
Improving the Robustness of Private Information Retrieval

Ian Goldberg
David R. Cheriton School of Computer Science

University of Waterloo
200 University Ave. West

Waterloo, ON, Canada N2L 3G1
iang@cs.uwaterloo.ca

Abstract

Since 1995, much work has been done creating protocols for private information retrieval (PIR). Many variants of the
basic PIR model have been proposed, including such modifications as computational vs. information-theoretic privacy
protection, correctness in the face of servers that fail to respond or that respond incorrectly, and protection of sensitive data
against the database servers themselves.

In this paper, we improve on the robustness of PIR in a number of ways. First, we present a Byzantine-robust PIR
protocol which provides information-theoretic privacy protection against coalitions of up to all but one of the responding
servers, improving the previous result by a factor of 3. In addition, our protocol allows for more of the responding servers
to return incorrect information while still enabling the user to compute the correct result.

We then extend our protocol so that queries have information-theoretic protection if a limited number of servers collude,
as before, but still retain computational protection if they all collude. We also extend the protocol to provide information-
theoretic protection to the contents of the database against collusions of limited numbers of the database servers, at no
additional communication cost or increase in the number of servers. All of our protocols retrieve a block of data with
communication cost onlyO(ℓ) times the size of the block, whereℓ is the number of servers.

Finally, we discuss our implementation of these protocols,and measure their performance in order to determine their
practicality.

1 Introduction

Private information retrieval (PIR) [4] is the task of fetching an item from a database server without the server learning which
item you are interested in. In the context of PIR, an “item” isoften thought of as a single bit out of ann-bit database, but it
could also be a “block” of sizeb bits. In the latter case, then-bit database is considered to be composed ofn/b blocks, each of
sizeb bits. A number of applications have been proposed for PIR, including patent and pharmaceutical databases [1], online
census information [16], and real-time stock quotes [16]. The Pynchon Gate [11] shows how to use PIR for an arguably
more realistic purpose: retrieving pseudonymously addressed email; it argues that PIR is a more suitable primitive forthis
application than previous proposals.

A trivial solution to the PIR problem is simply to ask the server for the whole database and look up the desired bit or block
yourself. To make things more interesting (not to mention practical), we analyze thecommunication costof the protocol—the
total number of bits transmitted—and insist that it besublinear; that is, less thann.

There are two main types of PIR: information-theoretic and computational. In information-theoretic PIR, the server isunable
to determine any information about your query even with unbounded computing power. In computational PIR (CPIR) [3, 7],
the privacy of the query need only be guaranteed against servers restricted to polynomial-time computations. Note thatin
the information-theoretic case the unbounded power is onlyto be used to try to compromise your privacy; in either case we
still insist that you and the servers use only polynomial-time computations in order toperformthe protocol.

It is an unsurprising fact that information-theoretic sublinear PIR is impossible with a single server. However, itis possible
when there areℓ servers, each with a copy of the database—assuming that the servers do not collude in order to determine
your query. At-private ℓ-server PIR is a PIR system in which the privacy of the query is information-theoretically protected,
even if up tot of theℓ servers collude. (Of course, it must be the case thatt < ℓ.)

1

Beimel and Stahl [2] investigate the case where servers can fail to respond. In this event, it is important that the clientstill
be able to retrieve her answer. If onlyk of the ℓ servers need to respond, and no coalition of up tot servers can learn any
information about the query, they call such a systemt-private k-out-of-ℓ PIR. In addition, they examine systems where, of
thek servers that replied (out ofℓ total),v of thosek areByzantine; that is, they can return incorrect answers, possibly chosen
maliciously or possibly computed in error (because, for example, the server may have an out-of-date copy of the database).
However, even with these incorrect answers, the client should still be able to reconstruct the correct database item, and as a
side effect, determine which of the servers gave incorrect answers. They term thist-private v-Byzantine-robust k-out-of-ℓ
PIR, and show that such systems exist forv ≤ t < k

3 . Yang et al. [16] propose a PIR protocol for whichv ≤ t < k
2 , but the

client’s reconstruction of the correct data block in that protocol does not run in polynomial time.

Gertner, Goldwasser, and Malkin [5] consider that keepingℓ replicated copies of the database may itself be a security ora
privacy risk. They examine PIR protocols where no coalitionof up toτ serverscan determine the contents of the database
(information-theoretically). They call thisτ -independent PIR. They show that they can addτ -independence to any PIR
protocol at the expense of increasing the number of servers and the communication cost.

In this paper, we improve the robustness of PIR in a number of ways. First, we allow more servers to collude without
compromising privacy, while also allowing more servers to be Byzantine. In particular, we construct at-privatev-Byzantine-
robustk-out-of-ℓ PIR protocol for any0 < t < k andv < k− ⌊

√
kt⌋. We show this is always a strict improvement over the

previous result, except when(t, k) = (1, 4), where it is the same.

Second, we extend this first protocol to handle the case in which more thant servers collude. In existingt-private PIR
systems, a coalition of more thant servers can easily reconstruct the query. We produce a PIR system which hashybrid
privacy protection: if up tot servers collude, the query is protected information-theoretically, as before; however, if more than
t servers collude, the query is still protected computationally. This means that coalitions of up tot servers with unbounded
computational power, or of up to allℓ servers with polynomially bounded computational power, will be unable to determine
the client’s query.

Finally, we give a second extension that can addτ -independence to our protocol, for0 < t ≤ t+ τ < k, with no increase in
the number of servers or in communication cost.

Each variant of our protocol has communication cost onlyO(ℓ) times the size of the data block being retrieved.

At the end of this paper, we briefly discuss our implementation of this protocol, and give some performance measurements.

2 Preliminaries

2.1 Notation

We will denote byZm the ring of integers modulom, and byZ
∗
m the multiplicative group of invertible integers modulom.

For primesp, we will denote byFp the finite field of integers modulop.

We will denote byδij the Kronecker delta function; that is:δij =

{

1 i = j
0 i 6= j

.

Let ǫ be the empty string, ands||t be the concatenation of stringss andt.

2.2 Shamir Secret Sharing

2.2.1 Sharing of Finite Field Elements

Our technique is based on Shamir secret sharing [13], which we will briefly review. Given a finite fieldF, and a secretσ ∈ F,
we can constructt-privateℓ-way sharesof the secret in the following way:

1. Chooseℓ distinct non-zero elementsα1, . . . , αℓ of F. They can be chosen from any distribution; they need not be

2

uniformly distributed. It is even acceptable to simply useα1 = 1, α2 = 2, etc. when{1, 2, . . . , ℓ} ⊆ F\{0}. We call
theαi indices.

2. Selectt elementsσ1, . . . , σt of F uniformly at random.

3. Construct the polynomialf(x) = σ + σ1x+ σ2x
2 + · · ·+ σtx

t.

