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Abstract

Since 1995, much work has been done creating protocols fi@tprinformation retrieval (PIR). Many variants of the
basic PIR model have been proposed, including such modifitatis computational vs. information-theoretic privacy
protection, correctness in the face of servers that fagspond or that respond incorrectly, and protection of seeglata
against the database servers themselves.

In this paper, we improve on the robustness of PIR in a numbesags. First, we present a Byzantine-robust PIR
protocol which provides information-theoretic privacyf@ction against coalitions of up to all but one of the resliog
servers, improving the previous result by a factor of 3. Idiawoin, our protocol allows for more of the responding sesve
to return incorrect information while still enabling theauso compute the correct result.

We then extend our protocol so that queries have informatieoretic protection if a limited number of servers coéud
as before, but still retain computational protection ifitladl collude. We also extend the protocol to provide infotioa:
theoretic protection to the contents of the database ageatissions of limited numbers of the database serverspat n
additional communication cost or increase in the numbereofess. All of our protocols retrieve a block of data with
communication cost onlg(¢) times the size of the block, whefés the number of servers.

Finally, we discuss our implementation of these protocahsl measure their performance in order to determine their
practicality.

1 Introduction

Private information retrieval (PIR) [4] is the task of feiioh an item from a database server without the server legimaitich

item you are interested in. In the context of PIR, an “item&ften thought of as a single bit out of anbit database, but it
could also be a “block” of sizébits. In the latter case, thebit database is considered to be composed/bblocks, each of
sizeb bits. A number of applications have been proposed for Plguding patent and pharmaceutical databases [1], online
census information [16], and real-time stock quotes [18)e Pynchon Gate [11] shows how to use PIR for an arguably
more realistic purpose: retrieving pseudonymously adeeemail; it argues that PIR is a more suitable primitivettics
application than previous proposals.

A trivial solution to the PIR problem is simply to ask the sarfor the whole database and look up the desired bit or block
yourself. To make things more interesting (not to mentiactcal), we analyze theommunication cosif the protocol—the
total number of bits transmitted—and insist that itdablinear that is, less than.

There are two main types of PIR: information-theoretic amehputational. In information-theoretic PIR, the servamsable

to determine any information about your query even with wmigied computing power. In computational PIR (CPIR) [3, 7],
the privacy of the query need only be guaranteed againsersergstricted to polynomial-time computations. Note that
the information-theoretic case the unbounded power is tinbe used to try to compromise your privacy; in either case we
still insist that you and the servers use only polynomialeticomputations in order fwerformthe protocol.

It is an unsurprising fact that information-theoretic snbar PIR is impossible with a single server. Howevels fiossible
when there aré servers, each with a copy of the database—assuming thagtters do not collude in order to determine
your query. At-private /-server PIR is a PIR system in which the privacy of the query is informdibeoretically protected,
even if up tot of the/ servers collude. (Of course, it must be the casettkat.)



Beimel and Stahl [2] investigate the case where serversabtofrespond. In this event, it is important that the clistil

be able to retrieve her answer. If onfiyof the ¢ servers need to respond, and no coalition of upgervers can learn any
information about the query, they call such a systepnivate k-out-of-¢ PIR. In addition, they examine systems where, of
thek servers that replied (out éftotal), v of thosek areByzantinethat is, they can return incorrect answers, possibly ahose
maliciously or possibly computed in error (because, fomga, the server may have an out-of-date copy of the database
However, even with these incorrect answers, the clientldrgiill be able to reconstruct the correct database itemh,cam
side effect, determine which of the servers gave incormnestvars. They term thisprivate v-Byzantine-robust k-out-of-¢
PIR, and show that such systems existdox t < § Yang et al. [16] propose a PIR protocol for which< ¢ < % but the
client’s reconstruction of the correct data block in thaitpcol does not run in polynomial time.

Gertner, Goldwasser, and Malkin [5] consider that keegingplicated copies of the database may itself be a securigy or
privacy risk. They examine PIR protocols where no coalittbip tor serverscan determine the contents of the database
(information-theoretically). They call this-independent PIR. They show that they can addindependence to any PIR
protocol at the expense of increasing the number of servelshee communication cost.

In this paper, we improve the robustness of PIR in a numberayfsw First, we allow more servers to collude without
compromising privacy, while also allowing more serversedyzantine. In particular, we construct-grivatev-Byzantine-
robustk-out-of-£ PIR protocol for any) < ¢ < k andv < k — |v/kt]. We show this is always a strict improvement over the
previous result, except whén k) = (1, 4), where it is the same.

Second, we extend this first protocol to handle the case ilwimiore thart servers collude. In existingrprivate PIR
systems, a coalition of more tharservers can easily reconstruct the query. We produce a RBiemsywhich hasybrid
privacy protection: if up t@ servers collude, the query is protected information-tbgcally, as before; however, if more than
t servers collude, the query is still protected computatlgn@his means that coalitions of up teservers with unbounded
computational power, or of up to dlservers with polynomially bounded computational powel, lpé unable to determine
the client’s query.

Finally, we give a second extension that can adddependence to our protocol, for< t <t + 7 < k, with noincrease in
the number of servers or in communication cost.

Each variant of our protocol has communication cost @ny) times the size of the data block being retrieved.

At the end of this paper, we briefly discuss our implementatibthis protocol, and give some performance measurements.

2 Preliminaries

2.1 Notation
We will denote byZ,, the ring of integers module:, and byZ?, the multiplicative group of invertible integers moduta
For primesp, we will denote by, the finite field of integers modulp.

1 1=
0 i#£75 "
Let ¢ be the empty string, and|t be the concatenation of stringgndt.

