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Abstract

As wireless technology has become ubiquitous, ad-hoc networks have come into wide use. This
paper presents a system called KleeQ, which provides securegroup communication to users of ad-hoc
networks with limited connectivity, such as mobile users communicating over Bluetooth. We provide
forward secrecy for this network by asynchronously rotating keys. The need for synchronization or a
trusted server is avoided by using a novel method of patchingand sealing message blocks; this ensures
that the loosely connected group members are able to communicate securely and reliably, even as keys
frequently change. The ability to use compromised keys for eavesdropping is limited by negotiating fresh
secrets without interfering with the connectivity. KleeQ allows changes in group membership without
revealing old messages to new members and vice versa, and automatically forms subgroups when users
have lengthy absences. The combination of these features makes KleeQ an ideal system for secure group
communication in low-connectivity ad-hoc environments.

1 Introduction

Ad-hoc communication has become increasingly prevalent, particularly with the rise in popularity of wire-
less networks. These networks present an urgent need for a digital security infrastructure to protect com-
munications sent over insecure channels. Providing usefulsecurity to a dynamic group of communicating
individuals is of particular interest, because of the challenges associated with group membership and key dis-
tribution. A number of approaches to ad-hoc group communications provide encryption and authentication
with a focus on key management for rapidly changing groups [3, 11, 13, 14].

Many of these approaches share a common problem: they rely ona trusted server that distributes group
keys over existing transport keys. This poses two security risks. First, a trusted server becomes a powerful
target for an adversary and a compromise of the key distributor could be disastrous for its users. Second, if
one of the transport keys is compromised at a later date, all of the group keys transported with that key are
revealed. This can result in a loss of privacy for past communications, illustrating that these systems lack
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forward secrecy. Some of these approaches offer forward secrecy in a weaker sense—adding someone to a
group does not permit her to read past messages. We define forward secrecy more strongly—past messages
should not be readable even by external adversaries that compromise keys in the future. Specifically, after
some amount of time any given plaintext message should become irrecoverable to an adversary, even if that
adversary compromises the secrets of all participants and also has a copy of all past network transmissions.

We are interested in a network environment withlow connectivity: nodes do not have long-lived network
connections to other nodes and a node may be able to communicate only occasionally with another node
in the network. This environment models mobile users communicating opportunistically with a short-range
network such as Bluetooth.

The goal of this work is to provide a group communication strategy that removes the need for a trusted
server and affords forward secrecy to its users in such an ad-hoc environment, where messages cannot be
immediately delivered to the entire group. Additionally, we strive to prevent indefinite eavesdropping even
if all the currently used keys were compromised. We have implemented a system calledKleeQto achieve
this goal. KleeQ is designed for collaboration among aclique, which is a set of well-trusted parties where
no two clique members are strangers. They share data by updating their peers’ view of the total conversation
through a procedure calledpatching.

Forward secrecy is obtained by regularly changing a clique secret based on old secrets and previous mes-
sages, while taking care to ensure that all clique members—even ones that are available only rarely—can
continue to communicate. Key rotation is handled independently for all clique members, so no key in-
formation is sent over the network. Old keys, secrets and messages are deleted to limit the impact of a
compromised or stolen device. We assume trustworthiness within the clique, and thus do not protect against
clandestine attacks that compromise clique members. To prevent indefinite eavesdropping we attach key
negotiation parameters to messages sent so that the secret can be renewed independently of any existing
keys.

The remainder of this paper is organized as follows. Section2 discusses related work in group commu-
nication. Section 3 discusses the formation of cliques, including secret negotiation. Section 4 presents the
method used by KleeQ to send messages between the members. Section 5 presents message blocks, explain-
ing how they are found, verified and removed. Section 6 discusses the security aspects of KleeQ, describing
how the secrets of a clique are negotiated, rotated, and managed. Section 7 presents organic subcliques as
a method of adapting to settings of limited connectivity or clique members undergoing extended absences,
and section 8 concludes.

