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Hyperelliptic Curve Cryptosystems
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Abstract— The ideal class groups of hyperelliptic curves
(HECs) can be used in cryptosystems based on the discrete loga-
rithm problem. Recent developments of computational technolo-
gies for scalar multiplications of divisor classes have shown that
the performance of hyperelliptic curve cryptosystems (HECC) is
compatible to that of elliptic curve cryptosystems (ECC). Espe-
cially, genus 3 HECC are well suited for all kinds of embedded
processor architectures, where resources such as storage, time or
power are constrained, because of their short operand sizes. In
this paper, we investigate the efficient explicit formulae for genus
3 HECs over both prime fields and binary fields, and analyze how
many field operations are needed. First, we improve the explicit
formulae for genus 3 HECs over binary fields using the theta
divisors which can save about 20% ∼ 50% multiplications for
four cases, and extend the method to genus 3 HECs over prime
fields. We then discuss acceleration of the divisor class doubling
for genus 3 HECs over binary fields. By constructing birational
transformations of variables, we find four types of curves which
can lead to much faster divisor class doubling and give the
corresponding explicit formulae. Especially, for special genus 3
HECs over binary fields with h(X) = 1, we obtain the fastest
explicit doubling formula which only requires 1I + 10M + 11S.
Thirdly, we propose the inversion-free explicit formulae for genus
3 HEC over both prime fields and binary fields by introducing
one more coordinate to collect the common denominator of the
usual six coordinates. Finally, comparisons with the known results
in terms of field operations and an implementation of genus 3
HECC over three binary fields on a Pentium-4 processor are
provided.

Index Terms— Genus 3 hyperelliptic curves, explicit formulae,
Cantor’s algorithm, Harley’s algorithm, theta divisors, inversion-
free, efficient implementation.

I. INTRODUCTION

PUBLIC-key cryptography was introduced in 1976 by
Diffie and Hellman [21]. The first practical realization

followed in 1977 when Rivest, Shamir and Adleman proposed
their now the most widely used RSA cryptosystem [94], in
which security is based on the intractability of the integer
factorization problem. Elliptic curve cryptography, first pro-
posed in the work of Koblitz [60] and Miller [81], has received
dramatically great attention in the past almost 20 years. The
motivation is that there is no known sub-exponential algorithm
to solve the discrete logarithm problem on a general elliptic
curve. This means that a desired security level can be attained
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with significantly smaller keys in elliptic curve cryptosystems
than those in their RSA counterparts. Furthermore, all the stan-
dard protocols in cryptography which make use of the discrete
logarithm problem in finite fields, such as Diffie-Hellman key
exchange, ElGamal encryption and digital signature [25] and
Digital Signature Algorithm (DSA) [32], have their analogues
in the elliptic curve case.

In 1988, Koblitz proposed for the first time to use the
Jacobian of a hyperelliptic curve defined over a finite field
to implement cryptographic protocols based on the discrete
logarithm problem [61]. Due to the work of Cantor [13] (for
odd characteristic only) and Koblitz [62] (for a generalization
to even characteristic), it is possible to perform efficient
operations in the ideal class group of a hyperelliptic curve
(Cantor’s Algorithm). The field size of HECC is about 1/g-th
that of ECC where g is the genus of the underlying curves,
because of the algebraic structure of HECs. For example, we
can construct genus 3 HECC on 56-bit finite fields in order to
achieve the same security level as 160-bit ECC. Thus genus
3 HECC can be implemented efficiently on a 64-bit CPU
without any multi-precision arithmetic. Therefore, HECC are
attractive from the implementation point of view. However, the
group operations of HECC are more complex than those of
ECC. Therefore, how to reduce the computational complexity
of HECC group operations has recently become an active
research topic in both academia and industry communities.

The first attempt to find efficient algorithms for group
operations of HECC was done by Spallek [100] and Krieger
[63]. The first practical formulae for genus 2 HECs, which are
called Harley’s Algorithm or Explicit Formulae, were obtained
by Harley [39], [47]. The Harley’s algorithm is an explicit
representation of the Cantor’s algorithm [13], [62] for genus
2 HEC defined over prime fields. Since then, tremendous
effort has been made to extend and optimize the Harley’s
algorithm in order to make the performance of the HECC
compatible to that of the ECC. The performance of HECC
has been analyzed and implemented in all kinds of general-
purpose processors and embedded processors [2]–[4], [6], [12],
[22], [28]–[31], [39], [42]–[45], [47], [53]–[55], [57], [58],
[64]–[72], [74], [77], [82], [84], [86], [88]–[92], [95]–[97],
[99], [101]–[103], [108], [111], [112], and in many hardware
platforms such as Field Programmable Gate Arrays (FPGAs)
[7]–[9], [11], [17], [26], [50], [51], [56], [107], [109], [110].
Furthermore, using HECs to efficiently implement pairing-
based cryptosystem has actively investigated recently [5],
[14]–[16], [23], [24], [46], [48], [75]. However, most of those
improvements focus on genus 2 HECC. In this paper, we
accelerate the group operations for genus 3 HECC from three



2

aspects: using the Theta divisors, optimizing explicit doubling
formulae for genus 3 curves over binary field using birational
transformations and employing inversion-free arithmetic.
Our Main Contributions1

In [54] and [55], Katagi et al. introduced the concept of the
theta divisors (or degenerate divisors) and explained how to
use the theta divisors positively for speeding up the scalar
multiplication of the HECC, saving the memory space in
storing the base divisor, and thwarting the side-channel attacks.
They showed explicit formulae related to the theta divisors
of genus 3 HEC defined over binary fields for five cases. In
this paper, we present optimizations for their formulae and
generalize those techniques to prime fields. Our improvements
save about 20% ∼ 50% multiplications compared to Katagi
et al.’s formulae in four cases. All of these formulae are
useful not only for genus 3 HECC but also for pairing-based
cryptosystem using genus 3 HECs.

Next, we accelerate the divisor doubling for genus 3 HECC
over binary fields using special types of curves. We generalize
Tanja et al.’s idea to the genus 3 case and improve the results in
[45]. By constructing birational transformations of variables,
we derive explicit doubling formulae for four types of special
curves. For each type of curves, we analyze how many field
operations are needed. So far no attack on any of all the curves
suggested in this paper is known, even though some cases
are very special. Depending on the degree of h, our explicit
formulae only require 1I+10M +11S, 1I+13M +13S, 1I+
20M +12S and 1I+26M +11S for divisor class doublings in
the best case, respectively. Especially, for the case of h(X) =
1, we obtain the fastest explicit doubling formula, and for the
case of deg h = 1, our explicit formula improve the recent
results in [45] significantly by saving 31M at the cost of extra
7S. In addition, we discuss some cases which are not included
in [45]. Our results allow to choose curves from a large variety,
which have extremely fast doubling with needing only one-
third of the time of an addition in the best case.

Thirdly, for some application environments of HECC, such
as smart cards, Personal Digital Assistants (PDAs) and so
on, where inversions are extremely time and space critical,
we consider the projective coordinates for avoiding inversions
at the cost of more multiplications and one more coordinate
for genus 3 HECC. When genus 3 HECs are defined over
a prime field Fp, our inversion-free explicit formulae will
cost respectively 123M + 7S, 104M + 6S, 107M + 10S and
86M + 6S for performing a group addition, mixed addition,
doubling and affine doubling. If we use special genus 3 HECs
with h(x) = 1 over binary fields, our inversion-free explicit
formulae need only 116M +8S, 93M +10S, 37M +16S and
23M+11S for a group addition, mixed addition, doubling and
affine doubling, respectively.

Finally, based on our improvements, we analyze two scalar
multiplication algorithms using theta divisors and provide
comparisons with the case of using standard divisors for genus
3 HECC over both prime fields and binary fields. Moreover,
we implemented efficient doubling explicit formulae in this
contribution on a Pentium-4@2.8GHz processor to show the

1Part of this research was presented in [30], [31]

correctness and performance of our new derived formulae for
the group operations.

The rest of this paper is organized as follows: Section II
summarizes previous contributions addressing the improve-
ments of the genus 3 HEC group operations. Section III gives a
short introduction to the mathematical background of genus 3
HECs, presents the standard algorithm (Cantor’s Algorithm)
and Harley’s algorithm to do arithmetic in the ideal class
groups of genus 3 HECs. Section IV summarizes all kinds
of tricks to derive explicit formulae. Section V deals with the
explicit formulae using theta divisors. Section VI discusses
efficient doubling for genus 3 HECs over binary fields. Section
VII introduces inversion-free arithmetic for genus 3 HECC.
Section VIII gives the experimental results of our new derived
explicit doubling formulae. Finally, we end this contribution
with a discussion of comparisons of our results with the known
results and some conclusions in Section IX.

II. PREVIOUS WORK FOR GENUS 3 HEC

In this section, we review previous improvements of group
operations for the genus 3 HECC. In the rest of this paper
I represents a field inversion, M a field multiplication, and
S a field squiring. In some references, the authors did not
distinguish between multiplications and squarings, which is
denoted as M/S.

Cantor’s algorithm applies to hyperelliptic curves of arbi-
trary genus. In [84], Nagao accelerated the polynomial arith-
metic for Cantor’s algorithm and evaluated the computational
cost of the improved group operations for genus 2 ≤ g ≤ 10.
For genus 3 curves over prime fields with fi ∈ F2, Nagao’s
improvements require 2I + 154M/S and 2I + 132M/S for a
group addition and doubling, respectively.

Since Harley obtained the first practical explicit formulae
[39], [47], most of the improvements concentrate on genus
2 curves [12], [22], [44], [53], [65]–[72], [74], [77], [82],
[91], [92], [101]–[103]. For genus 3 curves, the work on
improvements for the group operations has been conducted
since 2002. In [64], Kuroki et al. extended for the first
time the Harley’s algorithm to genus 3 curves over prime
fields and employed the methods from [47], [82] to make
further acceleration. The computational cost of their algorithm
is 1I + 81M/S for an addition and 1I + 74M/S for a
doubling. The proposed algorithms were implemented on an
Alpha Workstation 21264@667MHz, which take 932 µs for
a 160-bit scalar multiplication on a divisor class group. In
[88], [89], Pelzl et al. further optimized the formulae of [64]
and generalized those to arbitrary characteristic. When using
special genus 3 curves over binary fields with h(x) = 1,
their explicit formulae can obtain the best results at that
time, which require 1I + 65M + 6S and 1I + 14M + 11S
for an group addition and a group doubling, respectively.
Furthermore, the authors made the first thorough comparisons
of the performance of their explicit formulae on different
platforms including a Pentium processor and three embed-
ded processors (ARM, ColdFire and PowerPC) [112]. Their
improvements and implementations are also summarized in
[108], [111]. In [57], Kitamura et al. studied fast software
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implementations of group operations for genus 3 curves over
binary fields by using the SIMD operations to parallelize
the steps in Harley’s algorithm. This results in 11% faster
than conventional implementations. In 2004, Avanzi [2] gave
a comprehensive comparisons for implementing the explicit
formulae for prime fields of cryptographically relevant sizes.

A further speed-up for HECs of genus 3 of odd characteris-
tic was achieved in 2004 by Gonda, Matsuo, Aoki, Chao and
Tsujii [42], [43]. The authors suggested to use Toom’s multi-
plication and the virtual polynomial multiplication (for more
details see Section IV) for improving the results presented
in [88], [89], and refined details of these implementations.
This algorithm takes only I + 70M/S for an addition and
1I +71M/S for a doubling. In addition, their implementation
results show the excellent performance of genus 3 HECC
when implemented on 64-bit CPUs. In their implementation,
a 160-bit scalar multiplication can be done within 172µs on
a 64-bit CPU Alpha EV68@1.25GHz. In [45], Guyot et al.
proposed efficient algorithms to compute the resultant of two
polynomials and of the inverse of one polynomial modulo
another, and improved the overall complexity of the addition
and doubling algorithms for both even and odd characteristics.
Their explicit formulae are applicable to almost all hyperellip-
tic curves of genus 3. In 2005, a novel efficient implementation
of HECC was proposed by Katagi et al. [54], [55]. The authors
utilized theta divisors to achieve a fast scalar multiplication
and developed a window-based method using theta divisors
that is secure against side-channel attacks. However, they only
analyzed the details of their proposed method for genus 2 and
3 HECC over binary fields.

During the preparation of this paper, we noted two new
results which we state below and will be used in our paper.
Avanzi et al. [3] and Nyukai et al. [86] found independently
that the approaches published in the previous explicit formu-
lae which compute a pseudo-inverse via computation of the
resultant are not optimal, and proposed a much better method
for computation of the pseudo-inverse by using Cramer’s
rule and expanding the resultant. Their method can save one
multiplication compared to that in [45]. In [3], the authors
applied this method to the special genus 3 and 4 HECs over
binary fields with h(x) = 1. In addition, in terms of the
characteristics of the field multiplication over binary fields,
they presented sequential multiplications which repeatedly
use the results of precomputations of field multiplications
for a set of multiplications with one of terms in common.
Using the sequential multiplications, a group addition takes
1I+47.7M +6S and a group doubling takes 1I+9.3M +11S
for genus 3 curves over binary fields with h(x) = 1. While in
[86] the authors used the proposed methods of computing the
pseudo-inverse to improve the results of [42], [43] and [90]
for genus 3 and 4 HECs, respectively. They implemented their
improved explicit formulae for genus 3 HECs over the prime
field F261−1 again in the 64-bit CPU Alpha EV68@1.25GHz
and showed that a 160-bit scalar multiplication can be done
within 163µs on that CPU.

The work at hand applies all of tricks available now to
improve and optimize the explicit formulae for genus 3 HECs
from three aspects. First, we improve explicit formulae for

genus 3 curves using theta divisors over binary fields and
derive the new formulae for the prime fields case. And then,
we find efficient explicit doubling formulae for four types of
genus 3 curves over binary fields. Finally, we propose the
inversion-free arithmetic for genus 3 HECC. The comparisons
of computation complexity of these new formulae with the
known results are summarized in Tables I, IV and V.

III. MATHEMATICAL BACKGROUND ON GENUS 3
HYPERELLIPTIC CURVES

In this section, we present a brief introduction to the theory
of genus 3 hyperelliptic curves over finite fields of arbitrary
characteristic, which is needed in the rest of this paper. For
a detailed treatment, the reader is referred to [13], [19], [62],
[80].

A. Genus 3 HECs and Their Divisor Class Groups

Let Fq be a finite field of characteristic p, q = pn, and
let Fq denote the algebraic closure of Fq. Let Fq(C)/Fq be a
quadratic function field defined via an equation

C : Y 2 + h(X)Y = F (X) (1)

where F (X) = X7 +f6X
6 +f5X

5 +f4X
4 +f3X

3 +f2X
2 +

f1X+f0 ∈ Fq[X] is a monic polynomial of degree 7, h(X) =
h3X

3 +h2X
2 +h1X +h0 ∈ Fq[X] is a polynomial of degree

at most 3, and there are no solutions (x, y) ∈ Fq × Fq which
simultaneously satisfy the equation y2 + h(x)y = F (x) and
the partial derivative equations 2y + h(x) = 0 and h

′
(x)y −

F
′
(x) = 0. The curve C/Fq associated with this function field

is called a hyperelliptic curve of genus 3 defined over Fq. For
our purpose it is enough to consider a point P as an ordered
pair P = (x, y) ∈ F2

q which satisfies y2 + h(x)y = F (x).
Besides these tuples there is one point P∞ at infinity. The
inverse of P is defined as −P = (x,−y − h(x)). We call
a point P that satisfies P = −P a ramification point. Note
that for the genus 3 HECs over prime fields, it suffices to let
h(X) = 0 and to have F (X) square free.

In contrast to ECC, points on a hyperelliptic curve do not
form a group. Rather than points, divisors are employed. A
divisor D of C(Fq) is an element of the free abelian group over
the points of C(Fq), e.g. D =

∑
P∈C(Fq) nP P with nP ∈ Z

and nP = 0 for almost all points P . The degree of a divisor D
is defined as deg(D) =

∑
P∈C(Fq) nP . We say that a divisor D

is defined over Fq if Dσ = D, where Dσ =
∑

P∈C(Fq) nP Pσ,
for all automorphisms σ of Fq over Fq. The divisor class group
JC(Fq) is defined by the quotient group D0/P, where D0 is
a group of degree zero divisors and P is a group of principal
divisors on C, which is a finite formal sum of the zeros and
poles.

The divisor class group JC(Fq) of C forms a finite Abelian
group and therefore we can construct cryptosystems whose
security is based on the discrete logarithm problem on the
Jacobian of C. In [13], Cantor pointed out that each element
of the divisor class group can be represented uniquely by a so-
called reduced divisor. Mumford [83] showed that a reduced
divisor D =

∑
miPi−(

∑
mi)P∞ where mi ≥ 0,

∑
mi ≤ g

and Pi 6= −Pj when i 6= j, has a nice canonical representation
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by means of two polynomials U(X) and V (X) defined over
Fq, which satisfy the following conditions:

U(X) =
∏

i

(X − xi)mi , V (xi) = yi,

deg V < deg U ≤ g, U | V 2 + hV − F.

In the remainder of this paper, we will use the notation [U, V ]
for the divisor class represented by U(X) and V (X). For a
genus 3 HEC, we have commonly [U, V ] = [X3 + u2X

2 +
u1X + u0, v2X

2 + v1X + v0].

B. Arithmetic Using Cantor’s Algorithm

In this section, we give a brief description of the Cantor’s
algorithm for adding and doubling divisors on the divisor class
group JC(Fq) of the HEC C. Here we deal with general
HECs, i.e., curves of arbitrary genus. Using Cantor’s algorithm
to add the divisor classes is divided into two phases. The first
phase is to find a semi-reduced divisor D

′
= [U

′
, V

′
], such

that D
′ ∼ D1 + D2 = [U1, V1] + [U2, V2] in the divisor class

group JC(Fq), which is usually called composition. In the
second phase, Cantor’s algorithm reduces the semi-reduced
divisor D

′
= [U

′
, V

′
] into an equivalent reduced divisor

D = [U, V ]. This step is called reduction.

Algorithm 1 Cantor’s Algorithm for Group Addition

Input: D1 = [U1, V1], D2 = [U2, V2], C : Y 2 + h(X)Y = F (X)

Output: D = [U3, V3] reduced with D ≡ D1 + D2

I: Composition
1. Compute d1 = gcd (U1, U2) = e1U1 + e2U2

2. Compute d = gcd (d1, V1 + V2 + h) = c1d1 + c2(V1 + V2 + h)

3. Let s1 = c1e1, s2 = c1e2, s3 = c2

4. U
′
= U1U2

d2

5. V
′
=

s1U1V2+s2U2V1+s3(V1V2+F )
d

mod U
′

II: Reduction

6. Let U3 = F−V
′
h−V 2

U
′ , V3 = (−h − V

′
) mod U3

7. If deg U > g put U
′
= U3, V

′
= V3 and goto step 6

8. make U3 monic.

If we want to double a divisor class, we can simplify steps
1 ∼ 5 of Algorithm 1 as follows:

1. Compute d = gcd (U, 2V + h) = s1U + s3(2V + h)

(Note that U = U1 = U2, V = V1 = V2)

2. U
′
= U2

d2

3. V
′
=

s1UV +s3(V 2+F )
d

mod U
′

Cantor’s algorithm can be applied to any genus and any
characteristics, and it only involves polynomial arithmetic over
the finite field in which the divisor class group is defined.
However, there are some redundant computations of the poly-
nomial’s coefficients in this classical algorithm. Therefore, it
is necessary to simplify the Cantor’s algorithm by making the
steps explicit, which is the idea of Harley’s algorithm. We will
deal with the Harley’s algorithm in the next subsection.

C. Arithmetic Using Harley’s Algorithm

Gaudry and Harley in [39] proposed a fast addition algo-
rithm of divisor classes on genus 2 hyperelliptic curves, so-
called Harley’s algorithm, which is an elegant generalization
of the chord-tangent law for the addition of the points on
elliptic curves. In order to remove the redundance in Cantor’s
algorithm, the authors executed a detailed classification for the
input divisor classes according to their weights. The weight of
a divisor is defined as the number of its points [80]. For each
case, they derived the corresponding explicit formula. Further-
more, Harley’s algorithm employs many modern polynomial
computation techniques such as Chinese remainder theorem,
Newton’s iteration, and Karatsuba’s multiplication.