We will denote bys;; the Kronecker delta function; that i§;; = {

2.2 Shamir Secret Sharing
2.2.1 Sharingof Finite Field Elements

Our technique is based on Shamir secret sharing [13], whictvillbriefly review. Given a finite field, and a secret € F,
we can construdt-private /-way share®f the secret in the following way:

1. Choos¢ distinct non-zero elements,, ..., a, of F. They can be chosen from any distribution; they need not be
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uniformly distributed. It is even acceptable to simply use= 1, s = 2, etc. when{1,2,...,¢} C F\{0}. We call
the o; indices

2. Select elementsrq, ..., o of F uniformly at random.
3. Construct the polynomigl(z) = o + o2 + o92% + - - - + oyl

4. Thel shares arg(ay), ..., f(ay).

Given anyt + 1 of the shares, one can recover the polynonfidly Lagrange interpolation and thus determine= f(0).
However, given onlyt or fewer shares, no information at all abauis revealed. Because of this, dividing a secret into
t-private /-way shares in this way is also calléd+ 1)-of-¢ Shamir secret sharing

2.2.2 Sharing of Ring Elements

Common choices foF, above, incIudeGF(Qd) andF,. But with minor care, it turns out that the above techniquekso
in some non-fields as well. In particular, we consider rifigs of integers modulo products of two distinct primeandg.
Note thatp andq do not need to be a secret.

In this scenario, shares are constructed and the secrebissteucted in exactly the same way as before. The only tavea
in the selection of they;. Whereas in the case of a finite field, we only needed thatvthi®e non-zero and distinct, in the

modulopqg case, we need that the be non-zero and distinct modulo eachpoindg separately. Note that an easy way to
ensure this is to choose thg from the set{1,2,... min(p,q) — 1}.

To see why this works, consider the natural homomorphigm Z,, — F,. That is, given a number modujgy, return
its value modulop. Under this homomorphismim, (1), ..., m(ar)} is a set of distinct non-zero elementsIgf, and
{mp(f(e1)),...,mp(f(cw))} aret-private-way shares of the secref (o). Therefore, any collection df+ 1 of the shares
uniquely determines, (o), and any collection of shares yields no information abatg(c). Similarly, by usingr, : Z,, —
IF,, we find that any collection of + 1 of the shares uniquely determineg(c), and any collection of shares yields no
information aboutr, (o). Therefore, using the Chinese Remainder Theorem, anyctioltteof ¢ + 1 of the shares uniquely
determinesr, and any collection of shares yields no information abagtas required.

2.2.3 Sharing of Vectors

Let ¢ be a vectoffvy, . .., v,] of lengthr, whose entries are elements of either a finite field or aZipg as above. We can
maket-private/-way shares off by simply independently sharing each of the entries. So;if. .., z;, aret-private/-way
shares ob; (for 1 < j <), then[zy1,...,2m1],..., [T, ..., 2] aret-privatel-way shares of.

2.3 ThePalillier Cryptosystem

The Paillier public-key cryptosystem [10] is another tod will use. The cryptosystem is as follows:

Key Generation: Select random primgsandq of some desired length, and set= pg and\ = Ilcm(p — 1,¢ — 1). Define
the functionZ(u) = (u — 1) /m. Choose a random € Z* , and ensure that = (L(g* mod m?))~! mod m exists.
The public encryption key is thefm, g) and the private decryption key (3, ).

Encryption: To encrypt a plaintex® € Z,,, select a random € Z},, and compute the ciphertext to ke = £(P) =
g” - p™ mod m?2. Note that, as usuaf, is a randomized function.

Decryption: To decrypt a ciphertex’, computeD(C) = L(C* mod m?) - u mod m.



Note that it is of course the case tHa(E(P)) = P for all P € Z,,.

The security of the Paillier cryptosystem is based orlbeisional Composite Residuosity Assump{@@RA). That is, for
a fixed public keym, this system is semantically secure if and only if an advgreannot determine whether or not a given
random element d&* , has ann'™ root.

The Paillier cryptosystem has one additional property thaftal for our purposes. It iedditive homomorphicthat is,
multiplying two encryptions together (modute?) gives an encryption of theumof the original messages (moduto).
Formally,D(E(P;) - £(P2) mod m?) = P; + P, mod m.

3 Improving Byzantine Robustness

We motivate our study of Byzantine robustness by lookindhatRynchon Gate [11]. The Pynchon Gate is a system that
uses private information retrieval to enable the delivdrgroail to pseudonymous recipients. Greatly simplified,dysem
works like this:

e Email arrives at the mail server, destined for a pseudongnuser, sayxwi seone@ynchon. exanpl e>.

e The mail server encrypts the message using a key known bywherof the pseudonym, and puts the encrypted
message in the PIR database (distributing # tiatabase servers). Note that the server does not Wwewhe owner
of the pseudonym is.

e At some point, Joe (the owner of the pseudonym) does a PIRyquethe database to retrieve the mail for the
pseudonyn<wi seone@ynchon. exanpl e>. The privacy guarantees of the PIR technique assure thetssin
all ¢ database servers collude, they will be unable to link thentlof the query, Joe, to the value of the query,
<wi seone@ynchon. exanpl e>.

e Joe decrypts and reads the resulting message.

The PIR protocol used by the Pynchon Gate is shown in Figuteid straightforward to see that this is &— 1)-private
¢-server PIR with information-theoretic protectibrits communication cost i&r 4 b) = £(n/b + b). Choosing to be/n
gives a cost oRly/n.

However, in the presence of Byzantine servers, this protr®a major flaw: Joe will be unable to reconstruct the messag
Worse, although he will be able to tell tteimeserver was Byzantine, he will be unable to tellichserver it was. Therefore,

it is important to produce PIR protocols that not only canwlthe client to reconstruct the correct answer, but wilb dést
the client know which servers were Byzantine.