2 Related Work

Our implementation differs from many existing group communications strategies because of the use of for-
ward secrecy, the lack of a central trusted key distributionserver, and the lack of implied full connectivity.
Forward secrecy is an important security feature to ensure that a compromised key does not reveal all mes-
sages historically sent. The lack of a key server is important for security because a trusted server becomes a
powerful target for attackers and places limitations on an ad-hoc network.
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Research into key management for groups with dynamic membership have yielded efficient solutions that
lack forward secrecy. Wong et al. [14] describe an implemented system that manages group communication
by having a trusted server distribute keys, with a focus on scalability for large groups while minimizing
encryptions and communications load of the server. When newusers wish to join or leave the group, re-
keying occurs to prevent the release of old messages; however, each user maintains a unique key with the
server that is used to individually encrypt re-keying information. As such, the compromise of this key results
in the compromise of transmitted group keys and the loss of forward secrecy.

Similarly, Tseng [13] presents a key tree structure to simplify group inclusion and exclusion. They assign a
group member to be the Group Controller, and focus on reducing the storage demand required of the Group
Controller. Key rotation occurs only when group membershipchanges, and re-keying information is sent
using existing keys.

To preserve forward secrecy in the two systems above, a key negotiation protocol can be executed to generate
ephemeral keys used to transport frequent re-keying information. However the necessity of a central key
server or a continually online group controller is a burden we wish to remove with KleeQ.

Kronos [11] is a re-keying approach for secure multicast communications. It uses a domain key distributor
and a collection of area key distributors to refresh keys after a fixed time frame. Similar to KleeQ, it uses
private state information for the computation of new keys without transmission. However the area key
distributors send key information to the group members overexisting keys which inhibits forward secrecy.

Huang and Medhi [4] present a keying system for deriving conference keys for subsets of a large group of
users based on predistributed key information. Once the information is sent, there is no longer a need for a
central server since a group of participants can independently compute a key for communication. Symmetric
session keys are generated by one group member and sent to theothers using the group key, and as such their
scheme has a loss of forward secrecy if the group key is compromised. Group keys can only be changed by
having the server distribute new key information.

Mayer and Yung [7] present a series ofexpansionsto convert two-party cryptographic protocols into group
protocols. They provide an expansion for forward secrecy through the execution of key establishment pro-
tocols with a group leader at the beginning of each short lived session. This relies on full connectivity of the
group and the discretization of conversation into short-lived sessions with overhead, neither of which are
required by KleeQ.

Di Pietro et al. [3] present a system for group communicationin a wireless setting relying on a trusted
server. It considers dynamic group membership and defines forward and backward secrecy as the inability
for excluded members to read future messages and for included members to read previous messages, respec-
tively. Their scheme of key distribution uses a server that distributes information used in conjunction with
locally available secret knowledge to compute new keys. This provides forward secrecy against an adver-
sary who compromises the locally available information, but relies on a trusted server and permits indefinite
eavesdropping after a compromise.

Borisov et al. [2] have developed a software plug-in to provide forward secrecy and limit indefinite eaves-
dropping of private instant messenger conversations. It adds key negotiation parameters to each message
that is sent, and uses this information to continually derive new keys that are used for as few messages as
possible. This approach works well for interactive two-party conversations but its applicability to KleeQ is
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limited because of the ad-hoc nature of the group.

3 Clique Formation

A clique is a group of users who communicate in a broadcast manner: all messages addressed to the clique
are eventually delivered to all of its members. Thesizeof a clique is the number of members in it. Each
clique has asecretwhich is updated from time to time, and a clique can be uniquely identified by its name
and its secret. Cliques are formed through an interactive process involving key negotiation. We assume that
all KleeQ users maintain a public signature key (for example, a DSA key) which is used to authenticate
their negotiation parameters, and all KleeQ members who wish to communicate have authentic copies of all
relevant public keys. Since clique formation will occur in ad-hoc environments, we allow users to be added
at any time. The clique can be constructed gradually until all of the desired members have been added.