The work of [39] was generalized by Kuroki et al. in [64]
to genus 3 curves defined over prime fields. From now on
we restrict our attentions on curves of genus 3. The authors
pointed out that for genus 3 case, a detailed classification
based on the weights of the input divisor classes will lead
to 6 different cases. Further classification according to the
common divisors will result in about 70 subcases. It will
not be efficient to develop different procedures for all these
cases. Therefore, it is important to consider optimizations and
implementations for the most frequent cases (Note that the
most frequent cases mean that for addition the inputs are two
co-prime polynomials of degree 3, and for doubling the input
is a square free polynomial of degree 3) which occur with
overwhelming probability of 1 − O(1/q) for genus 3 curves
over Fq [84]. For the remaining cases, one usually employs the
Cantor’s algorithm without affecting the overall performance
of the algorithm. In the following, we give a review for the
Harley’s algorithm. For more details about the deviations of
this algorithm, the reader is referred to [111].

1) Addition in Most Frequent Case: In this case we need to
compute the addition D3 = D1 + D2 = (U3, V3) for reduced
divisors D1 = (U1, V1) and D2 = (U2, V2) with deg U1 =
deg U2 = 3 and gcd (U1, U2) = 1.

Algorithm 2 describes all steps of the Harley’s algorithm for
adding two reduced divisor classes in the most frequent case
for genus 3 HECs over finite fields of arbitrary characteristic.

Algorithm 2 Harley’s Algorithm for Group Addition (g = 3)

Input: D1 = [U1, V1], D2 = [U2, V2], C : Y 2 + h(X)Y = F (X)

Output: D3 = [U3, V3] reduced with D3 ≡ D1 + D2

1. k =
F−hV1−V 2

1
U1

(exact division)

2. S ≡ V2−V1
U1

mod U2

3. Z = SU1

4. Ut =
k−S(Z+h+2V1)

U2
(exact division)

5. Ut made monic
6. Vt ≡ −(h + Z + V1) mod Ut

7. U3 =
F−hVt−V 2

t
Ut

(exact division)

8. V3 ≡ −(h + Vt) mod U3

2) Doubling in Most Frequent Case: In this case we need
to compute the doubling D2 = 2D1 = (U2, V2) for reduced
divisor D1 = (U1, V1) with deg U1 = 3 and gcd (U1, h +
2V1) = 1.

Algorithm 3 describes all steps of the Harley’s algorithm for
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doubling one reduced divisor class in the most frequent case
for genus 3 HECs over finite fields of arbitrary characteristic.

Algorithm 3 Harley’s Algorithm for Group Doubling (g = 3)

Input: D1 = [U1, V1], C : Y 2 + h(X)Y = F (X)

Output: D2 = [U2, V2] reduced with D2 ≡ 2D1

1. k =
F−hV1−V 2

1
U1

(exact division)

2. S ≡ k
h+2V1

mod U1

3. Z = SU1

4. Ut = S2 +
S(h+2V1)−k

U1
(exact division)

5. Ut made monic
6. Vt ≡ −(h + Z + V1) mod Ut

7. U3 =
F−hVt−V 2

t
Ut

(exact division)

8. V3 ≡ −(h + Vt) mod U3

D. Security of Genus 3 HECC

The security of HECC is based on the difficulty of the
discrete logarithm problem (DLP) on the divisor class group
JC(Fq). The hyperelliptic curve discrete logarithm problem
(HECDLP) on JC(Fq) can be stated as follows: given two
divisors D1, D2 ∈ JC(Fq), determine the smallest integer m
such that D2 = mD1, if such an m exists.

The best algorithm known for solving the DLP is Pollard’s
rho algorithm [93] and its parallelization by Van Oorschot
and Wiener [87]. Pollard’s rho algorithm has a purely expo-
nential expected running time of O(

√
πn
2 ) group operations

and negligible storage requirements. However, algorithms for
solving HECDLP that are faster than Pollard’s rho algorithm
are found for some families of special HECs. In [34], Frey
and Rück showed how to use the Tate pairing to efficiently
reduce the DLP in the jacobian JC(Fq) to the DLP in the
multiplicative group of an extension field Fqk , where the
extension degree k is the smallest positive integer for which
#JC(Fq) (or the largest prime factor of #JC(Fq)) divides
qk − 1. For some special types of HECs (e.g. supersingular
HECs), k is indeed small and hence the Tate pairing reduction
will yield a subexponential-time algorithm for the DLP in
JC(Fq). In [35], [98], the authors proved that there are no
hyperelliptic supersingular curves of genus 2n − 1 over fields
of characteristic 2 for any integer n ≥ 2. Therefore, genus 3
HECs of the form Y 2 + Y = F (X) over binary fields turn
out to be the best option according to the complexity of the
group operations.

The most powerful algorithm for attacking HECDLP is
the index-calculus method which yields a subexponential-
time algorithm for the DLP in the jacobian of a high genus
hyperelliptic curve. The idea of using index-calculus to solve
HECDLP was first proposed in [1], and then was improved
and implemented in [27], [33], [38]. These results show that
HECs with genus larger than 4 are insecure. In [104], Thériault
optimized the algorithm to compute the discrete logarithm in
the Jacobian of low genus HECs. Recently, Gaudry et al. [41]
and Nagao [85] proposed the double large prime variations for
small genus HECs index calculus, which is the fastest known
attack for the moment. For genus 3 HECs defined over Fq,
this attack requires O(q4/3) group operations. Therefore, we

should choose a finite field about 3
8n bits for genus 3 HECC

in order to achieve the similar security level as n-bits ECC. In
this paper, we will take this recent attack into account when
implementing genus 3 HECC.

In addition, one should also consider the Weil descent attack
[40], [49], [79] when choosing the field extensions. These at-
tacks show that using fields with composite extension degrees
can have cryptographic weakness which can potentially lead
to attacks. However, no known variation of the Weil decent
attack exits for fields with prime extensions.

IV. KNOWN TRICKS TO IMPROVE THE EXPLICIT
FORMULAE FOR GENUS 3 HECS AND MOTIVATIONS

In practice, all kinds of tricks have been found to improve
the efficiency of Harley’s algorithm. In this section, we give
a brief description of all kinds of tricks used to derive the
explicit formulae which will be used in this paper. According
to these tricks, we refine Algorithms 2 and 3, which are
presented in Algorithms 4 and 5, respectively, and give the
corresponding trick used in each step. For more details of
these tricks, the reader is referred to the references mentioned
in the discussions below.

1) Calculation of the Resultant and the Pseudo-Inverse
Using Cramer’s Rule: This trick is used in the steps 1 and 2
of Algorithms 4 and 5. In [89], Pelzl et al. applied Bézout’s
determinant to the resultant computation. This result was
further improved by Guyot et al. in [45]. In other words,
they found that it was more efficient to obtain firstly the
partial results of the pseudo-inversion, and then compute
the resultant using the results having been obtained than to
calculate the resultant and the pseudo-inverse separately. They
used Cramer’s rule implicitly in their algorithm and saved
two multiplications compared to Pelzl et al.’s algorithm in
[89]. Due to the work of Avanzi et al. [3] (for the group
addition of the even characteristic case) and Nyukai et al.
[86] (for the odd characteristic case) in 2006, it is possible
to save one more multiplication by computing the pseudo-
inverse before calculating the resultant. These algorithms use
the Cramer’s rule explicitly and show an efficient procedure
for the expansion of the determinant.

2) Karatsuba Multiplication: Karatsuba and Ofman intro-
duced an algorithm to multiply two polynomials efficiently in
[52]. Given f(x) = ax+b and g(x) = cx+d, then the product
f(x)g(x) = d1x

2 + (d01 − d0 − d1)x + d0, where d0 = bd,
d1 = ac and d01 = (a + c)(b + d). This trick is used for
obtaining the simplified steps 3, 5 and 6 in Algorithm 4 and
steps 4 and 6 in Algorithm 5, respectively. Compared to the
schoolbook method, Karatsuba multiplication algorithm saves
one multiplication at the cost of extra three additions. For
more details about Karatsuba multiplication algorithm and its
generalizations, the reader is referred to [52], [59], [106].

3) Toom’s Multiplication: This trick is only applicable to
genus 3 HECs defined over prime fields instead of using
Karatsuba multiplication. This algorithm is generally ineffi-
cient for low-degree polynomials. However, in the certain case
of the group operations of genus 3 curves, each use of Toom’s
multiplication algorithm can save one multiplication compared
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Algorithm 4 Explicit Formula for Group Addition (g = 3)

Input: D1 = [U1, V1], D2 = [U2, V2], C : Y 2 + h(X)Y = F (X)

Output: D3 = [U3, V3] reduced with D3 ≡ D1 + D2

Compute:
1. the resultant r of U1 and U2 (Cramer’s Rule)
2. the pseudo-inverse I ≡ r

U1
mod U2 = i2X2 + i1X + i0

3. S
′
= rS ≡ (V2 − V1)I mod U2 = s

′
2X2 + s

′
1X + s

′
0 (Karatsuba, Toom)

4. S = S
′

r
and make S monic: S = X2 + s1X + s0 (Montgomery’s Trick )

5. Z = SU1 = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 (Karatsuba, Toom)

6. Ut = [S(Z + r

s
′
2
(h + 2V1)) − ( r

s
′
2
)2

F−hV1−V 2
1

U1
]/U2

= X4 + ut3X3 + ut2X2 + ut1X + ut0 (Karatsuba, Efficient Division)
7. Vt ≡ −(h + s2Z + V1) mod Ut = vt3X3 + vt2X2 + vt1X + vt0

8. U3 =
F−hVt−V 2

t
Ut

= X3 + u32X2 + u31X + u30 (Efficient Division)

9. V3 ≡ −(h + Vt) mod U3 = v32X2 + v31X + v30

Algorithm 5 Explicit Formula for Group Doubling (g = 3)

Input: D1 = [U1, V1], C : Y 2 + h(X)Y = F (X)

Output: D2 = [U2, V2] reduced with D2 ≡ 2D1

Compute:
1. the resultant r of U1 and h + 2V1 (Cramer’s Rule)
2. the pseudo-inverse I ≡ r

h+2V1
mod U1 = i2X2 + i1X + i0

3. Z =
F−hV1−V 2

1
U1

mod U1 = z2X2 + z1X + z0 (Efficient Division)

4. S
′
= rS ≡ ZI mod U1 = s

′
2X2 + s

′
1X + s

′
0 (Karatsuba, Toom)

5. S = S
′

r
and make S monic: S = X2 + s1X + s0 (Montgomery’s Trick )

6. G = SU1 = X5 + g4X4 + g3X3 + g2X2 + g1X + g0 (Karatsuba, Toom)
7. Ut = [(G + r

s
′
2
V1)2 + r

s
′
2
hG + ( r

s
′
2
)2(hV1 − F )]/U2

1 = X4 + ut3X3 + ut2X2 + ut1X + ut0

8. Vt ≡ −(h + wG + V1) mod Ut = vt3X3 + vt2X2 + vt1X + vt0

9. U2 =
F−hVt−V 2

t
Ut

= X3 + u22X2 + u21X + u20 (Efficient Division)

10. V2 ≡ −(h + Vt) mod U2 = v22X2 + v21X + v20

to that of Karatsuba’s algorithm. Toom’s multiplication can
be applied twice to reduce the number of multiplications in
both the group addition (steps 3 and 5 of in Algorithm 4)
and the group doubling (steps 4 and 6 in Algorithm 5). For
more details about Toom’s multiplication algorithm and its
application in genus 3 HECC, see [105], [42] and [43].

4) Montgomery’s Trick of Simultaneous Inversions: Mont-
gomery discovered the following trick to simultaneously calcu-
late inversions of several elements in order to save inversions
at the cost of some multiplications [18]. For given elements a
and b in F, a field, the computation of the inverse a−1 and b−1

can be done as follows: we first compute c = (ab)−1, and then
obtain a−1 = bc and b−1 = ac. The cost of computing the
inverse of two elements with Montgomery’s trick is 1I +3M .
This trick is used in the step 4 of Algorithm 4 and the step 5
of Algorithm 5, respectively, to combine two inversions in the
Harley’s algorithm (see steps 2 and 5 in Algorithms 2 and 3)
at the cost of additional three multiplications.

5) Reordering of the Normalization Step: This trick was
firstly proposed by Takahashi for genus 2 HECs in [103].
Takahashi noted that the step of making Ut monic (see the
step 5 of Algorithms 2 and 3) is unnecessary if the polynomial
S (see the step 2 of Algorithms 2 and 3) is already monic,
and showed that applying this trick can obtain the required
monic polynomial Ut and save some field operations at the

same time. In [111], Thomas et al. generalized this method to
the genus 3 case to simplify steps 6 and 7 in Algorithm 4 and
steps 7 and 8 in Algorithm 5.

6) Efficient Division: This trick is based on the observation
that the quotient of two polynomials g1 and g2 with degrees
deg g1 and deg g2, with deg g1 > deg g2, only depends on the
deg g1 − deg g2 + 1 highest coefficients of the dividend and
the divisor [37]. Therefore, we do not have to consider all the
coefficients when computing the quotient of two polynomials.
This trick can be applied twice in both the group addition
(steps 6 and 8 of Algorithm 4) and the group doubling (steps
3 and 9 of Algorithm 5).

7) Karatsuba Reduction: In [111], Thomas et al. used the
idea of the Karatsuba multiplication algorithm [52] to compute
the modulo reduction of polynomials of arbitrary degrees and
applied this technique to improve HECC group operations.
Their results show that the complexity of performing polyno-
mial modulo reduction with Karatsuba’s algorithm is O(n1.58).

8) Virtual Polynomial Multiplication: In [42] and [43],
Gonda et al. noted that there are many ”multiply-and-add”
operations in the Harley’s algorithm of genus 3 HECs. There-
fore, they applied Karatsuba’s multiplication twice to reduce
the number of field multiplications in the procedure of the
group addition when an appropriate sequence of ”multiply-
and-add” operations appear.
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9) Sequential Multiplication: This trick is only applicable
to the group operations of genus 3 HECs over binary fields.
In [3], Avanzi et al. found that there are several sets of
multiplications with one of terms in common in the Harley’s
algorithm of genus two to four. Furthermore, they noted that
the field multiplication algorithm over binary fields includes
a precomputation part. Therefore, it is possible to improve
the performance of the group operations of genus two to four
HEC by repeatedly using the results of this precomputation
part. Although we use the trick of the sequential multiplication
to optimize the explicit formulae for genus 3 HECs defined
over binary fields in this paper, we will not estimate the cost
because the performance of this trick significantly depends on
which kind of processors are used.

10) Use of Special Divisors: The group elements are points
over an elliptic curve in ECC, whereas the elements in the
Jacobian of a HEC are (reduced) divisors. For the case of
genus 3 HECs, a divisor can have the weights 0, 1, 2 or 3.
Harley’s algorithm only deals with the most frequent case, in
which the input divisors have weight 3. However, Katagi et al.
found that using the special divisors whose weights are less
than 3 can improve the performance of scalar multiplication
for genus 3 HECC over binary fields [54], [55]. We will revisit
this method and improve their explicit formulae in Section V.

11) Choice of HEC with Certain Properties: This trick
has important influence on the performance of the group
operations of genus 3 HECs over binary fields. Going into
the details of the Harley’s algorithm one can notice that the
actual execution of the steps depends on the coefficients of
the curves. Therefore, it is possible to use certain families
of curves over which the execution of the group operations
require less field operations than those of general curves. In
this contribution, we find four families of genus 3 HECs over
binary fields which have extremely fast group doubling. This
will be presented in Section VI.

12) Use of Inversion-Free Arithmetic: In Harley’ algorithm,
each group operation requires one inversion. However, there
exist application environments, for example smart cards, where
inversions are extremely time or space critical. In this case,
inversion-free group operations will be practical and advanta-
geous. We will present this trick in Section VII.

V. IMPROVED EXPLICIT FORMULAE WITH THETA
DIVISORS

In [54] and [55], Katagi et al. proposed the method of
using Theta (or Degenerate) divisors to accelerate the scalar
multiplication for genus 3 HECC. They discussed the case
of binary fields and estimated the cost of the Theta divisor
method. However, we find that there still exist some redundant
operations in their explicit formulae. In this section, we
further simplify their explicit formulae using all kinds of
tricks summarized in Section IV, generalize their idea to the
case of prime fields and estimate the cost of the two scalar
multiplication algorithms in both cases.

For a genus 3 HEC defined over Fq, a Theta (or Degenerate)
divisor is a reduced divisor with the weight less than 3.
Harley’s algorithm only deals with the group operations in

the most frequent case. For the rest cases, some of which
are caused by the Theta divisors, one usually employs the
Cantor’s algorithm. Although Theta divisors occur with a
low probability, the group operations using Theta divisors are
much cheaper than those in the most frequent case. Therefore,
if one can utilize the Theta divisors as the inputs of the
scalar multiplication algorithms or determine under which
conditions the Theta divisors will appear during the procedure
of the scalar multiplication, the performance of genus 3 HECC
will be improved. In addition, Theta divisors are also related
closely to some pairing-based cryptographic protocols [36],
[73]. Therefore, efficient explicit formulae with Theta divisors
will be useful for both HECC and pairing-based cryptosystem.

Katagi et al. considered in [54] and [55] the following five
cases for simplifying formulae related to Theta divisors over
genus 3 HECs:

1) ADD3+1→3: D3 = D1 + D2 (D1 6= D2)
deg U2 = 1, deg U1 = deg U3 = 3, gcd(U1, U2) = 1.

2) ADD3+2→3: D3 = D1 + D2 (D1 6= D2)
deg U2 = 2, deg U1 = deg U3 = 3, gcd(U1, U2) = 1.

3) ADD1+2→3: D3 = D1 + D2 (D2 = 2D1)
deg U1 = 1, deg U2 = 2, deg U3 = 3.

4) DBL1→2: D2 = 2D1

deg U1 = 1, deg U2 = 2, gcd(h + 2V1, U1) = 1.

5) DBL2→3: D2 = 2D1

deg U1 = 2, deg U2 = 3, gcd(h + 2V1, U1) = 1.

where ADDi+j→k denotes the divisor class addition D3 =
[U3, V3] = D1+D2 = [U1, V1]+[U2, V2], and DBLi→j denote
the divisor class doubling D2 = [U2, V2] = 2D1 = 2[U1, V1]
(i, j and k are the degrees of U1, U2 and U3, respectively).

For the genus 3 HECs defined over prime fields and
binary fields, we derive a new set of explicit formulae for
the above five cases, respectively. All explicit formulae are
shown in Tables VII ∼ XVI in the appendix. We compare
the computational cost of our explicit formulae with those
derived by Katagi et al. in Table I. Applying all kinds of tricks
presented in section IV we are able to save about 20% ∼ 50%
of the multiplications compared to Katagi et al.’s formulae in
four cases for genus 3 HECs over binary fields.

We estimate the computational cost for the double-and-add-
always method and SPA-resistant width-wNAF method using
theta devisors based on our newly derived explicit formulae.
We summarize the results and the comparisons with those in
[55] in Table II, where a secrete scalar value is 160-bit and
’standard’ denotes a divisor with weight 3 which corresponds
to the most frequent case. The computational complexity for
the group operations in the most frequent case can be found in
Table IV. Using our explicit formulae, the performance of the
two scalar multiplication algorithms above increases by about
14% ∼ 20%.
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TABLE I
SPEEDING UP GENUS THREE HECC USING THETA DIVISORS

Finite Curve Cost
Field Properties ADD3+2→3 ADD3+1→3 ADD1+2→3 DBL1→2 DBL2→3

Katagi et al. [55] F2n deg h = 3, h3 = 1 1I + 52M 1I + 20M 1I + 28M 1I + 21M 1I + 44M

Our work Fp h(X) = 0, f6 = 0 1I + 44M 1I + 21M 1I + 18M 1I + 11M 1I + 28M

Table VII Table VIII Table IX Table X Table XI
F2n deg h = 3, h3 = 1 1I + 41M 1I + 20M 1I + 19M 1I + 12M 1I + 32M

Table XII Table XIII Table XIV Table XV Table XVI

TABLE II
COST OF SCALAR MULTIPLICATION USING THETA AND STANDARD DIVISORS

Base Weight of Scalar Multiplication Katagi et al. [55] Our work
Divisor Divisor Algorithm F2n F2n Fp

Theta 1 Double-and-Add 318I + 15989M 318I + 12819M 318I + 12501M

Theta 2 Double-and-Add 318I + 21110M 318I + 17453M 318I + 17768M

Theta 2 wNAF (w = 2) 237I + 16869M 237I + 14132M 237I + 14204M

Standard 3 Double-and-Add 318I + 25281M 318I + 21783M 318I + 21465M

Standard 3 wNAF (w = 2) 237I + 18960M 237I + 16275M 237I + 16038M

Standard 3 wNAF (w = 3) 212I + 17013M 212I + 14575M 212I + 14363M

Standard 3 wNAF (w = 4) 195I + 15678M 195I + 13419M 195I + 13224M

VI. EFFICIENT DOUBLING ON GENUS 3 CURVES OVER
BINARY FIELDS

In this section, we generalize the method proposed by Lange
and Stevens for genus 2 HECs in [74] to the genus 3 case
which can significantly improve the results in [45]. We present
four families of genus 3 HECs defined over binary fields for
which we find efficient algorithms to calculate the divisor class
doubling. Although some curves are very special, we are not
aware of any security limitation of the curves that we used
in this paper. Our results allow to choose curves from a large
variety which have extremely fast doubling with requiring only
one-third the time of an addition in the best case.