To accomplish this goal, we note that steps P2 and P3 of theh®BynGate PIR protocol in Figure 1 fortd — 1)-private
¢-way shares of the secret (though not with Shamir's method). We replace these steffsawinore generatprivate/-way
Shamir secret sharing ef;. Note that bitstrings of length are equivalent to vectors of lengtroverF,. We now consider
eg not as a vector oveF,, but rather as a vector of lengthover some larger structuf The g entry ofes is 1, and the
other entries aré. S might be a field (such a§'F'(2¢) for somed, or IF,, for some primep) or a ringZ,, for some distinct
primesp andq. LetI be a set ofShamir indicedn S; that is, ifS is a field,I can just be the non-zero elementsSofif
S is Zypg, I can be the sefl,2,...,min(p,q) — 1}, as in section 2.2.2. The only restriction Bris thatl have at least
elements, though we will see later that it may benefit us tmsbsubstantially larger We take/ random elements dfas
the indices in the Shamir secret sharing, and use them tapedtiep;. An important property of Shamir indices is that our
usual intuitions about polynomials over fields, such asrdisdegree polynomials agreeing on at maspoints, continue
to hold in a ring setting provided we restrict our attentiorindices selected frorh

Similarly to eg, in the Pynchon Gate protocol we can consider ghéo be vectors of length over 5, and theR; and
B; to be vectors of length overF,. In this case, we see that the computation?pfin step S3 is the same as computing

1The authors of the Pynchon Gate [11] mistakenly claim trearaoptimization, the client may sefid- 1 of the servers a key for a stream cipher
instead of a randomly generated bit string of lengtin reality, doing so reduces the protection provided frafoiimation-theoretic to computational.
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Parameters:
£: number of servers
n: size of the database (in bits)
b: size of each block (in bits)
Calculate:
r: number of blocks= n /b

Client (querying for block numbes):
P1. Letes be the bit string of length that is all Os, except for positiof, which is 1.
P2. Generaté — 1 random bit strings., . . ., pe_1, €ach of lengthr.
P3. Computey = p1 @ --- @ pr—1 D eg.
P4. Seng; to server numbet, for 1 < i < /.

Each server:
S1. Receive; = p;1 - - - pir, @ bitstring of lengthr.
S2. LetB; be the;" b-bit block of the database fdr< j < r.
S3. ComputeR; to be the XOR of all the3; for which p;; = 1.
S4. Returnk; to the client.

Client:
Cl. ReceiveRy, ..., Ry.
C2. ComputeB = R1 & --- @ Ry.

Figure 1: The PIR protocol used by the Pynchon Gate [11]

R;c =) pijBjc overF, for 1 < ¢ < b. When we move to a larger structuethe servers perform this same computation,
but overS.

The secret recovery is more complicated than that of the Ryn&Gate, not only since recovering a secret from Shamir
shares is more complicated than recovering from a sirffple 1)-private /-way XOR scheme, but also since we will need
to handle Byzantine servers. The recovery scheme will uséoflowing functionT": Given a structure, a list of £ indices
[a1,...,a0]InS, alist of ¢ values[Ry, ..., R, in SU{L}, and a polynomiad overS, letI'(¢) be the subset ofl, ..., ¢}
such that(«;) = R, for i € I'(¢). Note that we keef§ and the listsy; and R; implicit in the notation for convenience.

The resulting PIR protocol is shown in Figure 2. It uses tworeutines, EAsYRECOVER and HARDRECOVER, which are
shown in Figure 3. An important fact about these subroutisidsat EASYRECOVERIS just a less computationally expensive
method to get the same answer asRBRECOVER, but it only works some of the time:

Fact 1. If EASYRECOVERTreturns a non-empty set on a given input, thh&arDRECOVER will return the same set on that
same input.

Proof. HARDRECOVERfinds all polynomialsp of degree at mostfor which [T'(¢)| > h, whereh is the desired minimum
number of honest (non-Byzantine) serverasERECOVERIs a less expensive procedure to perform the same calaulatio
the event that there is exactly one such polynomialsERECOVER selectg + 1 of the servers at random, and optimistically
assumes that all of those servers returned the correct andtvealculates thep uniquely determined by those servers’
answers, and sees how many other servers gave answersamunsith that polynomial. The key is that if fewer than- ¢
serverdisagreed then there can be no other polynomialfor which [T'(¢)| > h: ¢’ would have to agree withh on more
thant points ofl, and sap’ = ¢. d

Note that ASYRECOVER may not always find the unique polynomial, even if there is, dng in no case will it output a
non-empty set when more possibilities exist.



Parameters:

£: number of servers

t: the desired privacy level; that is, the number of serveas ¢an collude without learning

anything about the query

n: size of the database (in bits)

b: size of each block (in bits)

w: size of each word within a block (in bits)

S: either a field or a rin,,,, such thatS| > 2v

I: a set of Shamir indices frofisuch thatl| > ¢
Calculate:

r: number of blocks= n/b

s: number of words per block b/w

Client (querying for block numbes):
P1. Choosé random distinct indicea, ..., a, fromI.
P2. Choose random polynomialgi, . .., f, of degreet. The coefficients of each
polynomial should be random elementsSpexcept for the constant terms.
The constant term of; should béj; 3.
P3. Computey; = [fi(a),. .., fr(a;)] forl <i < ¢.
P4. Sendg; to server numbet, for 1 < ¢ < /.

Each (honest) server:
S1. Receive; = [pi1,. - ., pir|, @ vector ofr elements of.
S2. LetW;. be thec™ w-bit word of the;™ b-bit block of the database, interpreted as a membé of
S3. ComputeR;, = Z pijWicforl1 <c<s.
1<<r

S4. ReturnR;1, . . ., R;s] to the client.

Client:
Cl1. ReceivéR1, ..., Ris],...,[Re1, - .., Rys] from thel servers.
If server;j does not respond at all, sBt. =1 for eachl < c < s.
Let~q,...,v; be the numbers of thie servers which did respond.