One member takes the lead in forming a clique by creating a clique for herself. This is done trivially by
selecting a clique name and a random secret. Members are added iteratively, and an authenticated Diffie-
Hellman key negotiation [5] takes place at each iteration toensure that no secrets are ever transmitted over
the network. In Diffie-Hellman, both parties in the key negotiation use a secret exponent. A member of the
existing clique uses the current clique secrets and sends her inviteegs. The invitee selects a random secret
s′ and sendsgs′ to the inviter. The inviter then sends a message to the existing clique with the name of the
new member and his key negotiation parametergs′ . When the other members receive the message that a
user has been added, they can each computegs·s′ and use the value as the secret for a new clique with the
new member. Alternatively, if any of them does not wish to addthis new member, he can continue to use
the old secrets, which remains a secret from the new member.

Two cliques can merge by having each clique send the exponentiation ofg to their current secret and use the
negotiated key as their new secret. In fact, additions of a single member can be viewed as merges with one
of the cliques having size one.

Removing a member is more cumbersome. While everyone in a clique is fully trusted, it may be necessary
to remove a member, particularly if they have been compromised. Naturally, a subset of KleeQ users can
opt to form a new clique as above and disregard their previousclique. They may also perform a vote to
remove a member from inside the clique. One clique member writes a message containing a motion to
remove a member, along with the beginning of a multi-party key negotiation [12]. Each other member can
vote in favour of the motion and contribute to the key negotiation, or vote against the motion and avoid key
negotiation. After all members vote, the subset of voters who contributed to key negotiation can compute
and begin using a new secret based solely on their contributions, and the remaining members will be unable
to determine their secret.

4 Conversations

KleeQ manages the messages received by the members of a clique. Communication is achieved through
the process ofpatching, where two members of a clique mutually provide missing messages. Each clique
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member maintains atext for the clique, which is the set of messages he has received. He also keeps track of
a version numberfor the clique. This version number is a tuplev = (v1, v2, . . . , vn) wheren is the size of
the clique, andvi is the number of messages in his text authored by theith clique member.

Algorithm 1 is the patching algorithm used whenever two members of a clique, Alice and Bob, communi-
cate. By exchanging version numbers, each of Alice and Bob can provide any messages the other is missing.
Next, we prove the correctness of this algorithm.

4.1 Correctness of the Patching Algorithm

This section provides a proof of the correctness of the patching algorithm; that is, that after running the
algorithm, Alice and Bob will have the same text for the clique, which will be the union of their previous
texts. This section makes use of a partial ordering of messages, denoted<, wherem1 < m2 iff m1 andm2

were written by the same author andm1 was written beforem2.

We can extend this partial ordering to a total ordering<L in the following way: each clique member main-
tains a logicalLamport timestamp[6], initially 0. When two users patch each other they each set their
Lamport time to one plus the maximum of their current Lamporttimes. When each message is written, it is
given a timestamp equal to the author’s current Lamport timeand then that current time is increased by one.
We note that Lamport times are always nonnegative integers.Then if messagem′ was written by clique
memberU and messagem was written by clique memberV , we saym′ <L m iff the timestamp onm′ is
less than that onm, or they are equal, andU < V in some canonical ordering of the clique members, such
as an alphabetical ordering of their names.

We say thetotal Lamport timeof a clique is the sum of the current Lamport times of each of its members.
We note that creating messages and patching other clique members always strictly increases the clique’s
total Lamport time.

We first show that no text ever contains gaps in messages by a single author.

Lemma. Whenever a clique member’s text contains a messagem, it also contains all messagesm′ such
thatm′ < m.

Proof. When the clique is created, all clique members’ texts are empty, and so the statement is vacuously
true when the total Lamport time is 0.

Suppose the statement is false when the total Lamport time ist, and let this be the earliest time it is false;
that is, the statement is true for all times less thant. (Since Lamport times are nonnegative integers, we can
always do this.)

At total Lamport timet, let V be a member of some clique, and supposem is a message inV ’s text,m′ is
a message not inV ’s text, butm′ < m. There are two ways form to have been added toV ’s text: eitherV
wrote the messagem, or elseV receivedm during a patching operation with some other clique memberW .
Note thatW may or may not be the author ofm.