In order to simplify the equation of curves, we firstly review
the isomorphic transformations among genus 3 HECs. For a
genus 3 HEC C/Fq given by the equation (1), the following
coordinate transformations

(X,Y ) 7→ (α2X̃ + β, α7Ỹ + aX̃3 + bX̃2 + cX̃ + d),

where α, β, a, b, c, d ∈ Fq with α 6= 0, are isomorphic
transformations between the curve C and C

′
: Ỹ 2 + h̃(X̃) =

F̃ (X̃), where h̃, F̃ ∈ Fq[X] and can be expressed in terms of
h, F, a, b, c, d, α and β [76]. These isomorphic transformations
associate each point of C to a point of C

′
.

Table III shows all curves suggested in this paper according
to the degree of h(X), the coordinate transformations and the
corresponding isomorphic curves.

We now study the different cases of the equations depending
on the degree of h because the actual execution of the Harley’s
algorithm depends on the coefficients of the curves. Especially,
the coefficients of h(X) have a significant influence on the
computational complexity of the doubling algorithms. We will
present the explicit formulae for the following four cases:
deg h = 0, deg h = 1, deg h = 2 and deg h = 3. We firstly
construct the isomorphic transformations to achieve as many

zero coefficients as possible, and then make strong use of
the defining equation of the curve to derive explicit doubling
formulae. The major speedup is obtained by simplifying r
(see step 1 of Algorithm 5) and canceling it in the following
steps. For the cases of deg h = 2 and deg h = 3, we did
not find a way to simply and cancel r for general curves.
Therefore, we only discuss special kinds of curves which allow
for a significant speedup. Using these special curves, we can
obtain the explicit formulae with low complexity and better
performance regarding the number of required field operations
for the execution of the group operations.

A. Case deg h = 0

In this subsection we assume deg h = 0. One can obtain
an isomorphic curve where f6 = f5 = f4 = f2 = 0 and h0

is divided by any α7. To improve the efficiency of HECC,
we hope that the coefficient h0 is ’small’2 in an isomorphic
curve. Hence we will choose α7 such that h0

α7 is ’small’ in the
practical use. If we choose finite fields F2n with n ≡ 1 mod
3 or n ≡ 2 mod 3 there are no elements α ∈ F2n such that
α7 = 1 (the unit element of F2n). Therefore, there is always
an α such that α7 = h0. For n ≡ 0 mod 3 this happens
with probability 1/7. Using the birational transformations of
variables listed in Table III and dividing the equation by α14,
we obtain a curve of the form Y 2 + h0Y = X7 + f3X

3 +
f1X +f0, usually with h0 = 1. Adding a constant term to the
substitution of Ỹ one can achieve f0 = 0 with probability 1/2.
Hence, there are only two parameters f3, f1 as opposed to five
in the general case showing that the type is indeed special.

2In this section, we will call ’small’ an element in F2n that is represented
by a polynomial with almost all its coefficients equal to zero, so that
multiplications by such an element can be performed via few additions and
are almost for free
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TABLE III
FOUR FAMILIES OF GENUS 3 HEC OVER F2n AND THEIR ISOMORPHIC CURVES

Coordinate Transformation Isomorphic Zero Zero Coefficient

h(X) (X, Y ) 7→ (α2X̃ + β, α7Ỹ + aX̃3 + bX̃2 + cX̃ + d) Curve Coefficients with Probability 1
2

β =
√

f5, a = α6√f6 + β

h0 b = α4
p

f4 + f5 · β + f6 · β2 + β3 Y 2 + h0Y = X7 + f3X3 + f1X + f0 f6, f5, f4, f2 f0

c = α2
p

f2 + f3 · β + f6 · β4 + β5 + h0 · b

β =
h0
h1

, a = α6√f6 + β

h1X + h0 b = α4
p

f4 + f5β + f6β2 + β3 + h1
√

f6 + β Y 2 + h1XY = X7 + f5X5 + f3X3 + f2X2 + f0 f6, f4, f1 f2

d =
f1+f3β2+f5β4+β6

h1

β =
q

h0
h2

, a = α6 · f5+β2

h2
, c = α2 · f3+β4

h2

h2X2 + h0 d =
h2
2(f2+f3β+f6β4+β5)+f2

3+β8

h3
2

Y 2 + h2X2Y = X7 + f6X6 + f4X4 + f1X + f0 f5, f3, f2 f4

α = h3, β = 0, a = 0, b = h3
3f5

h3X3 c =
f4h2

3+f2
5

h3
, d =

f3
h3

Y 2 + X3Y = X7 + f6X6 + f2X2 + f1X + f0 f5, f4, f3 f6

With the new curve coefficients the expression r and S
′

will
simplify to:

r = h3
0, s

′

2 = h2
0z2, s

′

1 = h2
0z1, s

′

0 = h2
0z0.

We note that

ut3 = 0,

ut2 = s2
1 = (s

′

1/s
′

2)
2 = (z1/z2)2,

ut1 = (r/s
′

2)
2 = h2

0(z
−1
2 )2,

ut0 = s2
0 = (s

′

0/s
′

2)
2 = (z0/z2)2,

and

vt3 = (ut2 + g3)(s
′

2/r)
= h−1

0 (ut2z2 + z0 + u12z1 + u11z2),

vt2 = (g4ut2 + ut1 + g2)(s
′

2/r) + v12

= h−1
0 [(u12z2 + z1)ut2 + ut1z2 + u12z0

+u11z1 + u10z2] + v12,

vt1 = (g4ut1 + ut0 + g1)(s
′

2/r) + v11

= h−1
0 [(u12z2 + z1)ut1 + ut0z2 + u11z0

+u10z1] + v11,

vt0 = (g4ut0 + g0)(s
′

2/r) + h0 + v10

= h−1
0 [(u12z2 + z1)ut0 + u10z0] + h0 + v10.

Since F + hV1 + V 2
1 = U1Z + U2

1 X we also have

f0 + h0v10 + v2
10 = u10z0,

f1 + h0v11 = u11z0 + u10z1 + u2
10,

h0v12 + v2
11 = u12z0 + u11z1 + u10z2,

f3 = z0 + u12z1 + u11z2 + u2
11,

v2
12 = z1 + u12z2,

0 = u2
12 + z2.

Using the equations above, we can calculate cheaply ut2, ut0

and vt3, vt2, vt1, vt0 as follows:

ut2 = (z1/z2)2 = [(v2
12 + u12z2)/z2]2

= (v2
12z

−1
2 )2 + u2

12,

ut0 = (z0/z2)2 = [(f3 + u2
11 + u12z1 + u11z2)/z2]2

= [(f3 + u2
11)z

−1
2 ]2 + u2

11 + u2
12ut2,

vt3 = h−1
0 (ut2z2 + f3 + u2

11),
vt2 = h−1

0 (v2
12ut2 + v2

11) + h0z
−1
2 ,

vt1 = h−1
0 [(v2

12 + z2)(ut1 + ut0) + v2
12ut0 + f1

+u2
10] + h0z

−1
2 ,

vt0 = h−1
0 (v2

12ut0 + f0 + v2
10) + h0.

We give the doubling formula for this case in Table XXVI.
The operations are counted for the case h0 = 1, h−1

0 is ’small’,
and arbitrary h0. Both h2

0 and h−1
0 are precomputed. The

corresponding addition formula which requires 1I+57M +6S
to add two reduced divisor classes can be found in Table XXV
in the appendix. When h0 = 1 we can save one more multi-
plication than the best known algorithm and obtain the fastest
explicit doubling formula which only needs 1I +10M +11S.

B. Case deg h = 1

In this subsection we discuss the case of deg h = 1. One
can obtain an isomorphic curve where f6 = f4 = f1 = h0 = 0
and h1 is divided by any α5. We will choose α5 such that h1

α5

is ’small’ in the practical use. If we choose finite fields F2n

with n not being divided by 4 there are no elements α ∈ F2n

such that α5 = 1. Therefore, there is always an α such that
α5 = h0. For n ≡ 0 mod 4 this happens with probability
1/5. Using the birational transformations of variables listed in
Table III and dividing the equation by α14, we obtain a curve
of the form Y 2 +h1XY = X7 + f5X

5 + f3X
3 + f2X

2 + f0,
usually with h1 = 1. Adding a linear factor to the substitution
of Ỹ one can achieve f2 = 0 with probability 1/2. Therefore,
there are only three free parameters f5, f3, f0.

With the new curve coefficients the expression r and S
′

will
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simplify to:

r = u10h
3
1,

s
′

2 = z0h
2
1,

s
′

1 = (u12z0 + u10z2)h2
1,

s
′

0 = (u11z0 + u10z1)h2
1,

rs
′

2 = u10z0h
5
1,

s2 = s
′

2/r = z0/(u10h1).

In this case, we have

ut3 = 0,

ut2 = s2
1 = (s

′

1/s
′

2)
2 = (u12 + u10 ·

z2

z0
)2,

ut1 = (r/s
′

2)
2 = h2

0u
2
10(z

−1
0 )2,

ut0 = s2
0 = (s

′

0/s
′

2)
2 = (u11 + u10 ·

z1

z0
)2,

and

vt3 = (ut2 + g3)(s
′

2/r)

= h−1
1 [z2 · (u10 ·

z2

z0
) + z1 + u12z2],

vt2 = (g4ut2 + ut1 + g2)(s
′

2/r) + v12

= h−1
1 (z2u

′

2 +
h1

s2
+ u12z1 + u11z2 + z0) + v12,

vt1 = (g4ut1 + ut0 + g1)(s
′

2/r) + h1 + v11

= h−1
1 [

1
h1s2

(
z2h1

s2
+ z2

1) + u12z0 + u11z1

+u10z2] + v11,

vt0 = (g4ut0 + g0)(s
′

2/r) + v10

= h−1
1 (z2u

′

0 + u11z0 + u10z1) + v10.

Since F + hV1 + V 2
1 = U1Z + U2

1 x we also obtain that

f0 + v2
10 = u10z0 (= rs

′

2/h5
1),

h1v10 = u11z0 + u10z1 + u2
10,

f2 + h1v11 + v2
11 = u12z0 + u11z1 + u10z2,

f3 + h1v12 = z0 + u12z1 + u11z2 + u2
11,

v2
12 = z1 + u12z2,

f5 = u2
12 + z2.

Using the equations above, we can calculate cheaply ut2, ut0

and vt3, vt2, vt1, vt0 as follows:

ut2 = (u12 + u10 ·
z2

z0
)2 = (u12 +

z2

h1s2
)2,

ut0 = (u11 + u10 ·
z1

z0
)2 = (u11 +

z1

h1s2
)2,

vt3 = h−1
1 (

z2
2

h1s2
+ v2

12),

vt2 = h−1
1 (z2u

′

2 +
h1

s2
+ f3 + u2

11),

vt1 = h−1
1 [

1
h1s2

(z2 ·
h1

s2
+ z2

1) + f2 + v2
11],

vt0 = h−1
1 (z2u

′

0 + u2
10).

We note that f0 + v2
10 = u10z0 = rs

′
2

h5
1

, so it is very cheap to

calculate rs
′

2 as the exact coefficients of Z are not necessary.

In Table XXIV, we present the doubling formula for this case.
The operations are counted for the case h1 = 1, h−1

1 is ’small’
(multiplication with h−1

1 are not counted), and arbitrary h1.
Both h2

1 and h−1
1 are precomputed. In the step 2 the inversion

and multiplication with k0 can also be replaced by a division
as the inverse is not used later on. The corresponding addition
formula which requires 1I + 57M + 6S (h1 is ’small’) or
1I + 58M + 6S (h1 is arbitrary) to add two reduced divisor
classes is showed in Table XXIII in the appendix. Compared
with the explicit formula in [45], which costs 1I + 44M +
6S for doubling a divisor class, our formula requires only
1I + 13M + 13S and therefore can save 31M at the cost of
extra 7S (note that a squaring is usually more efficient than a
multiplication in binary fields).

C. Case deg h = 2

If h is of degree two then we cannot make any of its
coefficients zero in general. In this subsection we will discuss
special curves with h1 = 0, that is, the curves having the form
Y 2 +(h2X

2 +h0)Y = X7 +f6X
6 +f5X

5 +f4X
4 +f3X

3 +
f2X

2 + f1X + f0, which allows for a significant speedup. By
making a change of coordinates we can obtain f5 = f3 = f2 =
h0 = 0 and h2 is divided by any α3. We will choose α3 such
that h2

α3 is ’small’ in the practical use. If, as usual, one choose
finite F2n with n odd there are no non-trivial cubic roots of
the unity. Hence, there is always an α such that α3 = h2. For
even n this happens with probability 1/3. Using the birational
transformations of variables listed in Table III an dividing the
equation by α14, we obtain the isomorphic curve of the form
Y 2 +h2X

2Y = X7 +f6X
6 +f4X

4 +f1X +f0, usually with
h2 = 1. Adding a quadratic factor to the substitution of Ỹ one
can achieve f4 = 0 with probability 1/2. Accordingly, there
are only three free parameters f6, f1, f0.

Then the expressions for r, S
′

and S will simplify to:

r = u2
10h

3
2,

s
′

2 = (u11z0 + u10z1)h2
2,

s
′

1 = [u12(u11z0 + u10z1) + u10z0]h2
2,

s
′

0 = [u11(u11z0 + u10z1) + u10(u12z0 + u10z2)]h2
2,

s1 = s
′

1/s
′

2 = u12 + k1,

s0 = s
′

0/s
′

2 = u11 + k2.

where k1 = u10z0
u11z0+u10z1

and k2 = u10(u12z0+u10z2)
u11z0+u10z1

. In this
case, we have

ut3 = 0,

ut2 = s2
1,

ut1 =
r

s
′
2

(h2 +
r

s
′
2

) = h2
2w1(1 + w1),

ut0 =
r

s
′
2

[h2(u2 + s1) +
rf6

s
′
2

] + s2
0

= h2
2w1(k1 + f6w1) + s2

0,



11

where w1 = u2
10

u11z0+u10z1
, and

vt3 = (ut2 + g3)(s
′

2/r) = h−1
2 [z2 +

(u10z0)2

u2
10(u11z0 + u10z1)

],

vt2 = (g4ut2 + ut1 + g2)(s
′

2/r) + h2 + v12

= h−1
2 [z1 + u12z2 +

(u10z0)k2
1

u2
10

] + h2w1 + v12,

vt1 = (g4ut1 + ut0 + g1)(s
′

2/r) + v11

= h−1
2 [z0 + u11z2 + u12z1 +

(u12z0 + u10z2)2

u11z0 + u10z1
]

+(h2w1)(f6 + k1) + v11,

vt0 = (g4ut0 + g0)(s
′

2/r) + v10

= h−1
2 [u12z0 + u11z1 + u10z2 +

(u10z0)k2
2

u2
10

]

+(h2k1)(k1 + f6w1) + v10.

And since F +hV1 +V 2
1 = U1Z +U2

1 (X +f6), we also have

f0 + v2
10 = u10z0 + f6u

2
10,

f1 = u11z0 + u10z1 + u2
10,

h2v10 = u12z0 + u11z1 + u10z2 + f6u
2
11,

h2v11 = z0 + u12z1 + u11z2 + u2
11,

f4 + h2v12 + v2
12 = z1 + u12z2 + f6u

2
12,

0 = u2
12 + z2.

We use the equations above to calculate k1, k2, w1 and
vt3, vt2, vt1, vt0 cheaper:

k1 =
f0 + v2

10 + f6u
2
10

f1 + u2
10

,

k2 =
u10(h2v10 + u11z1 + f6u

2
11)

f1 + u2
10

,

w1 =
u2

10

f1 + u2
10

,

vt3 = h−1
2 [z2 +

(f0 + v2
10 + f6u

2
10)

2

u2
10(f1 + u2

10)
],

vt2 = h−1
2 [f4 + v2

12 + f6u
2
12 +

(f0 + v2
10 + f6u

2
10)k

2
1

u2
10

]

+
h2u

2
10

f1 + u2
10

,

vt1 = h−1
2 [u2

11 +
(u11z1 + f6u

2
11 + h2v10)2

f1 + u2
10

]

+
h2u

2
10(f6 + k1)
f1 + u2

10

,

vt0 = h−1
2 [f6u

2
11 +

(f0 + v2
10 + f6u

2
10)k2

2

u2
10

]

+(h2k1)(k1 +
u2

10f6

f1 + u2
10

).

We note that rs
′

2 = u2
10 · (u11z0 + u10z1) · h5

2 = u2
10 · (f1 +

u2
0) · h5

2, so it is very cheap to calculate rs
′

2 since we do not
need to know the exact coefficients of Z. We describe the
doubling formula for this case in Table XXII. The operations
are counted for the case h2 = 1, h−1

2 is ’small’ (multiplication
with h−1

2 are not counted), and arbitrary h2. Both h2
2 and h−1

2

are precomputed. The corresponding addition formula which
requires 1I + 58M + 6S (h2 is ’small’) or 1I + 60M + 5S
(h2 is arbitrary) to add two reduced divisor classes is showed
in Table XXI in the appendix. For the general case with
h(x) = h2x

2 +h1x+h0, Guyot et al. in [45] use a birational
transformation to make the curve’s coefficient f6 zero. Their
algorithm needs 1I + 52M + 8S to compute the divisor class
doubling. Using special curves with h(x) = h2x

2 + h0, our
explicit formula requires only 1I +24M +12S when h2 = 1.
In the formulae presented in Table XXI there are four counted
multiplications with f6 which are cheaper when f6 is ’small’.

D. Case deg h = 3
When h is of degree three, we cannot also make any of its

coefficients zero in general. We will show that special curves
with h2 = h1 = h0 = 0 can obtain excellent performance
in this section. We can construct a change of coordinates to
make f5 = f4 = f3 = 0 and h3 = 1. Using the birational
transformations of variables listed in Table III an dividing the
equation by h14

3 , we obtain a curve of the form Y 2 +X3Y =
X7 + f6X

6 + f2X
2 + f1X + f0. Adding a cubic factor to

the substitution of Ỹ one can achieve f6 = 0 with probability
1/2. Thereby, there are only three free parameters f2, f1, f0.

Then the expressions for r, S
′

and S will simplify to:

r = u3
10,

s
′

2 = u10(u12z0 + u11z1 + u10z2) + u2
11z0,

s
′

1 = u12[u10(u12z0 + u11z1 + u10z2)]
+u10(u11z0 + u10z1),

s
′

0 = u11[u10(u12z0 + u11z1 + u10z2)]
+u10[u2(u11z0 + u10z1) + u10z0],

s1 = s
′

1/s
′

2 = u12 + k1,

s0 = s
′

0/s
′

2 = u11 + k2.

where k1 = u10(u11z0+u10z1)
u10(u12z0+u11z1+u10z2)+u2

11z0
and k2 =

u10[u12(u11z0+u10z1)+u10z0]
u10(u12z0+u11z1+u10z2)+u2

11z0
. In this case, we have

ut3 = 0,

ut2 = s2
1 +

r

s
′
2

,

ut1 =
r

s
′
2

(k1 +
r

s
′
2

),

ut0 =
r

s
′
2

(k2 + u12k1 +
rf6

s
′
2

) + s2
0,

vt3 = (ut2 + g3)(s
′

2/r) + 1

=
u10z0

u2
10

+
(u11z0 + u10z1)2

u2
10(u12z0 + u11z1 + u10z2) + u2

11(u10z0)
,

vt2 = (g4ut2 + ut1 + g2)(s
′

2/r) + v12

=
(u11z0 + u10z1)(u

′

2 + u2
12)

u2
10

+ z2 + k1 +
r

s
′
2

+ v12,

vt1 = (g4ut1 + ut0 + g1)(s
′

2/r) + v11

=
k2[u12(u11z0 + u10z1) + u10z0] + u2

12(u10z0)
u2

10

+ k1(

k1 +
r

s
′
2

) + (k2 + u12k1 +
rf6

s
′
2

) + (z1 + u12z2) + v11,
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vt0 = (g4ut0 + g0)(s
′

2/r) + v10

=
(u11z0 + u10z1)(u

′

0 + u2
11)

u2
10

+ (z0 + u12z1

+u11z2) + v10.

