 of Algorithm A1 may be 

simplified as follows:  

S2': D' =  (xm-w+xk-w)tL(x)+tM(x)+ (xk+1)tH(x);  
S3': If deg(D')>m-1 then D = D'  mod f(x) else D= D' . 

If degrees of all terms of D' are in the range of 0 and m-1, then the mod operation 
in S3' is not performed. Hence if this condition is always satisfied, for hardware 
implementation no gate is required for S3'. It is easy to see that this condition is 
equivalent to the following inequalities: 

.120

,10

,110

mwmk

mwk

mwwm 

After solving these inequalities, we find that the values of w are k and k-1. Hence, 
the best values of w for the Montgomery multiplication and those of v for the SPB 
multiplication are the same.  In this section, we assume that w is either k or k-1. 

The computational procedure of the Montgomery multiplication Algorithm A1 is 
similar to that of the type-I PB multiplier, i.e., the product of the two polynomials A 
and B is calculated first, and then the reduction operation is performed. We now apply 
the type-II approach to the computation of RABD

~
 mod f(x), and obtain a formula 

of the Montgomery multiplication algorithm for the irreducible trinomial, which is 
called the type-II Montgomery multiplier. 

The type-II Montgomery algorithm computes RABD
~

 mod f(x)=(d0,d1,...,dm-1)
T 

by a single matrix-vector product, i.e., D=(d0,d1,...,dm-1)
T=Z(a0,a1,...,am-1)

T. The mm

 

matrix 
1,0, )( mjijizZ , which is also called the Mastrovito matrix, depends on R, B 

and f. In order to compute D, Z is computed first, then 1

0 ,

m

i itit zad ( 10 mt ) is 

computed in a vector inner-product module. So we need to determine explicit 
expressions of entries of Z. From S1 and S4, we have 

222211

0

1

0

m

wmh

wmh
h

m

wmh

wmkh
h

wm

wh

wh
h

w

h

wkh
h
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h

wmh
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wm

i

i
wmi

wmk

ki

i
kmwi

m

i

i
wi

k

wki

i
kwi

m

wmi

i
mwi xtxtxtxtxt

2

0

21

0

11

.      (2) 

To obtain explicit expressions of entries of Z, we may first apply (1) to (2) and then 
compare the coefficients of xi in the new expression. This method has been used in 
[11]. After obtaining the entries of matrix Z, we may find that type-II multipliers 
based on MF and SPB share the same Mastrovito matrix Z if v=w. In the following, 
we do not adopt this method since it is quite complicated. We give a simpler 
explanation. The SPB multiplication formula is obtained from equations (3), (6), (7) 
of [11], i.e., 

vm

vt

t
vmt

vmk

vkt

t
kmvt

vm

vt

t
vt

vk

vkt

t
kvt

vm

vmt

t
mvt xtxtxtxtxtC

22

2

22

2

1

2

1

2
2

1

2
2

.     (3) 

Multiplying xv to (3) and changing the range of the exponent of x from [-v, m-v-1] 
to [0, m-1], we have 

vm

i

i
vmi

vmk

ki

i
kmvi

m

i

i
vi

k

vki

i
kvi

m

vmi

i
mvi

v xtxtxtxtxtCx
2

0

21

0

11

.      (4) 

Careful comparisons of formulae (2) and (4) reveal that D=Cxv if v=w. Since the 
type-II SPB matrix is derived from (3), and multiplying xv to (3) does not change this 
matrix, we obtain that type-II multipliers based on MF and SPB share the same 
Mastrovito matrix if v=w. Therefore we may conclude that both multipliers have the 
same architecture, and summarize complexities of the type-II Montgomery multiplier 
for the irreducible trinomial f(u)=um+uk+1 as follows [11]: 

Time delay = 
XA TmT )log1( 2

; 

AND gates = m2; 

XOR gates = 
.2                   2/

,2                        1
2

2

mkmm

mkm 

4  RELATIONSHIP BETWEEN THE MONTGOMERY 
MULTIPLICATION AND THE SPB MULTIPLICATION 

In this section, f(u) denotes a general irreducible polynomial over GF(2) and x is a 
root of f. Let M={xi| 10 mi } be the PB of GF(2m)=GF(2)[u]/(f(u)) over GF(2) 
and {xi-w| 10 mi } be the SPB with respect to M. 