But if m′ is not inV ’s text, thenV is not the author ofm′, so by the definition of<, V is also not the author
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Algorithm 1 The Patching Algorithm
Alice

1. Alice sends her version numbervA = (vA
1 , . . . , vA

n ) to Bob

Bob

1. Bob computes the difference between his version number and Alice’s:

v∆ = vB − vA

(v∆
1 , . . . , v∆

n ) = (vB
1 − vA

1 , . . . , vB
n − vA

n )

2. R ← ∅ (The return message)

3. foreach i from 1 to n:

if v∆
i > 0: (Alice is missing messages from authori)

Add thev∆
i most recent messages in Bob’s text authored by theith clique member toR

4. Bob sends his version number andR to Alice

Alice

1. Alice adds messages from Bob’sR to her text.

2. As above, Alice computes the difference between her (new)version number and Bob’s version num-
ber: v∆ = vA − vB .

3. As above, Alice computes the set of Bob’s missing messagesR and sends it to Bob.

Bob

1. Bob adds the messages Alice has sent to his text.

6



of m. Therefore,V receivedm from W in a patching operation, andm andm′ were both written by some
authori. Before that patching operation, the total Lamport time wasless thant, so sincem was inW ’s text
before the patch, so were all messages written beforem by authori. Therefore, before the patch, we must
have hadvV

i < vW
i , V ’s text contained the firstvV

i messages written by authori, andW ’s text contained the
first vW

i messages written by authori. Then during the patch,R will contain exactly those messages from
authori whichW had butV did not. Therefore eitherm′ was already inV ’s text before the patch, or it was
in R, and was added toV ’s text during the patch. Either case contradictsm′ not being inV ’s text after the
patch, and the proof is complete.

Theorem 1 (The Patching Theorem). Let vA = (vA
1
, . . . , vA

n ) andvB = (vB
1

, . . . , vB
n ) be Alice and Bob’s

version numbers before executing the patching algorithm. After executing the algorithm, they will each have
version numbervAB = (vAB

1
, . . . , vAB

n ) = (max(vA
1

, vB
1

), . . . ,max(vA
n , vB

n )), and each of their texts will
consist of the firstvAB

i messages written by each memberi.

Proof. As a consequence of the Lemma, we know that whenever a clique member has version number
v = (v1, . . . , vn), his text contains exactly the firstvi messages written by authori, for eachi. Therefore, all
we need to do is compute Alice and Bob’s version numbers afterthe patch, and show that they each equal
vAB .

But this is immediate: for each authori, if vB
i > vA

i then Bob will send Alice exactlyvB
i − vA

i messages
from authori, so she will end up withvB

i such messages, and similarly ifvB
i < vA

i .

5 Blocks and Verification

Despite having a mathematical proof of the patching algorithm’s correctness, in practice we still wish to
verify that the messages were transmitted correctly; system errors may occur, network errors are inevitable,
and an adversary might attempt to insert fake messages. We wish to verify that the messages received by one
clique member are the same as those being received by the others. This is complicated, however, by the ad-
hoc nature of the group: messages are transmitted between peers only when they happen to communicate.
Recalling the total ordering of messages<L from section 4, we can arrange all messages into a linear
sequence, but it may be the case that newer messages (orderedby Lamport time) may arrive before some
older messages. Note, however, that not only does<L respect causality (if messager is a response to
messagem, then necessarilym <L r), but it can never be the case that a clique member receives a response
to a message before receiving the original message.

To verify that a set of messages is correct, KleeQ divides thesequence of received messages into consecutive
blocks, andsealsa block when it is certain that no message is missing within the block. It does so in a
deterministic way that guarantees that all clique members will find the same messages when each calculates
his or her own sealed blocks. The most recently received messages, which are not part of any sealed block,
are called thetail. Thesealable setis a prefix of messages in the tail such that no message is missing from
the sealable set. Blocks are found and sealed (and thus removed from the tail) by examining the sealable set.

