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Alternative to the Karatsuba Algorithm for

Software Implementation of GF (2n)

Multiplication

Haining Fan and M. Anwar Hasan

Abstract

In [11], a new approach to subquadratic space complexity multiplication for extended finite fields

has recently been proposed for hardware implementation. In this article, we develop the corresponding

algorithm for software implementation. Compared to the Karatsuba algorithm, the proposed algorithm

has a lower theoretical time complexity when the size of the input is greater than a fixed integer. While

its recursive implementation is as simple as that of the Karatsuba algorithm, it requires less memory

to store the look-up table than the latter, e.g., 512 bytes vs. 128 kilobytes in our implementation. To

the best of our knowledge, this is the first better alternative to the Karatsuba algorithm for software

implementation dealing with ”intermediate” sized finite fields.
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I. INTRODUCTION

Ring Z/(mZ) and finite field GF (2n) = GF (2)[u]/(f(u)) are two commonly used algebraic

structures in cryptosystems, where m is a positive integer and f(u) a degree n irreducible poly-

nomial over GF (2). Arithmetic operations in Z/(mZ) are addition and multiplication modulo
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m. When elements of GF (2n) are represented using a polynomial basis, they are polynomials of

degree less than n and coefficients in GF (2). Similarly, addition and multiplication operations

in GF (2n) are defined as addition and multiplication of two such polynomials modulo f(u).

Since no carry occurs in GF (2) addition, GF (2n) addition is straightforward.

For the software implementation, the polynomial basis GF (2n) multiplication operation may

be performed by the following two steps: the conventional polynomial multiplication followed

by the reduction modulo the field generating irreducible polynomial. The second step becomes

simple if some special irreducible polynomials are chosen to generate GF (2n), e.g., irreducible

trinomials or pentanomials. In fact, there is no known value of n for which an irreducible

polynomial of degree n and weight w < 6 does not exist over GF (2)[1].

The elementary method to perform the first step, i.e., the conventional polynomial multipli-

cation, is the school method which has an asymptotic complexity O(n2). Recursive application

of the divide-and-conquer based Karatsuba algorithm leads to a running time of O(nlog2 3) ≈

O(n1.585) for n = 2i (i > 0) [2]. The k-way (k > 2) generalization of the Karatsuba algorithm

has a better asymptotic complexity [3]. For practical implementation, the crossover point between

the school and the Karatsuba methods is reported to be n = 576 in [4]. Other more sophisticated

algorithms, e.g., the FFT and Cantor’s multiplication, have better asymptotic complexity and

are suitable for large values of n [5]. The crossover point between these methods and the

Karatsuba method is relatively large, e.g., the crossover point between the Karatsuba and the

Cantor algorithms are 35840 and 16000 in [4] and [6], respectively. For software implementation

of these algorithms, “a typical experience is that the school method is best for small inputs,

Karatsuba’s algorithm takes over for intermediate sizes, and a fast, for example, an FFT-based

method, excels for large problems” [7].

In this article, we focus on the software implementation of the GF (2n) multiplication algorithm

for cryptographic applications. In some of these applications, the value of n is often a few hun-
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dreds. For example, NIST has recommended the following five binary fields for the ECDSA (El-

liptic Curve Digital Signature Algorithm) applications: GF (2163), GF (2233), GF (2283), GF (2409)

and GF (2571). According to the above suggestion, it seems that the Karatsuba algorithm is the

best choice for intermediate sizes of n. In the following, we will combine two existing tech-

niques: optimal Toeplitz matrix-vector product formulae [8] and the coordinate transformation

technique of [9] and [10], and propose an alternative scheme for software implementation of

the subquadratic GF (2n) multiplication. Theoretical analysis indicates that it is faster than the

Karatsuba algorithm.

In order to speedup the implementation of the Karatsuba algorithm, in practice the multiplica-

tion of polynomials of degree less than 8 are often performed by the table-lookup technique [4].