4. Theℓ shares aref(α1), . . . , f(αℓ).

Given anyt + 1 of the shares, one can recover the polynomialf by Lagrange interpolation and thus determineσ = f(0).
However, given onlyt or fewer shares, no information at all aboutσ is revealed. Because of this, dividing a secret into
t-privateℓ-way shares in this way is also called(t+ 1)-of-ℓ Shamir secret sharing.

2.2.2 Sharing of Ring Elements

Common choices forF, above, includeGF (2d) andFp. But with minor care, it turns out that the above technique works
in some non-fields as well. In particular, we consider ringsZpq of integers modulo products of two distinct primesp andq.
Note thatp andq do not need to be a secret.

In this scenario, shares are constructed and the secret is reconstructed in exactly the same way as before. The only caveat is
in the selection of theαi. Whereas in the case of a finite field, we only needed that theαi be non-zero and distinct, in the
modulopq case, we need that theαi be non-zero and distinct modulo each ofp andq separately. Note that an easy way to
ensure this is to choose theαi from the set{1, 2, . . . ,min(p, q)− 1}.
To see why this works, consider the natural homomorphismπp : Zpq → Fp. That is, given a number modulopq, return
its value modulop. Under this homomorphism,{πp(α1), . . . , πp(αℓ)} is a set of distinct non-zero elements ofFp, and
{πp(f(α1)), . . . , πp(f(αℓ))} aret-privateℓ-way shares of the secretπp(σ). Therefore, any collection oft+ 1 of the shares
uniquely determinesπp(σ), and any collection oft shares yields no information aboutπp(σ). Similarly, by usingπq : Zpq →
Fq, we find that any collection oft + 1 of the shares uniquely determinesπq(σ), and any collection oft shares yields no
information aboutπq(σ). Therefore, using the Chinese Remainder Theorem, any collection of t+ 1 of the shares uniquely
determinesσ, and any collection oft shares yields no information aboutσ, as required.

2.2.3 Sharing of Vectors

Let ~v be a vector[v1, . . . , vr] of lengthr, whose entries are elements of either a finite field or a ringZpq, as above. We can
maket-privateℓ-way shares of~v by simply independently sharing each of the entries. So, ifxj1, . . . , xjℓ aret-privateℓ-way
shares ofvj (for 1 ≤ j ≤ r), then[x11, . . . , xr1], . . . , [x1ℓ, . . . , xrℓ] aret-privateℓ-way shares of~v.

2.3 The Paillier Cryptosystem

The Paillier public-key cryptosystem [10] is another tool we will use. The cryptosystem is as follows:

Key Generation: Select random primesp andq of some desired length, and setm = pq andλ = lcm(p− 1, q− 1). Define
the functionL(u) = (u− 1)/m. Choose a randomg ∈ Z

∗
m2 and ensure thatµ = (L(gλ mod m2))−1 mod m exists.

The public encryption key is then(m, g) and the private decryption key is(λ, µ).

Encryption: To encrypt a plaintextP ∈ Zm, select a randomρ ∈ Z∗
m, and compute the ciphertext to beC = E(P) =

gP · ρm mod m2. Note that, as usual,E is a randomized function.

Decryption: To decrypt a ciphertextC, computeD(C) = L(Cλ mod m2) · µ mod m.

3

Note that it is of course the case thatD(E(P)) = P for all P ∈ Zm.

The security of the Paillier cryptosystem is based on theDecisional Composite Residuosity Assumption(DCRA). That is, for
a fixed public keym, this system is semantically secure if and only if an adversary cannot determine whether or not a given
random element ofZ∗

m2 has anmth root.

The Paillier cryptosystem has one additional property thatis vital for our purposes. It isadditive homomorphic; that is,
multiplying two encryptions together (modulom2) gives an encryption of thesumof the original messages (modulom).
Formally,D(E(P1) · E(P2) mod m2) = P1 + P2 mod m.

3 Improving Byzantine Robustness

We motivate our study of Byzantine robustness by looking at the Pynchon Gate [11]. The Pynchon Gate is a system that
uses private information retrieval to enable the delivery of email to pseudonymous recipients. Greatly simplified, thesystem
works like this:

• Email arrives at the mail server, destined for a pseudonymous user, say<wiseone@pynchon.example>.

• The mail server encrypts the message using a key known by the owner of the pseudonym, and puts the encrypted
message in the PIR database (distributing it toℓ database servers). Note that the server does not knowwho the owner
of the pseudonym is.

• At some point, Joe (the owner of the pseudonym) does a PIR query on the database to retrieve the mail for the
pseudonym<wiseone@pynchon.example>. The privacy guarantees of the PIR technique assure that, unless
all ℓ database servers collude, they will be unable to link the client of the query, Joe, to the value of the query,
<wiseone@pynchon.example>.

• Joe decrypts and reads the resulting message.

The PIR protocol used by the Pynchon Gate is shown in Figure 1.It is straightforward to see that this is an(ℓ − 1)-private
ℓ-server PIR with information-theoretic protection.1 Its communication cost isℓ(r + b) = ℓ(n/b+ b). Choosingb to be

√
n

gives a cost of2ℓ
√
n.

However, in the presence of Byzantine servers, this protocol has a major flaw: Joe will be unable to reconstruct the message.
Worse, although he will be able to tell thatsomeserver was Byzantine, he will be unable to tellwhichserver it was. Therefore,
it is important to produce PIR protocols that not only can allow the client to reconstruct the correct answer, but will also let
the client know which servers were Byzantine.

To accomplish this goal, we note that steps P2 and P3 of the Pynchon Gate PIR protocol in Figure 1 form(ℓ − 1)-private
ℓ-way shares of the secreteβ (though not with Shamir’s method). We replace these steps with a more generalt-privateℓ-way
Shamir secret sharing ofeβ. Note that bitstrings of lengthr are equivalent to vectors of lengthr overF2. We now consider
eβ not as a vector overF2, but rather as a vector of lengthr over some larger structureS. Theβth entry ofeβ is 1, and the
other entries are0. S might be a field (such asGF (2d) for somed, or Fp for some primep) or a ringZpq for some distinct
primesp andq. Let I be a set ofShamir indicesin S; that is, if S is a field,I can just be the non-zero elements ofS; if
S is Zpq, I can be the set{1, 2, . . . ,min(p, q) − 1}, as in section 2.2.2. The only restriction onS is thatI have at leastℓ
elements, though we will see later that it may benefit us to choose substantially largerI. We takeℓ random elements ofI as
the indices in the Shamir secret sharing, and use them to produce theρi. An important property of Shamir indices is that our
usual intuitions about polynomials over fields, such as distinct degreet polynomials agreeing on at mostt points, continue
to hold in a ring setting provided we restrict our attention to indices selected fromI.

Similarly to eβ, in the Pynchon Gate protocol we can consider theρi to be vectors of lengthr over F2, and theRi and
Bj to be vectors of lengthb overF2. In this case, we see that the computation ofRi in step S3 is the same as computing

1The authors of the Pynchon Gate [11] mistakenly claim that, as an optimization, the client may sendℓ − 1 of the servers a key for a stream cipher
instead of a randomly generated bit string of lengthr. In reality, doing so reduces the protection provided from information-theoretic to computational.

