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Abstract

Based on a recently proposed Toeplitz matrix-vector prodpproach, a subquadratic computational
complexity scheme is presented for multiplications in bjn@xtended finite fields using Type | and Il

optimal normal bases.
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. INTRODUCTION

Among different types of bases for representing element§ Bf2"), the normal basis has
received considerable attention because squaring in hdvases is simply a cyclic shift of
the coordinates of the element and, thus, it has found aits in computing multiplicative
inverses and exponentiations. One of the most importardramhs in the normal basis multipli-
cation is the discovery of the two types (Type | and Type Illpptimal normal bases (ONB) in

1987 [1]. The computational complexity (i.e., the numbernothmetic operations in the ground
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field GF(2)) of a GF(2") multiplication using an ONB i£)(n?), while that using an arbitrary
normal basis is usually greater théx{n?).

Recently, a new approach to subquadratic complexity migéfions in GF'(2") has been
presented [2]. It takes advantage of the optimal Toeplitzriseaector product formulae, and
can be used to design subquadratic space complexity metsplising various bases, namely,
polynomial, shifted polynomial, dual, weakly dual and mig@lar basis. In this work, we apply
the Toeplitz matrix-vector product approach to design sabgatic computational complexity
scheme for multiplications using Type | and Il ONB. To the tbefsour knowledge, this is the
first subquadratic scheme for normal basis multiplication.

Below, we first summarize the asymptotic complexities of plite matrix-vector product
formulae forn = 2 andn = 3' (i > 0). Then, we present our multiplication schemes using

Type | and 1l ONB.

[1. ASYMPTOTIC COMPLEXITIES OF TOEPLITZ MATRIX-VECTOR PRODUCT

In this section, some basic noncommutative matrix-vectattiplication schemes and their
asymptotic space and gate delay complexities are intrab{#)e A Toeplitz matrix is defined
as follows:

Definition 1: An n x n Toeplitz matrix is a matrixmy;), where0 < i,k < n — 1, with the
property thatmy, ; = my_1,,_1, wherel <i k <n —1.

Letn =2 ( > 0), T be ann x n Toeplitz matrix andi” ann x 1 column vector. Then the

following noncommutative formula can be used to computeTibeplitz matrix-vector product

V [3]:
Ty T 1% Py + P.
TV — 1 0 0 _ 0 2 7 (1)
Tg Tl ‘/1 Pl + PZ
whereTy, 71 andT; are (n/2) x (n/2) matrices and are individually in Toeplitz form, ang

andV; are(n/2) x 1 column vectorsPy = (To+T11)Vh, PL = (11 + 1) Vo and P, = T1 (Vo + V4).



Similar to the caser = 2' (i > 0), we may have a three-way split of matrix and vector
V for n = 3' (i > 0), and obtain the following noncommutative formula which qrtes the

Toeplitz matrix-vector product'V' [3]:

TV=\|T T, T Vil=| A+B+F |,
Ty 13 Ty Vo P+ Py + P

whereT; (0 <i < 4) are(n/3) x (n/3) Toeplitz matrices,
Py = (Tp + T + 1) Va,
Py = (Ty + Ty + T5)Vi, (2)
Py = (Ty + T3 + Ty) Vo,

and
Py =T(Vy + Va),

Py =Ty(Vo + Va),
P; =T5(Vo + V1).

Formulae (1) and (2) may be used recursively to compute tleplite matrix-vector product
TV. Their complexities are summarized in Table | for bit paalimplementations, where
one AND and one XOR gate corresponds to one multiplicaticth @me addition ovelGF'(2),
respectively, and’y, andTy are delays due to one AND and one XOR 2-input gate, respéctive

TABLE |

COMPLEXITIES OF TOEPLITZ MATRIX-VECTOR PRODUCT FORn = b

b | #AND #XOR Gate delay
2 | n'o823 | 5501823 _6n 405 | (2log, n)Tx + Ta

3 | nloest %nlog?’ —5n++ (3logan)Tx +Ta

[11. NEw SUBQUADRATIC ONB MULTIPLIERS

We now apply the above Toeplitz matrix-vector product apploto design subqguadratic
complexity multiplication scheme using Type | and Il ONB.idtwell known that an ONB of

GF(2") over GF(2) exists if and only if the following conditions are met [1],][4



Theorem 1:Suppose:+ 1 is a prime and 2 is primitive ifZ,, ;. Then then nonunit @+ 1)th
roots of unity form a Type | ONB of7F'(2") over GF(2).

Theorem 2:Let 2n + 1 be a prime and assume that either

(1) 2 is primitive inZg, 1, OF

(2) 2n+ 1 =3 (mod 4) and 2 generates the quadratic residués,in ;.

Thenz = y + y~! generates a Type Il ONB af'F'(2") over GF'(2), wherey is a primitive
(2n + 1)st root of unity inGF'(22").

In some cryptosystems, Type | ONB are avoided for securégaoas. For practical purposes,
e.g.,n < 2000, Type Il ONB are more abundant than Type | ONB [5]. Propertie3ype | and
Il ONB can be found in various references, e.g., [1], [5], [E], [8], [9], [10], [11] and [12].
Based on some of these properties, below we present two adtajic computational complexity

schemes for multiplications i’ F'(2") using Type | and Il ONB.