Since sealed blocks will be found identically for all users,they can be used to verify the equality of the
messages they contain. KleeQ users compare cryptographic hashes of the contents of the blocks they seal.
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Algorithm 2 The Block Finding Algorithm
Inputs
• CliqueC with a sequenceM of unsealed messages

Output
• The prefix ofM which forms a sealable block, if any

Variables
• t: Total number of uniquely seen authors

• pi: Computed position of theith member’s last message

• j: Message iterator

• S: The sealable set
Procedure

1. t← 0

2. pi ← null ∀i ∈ C

3. j ←last-message(M)

4. while j ≥L first-message(M):

i← Author(j)

if pi = null :
pi ← j

t← t + 1
if t = |C|:
S ← (M1, . . . ,Mj)
break while

j ← previous-message(j)

5. if t 6= |C|: return ∅

6. t← 0

7. pi ← null ∀i ∈ C

8. j ←first-message(S)

9. while j ≤Llast-message(S):

i← Author(j)

if pi = null :
pi ← j

t← t + 1
if t = |C|:

end← maxi(pi)
return (S1, . . . ,Send)

else: pi ← j

j ←next-message(j)

10. return ∅
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If the hashes differ between users, then an error has occurred in transmission and the blocks can be compared
for resolution. When all users have verified the contents of ablock, the block can be deleted since no clique
member will need to request a message it contains. In section6 we will see that blocks also play an important
role in key rotation and forward secrecy.

5.1 The Block Finding Algorithm

Algorithm 2 presents the block finding method that is used to seal blocks from the tail. After each patching,
clique members repeatedly run this algorithms to find and seal blocks until the algorithm returns the empty
block ∅.

The procedure is broken into two phases. The first phase (steps 1–5) returns the sealable set from the tail and
the second phase (steps 6–10) returns the first block in the sealable set. A block is defined as the smallest
set of sequential messages, starting from the beginning of the sealable set, such that every clique member
has authored at least one message in the block. We choose thisdefinition so that we usually find at most
one sealable block after each expansion of the sealable set;sealing multiple blocks with no intervening
communication provides no additional benefit for the increased cost.

Figure 1 illustrates this algorithm. In Figure 1(a) we have received 22 messages from our clique. Each
message is assigned one of four colours, indicating which ofthe four clique members authored it. These
messages are sorted in the diagram according to increasing Lamport time; that is, by the total ordering<L.
In Figure 1(a) we see that we have previously found and sealedone block of messages, and now we run the
algorithm to try to find the next block.

We run the first phase of the algorithm to find the sealable set,pictured in Figure 1(b). This is the longest
prefix of the tail with the property that we have received a message from every author at or to the right of
the rightmost element of the sealable set. This ensures thatthere are no messages yet to be received that
have Lamport times within our sealable set. Note that this isnot the case outside our sealable set; we may
yet receive messages from the dark grey author with a Lamporttime before the rightmost message from the
light grey author, for example.

The second phase of the algorithm examines only the sealableset, and looks for the first block: the shortest
prefix of the sealable set that contains a message from every author. The result is shown in Figure 1(c). After
this returned block is sealed, the system will be in the statepictured in Figure 1(d). Note that no further
blocks are available to be found at this point; the block finding algorithm will locate more blocks only after
we receive more messages in our next patching.

Correctness of the Block Finding Algorithm

Correctness is shown in two parts: proving that a sealed block has no missing messages, and proving that
all clique members will find the same blocks. We assume that there have been no errors in transmission or
fraudulent messages.

Lemma. The sealable setS, if nonempty, contains no missing messages.
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Sealed BlockSealed Block Tail

Lamport Time

Tail

Tail

Sealable SetSealed Block

Tail

Returned Block
Sealable Set

Sealed Block

Sealed Block

(d)

(c)

(a)

(b)

Figure 1: An illustration of the block finding algorithm. Each shaded rectangle represents a message; shades
correspond to unique authors. (a) illustrates the input to the algorithm; (b) is the result of the first phase; (c)
is the output of the algorithm; (d) is the state of the system after the returned block is sealed.

10



Proof. After step 5,S will be the longest prefix ofM with the property that for every messages in S, and
for all authorsi, there is a messagemi ≥L s inM written by authori.

