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Abstract - Applying the matrix-vector product idea of the Mastrovito multiplier to
the GF(2™) Montgomery multiplication algorithm, we present a new multiplier for
irreducible trinomials. This multiplier and the corresponding shifted polynomial basis
(SPB) multiplier have the same circuit structure for the same set of parameters.
Furthermore, by establishing isomorphisms between the Montgomery and the SPB
constructions of GF(2™), we show that the Montgomery algorithm can be used to
perform the SPB multiplication without any changes, and vice versa.

Index Terms - Finite field, multiplication, Montgomery multiplication algorithm,
polynomial basis, shifted polynomial basis, irreducible trinomial.

1 INTRODUCTION

Efficient VLSl implementation of multipliers for the finite field GF(2") is
important for many cryptosystems. To this end, several algorithms and hardware
architectures have been proposed in the literature (see, for example, [1-13]). Among
the existing algorithms and architectures, the use of a polynomia basis (PB) to
represent elements of GF(2™) appears to be more common than other bases, such as
normal and dual bases.

For hardware implementation of a GF(2™) multiplier using PB, there are two types
of approaches:

1) Type-I: multiplication of two binary polynomials, each of degree m-1 or less,
followed by a modulo reduction operation using an irreducible polynomial f(x) of
degree m.

2) Type-ll: formation of a binary mxm matrix, which depends on one input and
the reduction irreducible polynomial, followed by a multiplication of the matrix and
the other input vector.

Type-Il approach is suitable when the reduction polynomial is fixed or is chosen
from asmall set of polynomials.

For the purpose of representing elements of GF(2™), a generalization of PB isthe
so-called shifted polynomial basis (SPB) proposed in [11]. As the name implies, for
any integer v, the set {xX"|0<i <m-1} isa SPB. For GF(2™ multiplication, the use
of SPB also results in two approaches, which are similar to those of PB, namely, type-
| and type-Il.

For multiplication C=AB, where A B e GF(2"), whether PB or SPB is used, both

type-l and type-ll approaches generate C as the output, which is represented in the
same basis as the inputs. A dightly different kind of multiplication scheme exists,
known as the Montgomery multiplication for finite fields, where for inputs A and B,

the output is ABR mod f(x) with R being the inverse of a carefully chosen field
element Re GF(2™). This type of multiplication scheme is hereafter referred to as
the Montgomery form (MF). The existing MF algorithms for GF(2™) in [6], [7] fall



under the type-l approach mentioned earlier. Although the type-Il approach is
possible, there appears to be no mention of this in the literature. One of the
contributions of the report is a multiplication scheme based on this approach. The
following table summarizes the three representations and the avail able approaches for
the multiplication in GF(2™).

TABLE 1: Approaches for PB, SPB and MF multiplications

PB SPB MF
Type-l [4,5, 9, 10] [11] [6, 7,13, 14]
Type-ll [1, 2,3, 8] [11] Thiswork

Each of SPB and MF can be described in terms of a number of parameters. Using
irreducible trinomials, we first show that if SPB and MF have the same parameters
then the type-ll approach results in the same multiplier structure for these two
representations. We then use the field isomorphism to investigate this phenomenon
further. The homomorphism is not only a powerful method to study algebraic
relationship of different algebraic structures but also an important tool to design
efficient agorithms, eg., the Discrete Fourier Transform based polynomial
multiplication algorithm. We determine all isomorphisms among three representations
of GF(2"): the PB representation, the Montgomery representation, and the SPB
representation. The main result of this report is that the Montgomery multiplication
algorithm can be used to perform the SPB multiplication without any change for the
same parameters, and vice versa.

This report is organized as follows: In Section 2, we summarize the previous work
on PB and SPB multiplication algorithms. Details of the type-1l approach based
multiplier using MF is proposed in Section 3. The relationship between the
Montgomery multiplication and the SPB multiplication is presented in Section 4.
Finally, concluding remarks are made in Section 5.