First, we introduce some notations. Let set }1,0{|
1

0 i

m

i

i
i axaS , 

1

0

m

i

i
i xaA  and 1

0

m

i

i
i xbB be two elements of S. Let set 

}1,0{|
1

i

wm

wi

i
iw pxpL , 1wm

wi

i
iw xpP  and 1wm

wi

i
iw xqQ be two 

elements of L. Let X =(1,x,x2,...,xm-1)T and Y =(x-w,x-w+1,...,xm-w-1)T denote the basis 

column vectors of the PB and SPB. To facilitate description, we use symbols A  and 

P

 

to denote the coordinate row vectors of SA  and LP , i.e., A =(a0,a1,...,am-1) 

and P =(p0,p1,...,pm-1), respectively. Let the symbol  denote the vector inner product, 

then SA  and LP  may also be written as A= XA  and P= YP . 
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We now present definitions of the three constructions of GF(2m). Defining two 
operations + and  in S as follows: 1

0
)(:

m

i

i
ii xbaBA  and A B :=AB mod f(x), 

where 

 
denotes the binary XOR operation and AB denotes the conventional 

polynomial multiplication, we know that the algebraic structure FPB:=<S, +, > is the 

well-known PB representation of GF(2m). 
Let R=xw S  and R

~

 
is the multiplicative inverse of R in FPB=<S, +, >. Let the 

symbol * denote the Montgomery multiplication operation. We use the multiplication 
operation  of FPB=<S, +, > to describe the operation *, and obtain A*B :=A B R

~
. 

It is easy to verify that the algebraic structure FM:=<S, +, *> is a field, and the 
identity element of the * operation is R. 

Let the symbol 

 

denote the SPB multiplication operation. We also use the 
multiplication operation  of FPB=<S, +, > to describe the operation . The 

operation  is defined as follows: 

YRXQXPYQYPQP )
~

)()((:)()( .          (5) 

Here, we also use the symbol + to denote the addition operation in L, which is 
defined as  1

)(:
wm

wi

i
iwiw xbaQP . It is easy to verify that the algebraic 

structure FSPB:=<L, +, > is also a field, and the identity element of the  operation 
is 1. 

The above discussions may be summarized as follows: 
Proposition 1. FPB=<S, +, >, FM=<S, +, *> and FSPB=<L, +, > are three 

isomorphic representations of the finite field GF(2m). 
Before analyzing their isomorphic mappings, we give the following basis 

conversion formulae between the PB and SPB representations. They address the 
import and export problems of [15].  

Export from PB to SPB:  

YRARRAXAA )(
~

,             (6) 

Import from PB to SPB: 

)()()
~

)()(()( 22 YRYAYRXRXAYRAA ,        (7) 

Export from SPB to PB:  

P= XxPRxPYP ww )( ,             (8) 

Import from SPB to PB:  

P= XRXPRXPYP
~

)(
~

)( .             (9)  

In (7), R2=R R denotes the square of R in FPB=<S, +, >. In (8), x-w is an element 

of the field FSPB=<L, +, >. Please note that R
~

 is the multiplicative inverse of R in 
FPB=<S, +, >. 

In the following, we will find all isomorphisms among the above three 
representations of GF(2m). From Theorem 2.21 of [14], we know that the distinct 
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automorphisms of GF(2m) are exactly the mappings 110 ,...,, m , defined by 
i

i
2)(  for )2( mGF  and 10 mi . Similar to the proof of Theorem 2.21, 

we now prove the following proposition. 

Proposition 2. The distinct isomorphisms of FPB=<S, +, > onto FM=<S, +, *> are 

exactly the mappings g0, g1,..., gm-1 defined by 
i

ARAgi
2)(  for PBFA  and 

10 mi . 

Proof. It is easy to see that each gi is one-to-one, and for all PBFBA, , we have 

)()()()( 222 BgAgBRARBARBAg iii

iii

; 

)(*)(
~

)()()()( 222 BgAgRBRARBARBAg iii

iii

. 

So each gi is an isomorphism of FPB onto FM. 
Let 

 

be a primitive element of FPB. The mappings g0, g1,...,gm-1 are distinct since 

)()( ji gg  for 10 mji . 

Now suppose that 

 

is an arbitrary isomorphism of FPB onto FM. For the primitive 

element PBF , let t

i

eixx
1

)(

 

be its minimal polynomial over the prime field 

<{0,1}, +, >, where meeee tt 121 ...0 . Using the identity 
1~

)()(
i

RAA ii , where 
PBFA  and i is a non-negative integer, we have 

t

i

e
t

i

e
t

i

e iie
ii RRR

111

~
)(

~
)()(0

1 . 

So R
~

)(

 

is a root of )(x  in FPB. Hence from Theorem 2.14 of [14] we know 

that 
j

R 2~
)(

 

for some j, 10 mj . Since 

 

is an isomorphism, then we 

have 
j

ARA 2)(  for all PBFA . 
Because gis are bijections, we have the following corollary from the above 

proposition. 

Corollary 1.  The distinct isomorphisms of FM=<S, +, *> onto FPB=<S, +, > are 

exactly the mappings g0
-1, g1

-1,..., gm-1
-1 defined by 

i

RAAgi

21 ~
)(  for MFA  and 

10 mi . Especially, RAAg
~

)(1
0 . 