And since F +hV1 +V 2
1 = U1Z +U2

1 (X +f6), we also have

f0 + v2
10 = u10z0 + f6u

2
10,

f1 = u11z0 + u10z1 + u2
10,

f2 + v2
11 = u12z0 + u11z1 + u10z2 + f6u

2
11,

v10 = z0 + u12z1 + u11z2 + u2
11,

v11 + v2
12 = z1 + u12z2 + f6u

2
12,

v12 = u2
12 + z2.

Using the equations above, we can calculate k1, k2,
r
s
′
2

and
vt3, vt2, vt1, vt0 cheaper:

k1 =
u2

10(f1 + u2
10)

u2
10(f2 + v2

11 + f6u2
11) + u2

11(f0 + v2
10 + f6u2

10)
,

k2 =
u2

10[u12(f1 + u2
10) + (f0 + v2

10 + f6u
2
10)]

u2
10(f2 + v2

11 + f6u2
11) + u2

11(f0 + v2
10 + f6u2

10)
,

r

s
′
2

=
u4

10

u2
10(f2 + v2

11 + f6u2
11) + u2

11(f0 + v2
10 + f6u2

10)
,

vt3 =
f0 + v2

10 + f6u
2
10

u2
10

+
(f1 + u2

10)
2

u2
10(f2 + v2

11 + f6u2
11) + u2

11(f0 + v2
10 + f6u2

10)
,

vt2 =
(f1 + u2

10)(u
′

2 + u2
12)

u2
10

+ k1 +
r

s
′
2

+ u2
12,

vt1 =
1

u2
10

{k2[u2(f1 + u2
10) + (f0 + v2

10 + f6u
2
10)]

+u2
12(f0 + v2

10 + f6u
2
10)} + k1(k1 +

r

s
′
2

)

+(k2 + u12k1 +
rf6

s
′
2

) + (v2
12 + f6u

2
12),

vt0 =
(f1 + u2

10)(u
′

0 + u2
11)

u2
10

+ u2
11.

We note that r · s′

2 = u2
10 · [u2

10 · (u12z0 + u11z1 + u10z2) +
u2

11 · (u10z0)] = u2
10 · [u2

10 · (f2 + v2
11 + f6u

2
11) + u2

11 · (f0 +
v2
10+f6u

2
10)]. Therefore, we can calculate rs

′

2 cheaply without
knowing the exact coefficients of Z. We present the explicit
formula for this case in Table XX. The corresponding addition
formula which requires 1I + 60M + 5S to add two reduced
divisor classes is showed in Table XXI in the appendix. In [45],
Guyot et al. discuss two types of curves with h2 = 0 and f6 =
0, respectively. Their doubling formulae cost 1I + 63M + 9S
and 1I + 64M + 5S for these two different cases. We note
that using special curves with h(x) = h3x

3 can lead to the
fast computation of a divisor class doubling. We derive the
new explicit doubling formula which needs only 1I +30M +
11S. In addition, there are four counted multiplications with
f6 which can be computed cheaply when f6 is ’small’ in the
formulae.

E. Summary
Depending on the degree of h, we have derived the cor-

responding explicit formulae which can compute the divisor
class doubling fast in subsections above. For h of degree 0
and 1 the case f6 not small does not apply since we make
it zero by isomorphic transformations. We also find the fast
doubling formulae for the special curves when the degree of
h is 2 and 3. Table IV presents a summary of our work, as
well as the previous work that has been done on improving the
Harley’s algorithm for genus 3 HECC. It can be seen clearly
that we obtain the fastest explicit doubling formula which
requires only 1I + 10M + 11S for the case of h(X) = 1,
and improve the recent results in [45] significantly.

VII. INVERSION-FREE ARITHMETIC ON GENUS 3 HEC
In this section we discuss the inversion-free coordinate

system and restrict our attentions only on the most frequent
case. Our findings are based on the fastest explicit formulae
showed in Table XVII and Table XVIII (for odd characteristic
case), and Table XXV and Table XXVI (for even characteristic
case), respectively. We generalize the idea proposed in [68],
[82] to genus 3 curves. In addition, we also consider a group
addition with mixed coordinates: one of the input divisor
classes is with the affine representation, the other projective
representation and the output divisor class is represented by
the projective coordinates. The idea of using mixed coordinates
for the addition algorithm was first proposed for elliptic curves
in [20] and then generalized to genus 2 curves in [68].

For genus 3 HECs, the divisor class is denoted by [U, V ] =
[X3+u2X

2+u1X+u0, v2X
2+v1X+v0] with U | (V 2+hV −

F ). When computing the divisor class addition or doubling
in the affine coordinate system, one inversion is required.
In order to avoid this inversion, we introduce an additional
coordinate Z to collect the common denominator of the usual
six coordinates and let the septuple [U2, U1, U0, V2, V1, V0, Z]
stand for [X3+(U2/Z)X2+(U1/Z)X+(U0/Z), (V2/Z)X2+
(V1/Z)X + (V0/Z)]. If the output of a scalar multiplication
is with the affine representation we require one inversion and
six multiplications to execute the coordinate transformations
for the output divisor class at the end of the computation.

We now proceed to investigate the inversion-free arithmetic
for the most frequent case. In the practical applications,
inversion-free group operations are useful not only for im-
proving the performance of genus 3 HECC in the embedded
processors where the field inversion is much slower than the
field multiplication but also for accelerating the hardware
implementation of genus 3 HECC. The simplification for the
group operations in the projective coordinate system can be
achieved by applying the methods described in Section IV.

A. Inversion-Free Addition Formulae
In this subsection, we give explicit formula for adding two

reduced divisor classes in the projective coordinate system.
Our formula can also be used for affine inputs if we regard
[U1, V1] as the septuple [u12, u11, u10, v12, v11, v10, 1]. Table
XXVII and Table XXVIII list the number of field operations
required to finish each step for a group addition on genus 3
HECs defined over prime fields and binary fields, respectively.
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TABLE IV
SPEEDING UP GROUP OPERATION ON A HEC OF GENUS THREE USING HARLEY’S ALGORITHM

Reference Finite Curve Cost
Field Properties Addition Doubling

Kuroki et al. [64] Fp h(X) = 0, f6 = 0 1I + 81M/S 1I + 74M/S

Gonda et al. [43] Fp h(X) = 0, f6 = 0 1I + 70M/S 1I + 71M/S

Thomas et al. [111] general hi ∈ F2, f6 = 0 1I + 70M + 6S 1I + 62M + 10S

F2n hi ∈ F2, f6 = 0 1I + 65M + 6S 1I + 53M + 10S

F2n h(X) = 1, f6 = 0 1I + 65M + 6S 1I + 14M + 11S

Guyot et al. [45] Fp h(X) = 0, f6 = 0 1I + 64M + 6S 1I + 61M + 9S

F2n deg h = 3, h2 = 0 1I + 62M + 5S 1I + 63M + 9S

F2n deg h = 3, f6 = 0 1I + 64M + 4S 1I + 64M + 5S

F2n deg h = 2, f6 = 0 1I + 60M + 6S 1I + 52M + 8S

F2n deg h = 1, h0 = 0 1I + 58M + 6S 1I + 44M + 6S

F2n h(X) = 1, f6 = 0 1I + 58M + 6S 1I + 11M + 11S

Avanzi et al. [3] F2n h(X) = 1 1I + 57M + 6S (classical) 1I + 11M + 11S (classical)
1I + 47.7M + 6S (effective) 1I + 9.3M + 11S (effective)

Nyukai et al. [86] Fp h(X) = 0, f6 = 0 1I + 67M/S 1I + 68M/S

F2n deg h = 3, f6 = 0 1I + 63M + 4S 1I + 63M + 5S

Our work F2n h(X) = X3 1I + 60M + 5S 1I + 26M + 11S (f6 sma.)
f5 = f4 = f3 = 0 Table XIX 1I + 30M + 11S (f6 arb.)

Table XX
F2n h(X) = h2X2 1I + 58M + 6S (h2 sma.) 1I + 20M + 12S (h2 = 1, f6 sma.)

f5 = f3 = f2 = 0 1I + 60M + 5S (h2 arb.) 1I + 24M + 12S (h2 = 1, f6 arb.)
Table XXI 1I + 28M + 10S (h−1

2 sma., f6 sma.)
1I + 32M + 10S (h−1

2 sma., f6 arb.)
1I + 32M + 10S (h2 arb., f6 sma.)
1I + 36M + 10S (h2 arb., f6 arb.)

Table XXII
F2n h(X) = h1X 1I + 57M + 6S (h1 sma.) 1I + 13M + 13S (h1 = 1)

f6 = f4 = f1 = 0 1I + 58M + 6S (h1 arb.) 1I + 16M + 12S (h−1
1 sma.)

Table XXIII 1I + 20M + 12S (h1 arb.)
Table XXIV

F2n h(X) = h0 1I + 57M + 6S 1I + 10M + 11S (h0 = 1)
f6 = f5 = f4 = f2 = 0 Table XXV 1I + 11M + 11S (h−1

0 sma.)
1I + 15M + 11S (h0 arb.)

Table XXVI

B. Inversion-Free Mixed Addition Formulae

In this subsection, we present inversion-free mixed addition
formulae which take a reduced affine divisor class and a
reduced projective divisor class as the inputs and a reduced
projective divisor class as the output. This kind of formula
has been widely used in many scalar multiplication algorithms
such as (signed) double-and-add, NAF and so on. When using
these scalar multiplication algorithms, one of the inputs is the
base divisor class in affine representation and the intermediate
result in projective representation. We can see clearly that this
kind of addition formula can do better than the algorithm in
section VII-A. Table XXIX and Table XXX list the number
of field operations required to perform the respective steps
for a group mixed addition on genus 3 HECs defined over
prime fields and binary fields, respectively. For the case
that genus 3 HECs are defined over a binary field, Toom’s
multiplication can not be used again because some steps of
Toom algorithm need the computations of dividing by 2 [43].
we use Karatsuba’s multiplication instead of Toom’s one and

derive the corresponding explicit formula.
Using the formula in Table XXIX, one can save 19M +1S

compared to the general addition formula for genus 3 HECs
over prime fields. Therefore, it is more efficient to use mixed
addition formula to compute the scalar multiplication. For
special genus 3 curves defined over binary fields with h(X) =
1, our formula can save 23M at the cost of only 2S.

C. Inversion-Free Doubling Formulae

In this subsection, the inversion-free doubling formulae are
given. The input for the doubling algorithm is in projective
representation for most of cases. Table XXXI and XXXIII list
the number of field operations for a group doubling on genus 3
HECs defined over prime fields and binary fields, respectively.
We also optimize the inversion-free doubling formulae using
the affine input, see Table XXXII and Table XXXIV. These
formulae can be useful to get another small speedup when
used in applications where area or code size is not an issue.
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TABLE VI
TIMINGS OF THE FIELD LIBRARY AND THE CORRESPONDING

MI-RATIOS

Field Multiplication Squaring Inversion MI-ratio

F259 0.33µs 0.30µs 1.7µs 5.15

F261 0.34µs 0.31µs 2.0µs 5.88

F263 0.36µs 0.32µs 2.1µs 5.83

D. Summary

This is the first contribution that presents the inversion-free
group operations for genus 3 HECs defined over both prime
fields and binary fields. In order to minimize the number
of operations, we do not keep the additional coordinate Z3

(for the addition and mixed addition), Z2 (for the doubling)
and Z (for the affine doubling) minimal. We respectively
take Z3 = r3s

′5
2 Z8, Z3 = r3s

′5
2 Z8

1 , Z2 = 8r3s
′5
2 Z8, and

Z = 8r3s
′5
2 for the addition, mixed addition, doubling and

affine doubling formula when genus 3 HECs are defined over
Fp. For genus 3 HECs over F2n with h(X) = 1, we take
Z3 = r3s

′5
2 (Z1Z2)8, Z3 = r3s

′5
2 (Z1Z2)5, Z2 = u8

2Z
14
1

and Z = u5
2 for the addition, mixed addition, doubling

and affine doubling formula, respectively. Besides the output
results have to be adjusted to have the same denominator. We
summarize the computational complexity of the inversion-free
group operations in Table V.

VIII. IMPLEMENTATION RESULTS

This section introduces our implementations of the efficient
doubling algorithms. In order to test the performance of the
proposed explicit formulae, we chose three binary fields to
implement genus 3 HECC. Due to the attack proposed by
Thériault [104], we should select at least 56-bit finite fields
in order to obtain the same security as a 160-bit elliptic curve
cryptosystem. We used the binary fields F259 , F261 and F263 .
For F259 and F261 , we used the minimal weight irreducible
pentanomial x59+x7+x4+x2+1 and x61+x5+x2+x+1 to
construct finite fields, respectively. However, for F263 , we uti-
lized the minimal weight irreducible trinomial x63+x+1 as the
field extension. Efficient algorithms summarized in [88] were
used to perform the arithmetics over binary fields. Although
we used the composite field F263 , the implementation methods
do not use the composite filed structure. All the algorithms are
implemented on a Pentium-4 @2.8GHz processor and with C
programming language. Table VI shows the timings of the
finite field library and the corresponding MI-ratio (the ratio of
the timing of one inversion to one multiplication).

We noted that the MI-ratio is small on the Pentium-4 pro-
cessor. In our newly derived inversion-free group operations,
at least 30 additional multiplications are needed to save the
one remaining inversion. Therefore, using the inversion-free
arithmetic cannot promote the performance of genus 3 HECC
on this processor. However, for some embedded processors
where the inversions are extremely time and space critical, the
inversion-free explicit formulae will be much useful. Based on
the analysis of the performance of the field library, we decided
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Fig. 2. Timings on F2n , n = 61

not to implement the inversion-free group operations on the
Pentium-4 processor.

We implemented genus 3 HECC over three binary fields
based on our efficient doubling algorithms. We utilized NAF
method [10] for the scalar multiplication and 160-bit random
integers as the scalars. Each timing shows the average of every
1,000,000 operations on a genus 3 HEC generated randomly
with F (X) to be irreducible. The experimental results were
depicted in three bar graphs Fig. 1 ∼ Fig. 3.

In the graphs Fig. 1 ∼ Fig. 3, we include the following ten
cases respectively:

1) deg 3 mon arb f6: The case where deg h = 3, h2 =
h1 = h0 = 0, f6 6= 0 and h3 = 1;

2) deg 3 mon: The case where deg h = 3, h2 = h1 =
h0 = 0, f6 = 0 and h3 = 1;

3) deg 2 arb f6: The case where deg h = 2, h1 = h0 = 0,
f6 6= 0;

4) deg 2 arb: The case where deg h = 2, h1 = h0 = 0,
f6 = 0;

5) deg 2 mon arb f6: The case where deg h = 2, h1 =
h0 = 0, f6 6= 0 and h2 = 1;
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TABLE V
INVERSION-FREE GROUP OPERATIONS FOR GENUS 3 HEC

Finite Curve Addition Doubling Mixed Affine
Field Properties Addition Doubling

Fp h(X) = 0, f6 = 0 123M + 7S 107M + 10S 104M + 6S 86M + 6S

Table XXVII Table XXXI Table XXIX Table XXXII

F2n h(X) = 1, f6 = f5 = f4 = f2 = 0 116M + 8S 37M + 16S 93M + 10S 23M + 11S

Table XXVIII Table XXXIII Table XXX Table XXXIV
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Fig. 3. Timings on F2n , n = 63

6) deg 2 mon: The case where deg h = 2, h1 = h0 = 0,
f6 = 0 and h2 = 1;

7) deg 1 arb: The case where deg h = 1, h0 = 0;
8) deg 1 mon: The case where deg h = 1, h0 = 0 and

h1 = 1;
9) deg 0 arb: The case where deg h = 0;

10) deg 0 mon: The case where deg h = 0 and h0 = 1.

IX. CONCLUSION

Our contribution is another step towards the efficient im-
plementation of the group operations for genus 3 HECs. We
showed how to improve and optimize the Harley’s algorithm
from three aspects: using the Theta divisors, optimizing ex-
plicit doubling formulae for genus 3 curves over binary fields
and employing inversion-free arithmetic.

Our work starts in Section IV with a thorough summariza-
tion of all kinds of tricks used to derive the explicit formulae
from Cantor’s algorithm. In Section V, we further simplify
Katagi et al.’s explicit formulae with theta divisors for four
cases by saving about 20% ∼ 50% of the multiplications for
genus 3 HECs over binary fields. In addition, we generalize
their idea to the prime fields case. In Section VI, we move
to the issues of finding efficient doubling algorithms for
genus 3 HECs over binary fields. By constructing birational
transformations of variables, we obtain four families of curves
over which the divisor class doubling is extremely efficient.
Especially, for the case of h(X) = 1, we obtain the fastest
explicit doubling formula which needs only 1I +10M +11S.
While for the case of deg h = 1 our explicit formula improves

the recent result in [45] significantly by saving 31M at the
cost of extra 7S. Furthermore, the implementations of our new
derived explicit formulae show the excellent performance on a
Pentium-4 processor. In Section VII, we switch our attentions
to the projective coordinate system. We present the inversion-
free addition, mixed addition, doubling and affine doubling
explicit formulae, respectively, for genus 3 HECs defined
over both prime fields and binary fields. These formulae will
be suited for applications on embedded processors and in
constrained environments.

The improvement of our algorithms by using generalized
weighted projective coordinates is the next logical step to
promote the performance of genus 3 HECC. Furthermore, the
practical performance of our inversion-free explicit formulae
in embedded systems such as ARMs, DSPs and smart cards
needs further studying.
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Birkhäuser, 1984.

[84] K. Nagao, “Improving Group Law Algorithms for Jacobians of Hy-
perelliptic Curves,” ANTS IV, ser. LNCS 1838, W. Bosma, Eds. Berlin,
Germany: Springer-Verlag, pp. 439-448, 2000.

[85] K. Nagao, “Improvement of Thériault Algorithm of Index Calculus for
Jacobian of Hyperelliptic Curves of Small Genus,” Cryptology ePrint
Archive, Report 2004/161, 2004, http://eprint.iacr.org.

[86] J. Nyukai, K. Matsuo, J. Chao, and S. Tsujii, “On the resultant
computation in the addition Harley algorithms on hyperelliptic cureves,”
Technical Report ISEC2006-5, IEICE Japan, May 2006. in Japanese.

[87] P. van Oorschot, and M. Wiener, “Parallel Collision Search with Crypt-
analytic Applications,” Journal of Cryptology, vol. 12, pp. 1-28, 1999.

[88] J. Pelzl, “Hyperelliptic Cryptosystems on Embedded Microprocessor,”
Master’s thesis, Department of Electrical Engineering and Information
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many, 2004.