The corresponding table uses 128 kilobytes. In our implementation of the proposed algorithm, the

table-lookup technique is also adopted. Although the size of tables that we employ is relatively

small, i.e., 512 bytes, experimental results show that the algorithm is still faster than the Karatsuba

algorithm for n = 2i, where (6 < i < 18). Another advantage of the proposed algorithm is its

simplicity, i.e., its recursive implementation is as simple as the Karatsuba algorithm. Therefore,

the proposed method is a better alternative to the Karatsuba algorithm.

The remainder of this article is organized as follows: The algorithm is proposed in Section II,

and the software implementation for irreducible trinomials is presented in Section III. Finally,

concluding remarks are made in Section IV.

II. ALTERNATIVE SUBQUADRATIC MULTIPLICATION ALGORITHM FOR SHIFTED

POLYNOMIAL BASIS

In this section, first we briefly review the subquadratic space complexity scheme of [11] and

then present explicit formulae for general irreducible trinomials.
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A. Optimal Toeplitz Matrix-Vector Product Formula for n = 2i (i > 0)

In this subsection, the noncommutative matrix-vector multiplication scheme for n = 2i (i > 0)

and its asymptotic time complexities are presented. Let T = (mk,i) be an n× n Toeplitz matrix

over GF (2), where 0 ≤ i, k ≤ n − 1, i.e., mk,i = mk−1,i−1, where 1 ≤ i, k ≤ n − 1. It is clear

that T is determined by the 2n− 1 elements of the first row and the first column. Let V be an

n× 1 column vector. Matrix T and vector V can be split as follows:

T =

 T1 T0

T2 T1

 and V =

 V0

V1

 ,

where T0, T1 and T2 are (n/2) × (n/2) matrices and are in the Toeplitz form, and V0 and V1

are (n/2) × 1 column vectors. The following noncommutative formula compute the Toeplitz

matrix-vector product TV [8]:

TV =

 T1 T0

T2 T1

  V0

V1

 =

 P0 + P2

P1 + P2

 (1)

where P0 = (T0 + T1)V1, P1 = (T1 + T2)V0 and P2 = T1(V0 + V1). Please note that in (1) the

product of an n× n Toeplitz matrix and an n× 1 vector is primarily reduced to three products

of matrix and vector of sizes (n/2)× (n/2) and (n/2)× 1.

Let Tmvp(n) denote the time complexity for the computation of matrix-vector product TV .

The following recurrence relations can be established when (1) is used recursively to compute

TV .  Tmvp(1) = emvp,

Tmvp(n) = 3Tmvp(n/2) + cmvpn + dmvp.

For the purpose of comparison, we also present the recurrence relation that describes the time

complexity of the Karatsuba algorithm as follows. Tkara(1) = ekara,

Tkara(n) = 3Tkara(n/2) + ckaran + dkara.
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After solving these recurrence relations using Lemma 1 of [11], we have

T (n) = (2c + e +
d

2
)nlog2 3 − 2cn− d

2
, (2)

where subscripts (i.e., mvp and kara) are omitted.

Therefore, recursive application of (1) and the Karatsuba algorithm have the same asymptotic

complexity, i.e., O(nlog2 3). In the next section we will estimate values of e, c and d, and show

that coefficient (2c + e + d
2
) of the proposed algorithm is smaller than that of the Karatsuba

algorithm if formula (1) and the Karatsuba method are applied until n reaches 1.

Similar to the generalization of the Karatsuba method from n = 2i (i > 0) to n = pi (i > 0),

where p is a small odd prime [3], we may also obtain matrix-vector product formulae for other

small primes. The case of n = 3i (i > 0) has been presented in [11]. In situations where none

of these small primes divides n, one possible solution is to increase the size of the matrix and

vector by 1 by padding zeroes, and then apply the existing complexity results to the case n + 1.

B. Formulation Using Shifted Polynomial Basis for General Irreducible Trinomials

Shifted polynomial basis (SPB) is a shifted version of the standard polynomial basis. GF (2n)

multiplication operation in the SPB is similar to that of the standard polynomial basis. GF (2n)

hardware multipliers based on the SPB often have lower time complexity than the corresponding

polynomial basis multiplier. Let x be a root of the irreducible polynomial f(u) and GF (2n) =

GF (2)[u]/(f(u)). An SPB of GF (2n) over GF (2) is defined as follows [12]:

Definition 1: Let v be an integer and the ordered set M = {xi|0 ≤ i ≤ n−1} be a polynomial

basis of GF (2n) over GF (2). The ordered set x−vM := {xi−v|0 ≤ i ≤ n−1} is called a shifted

polynomial basis with respect to M .