4

Parameters:
ℓ: number of servers
n: size of the database (in bits)
b: size of each block (in bits)

Calculate:
r: number of blocks= n/b

Client (querying for block numberβ):
P1. Leteβ be the bit string of lengthr that is all 0s, except for positionβ, which is 1.
P2. Generateℓ− 1 random bit stringsρ1, . . . , ρℓ−1, each of lengthr.
P3. Computeρℓ = ρ1 ⊕ · · · ⊕ ρℓ−1 ⊕ eβ.
P4. Sendρi to server numberi, for 1 ≤ i ≤ ℓ.

Each server:
S1. Receiveρi = ρi1 · · · ρir, a bitstring of lengthr.
S2. LetBj be thejth b-bit block of the database for1 ≤ j ≤ r.
S3. ComputeRi to be the XOR of all theBj for whichρij = 1.
S4. ReturnRi to the client.

Client:
C1. ReceiveR1, . . . , Rℓ.
C2. ComputeB = R1 ⊕ · · · ⊕Rℓ.

Figure 1: The PIR protocol used by the Pynchon Gate [11]

Ric =
∑

ρijBjc overF2 for 1 ≤ c ≤ b. When we move to a larger structureS, the servers perform this same computation,
but overS.

The secret recovery is more complicated than that of the Pynchon Gate, not only since recovering a secret from Shamir
shares is more complicated than recovering from a simple(ℓ − 1)-privateℓ-way XOR scheme, but also since we will need
to handle Byzantine servers. The recovery scheme will use the following functionΓ: Given a structureS, a list of ℓ indices
[α1, . . . , αℓ] in S, a list ofℓ values[R1, . . . , Rℓ] in S ∪ {⊥}, and a polynomialφ overS, let Γ(φ) be the subset of{1, . . . , ℓ}
such thatφ(αi) = Ri for i ∈ Γ(φ). Note that we keepS and the listsαi andRi implicit in the notation for convenience.

The resulting PIR protocol is shown in Figure 2. It uses two subroutines, EASYRECOVER and HARDRECOVER, which are
shown in Figure 3. An important fact about these subroutinesis that EASYRECOVER is just a less computationally expensive
method to get the same answer as HARDRECOVER, but it only works some of the time:

Fact 1. If EASYRECOVER returns a non-empty set on a given input, thenHARDRECOVER will return the same set on that
same input.

Proof. HARDRECOVER finds all polynomialsφ of degree at mostt for which |Γ(φ)| ≥ h, whereh is the desired minimum
number of honest (non-Byzantine) servers. EASYRECOVER is a less expensive procedure to perform the same calculation, in
the event that there is exactly one such polynomial. EASYRECOVERselectst+1 of the servers at random, and optimistically
assumes that all of those servers returned the correct answer. It calculates theφ uniquely determined by those servers’
answers, and sees how many other servers gave answers consistent with that polynomial. The key is that if fewer thanh− t
serversdisagreed, then there can be no other polynomialφ′ for which |Γ(φ′)| ≥ h: φ′ would have to agree withφ on more
thant points ofI, and soφ′ = φ.

Note that EASYRECOVER may not always find the unique polynomial, even if there is one, but in no case will it output a
non-empty set when more possibilities exist.

5

Parameters:
ℓ: number of servers
t: the desired privacy level; that is, the number of servers that can collude without learning

anything about the query
n: size of the database (in bits)
b: size of each block (in bits)
w: size of each word within a block (in bits)
S: either a field or a ringZpq such that|S| ≥ 2w

I: a set of Shamir indices fromS such that|I| ≥ ℓ
Calculate:

r: number of blocks= n/b
s: number of words per block= b/w

Client (querying for block numberβ):
P1. Chooseℓ random distinct indicesα1, . . . , αℓ from I.
P2. Chooser random polynomialsf1, . . . , fr of degreet. The coefficients of each

polynomial should be random elements ofS, except for the constant terms.
The constant term offj should beδjβ.

P3. Computeρi = [f1(αi), . . . , fr(αi)] for 1 ≤ i ≤ ℓ.
P4. Sendρi to server numberi, for 1 ≤ i ≤ ℓ.

Each (honest) server:
S1. Receiveρi = [ρi1, . . . , ρir], a vector ofr elements ofS.
S2. LetWjc be thecth w-bit word of thejth b-bit block of the database, interpreted as a member ofS.

S3. ComputeRic =
∑

1≤j≤r

ρijWjc for 1 ≤ c ≤ s.

S4. Return[Ri1, . . . , Ris] to the client.

Client:
C1. Receive[R11, . . . , R1s], . . . , [Rℓ1, . . . , Rℓs] from theℓ servers.

If serverj does not respond at all, setRjc =⊥ for each1 ≤ c ≤ s.
Let γ1, . . . , γk be the numbers of thek servers which did respond.
LetG = {γ1, . . . , γk} andH = {(G, ǫ)}.

C2. If k ≤ t, abort with the error “not enough servers replied”.
C3. Selecth (the minimum number of honest servers) from the range

√
kt < h ≤ k.

C4. Forc from 1 to s:
C5. SetH ′ ← EASYRECOVER(S, w, t, h,H, [R1c, . . . , Rℓc], [α1, . . . , αℓ])
C6. IfH ′ is the empty set, setH ′ ← HARDRECOVER(S, w, t, h,H, [R1c, . . . , Rℓc], [α1, . . . , αℓ])
C7. IfH ′ is the empty set, abort with the error “not enough honest servers replied”.
C8. SetH ← H ′.
C9. The resultingH will be a non-empty set of pairs(G,B). One of theBs will be the correct block.

Figure 2: At-privatev-Byzantine-robustk-out-of-ℓ information-theoretic PIR scheme for0 < t < k andv < k − ⌊
√
kt⌋.

6

Inputs:
S: the structure used for Shamir secret sharing
w: the number of bits per word
t: the desired privacy level of the PIR protocol
h: the minimum number of honest servers that need to respond (h > t)
H: a nonempty set of pairs(G,σ) whereG is a set of at leasth server numbers,

andσ is the portion of the requested block recovered so far, assuming that
the servers inG were the honest ones. Eachσ will have the same length.
No two of theG will have more thant elements in common.

[R1, . . . , Rℓ]: t-privateℓ-way purported shares of aw-bit word that had been encoded as a member
of S. It must not be the case thatRj =⊥ for anyj in any of theG in H.