LetG = {y1,...,7%}andH = {(G,¢)}.
C2. If k < t, abort with the error “not enough servers replied”.
C3. Select: (the minimum number of honest servers) from the rag@e < h < k.
C4. Forcfrom1to s:

C5. SetH’ « EASYRECOVER(S, w, t, h, H,[Ri¢,- .., Ry, [aq, ..., a])

C6. If H' is the empty set, séf’ — HARDRECOVER(S, w, t, h, H, [Ric, . . ., Rec], [a1, - - -, ag))
C7. If H' is the empty set, abort with the error “not enough honestessmeplied”.

C8. SetH «— H'.

C9. The resultingd will be a non-empty set of pairf&=, B). One of theBs will be the correct block.

Figure 2: At-privatev-Byzantine-robusk-out-of- information-theoretic PIR scheme for< ¢ < k andv < k — |Vkt].




Inputs:

S: the structure used for Shamir secret sharing

w: the number of bits per word

t: the desired privacy level of the PIR protocol

h: the minimum number of honest servers that need to respondt]

H: anonempty set of paifg7, o) whereG is a set of at least server numbers,
ando is the portion of the requested block recovered so far, aisguthat
the servers iy were the honest ones. Eagelwill have the same length.
No two of theG will have more thart elements in common.

[R1,..., Ry]: t-private/-way purported shares ofwe-bit word that had been encoded as a member
of S. It must not be the case th&; =1 for anyj in any of theG in H.
[aq, ..., a]: the indices used for the secret sharing
Output:

Either: (1) a seff’ of the same form a&l, above, but with each beingw bits longer
than those in the input, or (2) the empty set

EASYRECOVER(S, w, t, h, H,[Ry,..., R¢],[0a, ..., a):
El. Setd’ — {}.
E2. ForeachG,o) € H:
* Optimistically hope the rest of the servers are honest */

E3. Select a random subset G of sizet + 1.
E4. Use Lagrange interpolation to find the unique polynomiaverS of degreet
for which ¢(a;) = R, for eachj € 1.
ES. LetWW be thew-bit representation af(0), or L if there is no such representation.
E6. If|GNT(¢)| > hand|G\I'(¢)] < h —tandW #.1 then addG NT'(¢),c||W) to H'.
E7. Otherwise, immediately return the empty set.
E8. ReturnH’.
HARDRECOVER(S, w,t,h, H,[Ry, ..., R¢], [a1,...,q]):
H1. SetH’ — {}.

H2. Use the algorithm of [6] to recover (in polynomial timagtset{¢;} of polynomials over
S of degree< ¢ for which ¢;(c;) = R; for at leasth values ofj € {1,...,¢}.
H3. For each such);:

H4. LetW; be thew-bit representation ap;(0), or L if there is no such representation.
H5. If W; #.L, then for any(G, o) € H such thalI'(¢;) N G| > h,

add(T'(¢:;) NG, o||W;) to H'.
H6. ReturnH’.

Figure 3: The BsYREcovErRand HARDRECOVER subroutines




3.1 Privacy of the Protocol

It is easy to see that no coalition of uptteervers can learn any information abguithe requested block number): between
them, they have at mostof the ¢-private (-way shares of the vecter; (as in section 2.2.3). By the properties of Shamir
secret sharing, they learn no information abeytand therefore about.

It is important to note that this result holds even if someser are Byzantine, since all of the information flowing frime
client to the servers happehsforethe servers perform any actions.

3.2 Correctness of the Protocol without Byzantine servers

In this section, we show that this protocol returns the atéock B from the database when no server responds incorrectly
(but some may not respond at all), so long as enough serveesgdond.

Theorem 1. If k£ of the/ servers respond, there are no Byzantine servers,fandt, then the algorithm in Figure 2 will
return a setH containing the single paifG, B), whereG is the set of thé& server numbers that responded, aBds the
correct blockB from the database.

Proof. In step P2, the client defines polynomials f1, ..., f of degreet. Define thes polynomials F, to be F, =
Z fiWjefor 1 < ¢ < s, where theélW;. are defined as in step S2. Note that these polynonfiaksre also of degree (at
1<5<r

most)t, and also thaf.(0) = > fi(0)Wje = > 8;Wje = W

1<5<r 1<5<r
Suppose serveris one of the servers that responds. In step S1, it recéfyés;), . .., f.(a;)] from the client. In step S3, it
computesk;. = Z [i(0i)W;e = Fe(oy) for 1 < ¢ < s, and returns these values to the client in step S4.

1<j<r

The client initializesH to be {(G,¢)} in step C1, wher&Z is the set of server numbers that responded. We claim
that afterx iterations of the loop at C4H will be the set{(G,Bém”))}, whereBg“”) is a string consisting of the first
zw bits of the database blocks. We proceed by induction: we have already shown that thihéscase forr =

0. Suppose it is true for = ¢ — 1 for somel < ¢ < s. Now consider iteratiore. In step C5, the client calls
EASYRECOVER(S, w,t, h, H, [Ric, ..., Rec], [a1, . .., oy]) whereR;. = Fi(a;) for eachj € G.

By the induction hypothesis, there is exactly one elemerf/ pgo the loop at E2 will execute only once. In step E4, the
client will necessarily findy = F¢, since¢(a;) = R;. = Fc(a;) for eachj € G, and so for each € I C G. Since these
two polynomialsp and F,. of degree at mostagree on at least+ 1 points ofll, they must be equal. Therefore tHéin step

E5 will just be thew-bit representation of.(0) = Wj,, which is thec™ w-bit word of block3 of the database.

Then in step E6['(¢) NG will equal G, so H' will be set to{ (G, o||W)}. By the induction hypothesis; is the first(c — 1)w
bits of B, soo || is the firstcw bits of Bg, and the proof of the claim is complete.