Suppose userW ’s sealable setS contains a missing messagem by an authorV ; that is,V wrote a message
m with m <L S|S| but W has not yet receivedm. We knowW has received some messagemV ≥L S|S|
also written byV . But by the patching theorem, we know thatW must also have received all messages
written byV beforemV , includingm, a contradiction.

Theorem 2. Blocks returned by the block finding algorithm contain no missing messages.

Proof. If the block finding algorithm returns a sealable block, it isa prefix of the sealable set. By the
Lemma, this block will contain no missing messages, as required.

Lemma. If the second phase of the algorithm finds a block in the sealable setS, then it would find the same
block in any sealable setS ′ for whichS is a prefix ofS ′.

Proof. The second phase of the algorithm begins examining the first message in the sealable set and con-
tinues until it finds at least one message from each author. Therefore, if it successfully finds a block inS, it
would find that same block inS ′, which starts with a copy ofS.

Theorem 3. If a clique memberV has found and sealed a sequence of blocksBV = B1, . . . ,Bℓ, then each
other memberW of the clique will have found and sealed a sequence of blocksBW where eitherBV is a
prefix ofBW , or BW is a prefix ofBV .

Proof. By induction onℓ, the number of blocks inBV .

Base case:ℓ = 0, soBV is empty, and is therefore a prefix ofBW .

Inductive case:Assume the statement is true wheneverBV is of lengthℓ − 1. SupposeBV is of lengthℓ,
and letW be any other member of the clique. LetBV

∗ be the firstℓ − 1 blocks ofBV . By the inductive
hypothesis, we know that if the length ofBW is at mostℓ − 1, then it is a prefix ofBV

∗ , and so also ofBV .
Otherwise, the firstℓ− 1 elements ofBW are a copy ofBV

∗ , and all that remains to be shown is that theℓth

element ofBV is the same as theℓth element ofBW .

After finding and sealing the sameℓ − 1 blocks,V andW ’s sealable setsSV andSW will be nonempty
(since they are each able to find and seal another block), and so will each start with the same message. Since
sealable sets cannot be missing messages, we must have that one ofSV andSW is a prefix of the other, and
so by the Lemma, the block finding algorithm will return the sameℓth block in either case.

As a result of this theorem, we see that as long as all clique members continue to both write messages and
communicate, they will all seal off the same sequence of blocks of messages. To solve the problem of clique
members not writing messages, “dummy” messages are automatically authored for clique members when
they patch other members. To handle the case where members donot communicate for a long time, KleeQ
uses a mechanism calledorganic subcliques, which we will discuss in section 7.

11



5.2 Block Verification

The previous section shows that all members of a clique will be able to find the same set of blocks regard-
less of the sequence of patchings that distributed the messages. This useful property allows members to
independently compute hash digests of the resulting blocksto verify their equality.

Each block is given a sequential number equal to the number ofblocks sealed before it. The concatenation
of the number and the contents of the messages in the block is hashed to produce the fingerprint of the block.
Two clique members can verify that these fingerprints are equal to be certain that no errors have occurred
during transmission.

If two fingerprints disagree, then perhaps a message has beenforged and inserted into the text. Both users
would send the entire block to each other’s devices. Although not yet implemented, it is expected that the
automated verification mechanism would then cease and the users would be prompted that some malicious
activity may have occurred. They would be able to inspect thedifferences between the two blocks for
manual resolution.

5.3 Safe Deletion

Safe deletionis the process by which clique members can remove old messages with the assurance that all
clique members have been fully patched up to that point. Clique members keep track of block verifications
made with other clique members. Each user maintains a list ofother clique members, and associates with
each member the highest block number that has been verified with that person. When a block has been
verified across all members of the clique, then it can be safely deleted. Once a block has been deleted by
all clique members it cannot be recovered, which is part of how KleeQ achieves forward secrecy. The other
part is key management, which we discuss next.