[α1, . . . , αℓ]: the indices used for the secret sharing
Output:

Either: (1) a setH ′ of the same form asH, above, but with eachσ beingw bits longer
than those in the input, or (2) the empty set

EASYRECOVER(S, w, t, h,H, [R1 , . . . , Rℓ], [α1, . . . , αℓ]):
E1. SetH ′ ← {}.
E2. For each(G,σ) ∈ H:

/* Optimistically hope the rest of the servers are honest */
E3. Select a random subsetI ⊆ G of sizet+ 1.
E4. Use Lagrange interpolation to find the unique polynomialφ overS of degreet

for whichφ(αj) = Rj for eachj ∈ I.
E5. LetW be thew-bit representation ofφ(0), or⊥ if there is no such representation.
E6. If |G ∩ Γ(φ)| ≥ h and|G\Γ(φ)| < h− t andW 6=⊥ then add(G ∩ Γ(φ), σ||W) toH ′.
E7. Otherwise, immediately return the empty set.
E8. ReturnH ′.

HARDRECOVER(S, w, t, h,H, [R1, . . . , Rℓ], [α1, . . . , αℓ]):
H1. SetH ′ ← {}.
H2. Use the algorithm of [6] to recover (in polynomial time) the set{φi} of polynomials over

S of degree≤ t for whichφi(αj) = Rj for at leasth values ofj ∈ {1, . . . , ℓ}.
H3. For each suchφi:
H4. LetWi be thew-bit representation ofφi(0), or⊥ if there is no such representation.
H5. If Wi 6=⊥, then for any(G,σ) ∈ H such that|Γ(φi) ∩G| ≥ h,

add(Γ(φi) ∩G,σ||Wi) toH ′.
H6. ReturnH ′.

Figure 3: The EASYRECOVER and HARDRECOVERsubroutines
.

7

3.1 Privacy of the Protocol

It is easy to see that no coalition of up tot servers can learn any information aboutβ (the requested block number): between
them, they have at mostt of the t-privateℓ-way shares of the vectoreβ (as in section 2.2.3). By the properties of Shamir
secret sharing, they learn no information abouteβ, and therefore aboutβ.

It is important to note that this result holds even if some servers are Byzantine, since all of the information flowing fromthe
client to the servers happensbeforethe servers perform any actions.

3.2 Correctness of the Protocol without Byzantine servers

In this section, we show that this protocol returns the correct blockB from the database when no server responds incorrectly
(but some may not respond at all), so long as enough servers dorespond.

Theorem 1. If k of theℓ servers respond, there are no Byzantine servers, andk > t, then the algorithm in Figure 2 will
return a setH containing the single pair(G,B), whereG is the set of thek server numbers that responded, andB is the
correct blockBβ from the database.

Proof. In step P2, the client definesr polynomialsf1, . . . , fr of degreet. Define thes polynomialsFc to be Fc =
∑

1≤j≤r

fjWjc for 1 ≤ c ≤ s, where theWjc are defined as in step S2. Note that these polynomialsFc are also of degree (at

most)t, and also thatFc(0) =
∑

1≤j≤r

fj(0)Wjc =
∑

1≤j≤r

δjβWjc = Wβc.

Suppose serveri is one of the servers that responds. In step S1, it receives[f1(αi), . . . , fr(αi)] from the client. In step S3, it

computesRic =
∑

1≤j≤r

fj(αi)Wjc = Fc(αi) for 1 ≤ c ≤ s, and returns these values to the client in step S4.

The client initializesH to be {(G, ǫ)} in step C1, whereG is the set of server numbers that responded. We claim

that afterx iterations of the loop at C4,H will be the set{(G,B(xw)
β)}, whereB(xw)

β is a string consisting of the first
xw bits of the database blockBβ. We proceed by induction: we have already shown that this is the case forx =
0. Suppose it is true forx = c − 1 for some1 ≤ c ≤ s. Now consider iterationc. In step C5, the client calls
EASYRECOVER(S, w, t, h,H, [R1c, . . . , Rℓc], [α1, . . . , αℓ]) whereRjc = Fc(αj) for eachj ∈ G.

By the induction hypothesis, there is exactly one element ofH, so the loop at E2 will execute only once. In step E4, the
client will necessarily findφ = Fc, sinceφ(αj) = Rjc = Fc(αj) for eachj ∈ G, and so for eachj ∈ I ⊆ G. Since these
two polynomialsφ andFc of degree at mostt agree on at leastt+ 1 points ofI, they must be equal. Therefore theW in step
E5 will just be thew-bit representation ofFc(0) = Wβc, which is thecth w-bit word of blockβ of the database.

Then in step E6,Γ(φ)∩Gwill equalG, soH ′ will be set to{(G,σ||W)}. By the induction hypothesis,σ is the first(c−1)w
bits ofBβ, soσ||W is the firstcw bits ofBβ, and the proof of the claim is complete.

Therefore, after alls = b/w iterations of the loop at C4,H will equal{(G,Bβ)}, as required.

3.3 Correctness in the Presence of Byzantine Servers

We will now look at the effect of Byzantine servers on the correctness of this protocol.

Theorem 2. If k of theℓ servers respond at all,k > t, and at leasth >
√
kt servers respond honestly, then the algorithm

in Figure 2 will return a setH, one of whose elements is the pair(Gh, Bβ), whereGh is the set of the server numbers that
responded honestly, andBβ is the correct block from the database.

Proof. As above, we will prove that afterx iterations of the loop at C4,H will be a set containing the element(G
(x)
h , B

(xw)
β)

whereG(x)
h is the set of server numbers that both replied at all, and alsoreplied honestly in the firstx words of its reply, and

8

B
(xw)
β is defined as before. Forx = 0, this is trivially true. Suppose it is true forx = c − 1 for some1 ≤ c ≤ s. Now

consider iterationc. We can assume the client calls HARDRECOVER in step C6, since as we noted earlier, EASYRECOVER

produces the same answer as HARDRECOVERwhen it produces an answer at all.

HARDRECOVERwill produce a set of polynomials in step H2, one of which willnecessarily beFc (as defined above). This set
may have polynomially (ink) many elements, but we will see in section 3.4 that the probability that this set contains elements
other than the desired one can be made arbitrarily small, ensuring that the entire protocol runs in (probabilistic) polynomial
time. When the loop at H3 encounters the elementFc, Wi will be set toFc(0) = Wβc (as defined above). By the induction

hypothesis, step H5 will find the element(G
(c−1)
h , B

((c−1)w)
β) ∈ H. But alsoΓ(Fc) ⊇ Gh, soΓ(Fc) ∩ G(c−1)

h ⊇ Gh, so

|Γ(Fc) ∩ G(c−1)
h | ≥ h. Then step H5 will add(Γ(Fc) ∩ G(c−1)

h , B
((c−1)w)
β ||Wβc) = (G

(c)
h , B

(cw)
β) to H ′, and the proof is

complete.

3.4 List-decoding

In the presence of many Byzantine servers, there may be more than one polynomialφ such that|Γ(φ)| ≥ h. There are a
number of ways to handle this and recover the unique correct result.

The simplest way to handle list-decoding is simply to chooseyour parameters such that there cannot be more than one such
φ.