Therefore, after alk = b/w iterations of the loop at C47 will equal {(G, Bg)}, as required. O

3.3 Correctnessin the Presence of Byzantine Servers

We will now look at the effect of Byzantine servers on the eotness of this protocol.

Theorem 2. If k of the/ servers respond at alk > ¢, and at least: > \/kt servers respond honestly, then the algorithm
in Figure 2 will return a setf, one of whose elements is the p@i¥;,, Bsz), whereG, is the set of the server numbers that
responded honestly, anfél is the correct block from the database.

Proof. As above, we will prove that after iterations of the loop at C4{ will be a set containing the eleme(n’ﬂgf), Bg“”))

whereGEf) is the set of server numbers that both replied at all, andrajgieed honestly in the first words of its reply, and
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Bg“”) is defined as before. Far = 0, this is trivially true. Suppose it is true far = ¢ — 1 for somel < ¢ < s. Now
consider iteratiore. We can assume the client call®A\RDRECOVERIn step C6, since as we noted earlieadY RECOVER
produces the same answer asribRECOVERWhen it produces an answer at all.

HARDRECOVERWiIll produce a set of polynomials in step H2, one of which wélcessarily bé. (as defined above). This set
may have polynomially (ik) many elements, but we will see in section 3.4 that the pritibatinat this set contains elements
other than the desired one can be made arbitrarily smallirigigsthat the entire protocol runs in (probabilistic) pudynial
time. When the loop at H3 encounters the elemiéntiV; will be set toF.(0) = W, (as defined above). By the induction
hypothesis, step H5 will find the eleme(r@g_l),Bé(C_l)w)) € H. Butalsol'(F.) 2 Gy, soT'(F.) N Gﬁf‘l) D Gp, SO

T(F) NGV > h. Then step H5 will addT(F.) n ¢V, B D) 1w, ) = (G619, B to H’, and the proof is
h h B B h B
complete. O

3.4 List-decoding

In the presence of many Byzantine servers, there may be rmanedne polynomiab such thail'(¢)| > h. There are a
number of ways to handle this and recover the unique corescit

The simplest way to handle list-decoding is simply to chogm& parameters such that there cannot be more than one such

o.

Fact 2. If h > % then there is exactly one polynomigabf degree at mogtfor which |T'(¢)| > h.

Proof. Suppose the correct polynomialdsg, so that|T'(¢g)| > h, since allh honest servers will respond correctly. Now
suppose itis the case tH&t ¢)| > h for somegp. Itis always the case that(¢o)NT'(¢)| = |T'(¢o)|+|T(d)|— T (do)UT (¢)].
But since|I'(¢o) UT'(¢)| < k (as onlyk servers responded), we have tiatpo) NT'(¢)| > h+h —k > (k+1t) —k =t.
So ¢y and¢ agree on more thanpoints ofl, and are therefore equal. O

Therefore, ifh > % we will never have to handle more than one possible polyabriiowever, we may like to be able to
use lower values of. The following two facts show how to handle valuesho$ £ /2.

Fact 3. There is a polynomiaPs(k), depending only on whethéris a ring or a field, such that the size of the set of
candidate polynomial$e; } output in step H2 is at mo$ts (k).

Proof. For fieldsS, the algorithm of [6] works by constructing a bivariate padynial Q(x, y) overS with the property that
for any (univariate) polynomiap such thatI'(¢)| > h, itis the case thaty — ¢(x)) is a factor ofQ. This polynomial@ has

degree{% (h —1+h VH Y (kt)2+4()h2_kt)J >J in y, so the number of such factors is at most that value. (Therderador

2(h2—kt
of this value is what produces the restriction that v/kt.) With some simple algebra, it is easy to see thatsf ¢ < k and
Vkt < h < k, that value is bounded Bf2.

For ringsS = Z,,, we proceed modulp andq separately, and combine the results using the Chinese Reeraiheorem,
matching factors usingj(¢). This can potentially increase the bound on the number dfiplesresults tq2k?)2.

Note that neither of these bounds is tight. O

Fact 4. If the Byzantine servers are unable to see the communichétween the client and the honest servers (which should
be the case, as it is important for privacy), ahd> k/2, then with probability at least — ﬁﬁs&) the algorithm of Figure 2
will output a setd = {(G, B)} containing the single correct database blaBk= Bg.

Proof. Each of the at most calls to HHRDREcoOVER will produce a set of at moges(k) polynomials in step H2. Each of
these polynomialg will have |T'(¢)| > h. But sinceh, the number of honest servers, is more than half the totabeuof
servers that replied, at least some of the elemenEg ©f must be server numbers of honest servers. For @attiere must
be at least one such element, and for eadther than the correct one, there must be at m@stherwise,¢ would agree
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with the correct polynomial in more tharplaces, and so it would indeed be the correct polynomiale Key observation,
similar to that in [15], is that if the Byzantine servers canknow the values ofy; for honest server numbeys then they
only have a small chance of producing incorrect polynontizds agree with the correct polynomial at one of the hongst

Let Z be the sef«; : server; is not honest, andY be the sef«; : server; is hones}. We want to bound the probability
that, of the< sPs(k) polynomials returned in step H2, and of tket points ofI\Z at which each of these polynomials

agree with the correct polynomials, the resultigtPs(k) points have non-trivial intersection with the dét But |I\Z| =
II| — (¢ — h), and|Y'| = h, so that probability is at moﬁ%ﬂ), as required. O

Therefore, if we choosé > k/2, and we choose a sufficiently large structSreve can make the probability of having to
handle more than one output from the protocol arbitrarinabniNote that ift > %, then we always have > /kt > k/2.

Finally, in the event that < % and we want to allow fok /2 or more Byzantine servers, we can just use the usual teatsiqu
(such as those of [9]) to add redundancy to the words of thebdat, so that the list decoding can be converted to unique
decoding. Note that this will slightly increase the sizehsf tlatabase.