From now on, we assume that f(u) = un + uv + 1 (1 ≤ v ≤ n − 1) is an irreducible

trinomial. Let X = (x−v, x−v+1, · · · , xn−v−1)T be the column vector of SPB basis elements,
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A = (a0, a1, · · · , an−1)
T be the coordinate column vector of the field element a = x−v

∑n−1
i=0 aix

i,

and B, C and D are defined similarly.

Besides the two-step multiplication method mentioned in the introduction section, the other

method to compute the product c = ab is to form a binary n× n matrix Z first, which depends

on b and f(u), and then perform a matrix-vector product. Namely, the product c = ab may be

computed as follows:

c =
n−1∑
i=0

aix
i−vb = (x−vb, · · · , x−1b, b, xb, · · · , xn−v−1b)(a0, a1, · · · , an−1)

T

= XT (Z0, · · · , Zn−1) A

= XT ZA, (3)

where Zi is the coordinate column vector of xi−vb with respect to the SPB (0 ≤ i ≤ n+1), and

Z is an n× n matrix.

This matrix-vector product method has been widely used to design GF (2n) multipliers using

VLSI technologies. However, Z is not generally a Toeplitz matrix. Using coordinate transfor-

mation techniques presented in [9] and [10], one may first transform Z into a Toeplitz matrix

T , i.e., T = UZ, where U is the transform matrix. Then compute the Toeplitz matrix-vector

product D = TA. Finally, the result C is obtained by C = U−1D. In [11], this idea has been

used and the following simple transformation matrix U has been obtained:

U =

 0 I(n−v)×(n−v)

Iv×v 0

 ,

where Iv×v is the v × v identity matrix.

Since an n × n Toeplitz matrix is determined by the 2n − 1 elements of the first and last

columns, we now determine the explicit formulae of these elements in T . Due to the property

of the transformation matrix U , it is clear that T is obtained from Z by moving the lower n− v

rows to the upper n− v rows. Therefore, we first determine the first and the last columns of Z.
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From (3), we know that these two columns correspond to coordinate vectors of element x−vb

and xn−v−1b, respectively, which are given as follows:

xn−v−1b =
n−1∑
i=0

bix
i+n−2v−1 =

v∑
i=0

bix
i+n−2v−1+

n−1∑
i=v+1

bix
i+n−2v−1

=
n−v−1∑

i=n−2v−1

b2v+1−n+ix
i+

n−1∑
i=v+1

bi(x
i−v−1 + xi−2v−1)

=
n−v−1∑

i=n−2v−1

b2v+1−n+ix
i+

n−v−2∑
i=0

bv+1+ix
i+

n−2v−2∑
i=−v

b2v+1+ix
i

=
−1∑

i=−v

b2v+1+ix
i +

n−2v−2∑
i=0

(bv+1+i + b2v+1+i)x
i

+
n−v−2∑

i=n−2v−1

(b2v+1−n+i + bv+1+i)x
i + bvx

n−v−1,

and

x−vb =
n−1∑
i=0

bix
i−2v =

v−1∑
i=0

bix
i−2v+

n−1∑
i=v

bix
i−2v

=
v−1∑
i=0

bi(x
n+i−2v + xi−v)+

n−2v−1∑
i=−v

b2v+ix
i

=
n−v−1∑
i=n−2v

b2v−n+ix
i+

−1∑
i=−v

bv+ix
i+

n−2v−1∑
i=−v

b2v+ix
i

=
−1∑

i=−v

(bv+i + b2v+i)x
i+

n−2v−1∑
i=0

b2v+ix
i+

n−v−1∑
i=n−2v

b2v−n+ix
i.