Fact 2. If h > k+t
2 , then there is exactly one polynomialφ of degree at mostt for which|Γ(φ)| ≥ h.

Proof. Suppose the correct polynomial isφ0, so that|Γ(φ0)| ≥ h, since allh honest servers will respond correctly. Now
suppose it is the case that|Γ(φ)| ≥ h for someφ. It is always the case that|Γ(φ0)∩Γ(φ)| = |Γ(φ0)|+|Γ(φ)|−|Γ(φ0)∪Γ(φ)|.
But since|Γ(φ0) ∪ Γ(φ)| ≤ k (as onlyk servers responded), we have that|Γ(φ0) ∩ Γ(φ)| ≥ h+ h− k > (k + t)− k = t.
Soφ0 andφ agree on more thant points ofI, and are therefore equal.

Therefore, ifh > k+t
2 , we will never have to handle more than one possible polynomial. However, we may like to be able to

use lower values ofh. The following two facts show how to handle values ofh > k/2.

Fact 3. There is a polynomialPS(k), depending only on whetherS is a ring or a field, such that the size of the set of
candidate polynomials{φi} output in step H2 is at mostPS(k).

Proof. For fieldsS, the algorithm of [6] works by constructing a bivariate polynomialQ(x, y) overS with the property that
for any (univariate) polynomialφ such that|Γ(φ)| ≥ h, it is the case that(y−φ(x)) is a factor ofQ. This polynomialQ has

degree

⌊

1
t

(

h− 1 + h

⌊

kt+
√

(kt)2+4(h2−kt)

2(h2−kt)

⌋)⌋

in y, so the number of such factors is at most that value. (The denominator

of this value is what produces the restriction thath >
√
kt.) With some simple algebra, it is easy to see that if1 ≤ t < k and√

kt < h ≤ k, that value is bounded by2k2.

For ringsS = Zpq, we proceed modulop andq separately, and combine the results using the Chinese Remainder Theorem,
matching factors usingΓ(φ). This can potentially increase the bound on the number of possible results to(2k2)2.

Note that neither of these bounds is tight.

Fact 4. If the Byzantine servers are unable to see the communicationbetween the client and the honest servers (which should
be the case, as it is important for privacy), andh > k/2, then with probability at least1− hstPS(k)

|I|−ℓ+h
the algorithm of Figure 2

will output a setH = {(G,B)} containing the single correct database blockB = Bβ.

Proof. Each of the at mosts calls to HARDRECOVER will produce a set of at mostPS(k) polynomials in step H2. Each of
these polynomialsφ will have |Γ(φ)| ≥ h. But sinceh, the number of honest servers, is more than half the total number of
servers that replied, at least some of the elements ofΓ(φ) must be server numbers of honest servers. For eachφ, there must
be at least one such element, and for eachφ other than the correct one, there must be at mostt (otherwise,φ would agree

9

with the correct polynomial in more thant places, and so it would indeed be the correct polynomial). The key observation,
similar to that in [15], is that if the Byzantine servers cannot know the values ofαj for honest server numbersj, then they
only have a small chance of producing incorrect polynomialsthat agree with the correct polynomial at one of the honestαj.

Let Z be the set{αj : serverj is not honest}, andY be the set{αj : serverj is honest}. We want to bound the probability
that, of the≤ sPS(k) polynomials returned in step H2, and of the≤ t points ofI\Z at which each of these polynomials
agree with the correct polynomials, the resulting≤ stPS(k) points have non-trivial intersection with the setY . But |I\Z| =
|I| − (ℓ− h), and|Y | = h, so that probability is at mosthstPS(k)

|I|−ℓ+h
, as required.

Therefore, if we chooseh > k/2, and we choose a sufficiently large structureS, we can make the probability of having to
handle more than one output from the protocol arbitrarily small. Note that ift ≥ k

4 , then we always haveh >
√
kt ≥ k/2.

Finally, in the event thatt < k
4 and we want to allow fork/2 or more Byzantine servers, we can just use the usual techniques

(such as those of [9]) to add redundancy to the words of the database, so that the list decoding can be converted to unique
decoding. Note that this will slightly increase the size of the database.

3.5 Comparison to Previous Results

3.5.1 Privacy and Robustness

The authors of[2] show thatt-privatev-Byzantine-robustk-out-of-ℓ PIR protocols exist forv ≤ t < k
3 . We have demon-

strated such a protocol for0 < t < k andv < k − ⌊
√
kt⌋. Our protocol can therefore withstand at least three times as many

servers colluding to determine the client’s query, and whenthe privacy levelt is the same (for some0 < t < k
3), our protocol

tolerates up tok − ⌊
√
kt⌋ − 1 Byzantine servers, while that of [2] tolerates up tot. We now show that in these comparable

cases, our result is always at least as good, and almost always strictly better:

Theorem 3. For integersk, t such that0 < t < k
3 , we havek − ⌊

√
kt⌋ − 1 ≥ t, with equality if and only if(t, k) = (1, 4).

Proof. We equivalently prove thatk−⌊
√

kt⌋−1−t

t
≥ 0, with equality if and only if(t, k) = (1, 4).

First note that

k − ⌊
√
kt⌋ − 1− t
t

≥ k −
√
kt− 1− t
t

=
k

t
−
√

k

t
− 1

t
− 1 =

√

k

t

(

√

k

t
− 1

)

− 1

t
− 1

with equality if and only ifkt is a perfect square. Nowk ≥ 3t+ 1, so k
t
≥ 3 + 1

t
, and

√

k

t

(

√

k

t
− 1

)

− 1

t
− 1 ≥

√

3 +
1

t

(

√

3 +
1

t
− 1

)

− 1

t
− 1 =

(

3 +
1

t

)

−
√

3 +
1

t
− 1

t
− 1 = 2−

√

3 +
1

t

with equality if and only ifk = 3t + 1. Finally, 2 −
√

3 + 1
t
≥ 0, with equality if and only ift = 1, and the result is

proven.

Note that(t, k) = (1, 4) is theminimalconfiguration of the system in [2].

3.5.2 Communication Cost

This protocol sendsr = n/b elements ofS to each ofℓ servers, and receivess = b/w elements ofS from each ofk servers
in reply. If it takesz bits to encode an arbitrary element ofS (so z = ⌈lg(|S|)⌉), then the total communication cost is
nℓz/b + kbz/w. Sincek ≤ ℓ, this is bounded byℓz(n/b + b/w). By choosingb =

√
nw, we getr = s =

√

n/w and the

10

total communication cost to privately retrieve a block of
√
nw bits is bounded by2ℓz

√

n/w. Remember that we needed to
chooseS such that|S| ≥ 2w; if we make it not much bigger, we can havez = w + 1, or evenz = w if S isGF (2w). Then
our cost to retrieve

√
nw bits isO(ℓ

√
nw)

Note that this is far from the optimal communication cost of retrieving asinglebit, even in the context of Byzantine-robust

PIR protocols; for example, the protocol of [2] has costO(k
3t
n

1
⌊(k−1)/3t⌋ ℓ log ℓ) to retrieve one bit. However, it is clearly

within a small factor of optimal if indeed we are interested in the entire
√
nw-bit block.