3.5 Comparison to Previous Results
3.5.1 Privacy and Robustness
The authors of2] show thatt-private v-Byzantine-robusk-out-of- PIR protocols exist for < t < % We have demon-

strated such a protocol for< ¢ < k andv < k — |v/kt|. Our protocol can therefore withstand at least three tirsemany
servers colluding to determine the client’s query, and wherprivacy levet is the same (for some < t < %), our protocol

tolerates up td — |Vkt| — 1 Byzantine servers, while that of [2] tolerates up t&We now show that in these comparable
cases, our result is always at least as good, and almostsabtrgtly better:

Theorem 3. For integersk, ¢ such that) < ¢ < % we havek — |Vkt| — 1 > t, with equality if and only ift, k) = (1, 4).

Proof. We equivalently prove thm > 0, with equality if and only if(¢, k) = (1,4).

k—L\/HJ—1—t>k—\/H—1—t_§_\/E_1_1_ k \/E_l BRSO

t = t ot t ot Vot t t

k k 1 1 1 1 1 1 1 1
- . - 1l -2 -1= ) —y/3 - —1=2- -
t( t ) t _\/3+t (\/3+t ) t <3+t> 3+t t 3+t

with equality if and only ifk = 3t + 1. Finally,2 — /3 + % > 0, with equality if and only ift = 1, and the result is
proven. ]

First note that

Note that(¢, k) = (1,4) is theminimal configuration of the system in [2].

3.5.2 Communication Cost
This protocol sends = n/b elements of to each of! servers, and receives= b/w elements ofS from each oft servers

in reply. If it takesz bits to encode an arbitrary element®f(so z = [lg(|S|)]), then the total communication cost is
nlz/b+ kbz/w. Sincek < ¢, this is bounded byz(n/b + b/w). By choosingh = /nw, we getr = s = /n/w and the
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total communication cost to privately retrieve a blockygiw bits is bounded bg¢z+/n/w. Remember that we needed to
chooseS such thatS| > 2*; if we make it not much bigger, we can have= w + 1, or evenz = w if Sis GF(2"). Then
our cost to retrieve/nw bits isO(¢y/nw)

Note that this is far from the optimal communication costetdfieving asinglebit, even in the context of Byzantine-robust

1
PIR protocols; for example, the protocol of [2] has c@a{%nukﬂ)w ¢log /) to retrieve one bit. However, it is clearly
within a small factor of optimal if indeed we are interestadhe entire,/nw-bit block.

4 Robustness Against Colluding Servers

In this section, we consider the problem of more thdaven up to all) servers colluding to try to determine the client’'s
query.

As mentioned earlier, if al servers collude, it is impossible to make a protocol with oamication cost less thanwhich
also information-theoretically protects the query. Tleme we do the best possible thing: information-theosdtycprotect
the query if up tat servers collude, but still computationally protect thergueven if up to allé servers collude. We call a
PIR protocol with this property-private ¢-computationally-private.

We do this with a simple modification to the protocol of Fig@einstead of sending-private /-way shares oég to the
servers, senéncryptionsof those shares, under an additive homomorphic cryptasystach as the Paillier cryptosystem
[10] (see section 2.3). The servers then use the homomappbierty to be able to compute the encryptions of their tesul
which they send back to the client. The client decrypts ties and proceeds as before.

In detail, the changes to the protocol of Figure 2 are:

e To start, select large random distinct primesand q. Setm = pq, chooseS to be the ringZ,,, and letl =
{1,2,...,min(p, q) — 1}. Compute the Paillier encryption and decryption keys agatisn 2.3.

In step P3, use Paillier encryption to comp@ig;) = [E(f1()), .., E(fr())].

In step P4, send(p;) to serveri, for 1 <i < /.

In step S1E£(pi) = [E(pir), - - -, E(pir)] Will be a vector ofr elements 0%, ,,-.

In step S3, computé(R;.) = H E(pi;)"Vie as elements df,,» for 1 < ¢ < s.
1<j<r

In step S4, returfi€ (R;1), . . . , £(R;s)] to the client.

In step C1, use Paillier decryption to compite = D(E(R;.)), and then proceed as before.

This modified protocol still allows the client to recover ihesired blockB 3, even when only: of the / servers respond, and
v < k — |\V/kt| of thosek are Byzantine. This fact follows immediately from the equ@nt result for the original protocol
in Figure 2: once the client receives and decrypts the s&€raglies, he has the same information as he would have had, h
none of the encryption or decryption happened.

The information-theoretic protection of the client’s gquagainst coalitions of up tbservers is also immediate: if a coalition
of t servers, knowing of the p;, cannot learn any information abogt then certainly if those servers instead kné{; ),
that does not give themmoreinformation abouts. Formally, given any algorithrd that can recover information abogt
givent of the £(p;), one can easily construct an algorithih that recovers that same information abgugivent of the p;,
by first encrypting they;, and passing the results to Since there is no sucH’, there is also no sucA.

Now we turn our attention to the case in which up to/aif the servers collude. The privacy consideration is onigresting
if there is more than one block in the database, so we assumg.
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Theorem 4. Given a fixedn, if there is a probabilistic polynomial time algorithpd which can distinguish Paillier encryp-
tions oft-private /-way Shamir secret shares of the vectpfrom Paillier encryptions of-private /-way Shamir secret shares
of the vectore; with some probability), then there is a probabilistic polynomial time algorithaAi which can distinguish
Paillier encryptions of the numbérfrom Paillier encryptions of the numbeérwith the same probability.