2 PREVIOUSWORK
2.1 PB Multiplication Algorithms

Let f(u) be an irreducible polynomial over GF(2). All elements of
GF(2™M=GF(2)[u]/(f(u)) can be represented using aPB {X|0<i < m-1}, wherexisa
root of f. Given two field elements A=(a,a,,..a,,)" = Z:ai x and

B=(l,b,...b )" = Z:qx‘ , where a,,b e GF(2), the PB type-l multiplication
algorithm computes the product C = (c,,c,,...,C,.,)" = Z:lcl x of A and B using the

following two steps:
(i) Polynomial multiplication:
2m-2
T=AB= Ztixi , Where

i=0

Y ah, 0<i<m-1,
t= Yab= " 1)
o< -1 D ab_ m<i<2m-2,

j=i+l-m



(i) Reduction modulo the irreducible polynomial f :
m-1 .
C=>cx =T mod f(x)-
i=0

Mastrovito proposed a structure for the VLS| implementation using the type-l|
approach based on the matrix-vector product, i.e., C=(Co,C1,...,Cm1)" =Z(80,1,....Am1) "
[8]. The structure is somewhat modular. The mxm matriX Z =(z ). ;. Which is

referred to as the Mastrovito matrix [1], depends on both B and f. In order to compute
C=Z(ap,ay,...,.an1)", Z is computed first, then ¢, (0<t<m-1) is computed in a vector

inner-product module whose output is ¢, = Z”:Q. z; -

2.2 SPB Multiplication Algorithm

The SPB of GF(2™) over GF(2) is a modification of the PB, and it is defined as
follows[11]:

Definition 1. Let v be an integer and the ordered set M={x|0<i<m-1} be a
polynomial basis of GF(2™) over GF(2). The ordered set X'M := {xX"|0<i <m-1}
is called the shifted polynomial basis (SPB) with respect to M.

Using SPB, an element Ae GF(2™) can be represented as A= x‘Vzglaix‘ :

Corresponding to the two PB parallel multipliers as given in subsection 2.1, two SPB
analogues for the irreducible trinomial are proposed in [11], namely, the SPB type-|
and type-ll multipliers.

2.3 Montgomery Multiplication Algorithm for Finite Fields

The GF(2™ Montgomery multiplication algorithm is presented in [7], and a
generalized version is proposed in [6]. They follow the type-l approach. Let f(u) be
an irreducible polynomial over GF(2) and {X| 0<i<m-1} be a PB of
GF(2™)=GF(2)[u]/(f(u)) over GF(2), where x is a root of f. Let R be the
multiplicative inversion of R=x" e GF(2™) (0<w<m-1). We known that there
exists f(x)eGF(2™) such that RR+f(x)f(x)=1. The typel Montgomery
multiplication algorithm is as follows [6]:

Algorithm Al: Type-l Montgomery multiplication algorithm for GF(2™)
Input: A, B, R, f(x) represented in PB and f(x).
Output: D = ABR mod f(X) represented in PB.

2m-2 w-1
SLT=AB= Y t,x" =t (x)+X"t, (X)+x"™"t,(x), wheret (x)=>"t x",
h=0 h=0
2m-2 h
m+w-1 v t xHmw 0O<w<m-1]
ty (X) = Zthxh and ty () = h;H:Wh
h=w

0 w=m-1.
S2: U =1 (X) F(x) mod R;

S3: D' = (T+Uf(X)/R;
SA: If deg(D")>m-1then D = D' mod f(x) elseD=D".

Since the output of algorithm A1 is not AB mod f(X) but ABR mod f(X), which is
represented in PB, some pre- and post-processings are likely to be required in the



case of exponentiation operation. Thisis similar to the integer case [16, 17], i.e., we
may first change inputs of algorithm A1 from A and B to AR mod f(x) and BR mod
f(x), respectively, and then perform the Montgomery multiplication. The output,
which is ARBRR mod f(x) = ABR mod f(X), may now be used as an input to a
subsequent multiplication.

We note that no conversion is required for exponentiation operations using PB or
SPB multiplication algorithms, since the output of each of these algorithms is the
exact product represented in the same basis as the inputs.

3 TYPE-II MONTGOMERY MULTIPLIER FOR IRREDUCIBLE
TRINOMIALS

In this section we assume that f(u)=u™u*+1 is an irreducible trinomial. In [11], it is
shown that the best values of the SPB parameter v are k and k-1 for the
implementation of the irreducible trinomial-based bit parallel multiplier. We now
determine the best values of w in Montgomery multiplication algorithm A1l.

If f(u)=u™uk+1 then f~(x) =1, and steps S2, S3 and $4 of Algorithm A1 may be
simplified asfollows:

S2:D'= (XX MML() M)+ (XHL)t();
S3': If deg(D")>m-1then D = D' mod f(x) elseD=D".

If degrees of all terms of D' are in the range of 0 and m-1, then the mod operation
in S3' is not performed. Hence if this condition is always satisfied, for hardware
implementation no gate is required for S3'. It is easy to see that this condition is
equivalent to the following inequalities:

0O<m-w+w-1<m-1,
O<k-w<m-1,
O<k+m-w-2<m-1.