4 Robustness Against Colluding Servers

In this section, we consider the problem of more thant (even up to allℓ) servers colluding to try to determine the client’s
query.

As mentioned earlier, if allℓ servers collude, it is impossible to make a protocol with communication cost less thann which
also information-theoretically protects the query. Therefore, we do the best possible thing: information-theoretically protect
the query if up tot servers collude, but still computationally protect the query even if up to allℓ servers collude. We call a
PIR protocol with this propertyt-private ℓ-computationally-private.

We do this with a simple modification to the protocol of Figure2: instead of sendingt-privateℓ-way shares ofeβ to the
servers, sendencryptionsof those shares, under an additive homomorphic cryptosystem, such as the Paillier cryptosystem
[10] (see section 2.3). The servers then use the homomorphicproperty to be able to compute the encryptions of their results,
which they send back to the client. The client decrypts the replies and proceeds as before.

In detail, the changes to the protocol of Figure 2 are:

• To start, select large random distinct primesp and q. Setm = pq, chooseS to be the ringZm, and let I =
{1, 2, . . . ,min(p, q)− 1}. Compute the Paillier encryption and decryption keys as in section 2.3.

• In step P3, use Paillier encryption to computeE(ρi) = [E(f1(αi)), . . . , E(fr(αi))].

• In step P4, sendE(ρi) to serveri, for 1 ≤ i ≤ ℓ.

• In step S1,E(ρi) = [E(ρi1), . . . , E(ρir)] will be a vector ofr elements ofZm2 .

• In step S3, computeE(Ric) =
∏

1≤j≤r

E(ρij)
Wjc as elements ofZm2 for 1 ≤ c ≤ s.

• In step S4, return[E(Ri1), . . . , E(Ris)] to the client.

• In step C1, use Paillier decryption to computeRic = D(E(Ric)), and then proceed as before.

This modified protocol still allows the client to recover thedesired blockBβ , even when onlyk of theℓ servers respond, and
v < k − ⌊

√
kt⌋ of thosek are Byzantine. This fact follows immediately from the equivalent result for the original protocol

in Figure 2: once the client receives and decrypts the servers’ replies, he has the same information as he would have had, had
none of the encryption or decryption happened.

The information-theoretic protection of the client’s query against coalitions of up tot servers is also immediate: if a coalition
of t servers, knowingt of theρi, cannot learn any information aboutβ, then certainly if those servers instead knowE(ρi),
that does not give themmore information aboutβ. Formally, given any algorithmA that can recover information aboutβ
givent of theE(ρi), one can easily construct an algorithmA′ that recovers that same information aboutβ given t of theρi,
by first encrypting theρi, and passing the results toA. Since there is no suchA′, there is also no suchA.

Now we turn our attention to the case in which up to allℓ of the servers collude. The privacy consideration is only interesting
if there is more than one block in the database, so we assumer ≥ 2.

11

Theorem 4. Given a fixedm, if there is a probabilistic polynomial time algorithmA which can distinguish Paillier encryp-
tions oft-privateℓ-way Shamir secret shares of the vectore1 from Paillier encryptions oft-privateℓ-way Shamir secret shares
of the vectore2 with some probabilityψ, then there is a probabilistic polynomial time algorithmA′ which can distinguish
Paillier encryptions of the number0 from Paillier encryptions of the number1 with the same probabilityψ.

Proof. Suppose the given algorithmA takes as input Paillier encryptions oft-privateℓ-way secret shares ofeβ for some
β ∈ {1, 2}, and, to be extra generous, theℓ indices used for the Shamir secret sharing, andA outputsβ′ ∈ {1, 2}. Then by
assumption, Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 2] = ψ.

The desired algorithmA′ is as follows:

Input:
A ciphertextC = E(ζ), for someζ ∈ {0, 1}.

Output:
A guessζ ′ at the value ofζ.

Algorithm:
A1. Chooseℓ random distinct indicesα1, . . . , αℓ from Zm. Verify thatgcd(αi,m) = 1 for eachi and that

gcd(αi − αj ,m) = 1 for eachi, j.
A2. Chooser random polynomialsf1, . . . , fr of degreet. The coefficients of each

polynomial should be random elements ofZm, except for the constant terms.
The constant term of eachfj should be0.

A3. ComputeE(ρi) = [E(f1(αi)) · C, E(f2(αi)) · E(1)/C, E(f3(αi)), . . . , E(fr(αi))] for 1 ≤ i ≤ ℓ.
A4. Outputζ ′ = (2−A([E(ρ1), . . . , E(ρℓ)], [α1, . . . , αℓ])).

To see why this works, notice that[fj(α1), . . . , fj(αℓ)] aret-privateℓ-way secret shares of the value0, for each1 ≤ j ≤ r.
Therefore[f1(α1)+ζ, . . . , f1(αℓ)+ζ] aret-privateℓ-way secret shares of the valueζ, and[f2(α1)+1−ζ, . . . , f2(αℓ)+1−ζ]
aret-privateℓ-way secret shares of the value1− ζ. But by the homomorphic property of Paillier encryption,E(f1(αi)) · C
is an encryption off1(αi)+ ζ, andE(f2(αi)) · E(1)/C is an encryption off2(αi)+1− ζ, so[E(ρ1), . . . , E(ρℓ)] aret-private
ℓ-way shares ofe2 if ζ = 0, and ofe1 if ζ = 1. Therefore Pr[ζ ′ = 1|ζ = 1]−Pr[ζ ′ = 1|ζ = 0] = Pr[β′ = 1|β = 1]−Pr[β′ =
1|β = 2] = ψ, and the result is proven.

Remembering from section 2.3 that the the Paillier cryptosystem is semantically secure if and only if the Decisional Com-
posite Residuosity Assumption (DCRA) holds (for the value of m used in the cryptosystem), we get the following:

Corollary. The protocol of this section maintains the privacy of the query against coalitions of up to allℓ servers, provided
the Decisional Composite Residuosity Assumption holds forthose servers, for the value ofm used in the protocol.

That is, so long as the servers do not have sufficient computational power to break the DCRA, they will be unable to
distinguish queries for block 1 from queries for block 2. By symmetry (there is nothing special about blocks 1 and 2), the
servers will be unable to distinguish any one query from another.

4.1 Communication Cost

The only change to the communication cost is that elements ofZm2 are being sent between the client and the servers, instead
of elements ofS = Zm. This causes all communication to approximately double in size, increasing the communication cost
by the constant factor of 2; the cost is stillO(ℓ

√
nw) to retrieve

√
nw bits.