Proof. Suppose the given algorithd takes as input Paillier encryptions tprivate /-way secret shares ef; for some
B € {1,2}, and, to be extra generous, thindices used for the Shamir secret sharing, dnoutputs’ € {1,2}. Then by
assumption, B8’ = 1|8 = 1] — P{p’ = 1|5 = 2] = .
The desired algorithrd’ is as follows:
Input:
A ciphertextC = £((), for some¢ € {0, 1}.
Output:
A guess(’ at the value of..
Algorithm:
Al. Choose random distinct indice&, . . . , oy from Z,,. Verify thatged (a;, m) = 1 for eachi and that
ged(oy — aj,m) = 1 for eachi, j.
A2. Choose random polynomialgy, .. ., f. of degreet. The coefficients of each
polynomial should be random elementsZf, except for the constant terms.
The constant term of eagf) should beD.
A3. Computet(p;) = [£(f1()) - C,E(fa(aw)) - £(1)/C,E(f3(e)), - .., E(fr(w))] for 1 < i < L.
A4. Output¢’ = (2 — A([E(p1),-- -, E(p)]s [y - - -y ).

To see why this works, notice thgf;(a1), ..., fj(ay)] aret-private-way secret shares of the valogfor eachl < j < r.
Therefore f1(a1)+¢, . .., f1(ay)+(] aret-privatel-way secret shares of the valgeand|fo(aq)+1—C, . .., fa(ar)+1—(]
aret-private /-way secret shares of the valie- ¢. But by the homomorphic property of Paillier encryptidii,fi(a;)) - C
is an encryption off; (o) + ¢, and€(fa(w)) - £(1)/C is an encryption off2(c;) + 1 — ¢, SO[E(p1), - - - , E(pe)] aret-private
¢-way shares of; if ( = 0, and ofe; if ( = 1. Therefore P’ = 1|¢ = 1]—Pr{{’ = 1| = 0] =Pip’ = 1|8 = 1]-Pip’ =
1|8 = 2] = ¢, and the result is proven. O

Remembering from section 2.3 that the the Palillier crymtey is semantically secure if and only if the Decisional €om
posite Residuosity Assumption (DCRA) holds (for the val@ienoused in the cryptosystem), we get the following:

Corollary. The protocol of this section maintains the privacy of thergagainst coalitions of up to alt servers, provided
the Decisional Composite Residuosity Assumption holdthéme servers, for the value of used in the protocol.

That is, so long as the servers do not have sufficient compngitpower to break the DCRA, they will be unable to
distinguish queries for block 1 from queries for block 2. Byrsnetry (there is nothing special about blocks 1 and 2), the
servers will be unable to distinguish any one query from lagiot

4.1 Communication Cost

The only change to the communication cost is that elemerits,efare being sent between the client and the servers, instead
of elements of = Z,,. This causes all communication to approximately doubléze, sncreasing the communication cost
by the constant factor of 2; the cost is s@ill¢/nw) to retrieve,/nw bits.

4.2 Noteson the Choices of Parameters

It should be noted that in both the original scheme given gufg 2, and this modification, the choice of almost all the
parameters, including b, w, S, I, the«;, andh, is doneby the client Furthermore, each client using the same database can
choose his own values for the parameters independentlyyobter clients’ choices. (In that case, howevgrw, andS

need to be communicated to the server during the protocaginaly increasing the communication cost.)
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S should be chosen as small as needed to achieve the desiteitlysgmperties. For example, in the protocol of this saati
the DCRA needs to hold ové&r = Z,,,, som needs to be chosen to be at least 1024 bits long (since the DE&Barly at
most as hard as factoring).

On the other hand, if the protocol is not required to/l@mputationally-private, much smaller structuewill do. Mini-
mally, we must havéS| > ¢ + 1, and this value suffices if > % as in Fact 2, or if we are using redundancy to avoid list
decoding. If we are using Fact 4 to avoid list decoding, thenwill probably want to choosf$| to be aroun@'?®.

Once we have select&] the best choices far andb are then|Ig(|S|)] and+/nw, respectively.

5 Protecting the Data from the Servers

In this section, we give a small enhancement to the protaxfdise previous sections that allows the contents of thebdata
itself to be hidden from coalitions of up to servers, forr < k — t. We achiever-independenceas defined in [5]: no
coalition of up tor servers has any information about the content of the daggbathe information-theoretic sense). Unlike
the result in [5], however, we do not achievandependence at the expense of an increased number ofsservat the
expense of communication cost: the number of servers andhcmication cost of the-independent version of our scheme
are identical to those of the regular version.

The major change we make to our protocol in order to achievelependence is that, in this scheme, the choic&slhfand
the indicesw; need to be made advanceof storing data in the database. This condition imposesdl@afing restrictions
on the use of the scheme:

e Ifitis intended that the user storing the information in tle¢abase is different from the client retrieving the datdf o
there is more than one such client, they cannot rely on thesgof theo; to get the benefit of Fact 4. They need to
use redundancy techniques instead, as mentioned in s&dlipar reduce the allowed number of Byzantine servers to
at mosti=t=r,

2

e Ifitis intended that there is more than one client retrigvitata, this scheme cannot be used at the same time as the
scheme from section 4: in the latter schetfigyas chosen to bg,, for secret valuep andg. Multiple clients would
not use the sam®, and so with this variant, could not use the same databadle at a

At system setup time§ and theq; are chosen, and communicated to all of the users of the datdk#her users storing
data, or users retrieving dat&) must be communicated to the servers as well, butthseed not be.

As before, the database is divided imte- n /b b-bit blocks, and each block is divided into= b/w w-bit words. But instead

of the servet storing thes wordsWj, ..., W; of block number; directly, it stores each block as a sequence eiements
w](-ll), . ,wj(-? of S.

The computation of thesej(.? uses Shamir secret sharing. In particular, a user that wastere database bloglkdivides it
into s wordsWjy, ..., Wj,, and does the following for eadh< ¢ < s:

e Choose a random polynomigj. of degreer. The coefficients ofj;. should be random elements $fexcept for the
constant term, which should b€&;. (encoded as a member $.

e Sendy;.(a;) to server; to store as its)j(.i), foreachl < </,

That is, the values Of)](-ic) for 1 <1 < ¢ are justr-private/-way Shamir secret sharesdf;...