6 Key Management

It is critical for our application that clique conversations are encrypted and authenticated. We assume that all
clique members have authentic copies of each others’ publicsignature keys. Long-lived public encryption
keys are not used, because any message encrypted with such a key would lack forward secrecy. As we saw
in section 3, clique members use these signature keys duringclique formation to execute a multi-party key
negotiation protocol that provides each clique member witha common secret. In addition, each clique has a
public clique name that is known to all clique members. The secret and the clique name are used to derive
an initial key for encryption and message authentication.

6.1 Key Negotiation

As discussed in section 3, key negotiation is used to provideall clique members with an initial secret. To
prevent indefinite eavesdropping in the event that the secret is compromised, it is important to renew the
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secret regularly.

Multi-party Diffie-Hellman [12] is used to generate new secrets for the clique. In this protocol, each member
of the clique receives a set of key negotiation parameters and contributes signed parameters of their own.
This key renewal is done in an ad-hoc manner, where clique members attach key negotiation parameters to
messages they write. KleeQ will examine the current state ofkey negotiation based on received messages,
and if a clique member has not yet contributed to this round she appends her own contribution. When
all members have contributed, the last writes a message containing a set of parameters from which only
contributors can compute the final key. When the block containing that message is sealed, KleeQ will notice
this message is present and begin using the new secret.

6.2 Message Authentication

Message authentication is needed for all communications that occur between clique members, such as com-
paring version numbers, sending patches, and verifying oldblocks. KleeQ provides group authentication
through the use of aMessage Authentication Code (MAC)[8] based on the current shared key and the
message contents themselves. These MACs ensure that the original message has not been modified by
an adversary through transmission. We use SHA256-HMAC [1],a MAC based on adding keying to the
standard SHA-256 hash function [9].

We should note that the use of a MAC only authenticates a message as coming fromsomeclique member,
not any member in particular, but this is acceptable in our scenario of trusted clique members, and forgeries
will eventually be discovered during the block sealing process in any event. Similarly, it does not force non-
repudiation on KleeQ users. If a clique wishes to have non-repudiation for all messages in the conversation
then it is trivial to use the existing public keys to sign messages.

6.3 Key Derivation and Rotation

The MAC function is also used to derive an initial key and rotate old keys into fresh ones. When a clique is
formed, clique members are provided an identical set of information: a clique nameN , and a shared secret
s. The initial keyk used for communications is derived in the following manner:k ← MACs(N ); that is,
the MAC for the clique name keyed by the secret.

By rotating keys after sealing each block, KleeQ messages gain forward secrecy. Since blocks are iden-
tical for all clique members, new keys can be derived from oldkeys and the block contents, and can be
independently computed by all members. The process for key rotation is as follows:

s ← MAC k(s)

k ← MAC s(block contents)

The first line changes the shared secret for each clique member. If the key for a message was compromised,
an adversary would still need to know the current secret to generate the key used following key rotation.
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The second line rotates the current key by finding the MAC of the current block, keyed by the current secret.
When a new secret is computed through negotiation parameters attached to messages, it is used as the new
secret instead of computingMAC k(s).

Old keys should be kept in the system until a user is certain that no other clique member would still be using
that key. When patching requests arrive encrypted with an old key, the member with a newer key can update
the other user using the old key. Then both members will now beable to seal off the same blocks and can
communicate with the new key. When a user is certain all members of a clique have sealed off a block, he
must securely remove keys and secrets derived before that block.

6.4 Message Format

In addition to the usual encryption and authentication, we must deal with an addressing issue. It is possible
for clique members to get messages destined for other cliques, especially when using a local area broadcast
transport protocol such as Bluetooth or Wi-Fi. Moreover, key rotation can result in a variety of relevant
encryption keys in a single clique, and the user would need toefficiently know which key to use. It is
important for clique members to quickly identify messages that are related to a clique in which they are a
member, and also to identify which key to use for message decryption. Finally, it is preferable to encrypt
the name of the clique and current key iteration for the privacy of KleeQ users and to hinder targeted
eavesdropping.