After solving these inequalities, we find that the values of w are k and k-1. Hence,
the best values of w for the Montgomery multiplication and those of v for the SPB
multiplication are the same. In this section, we assume that w is either k or k-1.

The computational procedure of the Montgomery multiplication Algorithm Al is
similar to that of the type-I PB multiplier, i.e., the product of the two polynomials A
and B is calculated first, and then the reduction operation is performed. We now apply
the type-11 approach to the computation of D = ABR mod f(x), and obtain a formula
of the Montgomery multiplication algorithm for the irreducible trinomial, which is
called the type-1l Montgomery multiplier.

The type-1l Montgomery algorithm computes D = ABR mod f(X)=(do,d1,-..,0m1)"
by a single matrix-vector product, i.e., D=(do,d4,...,dm1)"=Z(80,a1,....am1)". The mxm
matrix z = (Z.)ost.jemer? which is also called the Mastrovito matrix, depends on R, B

and f. In order to compute D, Z is computed first, then d, = zi”:;lq. z,(0<t<m-1)is

computed in a vector inner-product module. So we need to determine explicit
expressions of entries of Z. From S1 and $4, we have

w-1 w-1 m+w-1 2m-2 2m-2
D :zthxh+m—w+zthxh+k—w+ Zthxh—w+ zthxh+k—m—w+ zthxh—m—w
h=0 h=0 h=w

h=m+w h=m+w



k+m-2-w m-2-w

= Z i+w— mX + ZtHw kX +Zt|+wx + Zt|+w+m kX + Zt|+m+w ' (2)

i=m-w i=k-w

To obtain explicit expressions of entries of Z, we may first apply (1) to (2) and then
compare the coefficients of X' in the new expression. This method has been used in
[11]. After obtaining the entries of matrix Z, we may find that type-Il multipliers
based on MF and SPB share the same Mastrovito matrix Z if v=w. In the following,
we do not adopt this method since it is quite complicated. We give a simpler
explanation. The SPB multiplication formula is obtained from equations (3), (6), (7)
of [11],i.e,

m-1-v K—1-v m-1-v k+m-2-2v m-2-2v

C= Ztt+2v mX + Ztt+2v kX + ztt+2vx + Ztt+2v+m kX + Ztt+m+2v ' (3)

t=m-2v t=k-2v t=k-v

Multiplying X to (3) and changing the range of the exponent of x from [-v, m-v-1]
to [0, m1], we have

m-1 ) k+m-2-v m-2-v
v i
CX = Zti+v—mx z i+v— kX +Zt|+vx + zt|+v+m kX + Zt|+m+v ' (4)
i=m-v =k—

Careful comparisons of formulae (2) and (4) revea that D=Cx’ if v=w. Since the
type-1l SPB matrix is derived from (3), and multiplying x' to (3) does not change this
matrix, we obtain that type-Il multipliers based on MF and SPB share the same
Mastrovito matrix if v=w. Therefore we may conclude that both multipliers have the
same architecture, and summarize complexities of the type-11 Montgomery multiplier
for theirreducible trinomial f(u)=u™u“+1 as follows[11]:

Timedelay = T, + (1+[log, m)T, ;

AND gates = n?;
2
XOR gates = m- -1 2k = m,
m?>-m/2 2k =m.
4 RELATIONSHIP BETWEEN THE MONTGOMERY

MULTIPLICATION AND THE SPB MULTIPLICATION

In this section, f(u) denotes a general irreducible polynomial over GF(2) and x isa
root of f. Let M={xX|0<i <m-1} be the PB of GF(2")=GF(2)[u]/(f(u)) over GF(2)
and {xX™|0<i <m-1} bethe SPB with respect to M.

First, we introduce some notations. Let set S= {ZS@ X |a €{0, 1}} ,

A:Z"Haixi and B:Zi"zltgx‘ be two elements of S Let set

m-w-1

L= L PuaX | ef0, 1}} P= ZWWlpWHX and Q= ZWquWHx be two

elements of L. Let X =(1,xC,...X™)" and Y =(x"x",...x™ T denote the basis
column vectors of the PB and SPB. To facilitate description, we use symbols A and
P to denote the coordinate row vectors of Ac Sand Pel, i.e, A= =(ap,a1,...,am1)
and P =(Po,Py;---Pm1), respectively. Let the symbol o denote the vector inner product,
then Ae S and P e L may also be written asA=Ao X and P=PoY .