A. Formulation for Type | ONB

1

Let X = {z¥,2?",--. 2" '} be a Type | ONB ofGF(2") over GF(2). In the following,

we will also use symboK to denote the column vector = (22°, 22 ,--- 22" ")T. Since 2 is

a primitive root of primen + 1, we know that

{2021 ... 21 ={1,2,--- n}. (3)
Therefore,X = {z', 2% --- 2"} is also a basis of/F'(2") over GF(2). Similarly, we will use
symbol X to denote the column vectot = (x!, 22 --- 2T,

Given a field element represented in the above two bases, ies A”X = 327 "d,2> and

a=ATX =3 ax', whereA = (ag, a1, ,dn_1)" @nd A = (a1, ay,- - - ,a,)7, it is easy to

obtain the following coordinate transformation formula:

agi = Qj, (4)



where( <i < n — 1 and the subscrif’ is to be reduced modulo + 1. From (3) and (4), we
know thatA is a permutation ofd. Therefore, the basis conversion operation betw&eand
X may be performed in VLSI without using any logic gates. Now wee basisY to design a
subquadratic complexity multiplication scheme.

Similar to a, define field elemenk with respect to basi. Then the multiplicatiorub may

be performed as follows.
ab = z": a;x'b = (2'b, 2%b, - -+, 2"b) A
= XT(Zy,--,Z,) A
= XTZA, (5)

where Z; (1 < i < n) is the column vector corresponding to the coordinates d&d #éement

n

x'b with respect to basis(, and Z is ann x n matrix. Using the identity:"*! = 1 = Ej:l 27,

we obtain the following explicit expression of;:

n n+1
7, = xiijx]—be’+J— Zbk Lk
j=1 k=i+1
n+1
= Z br.— Z{L‘ + Z by, ZIL’
k=i+1 k=n-+1
= Z bk iL +Zbk+n+1 zx
k=i+1
= (Z brpnr1—iz" + Z bip—iw ) +bn+1—izxj- (6)
k=i+1 j=1
From (6), we have the following decomposition of matbx= 7, + Z:
0 bn bn—l b3 b2 bn bn—l bn—2 b2 bl
bl 0 bn b4 b3 bn bn—l bn—2 b2 bl
by b 0 - by by b bno1 bpa -0 ba by
Z = . . . . . + . . . . .
bn—Z bn—3 bn—4 - 0 bn bn bn—l bn—? 62 bl

bn—l bn—2 bn—3 bl 0 bn bn—l bn—2 b2 bl



Therefore, matrix-vector produgtA may be computed vid A = Z; A+ 7, A. Clearly, computing
Z» A requires onlyn multiplications and—1 additions over the ground field /'(2). The Toeplitz
matrix-vector productZ; A may be computed using the formulae in the previous sectibe. T
complexities of the resulting multiplication scheme arenmarized in the upper half of Table

B. Formulation for Type 1l ONB

Following the notations in Theorem 2, l&f = {z2",22",--- 22" '} be a Type Il ONB of

GF(2") over GF(2). In the following we will also use symbaX to denote the column vector

X =@ 22, 2 )T Leta; =y +y~ (0 < i < n). From [10], we can write that
20 21 27L71
{IE y Ly, X }:{1'1,1'2,"',1’”}. (7)
Therefore, X = {1, x9,--- ,x,} iS also a basis ofsF'(2") over GF'(2). Similarly, we will use
symbol X to denote the column vectot = (xy, x5, -+, ,)%.

Given a field element represented in the above two bases, wes A”X = 7' 4,2”

anda = ATX = 37, ax;, where A = (ag, ay,- -+, a,-1)" and A = (ay, a9, ,a,)7, the

coordinate transformation formula between these two bmssgsen as follows [10]:
as(gi) = di, (8)

where() < i < n — 1 ands(j) is defined as the unique integer such that s(j) < n and
j=s(j) (mod2n + 1) or j = —s(j) (mod 2n + 1).

From (7) and (8), we know thatl is a permutation ofd. Therefore, the basis conversion
operation betweetX and X may be performed in VLSI without using any logic gates. Samil
to the case of Type | ONB, we may computk via a matrix-vector producf A using basis

X. The matrixZ can be decomposed as the summation of two matriceszi.e..Z; + Z, [11]



[12]:

by b3 by -+ b1 by by
bs by bs -+ by, by by
by bs bg -+ by by_1 by_o
7 _ : . . : . . n
b1 b, by bs by bs
bp by, by - by b3 by
bp bn—1 bp—o - bs by by
0 by by -+ bp_sz bn—o by
by 0 by -+ bp—ga bp—3g by
by by 0 -+ by_s bu_yg by_g3
bn—g bp_g b5 -+ 0 by by
b2 bn—g bp_ga -+ b 0 by
b1 bup_o bp_g -+ by by 0

Here, 7, is a Hankel matrix, i.e., entries &t j) and(:—1, 7+ 1) are equal. In order to compute
the Hankel matrix-vector product; A, we may first exchange columi$; and H,,_;_; for 0 <

i < n/2, and reverse the column vectdr= (a;, as, - - - ,a,)’. Then perform the Toeplitz matrix-

vector product. Therefore, two Toeplitz matrix-vector giuots are used to obtain the matrix-
vector productZ A. The complexities of the resulting multiplication scherme aummarized in

the lower half of Table II.

IV. CONCLUSIONS

Taking advantage of the simple conversion relationship3inand (7), for which no logic
gates is required to perform the basis conversions, we haasepted a multiplication scheme
of subquadratic computational complexity using ONB. Hogrewt is still an open problem to

design subquadratic computational complexity multiglma scheme for general normal bases.



TABLE Il

COMPLEXITIES OF SUBQUADRATICONB MULTIPLIERS FORN = b’

ONB | b #AND #XOR Gate delay

Type | 2 | n'°523 £ n | 5501823 —4n — 0.5 | (2logyn + 1)Tx +Ta

| 3| nosf4n | Zplsst_3p 1 (Blogom+ 1)T'x +Ta

Type | 2 | 2n'os23 11n'°823 —12n +1 | (2logyn + 1)Tx 4+ Ta

I 3 2n08s 6 %n1°g3 —10n+2 | (3logyn+1)Tx +Ta
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