Let x̂n−v−1b and x̂−vb be the two elements of GF (2n) whose SPB coordinates form the first

and last columns of T . Applying the transformation U to Z, we may obtain explicit formulae
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of elements x̂n−v−1b and x̂−vb as follows:

x̂n−v−1b =

[
−1∑

i=−v

b2v+1+ix
i

]
xn−v+

[
n−2v−2∑

i=0

(bv+1+i + b2v+1+i)x
i

+
n−v−2∑

i=n−2v−1

(b2v+1−n+i + bv+1+i)x
i + bvx

n−v−1

]
x−v

=
n−3v−2∑

i=−v

(b2v+1+i + b3v+1+i)x
i +

n−2v−2∑
i=n−3v−1

(b3v+1−n+i + b2v+1+i)x
i

+bvx
n−2v−1 +

n−v−1∑
i=n−2v

b3v+1−n+ix
i

=
n−2v−2∑

i=−v

b2v+1+ix
i +

[
n−3v−2∑

i=−v

b3v+1+ix
i +

n−v−1∑
i=n−3v−1

b3v+1−n+ix
i

]

=
n−2v−2∑

i=−v

b2v+1+ix
i +

n−v−1∑
i=−v

b<3v+1+i>xi, (4)

and

x̂−vb =

[
−1∑

i=−v

(bv+i + b2v+i)x
i

]
xn−v+

[
n−2v−1∑

i=0

b2v+ix
i+

n−v−1∑
i=n−2v

b2v−n+ix
i

]
x−v

=
n−3v−1∑

i=−v

b3v+ix
i +

n−2v−1∑
i=n−3v

b3v−n+ix
i +

n−v−1∑
i=n−2v

(b2v−n+i + b3v−n+i)x
i

=

[
n−3v−1∑

i=−v

b3v+ix
i +

n−v−1∑
i=n−3v

b3v−n+ix
i

]
+

n−v−1∑
i=n−2v

b2v−n+ix
i

=
n−v−1∑
i=−v

b<3v+i>xi +
n−v−1∑
i=n−2v

b2v−n+ix
i, (5)

where < j > denotes j mod n.

Note that explicit formulae of matrix T and U for irreducible pentanomials g(u) = un +

uk+1 + uk + uk−1 + 1 (1 < k < n− 1) have been presented in [11].

III. SOFTWARE IMPLEMENTATION

A. Data Representation and Computation of Inner-product

Let z be the full width of the data-path of the general-purpose processor on which the software

will run, e.g., z = 32 for a Pentium processor. For the simplicity of introducing the data



9

representation, we assume that n is a multiple of z in this paper. Since no irreducible binary

trinomial exists for the case 8|n, we assume that the multiplication operation is performed in

the ring GF (2)[u]/(f(u)), where f(u) is a trinomial and n = 2i (i > 2), so that the following

discussion is meaningful.

In software implementation, the column vector A = (a0, a1, · · · , an−1)
T is defined as a 1-

dimensional unsigned integer array VA[0..(n
z
− 1)], which is stored in n

z
successive computer’s

memory words, each having z consecutive coefficients (i.e., bits) are packed into one word. In

this paper, we suppose that bit a0 is stored in the least significant bit (LSB) of VA[0] and bit

an−1 the most significant bit (MSB) of VA[n
z
− 1].

Since the detailed representation of T relies on the computation procedure of the matrix-vector

product TA, we now introduce the latter. The usual computation procedure regards TA as an

array of n inner-products to be computed one at a time in top-to-bottom order. In software

implementation, the inner-products ci (0 ≤ i ≤ n− 2) is calculated using two steps:

Step 1: Compute GF (2) products ti,jaj by processor’s AND instruction, where 0 ≤ j ≤ n−1.

Step 2: Compute the GF (2) summation of the above n products using bit-wise XOR opera-

tions.

Due to the property of the Toeplitz matrix T , we know that it is sufficient to represent T by

its first and last columns. Please note that elements in the first row are the same as those in the

last column. Therefore, we may use a 1-dimensional array VT [0..(2n
z
− 1)] of size 2n

z
to store

these two columns. Since bit an−1 of vector A is stored in the MSB of VA[n
z
− 1], we must also

store bit t0,n−1 in the MSB of VT [2n
z
− 1] so that Step 1 may be performed by n

z
bitwise AND

operations. Therefore, the i-th element t0,i in the first row of T will be stored in bit position (i

mod z) of VT [
⌊

n+i
z

⌋
] (0 ≤ i ≤ n− 1).