An address tag,cid, is provided at the beginning of any communication between clique members. It uniquely
refers to the clique for which this message is destined, and identifies the key used to encrypt the communica-
tion. The tag consists of the MAC for the clique nameN keyed by the keyk being used to encrypt remainder
of the message:cid ←MACk(N ). Thus, the entire communication for a messagem is the address, payload
and MAC:MACk(N )||Ek(m)||MACk(N||Ek(m)). To prevent replay attacks, the message contains the
names of the sender and the recipient, as well as the sender’scurrent Lamport time.

Each time a clique key is rotated, the clique member computesthe address tagcid and adds it to an internal
look-up table of keys indexed by the tag. When a message arrives, users can quickly consult the table to
determine if they are capable of decrypting the message, andwhich key to use for decryption. When keys
are no longer needed they are removed from the table to prevent an attacker from accessing old keys through
a compromised device. Users can maintain a common table of address tags and keys for all cliques in which
they are involved.

Keys are added to the table when they are computable by each clique member individually and independently
of the other members. This relieves the need for transporting keys over the network or a trusted server to
indicate when to begin using new keys. Since the block’s contents are used to generate new keys, when two
clique members communicate with a new key, they have performed a de facto validation of the block from
which the key was derived. Moreover, because of the cumulative derivation of keys, they have additionally
validated all earlier blocks. This swift validation allowsfor old blocks to be quickly removed from memory.

It is possible that an adversary could observe various clique members sending messages with the same tag
header. While the header would only be the same for messages delivered within a single block of the text,
an adversary could use this information to infer the set of devices that are involved in a clique. To protect
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Figure 2: An illustration of the organic subclique algorithm. Each shaded rectangle represents a message;
shades correspond to unique authors. (a) illustrates the input to the algorithm; (b) is the discovery of a
subclique; (c) is the state of the system after the smaller subclique is used to seal more blocks.
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against this, we can create multiple cliquealiasesby appending a small number after the clique name before
calculating the MAC to produce different address tags that correspond to the same key. Since the list of tags
and keys are managed in a hash table, the only disadvantage isthat more space is required to store this extra
information.

7 Organic Subcliques

In large cliques with low connectivity it is likely that somesubset of members may repeatedly patch each
other for a duration without patching other members of the clique, as seen in Figure 2(a). Such a subset of
users will wish to seal off blocks so that key rotation can occur without waiting for the missing members.
Users may also take a vacation and be unable to participate inpatching, while the remaining KleeQ users
will want to verify their conversation in the interim.

We consider each clique member as being involved in two cliques: the full clique, and the reduced clique
based on current connectivity. A user can construct their reduced clique by determining how many blocks
could be sealed if the subclique consisted of only the authors in some subset, as seen in Figure 2(b). If
the number of blocks is above some threshold, then a control message can be sent where a clique member
indicates he can seal offn blocks with reduced cliqueCr ( C, and asks if any other clique member inCr
has sent messages from the lastn blocks to clique members outsideCr. Once all members ofCr vote to seal
off the block, then they can remove the block, verify the old block, and perform key rotation within this new
group, as seen in Figure 2(c). This entire procedure can be performed automatically with a parameterized
threshold of sealable blocks that triggers a voting message.

When clique members outside ofCr resume patching, the key that was used before the creation ofthe
subclique can resurface. However, the messages assigned tothe subclique will not be available to the ex-
cluded members of the original clique; key rotation and forward secrecy may well cause subclique members
to discard those messages before excluded members return. This gives cliques an organic quality, where
subcliques naturally follow the observed connectivity of the clique members.

8 Conclusion

Mobile users with local communication form an ad-hoc network with low connectivity. This paper presents
a system called KleeQ, which provides secure group communication to users of such a network, even where
the networking environment precludes the use of an always-available trusted server. KleeQ provides forward
secrecy by regularly rotating keys, and uses a novel method of patching and sealing message blocks to ensure
that the loosely connected group members are kept in sync. KleeQ allows group membership to change
without revealing old messages to new members, and vice versa, and can automatically form subgroups
when users have not been heard from in some time.

Our prototype implementation of KleeQ is available for download on SourceForge [10].
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