Please note that the exponential operation in the field FM is not defined in this 
report, so we use the multiplication operation 

 

of the field FPB=<S, +, > to 

represent the mapping gi
-1. This is also one of the reasons that we do not prove 

Corollary 1 directly. The other reason is that each of the non-zero coefficients of the 
minimal polynomial of the element in FM is R, which is the identity element of the * 
operation in FM=<S, +, *>. 

The distinct isomorphisms of FPB onto FSPB are determined by the following 
proposition. 

Proposition 3. The distinct isomorphisms of FPB=<S, +, > onto FSPB=<L, +, > are 

exactly the mappings h0, h1,..., hm-1 defined by YRAAh
i

i )()( 2  for PBFA  and 

10 mi . Especially, YRAXAhAh )()()( 00 , and this map is just the basis 
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conversion formula (6). 

Proof. It is easy to see that each hi is one-to-one, and for all PBFBA, , we have 

);()()()())(()( 222 BhAhYRBYRAYRBABAh iii

iii

 

).())((

)
~

()
~

))(())(((

)()()()(

2

2222

22

BAhYRBA

YRRBRAYRXRBXRA

YRBYRABhAh

i

ii

i

iiii

ii

 

So each hi is an isomorphism of FPB onto FSPB. 
Let 

 

be a primitive element of FPB. The mappings h0, h1,..., hm-1 are distinct since 

)()( ji hh  for 10 mji . 

Now suppose that 

 

is an arbitrary isomorphism of FPB onto FSPB. For the 

primitive element PBF , let t

i

eixx
1

)(

 

be its minimal polynomial over the 

prime field <{0,1}, +, >, where meeee tt 121 ...0 . 

From (5) and (9), we have  

2~
)()(

~
))

~
)()((( RXQXPRXRXQXPQP .  

So we obtain the identity 
i

RXAA ii ~
))(()( , where i is a non-negative 

integer. Thus we have  

t

i

et

i

e i
i RX

11

~
))(()(0 . 

Therefore RX
~

))((

 

is a root of )(x  in FPB, and from Theorem 2.14 of [14], 

we know that 
j

RX 2~
))((

 

for some j, 10 mj . So we get 
j

R 2)( . 

Since  is an isomorphism, we get then YRAA
j

)()( 2  for all PBFA . 
Now we determine isomorphisms of FM onto FSPB. Since the composition of 

homomorphisms is a homomorphism, we may compose the isomorphisms 

PBMi FFg :1  and hj: FPB 

 

FSPB to obtain all isomorphisms from FM onto FSPB: 

YRRARAhAgh
jii

jij

221 ~~
)( , where 1,0 mji . 

Using the identity 
imi 22  ( )2( mGF ), we have the following proposition. 

Proposition 4. The distinct isomorphisms of FM=<S, +, *> onto FSPB=<L, +, > are 

exactly the mappings 0 , 1 ,..., 1m

 

defined by YRRAA
i

i ))
~

(()( 2  for 
MFA

 

and 10 mi . Especially, YAXAA )()( 00
. 

Now we have found all isomorphisms among the three representations of GF(2m),  
namely,   FPB=<S, +, >, FM=<S, +, *> and FSPB=<L, +, >. Given an isomorphism 

of FM onto FSPB, say , we have ))()((* 1 BABA . Since we focus on the 



 

9

efficient computation of GF(2m) multiplication, 

 
should be chosen such that the 

computation procedure of ))()((1 BA

 
is as simple as possible. The 

isomorphism 0

 
is such a candidate. One method to compose 0

 
is by choosing g0

-1 

and h0. The following commutative diagram illustrates the three isomorphisms.              

Fig. 1. Isomorphisms h0, g0
-1 and 0

 

In software or hardware implementations of the Montgomery and the SPB 
multiplication algorithms, only coordinates of the multiplier and multiplicand are 
involved. Therefore the isomorphism map 0

 

implies that an implementation of the 

Montgomery multiplication algorithm in either hardware or software, for example, 
[5], [7] [12] and [13] etc., can be used to perform the SPB multiplication without any 
changes, and vice versa. 

5  CONCLUSIONS 

In this work, we have found all isomorphisms among three representations of 
GF(2m): PB representation, the Montgomery form representation and the SPB 
representation. We have shown that the Montgomery multiplication algorithm can be 
used to perform the SPB multiplication without any changes for the same parameters, 
and vice versa. Especially, we have presented a new design of the GF(2m) bit-parallel 
Montgomery multiplier, i.e., the matrix-vector product-based Montgomery multiplier, 
for irreducible trinomials. 

XRA
~ YA

XA

0

FPB

 

FM

 
FSPB

 

g0
-1

 
h0
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