4.2 Notes on the Choices of Parameters

It should be noted that in both the original scheme given in Figure 2, and this modification, the choice of almost all the
parameters, includingt, b, w, S, I, theαi, andh, is doneby the client. Furthermore, each client using the same database can
choose his own values for the parameters independently of any other clients’ choices. (In that case, however,b, w, andS

need to be communicated to the server during the protocol, marginally increasing the communication cost.)

12

S should be chosen as small as needed to achieve the desired security properties. For example, in the protocol of this section,
the DCRA needs to hold overS = Zm, som needs to be chosen to be at least 1024 bits long (since the DCRAis clearly at
most as hard as factoringm).

On the other hand, if the protocol is not required to beℓ-computationally-private, much smaller structuresS will do. Mini-
mally, we must have|S| ≥ ℓ+ 1, and this value suffices ifh > k+t

2 , as in Fact 2, or if we are using redundancy to avoid list
decoding. If we are using Fact 4 to avoid list decoding, then we will probably want to choose|S| to be around2128.

Once we have selectedS, the best choices forw andb are then⌊lg(|S|)⌋ and
√
nw, respectively.

5 Protecting the Data from the Servers

In this section, we give a small enhancement to the protocolsof the previous sections that allows the contents of the database
itself to be hidden from coalitions of up toτ servers, forτ < k − t. We achieveτ -independence, as defined in [5]: no
coalition of up toτ servers has any information about the content of the database (in the information-theoretic sense). Unlike
the result in [5], however, we do not achieveτ -independence at the expense of an increased number of servers or at the
expense of communication cost: the number of servers and communication cost of theτ -independent version of our scheme
are identical to those of the regular version.

The major change we make to our protocol in order to achieveτ -independence is that, in this scheme, the choices ofS, I, and
the indicesαi need to be madein advanceof storing data in the database. This condition imposes the following restrictions
on the use of the scheme:

• If it is intended that the user storing the information in thedatabase is different from the client retrieving the data, or if
there is more than one such client, they cannot rely on the secrecy of theαi to get the benefit of Fact 4. They need to
use redundancy techniques instead, as mentioned in section3.4, or reduce the allowed number of Byzantine servers to
at mostk−t−τ

2 .

• If it is intended that there is more than one client retrieving data, this scheme cannot be used at the same time as the
scheme from section 4: in the latter scheme,S was chosen to beZpq for secret valuesp andq. Multiple clients would
not use the sameS, and so with this variant, could not use the same database at all.

At system setup time,S and theαi are chosen, and communicated to all of the users of the database (either users storing
data, or users retrieving data).S must be communicated to the servers as well, but theαi need not be.

As before, the database is divided intor = n/b b-bit blocks, and each block is divided intos = b/w w-bit words. But instead
of the serveri storing thes wordsWj1, . . . ,Wjs of block numberj directly, it stores each block as a sequence ofs elements

ω
(i)
j1 , . . . , ω

(i)
js of S.

The computation of theseω(i)
jc uses Shamir secret sharing. In particular, a user that wantsto store database blockj divides it

into s wordsWj1, . . . ,Wjs, and does the following for each1 ≤ c ≤ s:

• Choose a random polynomialgjc of degreeτ . The coefficients ofgjc should be random elements ofS, except for the
constant term, which should beWjc (encoded as a member ofS).

• Sendgjc(αi) to serveri to store as itsω(i)
jc , for each1 ≤ i ≤ ℓ.

That is, the values ofω(i)
jc for 1 ≤ i ≤ ℓ are justτ -privateℓ-way Shamir secret shares ofWjc.

The modifications to the protocol of Figure 2 are now straightforward:

• Remove step S2, and useω(i)
jc instead ofWjc in step S3.

13

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35

C
lie

nt
 p

ro
ce

ss
in

g
tim

e
(s

)

Database size (Mbits)

Figure 4 (a)

w=256
w=192
w=128

w=96

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25 30 35

C
lie

nt
 p

ro
ce

ss
in

g
tim

e2 (
s2)

Database size (Mbits)

Figure 4 (b)

w=256
w=192
w=128
w=96

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0 5 10 15 20 25 30 35

S
er

ve
r

pr
oc

es
si

ng
 ti

m
e

(s
)

Database size (Mbits)

Figure 4 (c)

w=256
w=192
w=128

w=96

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 2 4 6 8 10 12 14 16 18 20

C
lie

nt
 p

ro
ce

ss
in

g
tim

e
(s

)

Privacy level, t

Figure 4 (d)

k=20
k=10

k=6
k=4

Figure 4: Performance measurements for the protocol of Figure 2

• In step C2, check thatk ≤ t+ τ instead ofk ≤ t.

• In step C3, chooseh from the range
√

k(t+ τ) < h ≤ k instead of
√
kt < h ≤ k.

• In steps C5 and C6, passt+ τ instead oft.

We note that if we setτ = 0, we get exactly the same protocol as before, since0-privateℓ-way shares ofWjc are justℓ
copies ofWjc itself.

Why does this work? Step S3 computesRic to be
∑

1≤j≤r

ρijω
(i)
jc =

∑

1≤j≤r

fj(αi)gjc(αi) = Fc(αi), whereFc is the polynomial

Fc =
∑

1≤j≤r

fjgjc of degree at mostt + τ . Note, however, that it isnot necessarily the case that theRic are(t + τ)-private

ℓ-way shares ofFc(0) = Wβc, since the distribution of theFc is not uniform. In particular, it may be possible to learn some
information aboutWβc given t + τ of theFc(αi). However, itis still the case that anyt + τ + 1 of theFc(αi) uniquely
determinesFc, and that is the only fact we use in our reconstruction ofWβc.

Therefore, we have constructed at-privatev-Byzantine-robustτ -independentk-out-of-ℓ PIR protocol for0 < t ≤ t+τ < k,
andv < k − ⌊

√

k(t+ τ)⌋. This protocol has communication costO(ℓ
√
nw) to retrieve

√
nw bits of the database. If there

is to be only one client retrieving data, we can use both the extensions of this section and of section 4 at the same time, and
addℓ-computationally-private to the list of properties, at a cost of a factor of2 in the communication.

6 Implementation Details

We implemented the protocols in this paper in C++, using Victor Shoup’s NTL library [14], except for the HARDRECOVER

subroutine, which is calculated by the computer algebra systems Maple [8] and MuPAD [12].

We measured the computational performance of these protocols on a Lenovo T60p laptop computer with a 2.16 GHz dual-
core Intel CPU running Ubuntu Linux in order to determine their practicality.

14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

S
er

ve
r

pr
oc

es
si

ng
 ti

m
e

(s
)

Data privacy level, tau

Figure 5 (a)

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0 2 4 6 8 10 12 14 16 18

C
lie

nt
 p

re
pa

ra
tio

n
tim

e
(s

)

Privacy level, t

Figure 5 (b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16 18

D
at

a
re

co
ns

tr
uc

tio
n

tim
e

(s
)

Privacy level, t

Figure 5 (c)

Figure 5: Performance measurements for theτ -independent version of the protocol

We first measured the performance of the protocol of Figure 2;that is, the protocol without theℓ-computationally-private
andτ -independent properties. We used a range of values ofn, t, ℓ, andw, and we setk = ℓ in all cases.