[109] T. Wollinger, G. Bertoni, L. Breveglieri, and C. Paar, “Performance
of HECC Coprocessors Using Inversionfree Formulae,” International
Workshop on Information Security & Hiding (ISH ’05) part of the
International Conference on Computational Science and its Applications
(ICCSA 2005), ser. LNCS 3982, M. Gavrilova, O. Gervasi, V. Kumar, C.
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TABLE VII
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER Fp : ADD3+2→3

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X2 + u21X + u20, V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 6M

t1 = u21 − u12 + 1, t2 = u21 − u11 + u20, t3 = u20 − u10, t4 = t2 − u21t1;
t5 = t3 − u20t1, t6 = t4u21 − t5, t7 = t24, t8 = t7u20, t9 = t5t6, r = t8 − t9;

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i1X + i0 ≡ r/U1 mod U2: –
i1 = t4, i0 = t6;

4 Compute S
′
= s

′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 7M

c1 = v21 − v11 + v12u21, c0 = v20 − v10 + v12u20, t1 = i1c1, t2 = i0c0;
s
′
0 = t1u20 + t2, s

′
1 = t1u21 + (i0 + i1)(c0 + c1) − t1 − t2;

5 If s
′
1 = 0 then call the Cantor algorithm –

6 Compute S = (S
′
/r) = s1X + s0: 1I + 6M

t1 = (rs
′
1)−1, t2 = rt1, t3 = t1s

′
1, w = rt2, s0 = t3s

′
0, s1 = t3s

′
1;

7 Compute V = s1X4 + k3X3 + k2X2 + k1X + k0 = SU1 + V1: 5M

t0 = s0u12, t1 = s0u10, t2 = s1u11, k3 = s1u12 + s0, k2 = t0 + t2 + v12;
k1 = (s0 + s1)(u10 + u11) − t1 − t2 + v11, k0 = t1 + v10;

8 Compute U3 = X3 + u32X2 + u31X + u30 = s−2
1 (V 2 − F )/U1U2: 15M

t1 = u20 + u21, t2 = u10 + u12, t3 = t1(t2 + u11), t4 = (t2 − u11)(u20 − u21);
t5 = u12u21, z0 = u10u20, z1 = (t3 + t4)/2 − z0 + u10, z2 = u11 + u20 + t5;
z3 = u12 + u21, u32 = w(2k3 − w) − z3, u31 = w[2(k2 − z3k3) + w(k2

3 + z3)] + z2
3 − z2;

u30 = w[2(k1 − z2k3) + w(2k2k3 + z2 − f5)] + z3(z2 − u31) − z1;

9 Compute V3 = v32X2 + v31X + v30 ≡ −V mod U3: 5M

t1 = u32s1, t2 = t1 − k3, t3 = u31t2, v32 = (u31 + u32)(s1 + t2) − t1 − t3 − k2;
v31 = u30s1 − k1 − t3, v30 = −(k0 + u30t1);

Sum 1I + 44M
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TABLE VIII
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER Fp : ADD3+1→3

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X + u20, V2 = v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 3M

w0 = u2
20, w1 = w0(u20 − u12), w2 = u11u20, r = w1 + w2 − u10;

2 If r = 0 then call the Cantor algorithm –

3 Compute the inverse of U1 mod U2: 1I

i = r−1;

4 Compute s0 ≡ i(V2 − V1) mod U2: 3M

z0 = u20v12, s0 = i(v20 − u20(z0 − v11) − v10);

5 Compute U3 = X3 + u32X2 + u31X + u30 = (V 2 − F )/U1U2, V = s0U1 + V1: 12M

t0 = s2
0, t1 = u20 + u12, u32 = t0 − t1, t2 = u12u20, t3 = t2 + u11, t4 = s0u12;

t5 = 2s0(t4 + v12) − f5, u31 = t5 − t3 − t1u32, t6 = w2 + u10, t7 = s0u11;
t8 = u12v12, t9 = t24 + 2s0(t7 + t8 + v11) + v2

12 − f4, u30 = t9 − t6 − t3u32 − t1u31;

6 Compute V3 = v32X2 + v31X + v30 ≡ −V mod U3: 3M

v32 = s0(u32 − u12) − v12, v31 = s0(u31 − u11) − v11, v30 = s0(u30 − u10) − v10;

Sum 1I + 21M

TABLE IX
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER Fp : ADD1+2→3

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2) = 2D1,
U1 = X + u10, V1 = v10, U2 = (X + u10)2, V2 = v21X + v20,

Output Reduced Divisor D3 = (U3, V3) = D1 + D2 = 3D1,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute d1 = gcd (U1, U2) = X + u10 = e1(X + u10) + e2(X + u10)2: –
e1 = 1, e2 = 0;

2 Compute d = gcd (d1, V1 + V2) = 1 = c1(X + u10) + c2(v21X + v20 + v10): 1I + 1M

s1 = c1e1 = c1, s2 = c2e2 = 0, t0 = v10 − u10v21, s3 = c2 = (t0 + v20)−1;

3 Compute U3 = U3
1 d−2 = X3 + u32X2 + u31X + u30: 2M

u
′
10 = u2

10, u32 = 3u10, u31 = 3u
′
10, u30 = u

′
10u10;

4 Compute V3 = v32X2 + v31X + v30 ≡ [s1U1V2 + s3(V1V2 + F )]d−1 mod U3: 15M

t1 = t0 − v20, f
′
0 = f0 + v20t0, f

′
1 = f1 + v21t1, f

′
2 = f2 − v2

21, f
′
5 = f5 + 2u

′
10;

t2 = 2f
′
5, t3 = t2 + u

′
10, t4 = 4t2 + t3, t5 = f

′
5 + t3, t6 = u31t3, t7 = u30t4;

t8 = u10t5, t9 = f
′
2 − u32f3 + 2u31f4 − t7, t10 = f

′
1 − u31f3 + u30(8f4 − 5t8);

t11 = f
′
0 − u30(f3 − u32f4 + t6), v32 = c2t9, v31 = c2t10, v30 = c2t11;

Sum 1I + 18M
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TABLE X
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER Fp : DBL1→2

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1), U1 = X + u10, V1 = v10;

Output Reduced Divisor D2 = (U2, V2) = 2D1, U2 = X2 + u21X + u20, V2 = v21X + v20;

Step Expression Cost

1 Compute d = gcd (U1, 2V1) = 1 = s1(X + u10) + s3(2v10): 1I

s1 = 0, s3 = (2v10)−1;

2 Compute U2 = U2
1 d−2 = X2 + u21X + u20: 1M

u21 = 2u10, u20 = u2
10;

3 Compute V2 = v21X + v20 ≡ [s1U1V1 + s3(V 2
1 + F )]d−1 mod U2: 10M

t1 = 2(f5 + u20), t2 = 2t1 − f5 + u20, t3 = t1 + t2, t4 = u10t2, t5 = u10t3, t6 = 2f4;
t7 = t6 − t4, t8 = 2t6 − t5, t9 = u10t7, t10 = u10t8, t11 = f3 − t9, t12 = 3f3 − t10;
t13 = u20t11, t14 = u10t12, t15 = f1 − t13, t16 = 2f2 − t14, t17 = u10t15, t18 = u10t16;
t19 = 2f0 − t17, t20 = f1 − t18, v21 = s3t20, v20 = s3t19;

Sum 1I + 11M

TABLE XI
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER Fp : DBL2→3

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1), U1 = X2 + u11X + u10, V1 = v11X + v10;

Output Reduced Divisor D2 = (U2, V2) = 2D1,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Expression Cost

1 Compute the resultant r of U1 and V1: 4M

t1 = u11v11, t2 = v10 − t1, t3 = v10t2, v
′
11 = v2

11, t4 = u10v
′
11, r = t3 + t4;

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i1X + i0 ≡ r/V1 mod U1: –
i1 = −v11, i0 = t2;

4 Compute Z = z1X + z0 ≡ (F − V 2
1 )/U1 mod U1: 9M

u
′
11 = u2

11, t1 = f5 − u10 + u
′
11, u

′
= u10u11, t2 = u11t1, t3 = u

′ − t2, t4 = f4 + t3;
t5 = (u10 + u11)(t1 + t4), t6 = u10t4, t7 = f3 − t5 + t6 + t2, t8 = u11t7;
t9 = f2 − v

′
11 − t6 − t8, t10 = t1 − u10 + 2u

′
11, t11 = u11t10, t12 = t4 + 2u

′ − t11;
t13 = (u10 + u11)(t10 + t12), t14 = u10t12, z1 = t7 − t13 + t14 + t11, z0 = t9 − t14;

5 Compute S
′
= s

′
1X + s

′
0 = 2rS ≡ ZI mod U1: 5M

t1 = (i0 + i1)(z0 + z1), t2 = i0z0, t3 = i1z1, s
′
1 = t1 − t2 − t3(1 + u11), s

′
0 = t2 − t3u10;

6 If s
′
1 = 0 then call the Cantor algorithm –

7 Compute S = (S
′
/2r) = s1X + s0: 1I + 2M

t1 = (2r)−1, s0 = t1s
′
0, s1 = t1s

′
1;

8 Compute U2 = X3 + u22X2 + u21X + u20 = Monic (S2 + [ 2SV1
U1

] + [
V 2
1 −F

U2
1

]): 3M

t1 = s2
1, t2 = s0s1, u22 = −(t1 + 2u11), u21 = f5 − 2(u10 + t2) + 3u

′
11;

u20 = f4 − 2u11(2u
′
11 − 3u

′
+ f5);

9 Compute V2 = v22X2 + v21X + v20 ≡ (−V1 − SU1) mod U2: 5M

v22 = (u22 − u11)s1 − s0, v21 = (u21 − u10)s1 − u11s0 − v11, v20 = u20s1 − u10s0 − v10;

Sum 1I + 28M
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TABLE XII
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n : ADD3+2→3

Input Genus 3 HEC C : Y 2 + h(X)Y = F (X), h = X3 + h2X2 + h1X + h0;
F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X2 + u21X + u20, V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 6M

t1 = u21 + u12 + 1, t2 = u21 + u11 + u20, t3 = u20 + u10, (e0, e1) = t1 · (u20, u21);
t4 = t2 + e1, t5 = t3 + e0, t6 = t4u21 + t5, t7 = t24, t8 = t7u20, t9 = t5t6, r = t8 + t9;

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i1X + i0 ≡ r/U1 mod U2: –
i1 = t4, i0 = t6;

4 Compute S
′
= s

′
1X + s

′
0 = rS ≡ (V2 + V1)I mod U2: 7M

(e0, e1) = v12 · (u20, u21), c1 = v11 + v21 + e1, c0 = v10 + v20 + e0, t1 = i1c1, t2 = i0c0;
(e0, e1) = t1 · (u20, u21), s

′
0 = e0 + t2, s

′
1 = e1 + (i0 + i1)(c0 + c1) + t1 + t2;

5 If s
′
1 = 0 then call the Cantor algorithm –

6 Compute S = (S
′
/r) = s1X + s0: 1I + 6M

t1 = (rs
′
1)−1, t2 = rt1, t3 = t1s

′
1, w = rt2, (s0, s1) = t3 · (s′

0, s
′
1);

7 Compute V = s1X4 + k3X3 + k2X2 + k1X + k0 = SU1 + V1: 5M

(t0, t1) = s0 · (u12, u10), (t2, e0) = s1 · (u11, u12), k3 = e0 + s0, k2 = t0 + t2 + v12;
k1 = (s0 + s1)(u10 + u11) + t1 + t2 + v11, k0 = t1 + v10;

8 Compute U3 = X3 + u32X2 + u31X + u30 = s−2
1 (V 2 + hV + F )/(U1U2): 12M

t1 = u12 + u21, u32 = w2 + w + t1, t2 = u11 + u20 + u12u21, t3 = t21 + t2;
w1 = t1 + k3 + k2

3 , w2 = f5 + k2 + h2k3 + t2, (e0, e1) = w · (w1, w2);
w3 = e0 + t1 + h2, w4 = e1 + h1 + t2, (t4, e0) = w · (w3, w4), u31 = t3 + t4;
t5 = u10 + u12(u20 + t2) + u21(u11 + t2), t6 = e0 + t1u31, u30 = t5 + t6;

9 Compute V3 = v32X2 + v31X + v30 ≡ (h + V1 + SU1) mod U3: 5M

t1 = u32s1, t2 = t1 + k3 + 1, t3 = u31t2, v32 = (u31 + u32)(s1 + t1) + t1 + t3 + k2 + h2;
(e0, e1) = u30 · (s1, t1), v31 = e0 + t3 + k1 + h1, v30 = e1 + k0 + h0;

Sum 1I + 41M
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TABLE XIII
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n : ADD3+1→3

Input Genus 3 HEC C : Y 2 + h(X)Y = F (X), h = X3 + h2X2 + h1X + h0;
F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X + u20, V2 = v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 3M

w0 = u2
20, w1 = w0(u12 + u20), w2 = u11u20, r = w1 + w2 + u10;

2 If r = 0 then call the Cantor algorithm –

3 Compute the inverse of U1 mod U2: 1I

i = r−1;

4 Compute s0 ≡ i(V1 + V2) mod U2: 3M

(e0, e1) = u20 · (v12, v11), z0 = u20e0, s0 = i(v10 + v20 + e1 + z0);

5 Compute U3 = X3 + u32X2 + u31X + u30 = (V 2 + hV + F )/(U1U2), V = s0U1 + V1: 11M

t0 = s2
0, u32 = t0 + s0 + u12 + u20, t1 = t0 + u12, t2 = u12t1, t3 = h2s0;

w = t2 + v12 + f5 + t3 + u11, (t4, t5) = u20(u32, w);
u31 = f5 + t2 + t3 + t4 + u11 + v12, t6 = v12(v12 + u12 + h2);
t7 = u12(u2

12 + f5), u30 = w0u32 + t5 + t6 + u11t0 + h1s0 + t7 + u10 + f4 + v11;

6 Compute V3 = v32X2 + v31X + v30 ≡ (h + V1 + s0U1) mod U3: 3M

w1 = u12 + u32, w2 = u11 + u31, w3 = u10 + u30, (e0, e1, e2) = s0 · (w1, w2, w3);
v32 = v12 + h2 + e0 + u32, v31 = v11 + h1 + e1 + u31, v30 = v10 + h0 + e2 + u30;

Sum 1I + 20M

TABLE XIV
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n : ADD1+2→3

Input Genus 3 HEC C : Y 2 + h(X)Y = F (X), h = X3 + h2X2 + h1X + h0;
F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
U1 = X + u10, V1 = v10, U2 = X2 + u2

10, V2 = v21X + v20 and 2D1 6= O;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2 = 3D1,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute d1 = gcd (U1, U2) = X + u10 = e1(X + u10) + e2(X2 + u2
10): –

e1 = 1, e2 = 0;

2 Compute d = gcd (d1, V1 + V2 + h) = 1 = (c12X2 + c11X + c10)(X + u10)+ 1I + 2M

c2(X3 + h2X2 + (v21 + h1)X + v20 + v10 + h0):
s11 = u10 + h2, (e, w) = u10 · (s11, s10), s10 = e + v21 + h1;
c12 = (w + v10 + v20 + h0)−1, s1 = c1e1 = c12X2 + c11X + c10;
s2 = c2e2 = 0, s3 = c2 = c12;

3 Compute U3 = U3
1 d−2 = X3 + u32X2 + u31X + u30: 2M

u
′
10 = u2

10, u32 = u10, u31 = u
′
10, u30 = u10u

′
10;

4 Compute V3 = v32X2 + v31X + v30 ≡ [s1U1V2 + s3(V1V2 + F )]d−1 mod U3: 15M

f
′
4 = f4 + v21, t1 = h2v21, f

′
3 = f3 + v20 + t1, t2 = h1v20;

f
′
2 = f2 + (h1 + h2)(v20 + v21) + t1 + t2 + v2

21, t3 = w + v10;
f
′
1 = f1 + t2 + v21(t3 + v20), f

′
0 = f0 + v20t3, t4 = u

′2
10, t5 = f

′
3 + t4;

(e, w) = t5 · (u10, u
′
10), t6 = f

′
2 + e, t7 = f

′
1 + f5t4 + w;

t8 = f
′
0 + u30(t5 + u10f

′
4), (v32, v31, v30) = c12 · (t6, t7, t8);

Sum 1I + 19M
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TABLE XV
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n : DBL1→2

Input Genus 3 HEC C : Y 2 + h(X)Y = F (X), h = X3 + h2X2 + h1X + h0;
F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1), U1 = X + u10, V1 = v10 and 2D1 6= O;

Output Reduced Divisor D2 = (U2, V2) = 2D1, U2 = X2 + u21X + u20, V2 = v21X + v20;

Step Expression Cost

1 Compute d = gcd (U1, h) = 1 = s1(X + u10) + s3(X3 + h2X2 + h1X + h0): 1I + 2M

s11 = u10 + h2, (e0, t) = u10 · (s11, s10), s10 = e0 + h1, s12 = t + h0, s = s−1
12 ;

2 Compute U2 = U2
1 d−2 = X2 + u21X + u20: 1M

u21 = 0, u20 = u2
10;

3 Compute V2 = v21X + v20 ≡ [s1U1V1 + s3(V 2
1 + F )]d−1 mod U2: 9M

w1 = f5 + u20, (e0, e1) = u20 · (w1, f4), w2 = t + v10;
(e2, e3, e4) = v10 · (h1, h2, w2), t1 = f3 + v10 + e0, t2 = f2 + e3 + e1;
(e0, e1) = u20 · (t1, t2), t3 = f1 + e2 + e0, t4 = f0 + e4 + e1, (v21, v20) = s · (t3, t4);

Sum 1I + 12M

TABLE XVI
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n : DBL2→3

Input Genus 3 HEC C : Y 2 + h(X)Y = F (X), h = X3 + h2X2 + h1X + h0;
F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1), U1 = X + u10, V1 = v10 and 2D1 6= O;

Output Reduced Divisor D2 = (U2, V2) = 2D1,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Expression Cost

1 Compute the resultant r of U1 and h: 7M

h
′
2 = h2 + u11, h

′
1 = h1 + u10, (e0, e1) = u10 · (h′

1, h
′
2), (e2, e3) = u11 · (h0, h

′
2);

t1 = e3 + h
′
1, t2 = e1 + h0, t3 = e0 + e2, (e0, e1) = t1 · (u11, t3), t4 = e0 + t2, r = e1 + t22;

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i1X + i0 ≡ r/h mod U1: –
i1 = t1, i0 = t4;

4 Compute Z = z1X + z0 ≡ (F + hV1 + V 2
1 )/U1 mod U1: 8M

(e0, e1) = h2 · (v11, v10), t1 = f3 + v10 + e0 + u2
10, t2 = u2

11, f
′
5 = f5 + t2;

f4 = f
′
4 + v11, (t3, e2) = t2 · (f ′

5, f
′
4), z1 = t1 + t3, t4 = f2 + e1 + v11(h1 + v11);

t5 = u11z1 + e2, z0 = t4 + t5;

5 Compute S
′
= s

′
1X + s

′
0 = rS ≡ ZI mod U1: 5M

t1 = (i0 + i1)(z0 + z1), t2 = i0z0, t3 = i1z1, s
′
1 = t1 + t2 + t3(1 + u11), s

′
0 = t2 + t3u10;

6 If s
′
1 = 0 then call the Cantor algorithm –

7 Compute S = (S
′
/r) = s1X + s0: 1I + 2M

t1 = r−1, (s0, s1) = t1 · (s′
0, s

′
1);

8 Compute U2 = X3 + u22X2 + u21X + u20 = Monic (S2 + [Sh
U1

] + [
V 2
1 +V1h+F

U2
1

]): 5M

w = 1 + s1, (u22, e0, e1) = s1 · (w, h
′
2, h

′
1);

t1 = e0 + s0, u21 = t1 + f
′
5, t2 = e1 + s0h2 + u11t1, u20 = t2 + f

′
4;

9 Compute V2 = v22X2 + v21X + v20 ≡ (h + V1 + SU1) mod U2: 5M

w1 = u11 + u22, w2 = u10 + u21, (e0, e1, e2) = s1 · (w1, w2, u20);
(e3, e4) = s0 · (u11, u10), v22 = e0 + s0 + h2 + u22;
v21 = e1 + e3 + v11 + h1 + u21, v20 = e2 + e4 + v10 + h0 + u20;

Sum 1I + 32M
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TABLE XVII
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER Fp [86]

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 15M

t0 = u10 − u20, t1 = u11 − u21, t2 = u12 − u22, t3 = t1 − u22t2, t4 = t0 − u21t2, t5 = t4 − u22t3;
t6 = u20t2 + u21t3, t7 = −(t4t5 + t3t6), t8 = t2t6 + t1t5, t9 = t2t4 − t1t3, r = t0t7 − u20(t3t9 + t2t8);

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t9, i1 = t8, i0 = t7;

4 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 10M

t1 = v10 − v20, t2 = v11 − v21, t3 = v12 − v22, t4 = t2i1, t5 = t1i0, t6 = t3i2, t7 = u22t6;
t8 = t4 + t6 + t7 − (t2 + t3)(i1 + i2), t9 = u20 + u22, t10 = (t9 + u21)(t8 − t6), t9 = (t9 − u21)(t8 + t6);
s
′
0 = −(u20t8 + t5), s

′
1 = t4 + t5 + (t9 − t10)/2 − (t7 + (t1 + t2)(i0 + i1));

s
′
2 = t6 − (s

′
0 + t4 + (t1 + t3)(i0 + i2) + (t9 + t10)/2);

5 If s
′
2 = 0 then call the Cantor algorithm –

6 Compute S = (S
′
/r) and make S monic: 1I + 7M

t1 = (rs
′
2)−1, t2 = rt1, w = t1s

′2
2 , wi = rt2, s0 = t2s

′
0, s1 = t2s

′
1;

7 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 4M

t1 = u10 + u12, t2 = (s0 + s1)(t1 + u11), t3 = (s0 − s1)(t1 − u11), t4 = u12s1;
z0 = u10s0, z1 = (t2 − t3)/2 − t4, z2 = (t2 + t3)/2 − z0 + u10, z3 = u11 + s0 + t4, z4 = u12 + s1;

8 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = (S(Z + 2wiV1) − w2
i ((F − V 2

1 )/U1))/U2): 13M

ut3 = z4 + s1 − u22, t1 = s1z4 − u22ut3, ut2 = z3 + s0 + t1 − u21, t2 = (u22 + u21)(ut3 + ut2);
t3 = s0z3 − u21ut2, ut1 = z2 + (s0 + s1)(z4 + z3) + wi(2v12 − wi) − (t1 + t2 + t3 + u20);
ut0 = z1 + t3 + s1z2 + wi(2(v11 + s1v12) + wiu12) − (u22ut1 + u20ut3);