Now we consider the representation of the first column of T . It is clear that element t0,0

appears in both first row and first column of T . So we need only to store the rest n−1 bits, i.e.,
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element ti,0s (1 ≤ i ≤ n− 1), in bit positions from n− 1 downto 1 of VT . The 0-th bit of VT is

unused. This results in the following bit organization of the 1-dimensional array VT [0..(2n
z
−1)]:

∗, tn−1,0, tn−2,0, · · · , t2,0, t1,0, t0,0, t0,1, · · · , t0,n−2, t0,n−1, where * denotes the unused bit 0 in

VT [0], which is the LSB of VT .

Combining the results of (4) and (5), we have the following explicit formula of the i-th bit

of VT : 
∗ i = 0,

b2v−i + bv−i 1 ≤ i ≤ v,

b<2v−i> v + 1 ≤ i ≤ n + v,

b<2v−i> + b<v−i> n + v + 1 ≤ i ≤ 2n− 1.

This formula shows that the i-th bit of VT is the summation of b<2v−i> and either 0 or b<v−i>

for the case 1 ≤ i ≤ 2n−1. But we know that the i-th bit of VA is ai, i.e., bit sequences b<2v−i>

and ai have different subscript orders: one is in ascending order and the other descending order.

Since our goal is to compute the inner-product in the above Step 1, we should first reverse the

bit order of the input vector B and then use this formula to form VT . In our implementation,

a small table is used to perform this bit-reverse operation. Its size is 256 bytes. The content of

the i-th entry is the reserved eight bits of the binary representation of integer i (0 ≤ i ≤ 255).

Based on these representations, the following loop may be used to illustrate the computation

of all inner-product cis (0 ≤ i ≤ n− 1).

TABLE I

COMPUTING INNER-PRODUCT ciS (0 ≤ i ≤ n− 1)

for i=0 to n− 1 {

S0 n-bit vector tmp := VT [n
z
..( 2n

z
− 1)] AND VA[0..(n

z
− 1)];

S1 ci := GF (2) summation of all n bits of tmp;

S2 Shift the 2n-bit vector VT to the LSB once;}

Since the bit XOR operation (GF (2) summation) is not directly supported in the high level
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programming language like C, we may perform step S1 via the table-lookup technique. In our

implementation, we use a table of size 256 bytes. The content of the i-th entry is (11111111)2

or (00000000)2 if the binary representation of integer i contains an odd or even number of 1

bits (0 ≤ i ≤ 255), respectively. Please note that for the sake of software implementation on a

typical processor, this table is allowed to have considerable amount of redundancy since only

256 bits are sufficient. Here, we also note that there is a parity bit in some processor’s status

register, e.g., Intel’s x86 and MCS51 series. This bit is set if the least-significant byte of the result

contains an even number of 1 bits, i.e., it is the GF (2) summation of 1s in the least-significant

8 bits. Therefore, we may not only speed-up the computation but also save this small table if

the proposed algorithm is coded using the assembly language of these processors.

Finally, we indicate an optimization of the above inner-product computation. Using the method

in Table I, it requires 32 shift operations of the 64-bit vector VT to compute the matrix-vector

product of size n = 32. If the minimal memory access unit of most computer is one byte, we

may compute c0, c8, c16 and c24 before performing the first shift operation, then c1, c9, c17 and

c25, and so on. In general, this optimization can save 24 shift operations.

B. Proposed Algorithm and Theoretical Analysis

We now present the proposed algorithm in the C programming language. The recursive

subprogram “void mvp(w32 ∗c, w32 ∗a, w32 ∗b, int s)” is called by the GF (2n) multiplication

subprogram “void multiplication(w32 ∗ c, w32 ∗ a, w32 ∗ b)”, where w32 denotes the 32-bit

unsigned long data type and “∗c” the pointer to the product of a and b. Integer s denotes the

number of the computer words that used to store the vector c. For the purpose of comparison,

we also present the Karatsuba algorithm in Table IV.