The modifications to the protocol of Figure 2 are now strdayiatard:
¢ Remove step S2, and usé? instead oflV;. in step S3.
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Figure 4: Performance measurements for the protocol ofr&igu

e In step C2, check that < ¢t + 7 instead oft < ¢.
e In step C3, choosg from the range/k(t + 7) < h < k instead ofv/kt < h < k.

e In steps C5 and C6, pass- 7 instead oft.

We note that if we set = 0, we get exactly the same protocol as before, sihpeivate (-way shares oV, are just/
copies ofiV;. itself.

Why does this work? Step S3 compufes to be Z p,-jw](.? = Z [i(05)gjc(a;) = Fe(ou), whereFy is the polynomial
1<5<r 1<5<r
F,. = Z fjg;jc of degree at most+ 7. Note, however, that it isot necessarily the case that the. are(t + 7)-private
1<j<r
¢-way shares of.(0) = Wy, since the distribution of thé.. is not uniform. In particular, it may be possible to learn som
information aboufiVs. givent + 7 of the F,(a;). However, itis still the case that any+ 7 + 1 of the F.(«;) uniquely
determines,, and that is the only fact we use in our reconstructiofliof..

Therefore, we have constructed-privatev-Byzantine-robust-independenk-out-of-¢ PIR protocol for0 < ¢t < t+7 < k,
andv < k — |\/k(t + 7)]. This protocol has communication c@3t/./nw) to retrieve,/nw bits of the database. If there

is to be only one client retrieving data, we can use both thensions of this section and of section 4 at the same time, and
add/-computationally-private to the list of properties, at atoof a factor o2 in the communication.

6 Implementation Details

We implemented the protocols in this paper in C++, usingdri&@houp’s NTL library [14], except for the ARDRECOVER
subroutine, which is calculated by the computer algebrtesys Maple [8] and MuPAD [12].

We measured the computational performance of these pistona Lenovo T60p laptop computer with a 2.16 GHz dual-
core Intel CPU running Ubuntu Linux in order to determineitipeacticality.
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Figure 5: Performance measurements forithiedependent version of the protocol

We first measured the performance of the protocol of Figura; is, the protocol without thé-computationally-private
andr-independent properties. We used a range of values ©f/, andw, and we sek = ¢ in all cases.

Figure 4 shows some representative results. In these theegere no Byzantine servers, so therh RECOVERSsubroutine

was never executed. Figure 4(a) shows the client’s pramgssine, as a function of the database size, for various sadfie

w. In this plot, we sett, k) = (12,20). The plot suggests a square-root dependence on the dasibasehich agrees with

an examination of the algorithm. We confirm this by squarhgyrmeasurements; the results are shown in Figure 4(b), which
indeed produces linear graphs. Figure 4(c) shows the semercessing time, and again as expected, this is linedren t
database size. Finally, Figure 4(d) shows that for fikgthe client’s running time depends linearly on the privasyel ¢.

As a numeric example, fap = 128, the client processing takéd./n microseconds, and the server processing takes
nanoseconds.

When we introduce Byzantine servers, theRfbRECOVER subroutine gets executed. As expected, this is noticeabhg m
expensive than theASYRECOVER subroutine. Foft, k) = (5, 10), for example, it adds a couple of seconds to the client’s
processing time. Fai, k) = (10,20), it adds severahinutes However, this is not onerous, since it is likely that the ener
ability of the client to detecaivhichservers are returning incorrect results will deter the esasrfrom doing so. Therefore, we
expect to use the KRDRECOVER subroutine only rarely.

Adding T-independence (the modification to the protocol from Sechpis, as expected, quite cheap. In Figure 5 we plot
timings of thet-private r-independent version of the protocol. In each graph, wevfix 128, k = 20, andn = 2%, and
varyt andr such that) < ¢ < t+7 < k. In Figure 5(a) we see that the server’s processing timelegiandent of bothand

7. We divide the client’s processing time into two parts: Feyg(b) shows the time it takes the clientgeepareits query

(the steps labelled “P” in Figure 2), and Figure 5(c) shovestiime it takes the client treconstructthe data block (the steps
labelled “C” in Figure 2). The graphs clearly show that thegaration time is linearly dependent grbut independent of

7, and the reconstruction time is linearly dependent enr, as would be expected from the algorithm. The careful reader
will note that the sum of the times in Figures 5(b) and 5(c)igh#ly less than the corresponding times in Figure 4(dis th

is because the; are fixed in ther-independent version, and are in fact chosen to be the venylaso; = 1.

On the other hand, addirfgcomputational privacy (the modification from Section 49jiste expensive. The server needs to
perform one modular exponentiation for eactbit word in the database. The plots have the same shapesesdhbigure 4,
but the scale is different: fav = 1024, k = 5, andt = 4, we find the client’s processing timei5./n milliseconds,and the
server's processing time 8)n microseconds. For values ofin the hundreds of millions of bits or more, these times are
substantial.

7 Conclusion

We have improved the robustness of protocols for privatermétion retrieval in a number of ways. Compared to the
previous scheme in [2], our basic protocol allows for more/eses to collude without compromising the user’s privacy.
Moreover, maintaining the same privacy level as in [2], wal#a the reconstruction of the correct data block when more
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servers return faulty responses. We extended this protocadld hybrid privacy protection; that is, information-dnetic
protection if up tot servers collude (for some< &k < /¢), but still computational protection if up to alcollude. Finally,
we presented another extension which addéadependence to the protocol while increasing neithenthmber of servers,
nor the communication cost.

We implemented and measured these protocols and found tiuerpance to agree well with theory. With the exception of
the hybrid privacy protection, our implementation giveaqtical speeds for moderately sized databases.
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