9 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + V1 mod Ut: 8M

t1 = ut3 − z4, vt0 = w(t1ut0 + z0) + v10, vt1 = w(t1ut1 + z1 − ut0) + v11;
vt2 = w(t1ut2 + z2 − ut1) + v12, vt3 = w(t1ut3 + z3 − ut2);

10 Compute U3 = X3 + u32X2 + u31X + u30 = (F − V 2
t )/Ut: 7M

t1 = 2vt3, u32 = −(ut3 + v2
t3), u31 = f5 − (ut2 + u32ut3 + t1vt2);

u30 = f4 − (ut1 + v2
t2 + u32ut2 + u31ut3 + t1vt1);

11 Compute V3 = v32X2 + v31X + v30 ≡ Vt mod U3: 3M

v32 = vt2 − u32vt3, v31 = vt1 − u31vt3, v30 = vt0 − u30vt3;

Sum 1I + 67M
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TABLE XVIII
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER Fp [86]

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1), U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10;

Output Reduced Divisor D2 = (U2, V2) = 2D1, U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Expression Cost

1 Compute the resultant r of U1 and V1: 15M

t1 = v11 − u12v12, t2 = v10 − u11v12, t3 = t2 − u12t1, t4 = u10v12 + u11t1, t5 = t2t3 + t1t4;
t6 = −(v11t3 + v12t4), t7 = v11t1 − v12t2, r = v10t5 − u10(t1t7 + v12t6);

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/V1 mod U1: –
i2 = t7, i1 = t6, i0 = t5;

4 Compute Z = z2X2 + z1X + z0 ≡ (F − V 2
1 )/U1 mod U1: 7M

t1 = 2u10, t2 = 2u11, t3 = u2
12, t4 = f4 − (t1 + v2

12), t5 = f5 + t3 − t2, t10 = 2v12, z2 = t5 + 2t3;
z1 = u12(t2 − t5) + t4, z0 = f3 + t3(t5 − u11) + u12(t1 − t4) + u11(u11 − f5) − t10v11;

5 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = 2rS ≡ ZI mod U1: 10M

t1 = i1z1, t2 = i0z0, t3 = i2z2, t4 = u12t3, t5 = (i1 + i2)(z1 + z2) − (t1 + t3 + t4), t6 = u10t5;
t7 = u10 + u12, t8 = t7 + u11, t9 = t7 − u11, t7 = t8(t3 + t5), t11 = t9(t5 − t3);
s
′
0 = t2 − t6, s

′
1 = t4 + (i0 + i1)(z0 + z1) + (t11 − t7)/2 − (t1 + t2);

s
′
2 = t1 + t6 + (i0 + i2)(z0 + z2) − (t2 + t3 + (t7 + t11)/2);

6 If s
′
2 = 0 then call the Cantor algorithm –

7 Compute S = (S
′
/2r) and make S monic: 1I + 7M

t1 = 2r, t2 = (t1s
′
2)−1, t3 = t1t2, w = t2s

′2
2 , wi = t1t3, s0 = t3s

′
0, s1 = t3s

′
1;

8 Compute G = X5 + g4X4 + g3X3 + g2X2 + g1X + g0 = SU1: 4M

t1 = t8(s0 + s1), t2 = t9(s0 − s1), t3 = u12s1, g0 = u10s0, g1 = (t1 − t2)/2 − t3;
g2 = (t1 + t2)/2 − g0 + u10, g3 = u11 + s0 + t3, z4 = u12 + s1;

9 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = ((G + wiV1)2 − w2
i F )/U2

1 : 7M

ut3 = 2s1, ut2 = s2
1 + 2s0, ut1 = ut3s0 + wi(t10 − wi), ut0 = s2

0 + 2wi((s1 − u12)v12 + v11 + wiu12);

10 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wG + V1 mod Ut: 8M

t1 = ut3 − g4, vt0 = w(t1ut0 + g0) + v10, vt1 = w(t1ut1 + g1 − ut0) + v11;
vt2 = w(t1ut2 + g2 − ut1) + v12, vt3 = w(t1ut3 + g3 − ut2);

11 Compute U2 = X3 + u22X2 + u21X + u20 = (F − V 2
t )/Ut: 7M

t1 = 2vt3, u22 = −(ut3 + v2
t3), u21 = f5 − (ut2 + u22ut3 + t1vt2);

u20 = f4 − (ut1 + v2
t2 + u22ut2 + u21ut3 + t1vt1);

12 Compute V2 = v22X2 + v21X + v20 ≡ Vt mod U2: 3M

v22 = vt2 − u22vt3, v21 = vt1 − u21vt3, v20 = vt0 − u20vt3;

Sum 1I + 68M
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TABLE XIX
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n WITH h(X) = X3

Input Genus 3 HEC C : Y 2 + X3Y = F (X), F = X7 + f6X6 + f2X2 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 15M

w0 = u10 + u20, w1 = u11 + u21, w2 = u12 + u22, (d0, d1, d2) = w2 · (u22, u21, u20);
t1 = w1 + d0, t2 = w0 + d1, (e0, e1) = t1 · (u22, u21), t3 = t2 + e0, t4 = d2 + e1;
(e0, e1) = t3 · (t2, w1), (e2, e3) = t4 · (t1, w2), t5 = e0 + e2, t6 = e1 + e3;
(e0, e1) = w2 · (t2, t6), t7 = w1t1 + e0, r = w0t5 + u20(t1t7 + e1);

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t7, i1 = t6, i0 = t5;

4 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 + V1)I mod U2: 11M

t0 = v20 + v10, t1 = v21 + v11, t2 = v22 + v12, t3 = t0i0, t4 = t1i1, t5 = t2i2;
t6 = (i1 + i2)(t1 + t2), t7 = (i0 + i2)(t0 + t2), t8 = (i0 + i1)(t0 + t1);
(t9, t13) = t5 · (u22, u21), t10 = t4 + t5 + t6 + t9, (t11, t12) = t10 · (u20, u22);
t14 = (u20 + u21)(t5 + t10), s

′
0 = t3 + t11, s

′
1 = t3 + t4 + t8 + t11 + t13 + t14;

s
′
2 = t3 + t4 + t5 + t7 + t12 + t13;

5 If s
′
2 = 0 then call the Cantor algorithm –

6 Compute S = (S
′
/r) and make S monic: 1I + 6M + 1S

t1 = (rs
′
2)−1, t2 = rt1, w = t1s

′2
2 , wi = rt2, (s0, s1) = t2 · (s′

0, s
′
1);

7 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 5M

(z0, e0) = s0 · (u10, u12), (t1, e1) = s1 · (u11, u12);
z1 = (u10 + u11)(s0 + s1) + z0 + t1, z2 = e0 + t1 + u10, z3 = e1 + s0 + u11;

8 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = 9M + 2S

(S(Z + wiX
3) + w2

i ((F + V1X3 + V 2
1 )/U1))/U2):

ut3 = w2, t0 = s2
1, t1 = w1 + d0 + t0, ut2 = t1 + wi, (e0, e1) = t1 · (u22, u21);

(e2, e3) = t0 · (u12, u11), t2 = w0 + d1 + e2 + e0, t8 = s1 + wi + u22, t9 = f6 + w2;
(t3, t6) = wi · (t8, t9), ut1 = t2 + t3, t10 = s1 + u22, (e0, e2) = u22 · (t2, t10);
t4 = e3 + s2

0 + d2 + e0 + e1, t5 = s0 + u21 + e2, t7 = wi(t5 + t6), ut0 = t4 + t7;

9 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + X3 + V1 mod Ut: 8M

t1 = u22 + s1, (e0, e1, e2, e3) = t1 · (ut0, ut1, ut2, ut3), t2 = e0 + z0;
t3 = e1 + z1 + ut0, t4 = e2 + z2 + ut1, t5 = e3 + z3 + ut2;
(e0, e1, e2, e3) = w · (t2, t3, t4, t5), vt0 = e0 + v10;
vt1 = e1 + v11, vt2 = e2 + v12, vt3 = e3 + 1;

10 Compute U3 = X3 + u32X2 + u31X + u30 = (F + VtX3 + V 2
t )/Ut: 3M + 2S

u32 = f6 + ut3 + vt3 + v2
t3, (e0, e1) = u32 · (ut3, ut2);

u31 = ut2 + vt2 + e0, u30 = ut1 + v2
t2 + e1 + u31ut3 + vt1;

11 Compute V3 = v32X2 + v31X + v30 ≡ Vt + X3 mod U3: 3M

t1 = vt3 + 1, (e0, e1, e2) = t1 · (u30, u31, u32);
v32 = vt2 + e2, v31 = vt1 + e1, v30 = vt0 + e0;

Sum 1I + 60M + 5S
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TABLE XX
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n WITH h(X) = X3

Input Genus 3 HEC C : Y 2 + X3Y = F (X), F = X7 + f6X6 + f2X2 + f1X + f0;
Reduced Divisor D1 = (U1, V1),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10;

Output Reduced Divisor D2 = (U2, V2) = 2D1,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Expression Cost

1 Precomputation: 5M + 6S

u2 = u2
12, u1 = u2

11, u0 = u2
10, v2 = v2

12, v1 = v2
11, v0 = v2

10;

(e0, e1) = f6 · (u0, u1), t1 = f0 + v0 + e0, t2 = f2 + v1 + e1;

t3 = u0t2 + u1t1, t4 = f1 + u0, t5 = u12t4 + t1;

If t3 = 0 then call the Cantor algorithm
2 Compute s1, s0: 1I + 6M

t6 = (t3u0)−1, (t7, t8) = t6 · (t3, u0), t9 = u0t8;
(k1, k2) = t9 · (t4, t5), s1 = u12 + k1, s0 = u11 + k2;

3 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0: 5M + 2S

w4 = u0t9, ut2 = s2
1 + w4, t10 = k1 + w4, (ut1, e0) = w4(t10, f6);

t11 = k2 + u12k1 + e0, ut0 = s2
0 + w4t11;

4 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0: 10M + 1S

t12 = k2t5 + u2t1, (e0, t13, e1) = t7 · (t1, t4, t12);

t14 = ut2 + u2, t15 = ut0 + u1, (e2, e3) = t13 · (t14, t15);

vt3 = e0 + t24t8, vt2 = e2 + k1 + w4 + u2;

vt1 = k1t10 + t11 + e1 + v2 + f6u2, vt0 = e3 + u1;

5 Reduce Ut, i.e. U2 = X3 + u22X2 + u21X + u20: 1M + 2S

u22 = f6 + vt3 + v2
t3, u21 = ut2 + vt2, u20 = u22ut2 + ut1 + v2

t2 + vt1;

6 Compute V2 = v22X2 + v21X + v20: 3M

t1 = vt3 + 1, (e0, e1, e2) = t1 · (u20, u21, u22);

v22 = vt2 + e2, v21 = vt1 + e1, v20 = vt0 + e0;

Sum 1I + 30M + 11S
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TABLE XXI
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n WITH h(X) = h2X2

Input Genus 3 HEC C : Y 2 + h2X2Y = F (X), F = X7 + f6X6 + f4X4 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 15M

w0 = u10 + u20, w1 = u11 + u21, w2 = u12 + u22, (d0, d1, d2) = w2 · (u22, u21, u20);
t1 = w1 + d0, t2 = w0 + d1, (e0, e1) = t1 · (u22, u21), t3 = t2 + e0, t4 = d2 + e1;
(e0, e1) = t3 · (t2, w1), (e2, e3) = t4 · (t1, w2), t5 = e0 + e2, t6 = e1 + e3;
(e0, e1) = w2 · (t2, t6), t7 = w1t1 + e0, r = w0t5 + u20(t1t7 + e1);

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t7, i1 = t6, i0 = t5;

4 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 + V1)I mod U2: 11M

t0 = v20 + v10, t1 = v21 + v11, t2 = v22 + v12, t3 = t0i0, t4 = t1i1, t5 = t2i2;
t6 = (i1 + i2)(t1 + t2), t7 = (i0 + i2)(t0 + t2), t8 = (i0 + i1)(t0 + t1);
(t9, t13) = t5 · (u22, u21), t10 = t4 + t5 + t6 + t9, (t11, t12) = t10 · (u20, u22);
t14 = (u20 + u21)(t5 + t10), s

′
0 = t3 + t11, s

′
1 = t3 + t4 + t8 + t11 + t13 + t14;

s
′
2 = t3 + t4 + t5 + t7 + t12 + t13;

5 If s
′
2 = 0 then call the Cantor algorithm –

6 Compute S = (S
′
/r) and make S monic: 1I + 6M + 1S

t1 = (rs
′
2)−1, t2 = rt1, w = t1s

′2
2 , wi = rt2, (s0, s1) = t2 · (s′

0, s
′
1);

7 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 5M

(z0, e0) = s0 · (u10, u12), (t1, e1) = s1 · (u11, u12);
z1 = (u10 + u11)(s0 + s1) + z0 + t1, z2 = e0 + t1 + u10, z3 = e1 + s0 + u11;

8 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = 7M + 3S

(S(Z + h2wiX
2) + w2

i ((F + h2V1X2 + V 2
1 )/U1))/U2):

ut3 = w2, t0 = s2
1, ut2 = w1 + d0 + t0, (e0, e1) = ut2 · (u22, u21);

(e2, e3) = t0 · (u12, u11), t1 = w0 + d1 + e2 + e0, ut1 = t1 + wi + w2
i ;

t2 = e3 + s2
0 + d2 + t1u22 + e1, t3 = wi(f6 + w2) + s1 + u22;

t7 = wit3, ut0 = t2 + t7;

9 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + h2X2 + V1 mod Ut: 8M

t1 = u22 + s1, (e0, e1, e2, e3) = t1 · (ut0, ut1, ut2, ut3), t2 = e0 + z0;
t3 = e1 + z1 + ut0, t4 = e2 + z2 + ut1, t5 = e3 + z3 + ut2;
(e0, e1, e2, vt3) = w · (t2, t3, t4, t5), vt0 = e0 + v10;
vt1 = e1 + v11, vt2 = e2 + v12 + h2;

10 Compute U3 = X3 + u32X2 + u31X + u30 = (F + h2VtX2 + V 2
t )/Ut: 5M + 1S (h2 arb.)

u32 = f6 + ut3 + v2
t3, (e0, e1) = u32 · (ut3, ut2), (e2, e3) = h2 · (vt3, vt2); 3M + 2S (h2 sma.)

u31 = ut2 + e0 + e2, u30 = f4 + ut1 + v2
t2 + e1 + e3 + u31ut3;

11 Compute V3 = v32X2 + v31X + v30 ≡ Vt + h2X2 mod U3: 3M

(e0, e1, e2) = vt3 · (u32, u31, u30), v32 = vt2 + e0 + h2, v31 = vt1 + e1, v30 = vt0 + e2;

Sum h2 is arbitrary 1I + 60M + 5S

h2 is small 1I + 58M + 6S
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TABLE XXII
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n WITH h(X) = h2X2

Input Genus 3 HEC C : Y 2 + h2X2Y = F (X), F = X7 + f6X6 + f4X4 + f1X + f0, h2
2, h−1

2 ;
Reduced Divisor D1 = (U1, V1), U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10;

Output Reduced Divisor D2 = (U2, V2) = 2D1, U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Expression h2 = 1 h−1
2 small h2 arbitrary

1 Precomputation: 5M + 5S 7M + 5S 7M + 5S

u2 = u2
12, u1 = u2

11, u0 = u2
10, (e0, e1) = h2 · (v12, v10);

(e2, t2, e3) = f6 · (u0, u1, u2), z2 = f4 + v2
12 + e3;

z1 = z2 + e0 + u2u12, t1 = f0 + v2
10 + e2;

t3 = t2 + e1 + u11z1, t4 = f1 + u0;

If t4 = 0 then call the Cantor algorithm
2 Compute s1, s0: 1I + 7M 1I + 7M 1I + 7M

t5 = (t4u0)−1, t6 = t4t5, t7 = u0t5, (t8, k1) = t1(t6, t7);

k
′
2 = t3t7, k2 = u0k

′
2, s1 = u2 + k1, s0 = u1 + k2;

3 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0: 1M + 2S 3M + 1S 3M + 1S

w1 = u0t7, w2 = h2
2w1, u

′
2 = s2

1, u
′
1 = w2(1 + w1);

4 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0: 7M + 3S 9M + 3S 13M + 3S

(e0, e1) = h2 · (w1, k1), (e2, e3) = t8 · (k2
1 , k2

2);

t9 = u2 + t21t5, t10 = z2 + e2, t11 = u1 + k
′
2t3;

t12 = t2 + e3, (vt3, e2, e3, e4) = h−1
2 · (t9, t10, t11, t12);

vt2 = e0 + e2, vt1 = e3 + e0(f6 + k1);

vt0 = e4 + e1(k1 + f6w1);

5 Reduce Ut, i.e. U2 = X3 + u22X2 + u21X + u20: 1M + 2S 3M + 1S 3M + 1S

(e0, e1) = h2 · (vt3, vt2), u22 = f6 + v2
t3, u21 = ut2 + e0;

u20 = f4 + u22ut2 + ut1 + v2
t2 + e1;

6 Compute V2 = v22X2 + v21X + v20: 3M 3M 3M

(e0, e1, e2) = vt3 · (u22, u21, u20);

v22 = vt2 + e0 + h2, v21 = vt1 + e1, v20 = vt0 + e2;

Sum 1I + 24M + 12S 1I + 32M + 10S 1I + 36M + 10S
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TABLE XXIII
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n WITH h(X) = h1X

Input Genus 3 HEC C : Y 2 + h1XY = F (X), F = X7 + f5X5 + f3X3 + f2X2 + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 15M

w0 = u10 + u20, w1 = u11 + u21, w2 = u12 + u22, (d0, d1, d2) = w2 · (u22, u21, u20);
t1 = w1 + d0, t2 = w0 + d1, (e0, e1) = t1 · (u22, u21), t3 = t2 + e0, t4 = d2 + e1;
(e0, e1) = t3 · (t2, w1), (e2, e3) = t4 · (t1, w2), t5 = e0 + e2, t6 = e1 + e3;
(e0, e1) = w2 · (t2, t6), t7 = w1t1 + e0, r = w0t5 + u20(t1t7 + e1);

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t7, i1 = t6, i0 = t5;

4 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 + V1)I mod U2: 11M

t0 = v20 + v10, t1 = v21 + v11, t2 = v22 + v12, t3 = t0i0, t4 = t1i1, t5 = t2i2;
t6 = (i1 + i2)(t1 + t2), t7 = (i0 + i2)(t0 + t2), t8 = (i0 + i1)(t0 + t1);
(t9, t13) = t5 · (u22, u21), t10 = t4 + t5 + t6 + t9, (t11, t12) = t10 · (u20, u22);
t14 = (u20 + u21)(t5 + t10), s

′
0 = t3 + t11, s

′
1 = t3 + t4 + t8 + t11 + t13 + t14;

s
′
2 = t3 + t4 + t5 + t7 + t12 + t13;

5 If s
′
2 = 0 then call the Cantor algorithm –

6 Compute S = (S
′
/r) and make S monic: 1I + 6M + 2S

t1 = (rs
′
2)−1, t2 = rt1, w = t1s

′2
2 , wi = rt2, w

′
= w2

i , (s0, s1) = t2 · (s′
0, s

′
1);

7 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 5M

(z0, e0) = s0 · (u10, u12), (t1, e1) = s1 · (u11, u12);
z1 = (u10 + u11)(s0 + s1) + z0 + t1, z2 = e0 + t1 + u10, z3 = e1 + s0 + u11;

8 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = 6M + 2S

(S(Z + h1wiX) + w2
i ((F + h1V1X + V 2

1 )/U1))/U2):
ut3 = w2, t0 = s2

1, ut2 = w1 + d0 + t0, (e0, e1) = ut2 · (u22, u21);
(e2, e3) = t0 · (u12, u11), t1 = w0 + d1 + e2 + e0, ut1 = t1 + w

′
;

t2 = e3 + s2
0 + d2 + t1u22 + e1, t3 = w

′
w2, ut0 = t2 + t3;

9 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + h1X + V1 mod Ut: 8M

t1 = u22 + s1, (e0, e1, e2, e3) = t1 · (ut0, ut1, ut2, ut3), t2 = e0 + z0;
t3 = e1 + z1 + ut0, t4 = e2 + z2 + ut1, t5 = e3 + z3 + ut2;
(e0, e1, e2, vt3) = w · (t2, t3, t4, t5), vt0 = e0 + v10;
vt1 = e1 + v11 + h1, vt2 = e2 + v12;