In Tables III and IV, the number of basic operations are also counted. Here, we assume that

the C language statement tdw1[j] = a[j + s/2]ˆa[j + s] requires two additions “+” (j + s/2 and
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TABLE II

MAIN PROGRAM

void multiplication(w32 ∗ c, w32 ∗ a, w32 ∗ b)

{w32 VT [2n/z], VA[2n/z];

S0 for (i=0; i < n/z; i++) c[i] = 0;

S1 form the (2n− 1)-bit vector VT and n-bit vector VA;

S2 mvp(c, VT , VA, n/z);

S3 coordinate transformation: Rotate shift vector c to the MSB k times. }

j + s), two memory reads “R” (a[j + s/2] and a[j + s]), one XOR “ˆ” and one memory write

“W” (tdw1[j] =) operation. Since the value s/2 appears a few times in the program, we assume

that it is calculated once and do not count it again.

For a rough estimation of the time complexity, we assume that both recursive subprograms

are called by themselves until parameter s reaches 1 bit. Since the inner-product operation of

two 1-bit vectors is simply the multiplication of the vectors, both subprograms have the same

values of e in (2). The value of d depends on the number of the recursive calls, loops and

pointer arithmetic operations, etc. We may assume that these two simple recursive subprograms

have the same values of d since they have similar program structures. The above two tables

show that the value of c in the matrix-vector product subprogram is lower than that in the

Karatsuba subprogram, 17.5s vs. 22s. Therefore, coefficient (2c + e + d
2
) in formula (2) is

smaller for the matrix-vector product algorithm, and it is clear that the matrix-vector product

recursive subprogram is theoretically faster than the Karatsuba subprogram. Now we consider

the other operations. Since both the reduction operation after calling the Karatsuba recursive

subprogram and pre-/post-processings of the matrix-vector product algorithm, i.e., formation of

VT and the coordinate transformation, have the same asymptotic complexity O(n) when the field

generating irreducible polynomial is either a trinomial or a pentanomial, we may conclude that

the matrix-vector product algorithm is expected faster than the Karatsuba algorithm.
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TABLE III

MATRIX-VECTOR PRODUCT BASED ALGORITHM IN THE C PROGRAMMING LANGUAGE

Statements ˆ R W +

void mvp(w32 ∗ c, w32 ∗ a, w32 ∗ b, int s)

{w32 tdw1[s], tdw2[s/2];

if (s==4) {

S0 perform basic computation;}

return;}

if (s%2 == 0) { /* if 2 divides s */

for (j=0; j<s; j++) tdw1[j] = a[j + s/2]ˆa[j + s]; s 2s s 2s

mvp(c, tdw1, b + s/2, s/2); /* compute P0 */

for (j=0; j<s; j++) tdw1[j] = a[j]ˆa[j + s/2]; s 2s s s

mvp(c + s/2, tdw1, b, s/2); /* compute P1 */

for (j=0; j<s/2; j++) {tdw1[j] = b[j + s/2]ˆb[j]; s/2 s s/2 s/2

tdw2[j] = 0;} s/2

mvp(tdw2, a + s/2, tdw1, s/2); /* compute P2 */

for (j=0; j<s/2; j++) {c[j]ˆ = tdw2[j]; s/2 s/2 s/2

c[j + s/2]ˆ = tdw2[j];} s/2 s/2 s/2 s/2

}

}

Total=17.5s 7s/2 6s 4s 4s

For practical implementation of the Karatsuba algorithm on a 32-bit computer, actual compu-

tations, i.e., step S0 in Table IV is performed when the size of the operand reaches 1 computer

word (32 bits). In [4], it is shown that the best way to perform the multiplication of polynomials

of degree less than 32 is by applying the Karatsuba method twice, which yields 9 multiplications

of 8-bit blocks, and then obtaining these 9 16-bit products via the table-lookup technique (the

corresponding table uses 128 kilobytes). We also follow this approach in our implementation.