Figure 4 shows some representative results. In these cases,the were no Byzantine servers, so the HARDRECOVERsubroutine
was never executed. Figure 4(a) shows the client’s processing time, as a function of the database size, for various values of
w. In this plot, we set(t, k) = (12, 20). The plot suggests a square-root dependence on the databasesize, which agrees with
an examination of the algorithm. We confirm this by squaring the measurements; the results are shown in Figure 4(b), which
indeed produces linear graphs. Figure 4(c) shows the servers’ processing time, and again as expected, this is linear in the
database size. Finally, Figure 4(d) shows that for fixedk, the client’s running time depends linearly on the privacy level t.
As a numeric example, forw = 128, the client processing takes44

√
n microseconds, and the server processing takes9.6n

nanoseconds.

When we introduce Byzantine servers, the HARDRECOVER subroutine gets executed. As expected, this is noticeably more
expensive than the EASYRECOVER subroutine. For(t, k) = (5, 10), for example, it adds a couple of seconds to the client’s
processing time. For(t, k) = (10, 20), it adds severalminutes. However, this is not onerous, since it is likely that the mere
ability of the client to detectwhichservers are returning incorrect results will deter the servers from doing so. Therefore, we
expect to use the HARDRECOVERsubroutine only rarely.

Adding τ -independence (the modification to the protocol from Section 5) is, as expected, quite cheap. In Figure 5 we plot
timings of thet-privateτ -independent version of the protocol. In each graph, we fixw = 128, k = 20, andn = 225, and
vary t andτ such that0 < t < t+ τ < k. In Figure 5(a) we see that the server’s processing time is independent of botht and
τ . We divide the client’s processing time into two parts: Figure 5(b) shows the time it takes the client toprepareits query
(the steps labelled “P” in Figure 2), and Figure 5(c) shows the time it takes the client toreconstructthe data block (the steps
labelled “C” in Figure 2). The graphs clearly show that the preparation time is linearly dependent ont, but independent of
τ , and the reconstruction time is linearly dependent ont + τ , as would be expected from the algorithm. The careful reader
will note that the sum of the times in Figures 5(b) and 5(c) is slightly less than the corresponding times in Figure 4(d); this
is because theαi are fixed in theτ -independent version, and are in fact chosen to be the very simpleαi = i.

On the other hand, addingℓ-computational privacy (the modification from Section 4) isquite expensive. The server needs to
perform one modular exponentiation for eachw-bit word in the database. The plots have the same shape as those of Figure 4,
but the scale is different: forw = 1024, k = 5, andt = 4, we find the client’s processing time is15

√
n milliseconds,and the

server’s processing time is30n microseconds. For values ofn in the hundreds of millions of bits or more, these times are
substantial.

7 Conclusion

We have improved the robustness of protocols for private information retrieval in a number of ways. Compared to the
previous scheme in [2], our basic protocol allows for more servers to collude without compromising the user’s privacy.
Moreover, maintaining the same privacy level as in [2], we enable the reconstruction of the correct data block when more

15

servers return faulty responses. We extended this protocolto add hybrid privacy protection; that is, information-theoretic
protection if up tot servers collude (for somet < k ≤ ℓ), but still computational protection if up to allℓ collude. Finally,
we presented another extension which addedτ -independence to the protocol while increasing neither thenumber of servers,
nor the communication cost.

We implemented and measured these protocols and found the performance to agree well with theory. With the exception of
the hybrid privacy protection, our implementation gives practical speeds for moderately sized databases.

Acknowledgements

We would like to thank Len Sassaman for motivating the problem, David Molnar, Len Sassaman, and Bryce Wilcox-O’Hearn
for their helpful discussions and comments, and Katrina Hanna, Bram Cohen, Urs Hengartner, and Joel Reardon for their
comments on earlier drafts of this paper.

References

[1] Dmitri Asonov. Private Information Retrieval: An overview and current trends. InProceedings of the ECDPvA
Workshop, Informatik 2001, September 2001.

[2] Amos Beimel and Yoav Stahl. Robust Information-Theoretic Private Information Retrieval. InThird Conference on
Security in Communication Networks, Lecture Notes in Computer Science 2576, pages 326–341. Springer-Verlag,
2002.

[3] Benny Chor and Niv Gilboa. Computationally Private Information Retrieval. In29th Annual ACM Symposium on
Theory of Computing, pages 304–313, 1997.

[4] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and MadhuSudan. Private Information Retrieval. In36th Annual
Symposium on Foundations of Computer Science, pages 41–50, 1995.

[5] Yael Gertner, Shafi Goldwasser, and Tal Malkin. A Random Server Model for Private Information Retrieval. In2nd
International Workshop on Randomization and Approximation Techniques in Computer Science, Lecture Notes in
Computer Science 1518, pages 200–217. Springer-Verlag, 1998.

[6] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes.
In 39th Annual Symposium on Foundations of Computer Science, pages 28–37, November 1998.

[7] Eyal Kushilevitz and Rafail Ostrovsky. Replication is Not Needed: Single Database, Computationally Private
Information Retrieval. In38th Annual Symposium on Foundations of Computer Science, pages 364–373, October
1997.

[8] Maplesoft. Maple 10—Harnessing the Power of Mathematics. http://www.maplesoft.com/products/maple/.

[9] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal Error Correction Against Computationally
Bounded Noise. InTheory of Cryptography, Second Theory of Cryptography Conference, Lecture Notes in Computer
Science 3378, pages 1–16. Springer-Verlag, February 2005.

[10] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. InAdvances in
Cryptology—Eurocrypt ’99, Lecture Notes in Computer Science 1592, pages 223–238. Springer-Verlag, 1999.

[11] Len Sassaman, Bram Cohen, and Nick Mathewson. The Pynchon Gate: A Secure Method of Pseudonymous Mail
Retrieval. InWorkshop on Privacy in the Electronic Society (WPES 2005), pages 1–9, November 2005.

[12] SciFace Software. Mathematics Mastered with MuPAD Pro. http://www.sciface.com/products/mupadpro.php.

16

[13] Adi Shamir. How to Share a Secret.Communications of the ACM, 22(11):612–613, 1979.

[14] Victor Shoup. NTL: A Library for doing Number Theory. http://shoup.net/ntl/.

[15] Martin Tompa and Heather Woll. How to Share a Secret withCheaters.J. Cryptology, 1(2):133–138, 1988.

[16] Erica Y. Yang, Jie Xu, and Keith H. Bennett. Private Information Retrieval in the Presence of Malicious Failures. In
Computer Software and Applications Conference 2002 (COMPSAC 2002), August 2002.

17