We now present definitions of the three constructions of GF(2™). Defining two
operations + and - in Sasfollows: A+ B := zi"j(@ ®h)x and A-B:=AB mod f(x),
where @ denotes the binary XOR operation and AB denotes the conventional
polynomial multiplication, we know that the algebraic structure Fpg:=<S, +, - >isthe
well-known PB representation of GF(2™).

Let R=x"e S and R is the multiplicative inverse of R in Fpg=<S, +, ->. Let the
symbol * denote the Montgomery multiplication operation. We use the multiplication
operation - of Fpg=<§ +, - > to describe the operation *, and obtain A*B:=A-B- R.
It is easy to verify that the algebraic structure Fy:=<S +, *> is a field, and the
identity element of the * operationisR.

Let the symbol x denote the SPB multiplication operation. We aso use the
multiplication operation - of Fpg=<S, +, - > to describe the operation x . The

operation x isdefined as follows:

PxQ=(PsY)x(QoY) = (PoX)-(QoX)-R)oY. (5)

Here, we aso use the symbol + to denote the addition operation in L, which is
defined as P+Q:= Z“i:w_vv"v’l(aW+i @b, )x . It is easy to verify that the algebraic

structure Fspp:=<L, +, x> is aso afield, and the identity element of the x operation
isl.

The above discussions may be summarized as follows:
Proposition 1. Fpe=<S, +, - >, Fy=<S +, *> and Fgp=<L, +, x > are three
isomorphic representations of the finite field GF(2™).

Before analyzing their isomorphic mappings, we give the following basis
conversion formulae between the PB and SPB representations. They address the
import and export problems of [15].

Export from PB to SPB:

A=A-X=AR-R=(A-R)Y, 6)
Import from PB to SPB:

A=(AR)oY = ((Ao X)-(R* o X)-R)oY = (AeY) x (R* oY), 7)
Export from SPB to PB:

P:Bo?:PxX’Wsz(PxX’W)oY, (8)
Import from SPB to PB:

P=PoY = (Po X)-R=(PoX)-Ro X . €)

In (7), R=R- R denotes the square of Rin Fpg=<S, +, ->. In (8), X" is an element

of the field Fgg=<L, +, x>. Please note that R isthe multiplicative inverse of Rin
Fpg=<S§ +, - >.

In the following, we will find al isomorphisms among the above three
representations of GF(2™). From Theorem 2.21 of [14], we know that the distinct



automorphisms of GF(2") are exactly the mappings o,,0,,...,0,, , ,» defined by
o,(a) =a® for e GF(2™) and 0<i <m-1. Similar to the proof of Theorem 2.21,
we now prove the following proposition.

Proposition 2. The distinct isomorphisms of Fpe=<S, +, - > onto Fy=<S§, +, *> are
exactly the mappings do, Ou,..., Om1 defined by g (A)=R-A? for AeF,, and
0<i<m-1.

Proof. It is easy to see that each g; is one-to-one, and for al A BeF,,, we have

PB 1
g,(A+B)=R-(A+B)? =R-A? +R-B? =g,(A) +g,(B);
g/(A-B)=R-(A-B)® = (R-A")-(R-B”)-R=g,(A*g,(B).

So each g; is an isomorphism of Fpg onto Fy.

Let g be aprimitive element of Fpg. The mappings go, 01,...,0m1 are distinct since
g (B)=g,(p) for 0O<i<j<m-1.

Now suppose that ¢ is an arbitrary isomorphism of Fpg onto Fy. For the primitive
element g e F, let p(x):zitzlxq be its minimal polynomia over the prime field
<{0,1}, +, - > where O=g<e<..<g,<g=m . Using the identity
p(A)=p(A)-R"", where AcF,, andi isanon-negative integer, we have

t t t
olp(5)=2olp )= 2B R =R lo(5)-RT -

S0 ¢(B)-Risaroot of p(x) in Fpg. Hence from Theorem 2.14 of [14] we know
that ¢(B)-R=p? for some j, 0< j<m-1. Since ¢ is an isomorphism, then we
have p(A) = R- A? foral AeF. =

Because g;s are bijections, we have the following corollary from the above
proposition.

Corallary 1. The distinct isomorphisms of Fy=<S +, *> onto Fpg=<S§ +, -> are
exactly the mappings 9o, g1 ™., gm1 ™" defined by g, *(A) = (A- ﬁ)z‘ for AeF,, and
0<i<m-1. Especidly, g,"(A) = A-R.

Please note that the exponential operation in the field Fy is not defined in this
report, so we use the multiplication operation - of the field Fpg=<S +, - > to

represent the mapping g*. This is also one of the reasons that we do not prove
Corollary 1 directly. The other reason is that each of the non-zero coefficients of the
minimal polynomial of the element in Fy is R, which is the identity element of the *
operation in Fy=<S, +, *>.