10 Compute U3 = X3 + u32X2 + u31X + u30 = (F + h1VtX + V 2
t )/Ut: 4M + 2S (h1 arb.)

u32 = ut3 + v2
t3, (e0, e1) = u32 · (ut3, ut2), u31 = f5 + ut2 + e0; 3M + 2S (h1 sma.)

u30 = ut1 + v2
t2 + h1vt3 + e1 + u31ut3;

11 Compute V3 = v32X2 + v31X + v30 ≡ Vt + h1X mod U3: 3M

(e0, e1, e2) = vt3 · (u32, u31, u30), v32 = vt2 + e0, v31 = vt1 + e1 + h1, v30 = vt0 + e2;

Sum h1 is arbitrary 1I + 58M + 6S

h1 is small 1I + 57M + 6S
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TABLE XXIV
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n WITH h(X) = h1X

Input Genus 3 HEC C : Y 2 + h1XY = F (X), F = X7 + f5X5 + f3X3 + f2X2 + f0, h2
1, h−1

1 ;
Reduced Divisor D1 = (U1, V1), U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10;

Output Reduced Divisor D2 = (U2, V2) = 2D1, U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Expression h1 = 1 h−1
1 small h1 arbitrary

1 Compute rs
′
2: 1M, 4S 1M, 4S 1M, 4S

k0 = u2
10, z2 = f5 + u2

12, t1 = v2
12;

z1 = t1 + u12z2, w0 = f0 + v2
10 (= rs

′
2/h5

1);

If w0 = 0 then call the Cantor algorithm
2 Compute 1/h1s2 and s1, s0: 1I, 3M 1I, 3M 1I, 3M

w1 = (1/w0) · k0 (= 1/h1s2), (k1, k2) = w1 · (z2, z1);

s1 = u12 + k1, s0 = u11 + k2;

3 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0: 3S 2M, 2S 2M, 2S

w2 = h2
1w1 (= h1/s2), ut3 = 0;

ut2 = s2
1, ut1 = w2w1, ut0 = w2 + s2

0;

4 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0: 5M, 4S 5M, 4S 9M, 4S

(e0, e1, e2, e3) = z2 · (k1, ut2, w2, ut0), t2 = e0 + t1;

t3 = e1 + w2 + f3 + u2
1, t4 = w1(e2 + z2

1) + f2 + v2
1 ;

t5 = e3 + u2
0, (vt3, vt2, vt1, vt0) = h−1

1 · (t2, t3, t4, t5);

5 Reduce Ut, i.e. U2 = X3 + u22X2 + u21X + u20: 1M, 2S 2M, 2S 2M, 2S

u22 = v2
t3, u21 = f5 + ut2;

u20 = f4 + u22ut2 + v2
t2 + ut1 + h1vt3;

6 Compute V2 = v22X2 + v21X + v20: 3M 3M 3M

(e0, e1, e2) = vt3 · (u22, u21, u20);

v22 = vt2 + e0, v21 = vt1 + e1 + h1, v20 = vt0 + e2;

Sum 1I, 13M, 13S 1I, 16M, 12S 1I, 20M, 12S
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TABLE XXV
EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n WITH h(X) = h0

Input Genus 3 HEC C : Y 2 + h0Y = F (X), F = X7 + f3X3 + f1X + f0;
Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),
U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,
U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,
U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 15M

w0 = u10 + u20, w1 = u11 + u21, w2 = u12 + u22, (d0, d1, d2) = w2 · (u22, u21, u20);
w3 = w1 + d0, w4 = w0 + d1, (e0, e1) = w3 · (u22, u21), t1 = w4 + e0, t2 = d2 + e1;
(e0, e1) = t1 · (w4, w1), (e2, e3) = t2 · (w3, w2), t3 = e0 + e2, t4 = e1 + e3;
(e0, e1) = w2 · (w4, t4), t5 = w1w3 + e0, r = w0t3 + u20(w3t5 + e1);

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t5, i1 = t4, i0 = t3;

4 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 + V1)I mod U2: 11M

t0 = v20 + v10, t1 = v21 + v11, t2 = v22 + v12, t3 = t0i0, t4 = t1i1, t5 = t2i2;
t6 = (i1 + i2)(t1 + t2), t7 = (i0 + i2)(t0 + t2), t8 = (i0 + i1)(t0 + t1);
(t9, t13) = t5 · (u22, u21), t10 = t4 + t5 + t6 + t9, (t11, t12) = t10 · (u20, u22);
t14 = (u20 + u21)(t5 + t10), s

′
0 = t3 + t11, s

′
1 = t3 + t4 + t8 + t11 + t13 + t14;

s
′
2 = t3 + t4 + t5 + t7 + t12 + t13;

5 If s
′
2 = 0 then call the Cantor algorithm –

6 Compute S = (S
′
/r) and make S monic: 1I + 6M + 2S

t1 = (rs
′
2)−1, t2 = rt1, w = t1s

′2
2 , wi = rt2, w

′
= w2

i , (s0, s1) = t2 · (s′
0, s

′
1);

7 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 5M

(z0, e0) = s0 · (u10, u12), (t1, e1) = s1 · (u11, u12);
z1 = (u10 + u11)(s0 + s1) + z0 + t1, z2 = e0 + t1 + u10, z3 = e1 + s0 + u11;

8 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = 6M + 2S

(S(Z + h0wi) + w2
i ((F + h0V1 + V 2

1 )/U1))/U2):
ut3 = w2, t0 = s2

1, ut2 = w3 + t0, (e0, e1) = ut2 · (u22, u21);
(e2, e3) = t0 · (u12, u11), t1 = w4 + e2 + e0, ut1 = t1 + w

′
;

t2 = e3 + s2
0 + d2 + t1u22 + e1, ut0 = t2 + w

′
w2;

9 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + h0 + V1 mod Ut: 8M

t1 = u22 + s1, (e0, e1, e2, e3) = t1 · (ut0, ut1, ut2, ut3), t2 = e0 + z0;
t3 = e1 + z1 + ut0, t4 = e2 + z2 + ut1, t5 = e3 + z3 + ut2;
(e0, e1, e2, vt3) = w · (t2, t3, t4, t5), vt0 = e0 + v10 + h0;
vt1 = e1 + v11, vt2 = e2 + v12;

10 Compute U3 = X3 + u32X2 + u31X + u30 = (F + h0Vt + V 2
t )/Ut: 3M + 2S

u32 = ut3 + v2
t3, (e0, e1) = u32 · (ut3, ut2), u31 = ut2 + e0;

u30 = ut1 + v2
t2 + e1 + u31ut3;

11 Compute V3 = v32X2 + v31X + v30 ≡ Vt + h0 mod U3: 3M

(e0, e1, e2) = vt3 · (u32, u31, u30), v32 = vt2 + e0, v31 = vt1 + e1, v30 = vt0 + e2 + h0;

Sum 1I + 57M + 6S
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TABLE XXVI
EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n WITH h(X) = h0

Input Genus 3 HEC C : Y 2 + h0Y = F (X), F = X7 + f3X3 + f1X + f0, h2
0, h−1

0 ;
Reduced Divisor D1 = (U1, V1), U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10;

Output Reduced Divisor D2 = (U2, V2) = 2D1, U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Expression h0 = 1 h−1
0 small h0 arbitrary

1 Compute U2
1 and V 2

1 : 6S 6S 6S

If u12 = 0 then call the Cantor algorithm
u2 = u2

12, u1 = u2
11, u0 = u2

10, v2 = v2
12, v1 = v2

11, v0 = v2
10;

2 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0: 1I, 3M, 3S 1I, 4M, 3S 1I, 4M, 3S

t1 = f3 + u1, t2 = f1 + u0, t3 = f0 + v0, t4 = u−1
2 ;

(e0, e1, h) = t4 · (v2, t1, h0), ut3 = 0, ut2 = e2
0 + u2;

ut1 = h2, w = u2ut2, ut0 = e2
1 + u1 + w;

3 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0: 3M 3M 7M

t5 = w + t1, (e0, e1) = v2 · (ut2, ut0), t6 = e0 + v1;

t8 = (u2 + v2)(ut0 + ut1) + e1 + t2, t9 = e1 + t3;

(vt3, e0, e1, vt0) = h−1
0 · (t5, t6, t8, t9);

vt2 = e0 + h, vt1 = e1 + h;

4 Reduce Ut, i.e. U2 = X3 + u22X2 + u21X + u20: 1M, 2S 1M, 2S 1M, 2S

u22 = v2
t3, u21 = ut2, u20 = u22ut2 + v2

t2 + ut1;

5 Compute V2 = v22X2 + v21X + v20: 3M 3M 3M

(e0, e1, e2) = vt3 · (u20, u21, u22);

v22 = vt2 + e2, v21 = vt1 + e1, v20 = vt0 + e0;

Sum 1I, 10M, 11S 1I, 11M, 11S 1I, 15M, 11S
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TABLE XXVII
INVERSION-FREE EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER Fp

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, Z1] and D2 = [U22, U21, U20, V22, V21, V20, Z2];

Output Reduced Divisor D3 = [U32, U31, U30, V32, V31, V30, Z3] = D1 + D2 (Projective + Projective);

Step Expression Cost

1 Precomputation: 13M + 1S

Z = Z1Z2, U
′
12 = Z2U12, U

′
11 = Z2U11, U

′
10 = Z2U10, V

′
12 = Z2V12, V11 = Z2V11, V10 = Z2V10;

Z
′
= Z2, U

′
22 = Z1U22, U

′
21 = Z1U21, U

′
20 = Z1U20, V

′
22 = Z1V22, V

′
21 = Z1V21, V

′
20 = Z1V20;

2 Compute the resultant r of U1 and U2: 19M

t0 = U
′
10 − U

′
20, t1 = U

′
11 − U

′
21, t2 = U

′
12 − U

′
22, t3 = Zt1 − U

′
22t2, t4 = Zt0 − U

′
21t2;

t5 = Zt4 − U
′
22t3, t6 = U

′
20Zt2 + U

′
21t3, t7 = −(t4t5 + t3t6), t8 = t2t6 + t1t5;

t9 = t2t4 − t1t3, r = t0t7 − U
′
20(t3t9 + t2t8);

3 If r = 0 then call the Cantor algorithm –

4 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t9, i1 = t8, i0 = t7;

5 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 16M

t1 = V
′
10 − V

′
20, t2 = V

′
11 − V

′
21, t3 = V

′
12 − V

′
22, t4 = t2i1, t5 = t1i0, t6 = t3i2;

t
′
6 = Zt6, t7 = U

′
22t6, t8 = t4 + t7 + t

′
6 − (t2 + t3)(i1 + Zi2), t9 = U

′
20 + U

′
22;

t10 = (t9 + U
′
21)(t8 − t

′
6), t9 = (t9 − U

′
21)(t8 + t6), s

′
0 = −(U

′
20t8 + t5);

s
′
1 = Z(t4 − t7) + t5 − (t1 + t2)(i0 + Zi1) + (t9 − t10)/2;

s
′
2 = Z(t

′
6 − t4) − s

′
0 − (t1 + t3)(i0 + Z

′
i2) − (t9 + t10)/2;

6 If s
′
2 = 0 then call the Cantor algorithm –

7 Monic S = X2 + (s
′
1/s

′
2)X + s

′
0/s

′
2: –

8 Precomputation: 10M + 4S

w0 = s
′
0Z, w1 = s

′
1Z, w2 = s

′
2Z, w3 = w2

2 , w4 = w3Z, R = rZ, R
′
= R2;

A = w3Z
′
, B = R

′
w2, D = Rw2, E = w3D2, F = Bs

′2
2 ;

9 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 6M

z0 = s
′
0U

′
10, z1 = (s

′
0 + s

′
1)(U

′
10 + U

′
11) − s

′
1U

′
11 − s

′
0U

′
10;

z2 = (s
′
0 + s

′
2)(U

′
10 + U

′
12) − s

′
2U

′
12 − s

′
0U

′
10 + s

′
1U

′
11;

z3 = w0 + (s
′
1 + s

′
2)(U

′
12 + U

′
11) − s

′
1U

′
11 − s

′
2U

′
12, z4 = w1 + s

′
2U

′
12;

10 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = (S(Z + 2wiV1) − w2
i ((F − V 2

1 )/U1))/U2): 23M

ut3 = z4 + w1 − U
′
22s

′
2, t1 = w1z4 − (w2ut3)U22, ut2 = w2(z3 + w0 − U

′
21s

′
2) + t1;

t2 = (U
′
22 + U

′
21)(w2ut3 + ut2), t3 = Z

′
(s

′
0z3 − U

′
21ut2), t4 = z2 + rV

′
12, t5 = z1 + rV

′
11;

ut1 = Z[w2(t4 + rV
′
12) + (w0 + w1)(z3 + z4) − R

′ − t1] − (t2 + t3 + w3U
′
20);

ut0 = Z
′
[w2(t5 + rV

′
11) + w1(t4 + rV

′
12)] + Z[t3 + R

′
U

′
12 − (w2ut3)U

′
20] − U

′
22ut1

11 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + V1 mod Ut: 11M

t1 = ut3 − z4, vt0 = t1ut0 + A(z0 + V
′
10r), vt1 = t1ut1 + w4t5 − s

′
2ut0;

vt2 = t1ut2 + w3t4 − s
′
2ut1, vt3 = t1ut3 + w2z3 − ut2;

12 Compute U3 = X3 + u32X2 + u31X + u30 = (F − V 2
t )/Ut: 13M + 2S

t1 = 2vt3, u32 = −(But3 + v2
t3), u31 = B(w3f5 − ut2) − t1vt2 − u32ut3;

u30 = s
′
2[B(w4f4 − ut1) − t1vt1] − (v2

t2 + u32ut2 + u31ut3);
u32 = u32w3, u31 = u31w2;

13 Adjust: 4M

Z3 = ED, U32 = u32D, U31 = u31D, U30 = u30D;

14 Compute V3 = v32X2 + v31X + v30 ≡ Vt mod U3: 8M

V32 = FZ
′
vt2 − u32vt3, V31 = FZvt1 − u31vt3, V30 = Fvt0 − u30vt3;

Sum 123M + 7S
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TABLE XXVIII
INVERSION-FREE EXPLICIT FORMULA FOR ADDITION ON A HEC OF GENUS THREE OVER F2n WITH h(X) = 1

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f3X3 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, Z1] and D2 = [U22, U21, U20, V22, V21, V20, Z2];

Output Reduced Divisor D3 = [U32, U31, U30, V32, V31, V30, Z3] = D1 + D2 (Projective + Projective);

Step Expression Cost

1 Precomputation: 13M + 1S

Z = Z1Z2, U
′
12 = Z2U12, U

′
11 = Z2U11, U

′
10 = Z2U10, V

′
12 = Z2V12, V11 = Z2V11, V10 = Z2V10;

Z
′
= Z2, U

′
22 = Z1U22, U

′
21 = Z1U21, U

′
20 = Z1U20, V

′
22 = Z1V22, V

′
21 = Z1V21, V

′
20 = Z1V20;

2 Compute the resultant r of U1 and U2: 19M

w0 = U
′
10 + U

′
20, w1 = U

′
11 + U

′
21, w2 = U

′
12 + U

′
22, e0 = U

′
22w2, e1 = U

′
21w2;

e2 = U
′
20w2, w3 = w1Z + e0, w4 = w0Z + e1, t1 = Zw4 + U

′
22w3, t2 = Ze2 + U

′
21w3;

t3 = w4t1 + w3t2, t4 = w2t2 + w1t1, t5 = w1w3 + w2w4, r = w0t3 + U
′
20(w3t5 + w2t4);

3 If r = 0 then call the Cantor algorithm –

4 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t5, i1 = t4, i0 = t3;

5 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 + V1)I mod U2: 17M

t0 = V
′
10 + V

′
20, t1 = V

′
11 + V

′
21, t2 = V

′
12 + V

′
22, t3 = t0i0, t4 = t1i1, t5 = t2i2;

t6 = (i1 + Zi2)(t1 + t2), t7 = (i0 + Z
′
i2)(t0 + t2), t8 = (i0 + Zi1)(t0 + t1), t9 = U

′
22t5;

t10 = t4 + Zt5 + t6 + t9, t11 = U
′
20t10, t12 = U

′
22t10, t13 = U

′
21t5, t14 = (U

′
20 + U

′
21)(Zt5 + t10);

s
′
0 = t3 + t11, s

′
1 = Z(t4 + t13) + t3 + t8 + t11 + t14, s

′
2 = Z(t4 + t13) + Z

′
t5 + t3 + t7 + t12;

6 If s
′
2 = 0 then call the Cantor algorithm –

7 Monic S = X2 + (s
′
1/s

′
2)X + s

′
0/s

′
2: –

8 Precomputation: 13M + 3S

d0 = s
′
0Z, d1 = s

′
1Z, d2 = s

′
2Z, d3 = s

′2
2 , d4 = d2

2, d5 = Zd4, d6 = d3Z, R1 = rZ;
R2 = R2

1, R3 = ZR2, A = d4Z
′
, B = d3R3, D = s

′
2B, E = DZ

′
, F = d2E, G = d2R1;

9 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 6M

z0 = s
′
0U

′
10, z1 = (s

′
0 + s

′
1)(U

′
10 + U

′
11) + s

′
1U

′
11 + s

′
0U

′
10;

z2 = (s
′
0 + s

′
2)(U

′
10 + U

′
12) + s

′
2U

′
12 + s

′
0U

′
10 + s

′
1U

′
11;

z3 = w0 + (s
′
1 + s

′
2)(U

′
12 + U

′
11) + s

′
1U

′
11 + s

′
2U

′
12;

10 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = 13M + 2S

(S(Z + h0wi) + w2
i ((F + h0V1 + V 2

1 )/U1))/U2):
ut3 = w2, t0 = s

′2
1 , w = t0Z

′
, ut2 = d3w3 + w, t1 = d6w4 + wU

′
12 + ut2U

′
22, ut1 = t1 + R3;

t2 = Z(wU
′
11 + ut2U21) + (s

′
0Z

′
)2 + d4e2 + t1U

′
22, ut0 = t2 + R3w2;

11 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + V1 + 1 mod Ut: 15M

t1 = U
′
22s

′
2 + d1, vt0 = t1ut0 + A[z0 + r(V

′
10 + Z)], vt1 = t1ut1 + d5(z1 + rV

′
11) + s

′
2ut0;

vt2 = t1ut2 + d4(z1 + rV
′
12) + s

′
2ut1, vt3 = s

′
2t1ut3 + d2z3 + ut2;

12 Compute U3 = X3 + u32X2 + u31X + u30 = (F + Vt + V 2
t )/Ut: 9M + 2S

u32 = But3 + v2
t3, u31 = R3ut2 + u32ut3, u30 = d3(R3ut1 + u31ut3) + v2

t2 + u32ut2;
u32 = u32d4, u31 = u31d6;

13 Adjust: 4M

Z3 = FG, U32 = u32G, U31 = u31G, U30 = u30G;

14 Compute V3 = v32X2 + v31X + v30 ≡ Vt + 1 mod U3: 7M

V32 = Evt2 + u32vt3, V31 = DZvt1 + u31vt3, V30 = Dvt0 + u30vt3 + Z3;

Sum 116M + 8S
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TABLE XXIX
INVERSION-FREE EXPLICIT FORMULA FOR MIXED ADDITION ON A HEC OF GENUS THREE OVER Fp

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, Z1] and D2 = [U22, U21, U20, V22, V21, V20, 1];

Output Reduced Divisor D3 = [U32, U31, U30, V32, V31, V30, Z3] = D1 + D2 (Projective + Affine);

Step Expression Cost

1 Precomputation: 6M

U
′
22 = Z1U22, U

′
21 = Z1U21, U

′
20 = Z1U20, V

′
22 = Z1V22, V

′
21 = Z1V21, V

′
20 = Z1V20;

2 Compute the resultant r of U1 and U2: 15M

t0 = U10 − U
′
20, t1 = U11 − U

′
21, t2 = U12 − U

′
22, t3 = t1 − U22t2, t4 = t0 − U21t2;

t5 = t4 − U22t3, t6 = U
′
20t2 + U21t3, t7 = −(t4t5 + t3t6), t8 = t2t6 + t1t5;

t9 = t2t4 − t1t3, r = t0t7 − U20(t3t9 + t2t8);

3 If r = 0 then call the Cantor algorithm –

4 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t9, i1 = t8, i0 = t7;

5 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 10M

t1 = V10 − V
′
20, t2 = V11 − V

′
21, t3 = V12 − V

′
22, t4 = t2i1, t5 = t1i0, t6 = t3i2;

t7 = U22t6, t8 = t4 + t6 + t7 − (t2 + t3)(i1 + i2), t9 = U20 + U22;
t10 = (t9 + U21)(t8 − t6), t9 = (t9 − U21)(t8 + t6), s