For the implementation of the matrix-vector product algorithm, actual computation step S0 in

Table III is performed when the size of the operand reaches 4. The reason is that the minimal

operation unit of the AND operation is 1 computer word, and we also want to apply the matrix-

vector product formula (1) twice in step S0 so that both subprograms have the same number of



14

TABLE IV

THE KARATSUBA ALGORITHM IN THE C PROGRAMMING LANGUAGE

Statements ˆ R W +

void Kara(w32 ∗ c, w32 ∗ a, w32 ∗ b, int s)

{w32 tdw1[s], tdw2[s/2];

if (s==1) {

S0 perform basic computation;}

return;}

if (s%2 == 0) { /* if 2 divides s */

for (j=0; j<s; j++) tdw1[j] = 0; s

Kara(tdw1, a, b, s/2);

for (j=0; j<s; j++){c[j]ˆ = tdw1[j]; s s s

c[j + s/2]ˆ = tdw1[j];} s s s s

for (j=0; j<s; j++) tdw1[j] = 0; s

Kara(tdw1, a + s/2, b + s/2, s/2);

for (j=0; j<s; j++){c[s + j]ˆ = tdw1[j]; s s s s

c[j + s/2]ˆ = tdw1[j];} s s s s

for (j=0; j<s/2; j++) {tdw1[j] = a[j]ˆa[j + s/2]; s/2 s s/2 s/2

tdw2[j] = b[j]ˆb[j + s/2];} s/2 s s/2 s/2

Kara(c + s/2, tdw1, tdw2, s/2);

}

}

Total=22s 5s 6s 7s 4s

recursive callings.

C. Timing Results

In order to compare the actual performance of these two algorithms, we have implemented

them in ANSI C and tested on the following two computers:

1. A PC compatible desktop computer with a 3.0 GHz Pentium 4 processor (2M L2 Cache)

and 1G memory running Linux 2.6.15, gcc 4.03 complier.

2. A PC compatible desktop computer with a 3.0 GHz Pentium 4 processor (512k L2 Cache)

and 1G memory running Windows XP Professional, Visual C++ 6.0 complier.
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Table V summarizes the timings for n = 2i (6 < i < 18) and f(u) = un + u15 + 1. These

timing and relative speed-up = TKara−Tmvp

TKara
values are the average values over several thousand

(resp. hundred) executions for n less (resp. greater) than 65536. These ratio values show that the

matrix-vector product algorithm achieves a considerable improvement on the time complexity.

TABLE V

TIMING RESULTS (s)

Linux Windows XP
n

mvp Kara speed-up mvp Kara speed-up

128 9.48× 10−7 1.22× 10−6 21.9% 1.18× 10−6 1.30× 10−6 9.3%

256 2.92× 10−6 3.77× 10−6 22.7% 3.00× 10−6 4.02× 10−6 25.4%

512 8.82× 10−6 1.20× 10−5 26.3% 7.56× 10−6 1.31× 10−5 42.1%

1024 2.67× 10−5 3.60× 10−5 25.8% 2.55× 10−5 4.01× 10−5 36.4%

2048 7.95× 10−5 1.10× 10−4 27.4% 9.00× 10−5 1.18× 10−4 23.9%

4096 2.38× 10−4 3.33× 10−4 28.6% 2.45× 10−4 3.59× 10−4 31.8%

8192 7.16× 10−4 9.78× 10−4 26.8% 7.78× 10−4 1.08× 10−3 27.7%

16384 2.15× 10−3 3.04× 10−3 29.4% 2.03× 10−3 3.36× 10−3 39.6%

32768 6.45× 10−3 8.81× 10−3 26.8% 6.80× 10−3 1.01× 10−2 32.5%

65536 1.94× 10−2 2.70× 10−2 28.2% 1.94× 10−2 3.17× 10−2 38.8%

131072 5.80× 10−2 8.07× 10−2 28.1% 6.56× 10−2 1.07× 10−1 38.5%

IV. CONCLUSIONS

When compared with the Karatsuba algorithm, the algorithm presented here has the same level

of simplicity for its implementation in software. It also has the following two main advantages:

smaller look-up table and higher speed performance. As a result, it appears to be a better

alternative to the Karatsuba algorithm for software implementation of GF (2n) multiplications

when n is of intermediate sizes.

Although only the SPB is considered in this paper, we note that when the field elements are

represented in polynomial, dual, weakly dual and triangular bases, the product c = ab may also
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be written as a Toeplitz matrix-vector product. Thus, the method is still applicable for these

bases.
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