The distinct isomorphisms of Fpg onto Fep are determined by the following
proposition.

Proposition 3. The distinct isomorphisms of Fpg=<S +, - > onto Fegg=<L, +, x> are

exactly the mappings ho, hy,..., hy defined by h (A) = (A% -R)oY for AeF,, and
0<i <m-1. Especially, h,(A) = h,(Ac X) = (A-R)oY , and this map is just the basis



conversion formula (6).

Proof. It is easy to see that each h; isone-to-one, and for all A Be F.,, we have

PB’

h(A+B) = ((A+B)? -R)oY = (A% -R)oY +(B? -R)oY = h (A) +h (B);
h (A) xh (B) =((A2i -R)o\?jx((sz -R)o\?j

=(((A? -R)o X)-((B? -R)o X)-R)oY =(A? -R-B? -R-R)oY
=((A-B)? -R)oY =h (A-B).

So each h; is an isomorphism of Fpg ONto Fepp.

Let p beaprimitive element of Fpg. The mappings hg, hy,..., hy1 are distinct since
h(B)#h,(B) for 0<i<j<m-1.

Now suppose that ¢ is an arbitrary isomorphism of Fpg onto Fgp. For the
primitive element S e F; , let p(x)=zit:lxQ be its minimal polynomial over the
primefield <{0,1}, +, ->, where 0=¢ <e, <...<g_, <€ =m.

From (5) and (9), we have

PxQ=(((PoX)(QoX)-R)oX)-R=(PoX)-(QoX)-R".
So we obtain the identity p(A')=(p(A)oX) R , where i is a non-negative

integer. Thus we have

0=p(p(8)=Y 0(5*)= Y (B} X)-R)"

t t
i=1 i=1

Therefore (p(8) - X)- R isaroot of p(x) in Fps, and from Theorem 2.14 of [14],

we know that ((p(ﬁ)c&)-l?e:ﬁzj for somej, 0< j<m-1. Sowe get p(B)=R-4* .

Since ¢ isan isomorphism, we get then ¢(A) = (A -R)o\? forall AeF.;. m|
Now we determine isomorphisms of Fy onto Fep. Since the composition of

homomorphisms is a homomorphism, we may compose the isomorphisms

g, ':F, — Fus and hi Fpg — Fepp to obtain all isomorphisms from Fy onto Fepe:

2" RoY,where 0<i, j<m-1.

hg ™ (A) = hj((A~ R)’ j - (A-R)

Using theidentity o> =a %" (a € GF(2™)), we have the following proposition.
Proposition 4. The distinct isomorphisms of Fy=<S +, *> onto Fee=<L, +, x> are
exactly the mappings 7, , 7,7, , defined by 5 (A) = ((A-R)? -R)oY for AcF,
and 0<i <m-1. Especialy, 5,(A) = 7,(Ac X) = AcY .

Now we have found all isomorphisms among the three representations of GF(2™),
namely, Fpg=<S§, +, >, Fy=<§ +, *> and Fepp=<L, +, x>. Given an isomorphism
of Fy onto Fepg, Sy o, We have A* B=c¢ (o (A) xo(B)). Since we focus on the



efficient computation of GF(2™ multiplication, & should be chosen such that the
computation procedure of o *(c(A)xo(B)) is as simple as possible. The
isomorphism 7, is such a candidate. One method to compose 7, is by choosing got
and hy. The following commutative diagram illustrates the three isomorphisms.

FF’B > FS:’B

A RX > AV

g

>l
o
x|

Fum

Fig. 1. Isomorphisms hg, go™ and 7,

In software or hardware implementations of the Montgomery and the SPB
multiplication algorithms, only coordinates of the multiplier and multiplicand are
involved. Therefore the isomorphism map 7, implies that an implementation of the

Montgomery multiplication algorithm in either hardware or software, for example,
[5], [7] [12] and [13] etc., can be used to perform the SPB multiplication without any
changes, and vice versa.

5 CONCLUSIONS

In this work, we have found al isomorphisms among three representations of
GF(2™): PB representation, the Montgomery form representation and the SPB
representation. We have shown that the Montgomery multiplication agorithm can be
used to perform the SPB mulltiplication without any changes for the same parameters,
and vice versa. Especially, we have presented a new design of the GF(2™) bit-parallel
Montgomery multiplier, i.e., the matrix-vector product-based Montgomery multiplier,
for irreducible trinomials.
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