′
0 = −(U20t8 + t5);

s
′
1 = t4 + t5 + (t9 − t10)/2 − t7 − (t1 + t2)(i0 + i1);

s
′
2 = t6 − s

′
0 − (t9 + t10)/2 − t4 − (t1 + t3)(i0 + i2);

6 If s
′
2 = 0 then call the Cantor algorithm –

7 Monic S = X2 + (s
′
1/s

′
2)X + s

′
0/s

′
2: –

8 Precomputation: 9M + 4S

w0 = s
′
0Z1, w1 = s

′
1Z1, w2 = s

′
2Z1, w3 = s

′2
2 , w4 = w2

2 , R = rZ1, R
′
= r2;

A = w3Z1, B = Rw2, D = BR, E = B2, F = w2Z1, G = EF ;

9 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 6M

z0 = s
′
0U10, z1 = (s

′
0 + s

′
1)(U10 + U11) − s

′
1U11 − s

′
0U10;

z2 = (s
′
0 + s

′
2)(U10 + U12) − s

′
2U12 − s

′
0U10 + s

′
1U11;

z3 = w0 + (s
′
1 + s

′
2)(U12 + U11) − s

′
1U11 − s

′
2U12, z4 = w1 + s

′
2U12;

10 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = (S(Z + 2wiV1) − w2
i ((F − V 2

1 )/U1))/U2): 20M

ut3 = z4 + w1 − U22w2, t1 = s
′
1z4 − (s

′
2ut3)U22, ut2 = s

′
2(z3 + w0 − U21w2) + t1;

t2 = (U22 + U21)(s
′
2ut3 + ut2), t3 = s

′
0z3 − U21ut2, t4 = z2 + rV12, t5 = z1 + rV11;

ut1 = s
′
2(t4 + rV12) + (s

′
0 + s

′
1)(z3 + z4) − rR − (t1 + t2 + t3 + AU20);

ut0 = s
′
2(t5 + rV11) + s

′
1(t4 + rV12) + t3 + R

′
U12 − (s

′
2ut3)U20 − U22ut1

11 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + V1 mod Ut: 12M

t1 = ut3 − z4, vt0 = t1ut0 + A(z0 + rV10), vt1 = t1ut1 + w2(s
′
2t5 − ut0);

vt2 = t1ut2 + w2(s
′
2t4 − ut1), vt3 = t1ut3 + w2z3 − ut2Z1;

12 Compute U3 = X3 + u32X2 + u31X + u30 = (F − V 2
t )/Ut: 15M + 2S

t1 = 2vt3, u32 = −(Dut3 + v2
t3), u31 = D(w4f5 − ut2Z1) − [u32ut3 + t1(vt2Z1)];

u30 = E(w4f4 − ut1Z1) − [(vt2Z1)2 + u32(ut2Z1) + u31ut3 + t1Fvt1];
u32 = u32w4, u31 = u31w2;

13 Adjust: 5M

Z3 = Gw4r, U32 = u32B, U31 = u31B, U30 = u30B;

14 Compute V3 = v32X2 + v31X + v30 ≡ Vt mod U3: 6M

V32 = Gvt2 − u32vt3, V31 = Gvt1 − u31vt3, V30 = Gvt0 − u30vt3;

Sum 104M + 6S
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TABLE XXX
INVERSION-FREE EXPLICIT FORMULA FOR MIXED ADDITION ON A HEC OF GENUS THREE OVER F2n WITH h(X) = 1

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f3X3 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, Z1] and D2 = [U22, U21, U20, V22, V21, V20, 1];

Output Reduced Divisor D3 = [U32, U31, U30, V32, V31, V30, Z3] = D1 + D2 (Projective + Affine);

Step Expression Cost

1 Precomputation: 6M + 1S

Z = Z2
1 , U

′
22 = Z1U22, U

′
21 = Z1U21, U

′
20 = Z1U20, V

′
22 = Z1V22, V

′
21 = Z1V21, V

′
20 = Z1V20;

2 Compute the resultant r of U1 and U2: 15M

w0 = U10 + U
′
20, w1 = U11 + U

′
21, w2 = U12 + U

′
22, e0 = U22w2, e1 = U21w2;

e2 = U20w2, w3 = w1 + e0, w4 = w0 + e1, t1 = w4 + U22w3, t2 = e2 + U21w3;
t3 = w4t1 + w3t2, t4 = w2t2 + w1t1, t5 = w1w3 + w2w4, r = w0t3 + U20(w3t5 + w2t4);

3 If r = 0 then call the Cantor algorithm –

4 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: –
i2 = t5, i1 = t4, i0 = t3;

5 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = rS ≡ (V2 + V1)I mod U2: 11M

t0 = V10 + V
′
20, t1 = V11 + V

′
21, t2 = V12 + V

′
22, t3 = t0i0, t4 = t1i1, t5 = t2i2;

t6 = (i1 + i2)(t1 + t2), t7 = (i0 + i2)(t0 + t2), t8 = (i0 + i1)(t0 + t1), t9 = U22t5;
t10 = t4 + t5 + t6 + t9, t11 = U20t10, t12 = U22t10, t13 = U21t5, t14 = (U20 + U21)(t5 + t10);
s
′
0 = t3 + t11, s

′
1 = t3 + t4 + t8 + t11 + t13 + t14, s

′
2 = t3 + t4 + t5 + t7 + t12 + t13;

6 If s
′
2 = 0 then call the Cantor algorithm –

7 Monic S = X2 + (s
′
1/s

′
2)X + s

′
0/s

′
2: –

8 Precomputation: 7M + 3S

d1 = s
′
2Z1, d2 = s

′2
2 , d3 = d2

1, d4 = rd1, R = rZ1, R
′
= r2, A = d2Z1, B = AR

′
, D = Bd1Z;

9 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1: 6M

z0 = s
′
0U10, z1 = (s

′
0 + s

′
1)(U10 + U11) + s

′
1U11 + s

′
0U10;

z2 = (s
′
0 + s

′
2)(U10 + U12) + s

′
2U12 + s

′
0U10 + s

′
1U11;

z3 = w0 + (s
′
1 + s

′
2)(U12 + U11) + s

′
1U11 + s

′
2U12;

10 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = 12M + 2S

(S(Z + h0wi) + w2
i ((F + h0V1 + V 2

1 )/U1))/U2):
ut3 = w2, t0 = s

′2
1 , ut2 = d2w3 + t0Z1, t1 = d2w4 + t0U12 + ut2U22, ut1 = t1 + R

′
Z1;

t2 = t0U11 + s
′2
0 Z1 + d2e2 + t1U22 + ut2U21, ut0 = t2 + R

′
w2;

11 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wZ + V1 + 1 mod Ut: 14M

t1 = U22s
′
2 + s

′
1, vt0 = t1ut0 + d2[z0 + r(V10 + Z1)], vt1 = t1ut1 + d2(z1 + rV11) + s

′
2ut0;

vt2 = t1ut2 + d2(z2 + rV12) + s
′
2ut1, vt3 = s

′
2(t1ut3 + z3) + ut2;

12 Compute U3 = X3 + u32X2 + u31X + u30 = (F + Vt + V 2
t )/Ut: 11M + 3S

u32 = But3 + v2
t3, u31 = R2ut2 + u32ut3, u30 = Z(But1 + v2

t2) + d2u31ut3 + Z1u32ut2;
u32 = u32d3, u31 = u31A;

13 Adjust: 5M + 1S

Z3 = d2
3R

′
d4, U32 = u32d4, U31 = u31d4, U30 = u30d4;

14 Compute V3 = v32X2 + v31X + v30 ≡ Vt + 1 mod U3: 6M

V32 = Dvt2 + u32vt3, V31 = Dvt1 + u31vt3, V30 = Dvt0 + u30vt3 + Z3;

Sum 93M + 10S
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TABLE XXXI
INVERSION-FREE EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER Fp

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, Z1];

Output Reduced Divisor D2 = [U22, U21, U20, V22, V21, V20, Z2] = 2D1 (Projective);

Step Expression Cost

1 Precomputation: 6M + 1S

Z = Z2
1 , U

′
12 = Z1U12, U

′
11 = Z1U11, U

′
10 = Z1U10, V

′
12 = Z1V12, V

′
11 = Z1V11, V

′
10 = Z1V10;

2 Compute the resultant r of U1 and V1: 17M

t1 = V
′
11 − U12V12, t2 = V

′
10 − U11V12, t3 = Z1t2 − U12t1, t4 = U

′
10V12 + U11t1;

t5 = t2t3 + t1t4, t6 = −(V11t3 + V12t4), t7 = V11t1 − V12t2;
r = Z(V

′
10t5 − U

′
10(t1t7 + V12t6));

3 If r = 0 then call the Cantor algorithm –

4 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/V1 mod U1: –
i2 = t7, i1 = t6, i0 = t5;

5 Compute Z = z2X2 + z1X + z0 ≡ (F − V 2
1 )/U1 mod U1: 10M + 3S

t1 = U2
12, t2 = f4Z − (2U

′
10 + V 2

12), t3 = f5Z + t1 − 2U
′
11;

z2 = Z(t3 + 2t1), z1 = U
′
12(2U

′
11 − t3) + Zt2;

z0 = f3Z2 + t1(t3 − U
′
11) + U

′
12(2U

′
10 − t2) + U

′
11(U

′
11 − f5Z) − 2V

′
12V

′
11;

6 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = 2rS ≡ ZI mod U1: 16M

t1 = i1z1, t2 = i0z0, t3 = i2z2, t4 = u12t3, t5 = (i1 + Z1i2)(z1 + z2) − (t1 + Z1t3 + t4);
t6 = U10t5, t7 = U10 + U12, t8 = t7 + U11, t9 = t7 − U11, t7 = t8(Z1t3 + t5);
t11 = t9(t5 − Z1t3), s

′
2 = Z1(t1 − Z1t3) + t6 + (i0 + Zi2)(z0 + z2) − (t2 + (t7 + t11)/2);

s
′
1 = Z1(t4 − t1) + (i0 + Z1i1)(z0 + z1) + (t11 − t7)/2 − t2, s

′
0 = t2 − t6;

7 If s
′
2 = 0 then call the Cantor algorithm –

8 Monic S = X2 + (s
′
1/s

′
2)X + s

′
0/s

′
2: –

9 Precomputation: 7M + 2S

w0 = s
′
0Z, w1 = s

′
1Z, w2 = s

′
2Z, R = rZ, A = w2

2 , B = 2Rw2, D = 2RB, E = B2, F = AD;

10 Compute G = X5 + g4X4 + g3X3 + g2X2 + g1X + g0 = SU1: 6M

g0 = s
′
0U10, g1 = (s

′
0 + s

′
1)(U10 + U11) − s

′
1U11 − s

′
0U10;

g2 = (s
′
0 + s

′
2)(U10 + U12) − s

′
2U12 − s

′
0U10 + s

′
1U11;

g3 = w0 + (s
′
1 + s

′
2)(U12 + U11) − s

′
1U11 − s

′
2U12, g4 = w1 + s

′
2U12;

11 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = ((G + wiV1)2 − w2
i F )/U2

1 : 8M + 2S

ut3 = 2w1, ut2 = w2
1 + 2w0w2, ut1 = 2[w1w0 + 2R(s

′
2V12 − R)];

ut0 = w2
0 + 4r[U12(2R − s

′
2V12) + s

′
1V

′
12 + s

′
2V

′
11];

12 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wG + V1 mod Ut: 13M

t1 = ut3 − g4, vt0 = t1ut0 + A(g0 + 2rV10), vt1 = t1ut1 + A(g1 + 2rV11) − w2ut0;
vt2 = t1ut2 + A(g2 + 2rV12) − w2ut1, vt3 = t1ut3 − ut2 + w2g3;

13 Compute U2 = X3 + u22X2 + u21X + u20 = (F − V 2
t )/Ut: 13M + 2S

t1 = 2vt3, u22 = −(Dut3 + v2
t3), u21 = D(f5A − ut2) − (u22ut3 + t1vt2);

u20 = E(f4A − ut1) − (v2
t2 + u22ut2 + u21ut3 + w2t1vt1), u21 = u21w2, u22 = u22A;

14 Adjust: 5M

Z2 = FBw2, U22 = u22B, U21 = u21B, U20 = u20B;

15 Compute V2 = v22X2 + v21X + v20 ≡ Vt mod U2: 6M

V22 = Fvt2 − u22vt3, V21 = Fvt1 − u21vt3, V20 = Fvt0 − u20vt3;

Sum 107M + 10S
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TABLE XXXII
AFFINE INVERSION-FREE EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER Fp

Input Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, 1];

Output Reduced Divisor D2 = [U22, U21, U20, V22, V21, V20, Z] = 2D1 (Affine);

Step Expression Cost

1 Compute the resultant r of U1 and V1: 15M

t1 = V11 − U12V12, t2 = V10 − U11V12, t3 = t2 − U12t1, t4 = U10V12 + U11t1;
t5 = t2t3 + t1t4, t6 = −(V11t3 + V12t4), t7 = V11t1 − V12t2, r = V10t5 − U10(t1t7 + V12t6);

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/V1 mod U1: –
i2 = t7, i1 = t6, i0 = t5;

4 Compute Z = z2X2 + z1X + z0 ≡ (F − V 2
1 )/U1 mod U1: 7M

t1 = 2u10, t2 = 2u11, t3 = u2
12, t4 = f4 − (t1 + v2

12), t5 = f5 + t3 − t2, t10 = 2v12, z2 = t5 + 2t3;
z1 = u12(t2 − t5) + t4, z0 = f3 + t3(t5 − u11) + u12(t1 − t4) + u11(u11 − f5) − t10v11;

5 Compute S
′
= s

′
2X2 + s

′
1X + s

′
0 = 2rS ≡ ZI mod U1: 10M

t1 = i1z1, t2 = i0z0, t3 = i2z2, t4 = u12t3, t5 = (i1 + i2)(z1 + z2) − (t1 + t3 + t4), t6 = u10t5;
t7 = u10 + u12, t8 = t7 + u11, t9 = t7 − u11, t7 = t8(t3 + t5), t11 = t9(t5 − t3);
s
′
0 = t2 − t6, s

′
1 = t4 + (i0 + i1)(z0 + z1) + (t11 − t7)/2 − (t1 + t2);

s
′
2 = t1 + t6 + (i0 + i2)(z0 + z2) − (t2 + t3 + (t7 + t11)/2);

6 If s
′
2 = 0 then call the Cantor algorithm –

7 Monic S = X2 + (s
′
1/s

′
2)X + s

′
0/s

′
2: –

8 Precomputation: 3M + 2S

A = s
′2
2 , B = 2rs

′
2, D = 2rB, E = B2, F = AD;

9 Compute G = X5 + g4X4 + g3X3 + g2X2 + g1X + g0 = SU1: 6M

g0 = s
′
0U10, g1 = (s

′
0 + s

′
1)(U10 + U11) − s

′
1U11 − s

′
0U10;

g2 = (s
′
0 + s

′
2)(U10 + U12) − s

′
2U12 − s

′
0U10 + s

′
1U11;

g3 = s
′
0 + (s

′
1 + s

′
2)(U12 + U11) − s

′
1U11 − s

′
2U12, g4 = s

′
1 + s

′
2U12;

10 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = ((G + wiV1)2 − w2
i F )/U2

1 : 8M + 2S

ut3 = 2s
′
1, ut2 = s

′2
1 + 2s

′
0s

′
2, ut1 = 2[s

′
1s

′
0 + 2r(s

′
2V12 − r)];

ut0 = s
′2
0 + 4r[U12(2r − s

′
2V12) + s

′
1V12 + s

′
2V11];

11 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wG + V1 mod Ut: 13M

t1 = ut3 − g4, vt0 = t1ut0 + A(g0 + 2rV10), vt1 = t1ut1 + A(g1 + 2rV11) − s
′
2ut0;

vt2 = t1ut2 + A(g2 + 2rV12) − s
′
2ut1, vt3 = t1ut3 − ut2 + s

′
2g3;

12 Compute U2 = X3 + u22X2 + u21X + u20 = (F − V 2
t )/Ut: 13M + 2S

t1 = 2vt3, u22 = −(Dut3 + v2
t3), u21 = D(f5A − ut2) − (u22ut3 + t1vt2);

u20 = E(f4A − ut1) − (v2
t2 + u22ut2 + u21ut3 + s

′
2t1vt1), u21 = u21s

′
2, u22 = u22A;

13 Adjust: 5M

Z = FBs
′
2, U22 = u22B, U21 = u21B, U20 = u20B;

14 Compute V2 = v22X2 + v21X + v20 ≡ Vt mod U2: 6M

V22 = Fvt2 − u22vt3, V21 = Fvt1 − u21vt3, V20 = Fvt0 − u20vt3;

Sum 86M + 6S
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TABLE XXXIII
INVERSION-FREE EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n WITH h(X) = 1

Input Genus 3 HEC C : Y 2 + Y = F (X), F = X7 + f3X3 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, Z1];

Output Reduced Divisor D2 = [U22, U21, U20, V22, V21, V20, Z2] = 2D1 (Projective);

Step Expression Cost

1 Precomputation: 1M + 9S

Z = Z2
1 , Z

′
= Z2, Z̃ = Z

′2, Zi = ZZ
′
, u2 = U2

12;
u1 = U2

11, u0 = U2
10, v2 = V 2

12, v1 = V 2
11, v0 = V 2

10;

2 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0: 9M + 4S

t1 = f3Z + u1, t2 = f1Z + u0, t3 = f0Z + v0, ut3 = 0;

t4 = v2Z1, u
′
2 = u2

2, ut2 = t24 + u2u
′
2, w0 = u2ut2;

w1 = u2Z1, w2 = w2
1 , ut0 = t21Z

′
+ u1w2 + w0;

3 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0: 10M

vt3 = t1w2 + w0, vt2 = v2ut2 + v1w2 + u2Zi, w3 = v2ut0, w4 = w2Z;
vt1 = (v2 + u2)(Z̃ + ut0) + w3 + t2w4 + u2Z̃, vt0 = w3 + t3w4;

4 Reduce Ut, i.e. U2 = X3 + u22X2 + u21X + u20: 7M + 3S

u22 = v2
t3, w5 = w2

4 , u21 = ut2w5, u20 = u22ut2 + w2v2
t2 + w5Zi;

u22 = u22w2, A = w5u
′
2, B = AZ;

13 Adjust: 4M

Z2 = Bw4, U22 = u22w4, U21 = u21w4, U20 = u20w4;

5 Compute V2 = v22X2 + v21X + v20: 6M

V22 = Bvt2 + vt3u22, V21 = Avt1 + vt3u21, V20 = Avt0 + vt3u20;

Sum 37M + 16S

TABLE XXXIV
AFFINE INVERSION-FREE EXPLICIT FORMULA FOR DOUBLING ON A HEC OF GENUS THREE OVER F2n WITH h(X) = 1

Input Genus 3 HEC C : Y 2 + Y = F (X), F = X7 + f3X3 + f1X + f0;
Reduced Divisors D1 = [U12, U11, U10, V12, V11, V10, 1];

Output Reduced Divisor D2 = [U22, U21, U20, V22, V21, V20, Z] = 2D1 (Affine);

Step Expression Cost

1 Precomputation: 7S

u2 = U2
12, u

′
2 = u2

2, u1 = U2
11, u0 = U2

10, v2 = V 2
12, v1 = V 2

11, v0 = V 2
10;

2 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0: 3M + 2S

t1 = f3 + u1, t2 = f1 + u0, t3 = f0 + v0, ut3 = 0, e = u2u
′
2;

ut2 = v2
2 + e, ut1 = 1, ut0 = t21 + u1u

′
2 + u2ut2;

3 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0: 7M

vt3 = t1u2 + ut2, vt2 = v2ut2 + v1u
′
2 + u2, w = v2ut0;

vt1 = (v2 + u2)(ut0 + 1) + w + t2u
′
2 + u2, vt0 = w + t3u

′
2;

4 Reduce Ut, i.e. U2 = X3 + u22X2 + u21X + u20: 3M + 2S

u22 = v2
t3, u21 = ut2u

′
2, u20 = u22ut2 + v2

t2 + u
′
2, u22 = u22u

′
2;

5 Adjust: 4M

Z = eu
′
2, U22 = u22u2, U21 = u21u2, U20 = u20u2;

6 Compute V2 = v22X2 + v21X + v20: 6M

V22 = evt2 + vt3u22, V21 = evt1 + vt3u21, V20 = evt0 + vt3u20;

Sum 23M + 11S


