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Abstract

As wireless technology has become ubiquitous, ad-hoc mksaltave come into wide use. This
paper presents a system called KleeQ, which provides sgcoop communication to users of ad-hoc
networks with limited connectivity, such as mobile usersnomunicating over Bluetooth. We provide
forward secrecy for this network by asynchronously rotatieys. The need for synchronization or a
trusted server is avoided by using a novel method of patchimiysealing message blocks; this ensures
that the loosely connected group members are able to coneatersecurely and reliably, even as keys
frequently change. The ability to use compromised keysdwesdropping is limited by negotiating fresh
secrets without interfering with the connectivity. Kleelpas changes in group membership without
revealing old messages to new members and vice versa, amdaidally forms subgroups when users
have lengthy absences. The combination of these featulesstdeeQ an ideal system for secure group
communication in low-connectivity ad-hoc environments.

1 Introduction

Ad-hoc communication has become increasingly prevalatiqularly with the rise in popularity of wire-
less networks. These networks present an urgent need fagjital diecurity infrastructure to protect com-
munications sent over insecure channels. Providing usefturity to a dynamic group of communicating
individuals is of particular interest, because of the drales associated with group membership and key dis-
tribution. A number of approaches to ad-hoc group commtioica provide encryption and authentication
with a focus on key management for rapidly changing group41313, 14].

Many of these approaches share a common problem: they redytarsted server that distributes group
keys over existing transport keys. This poses two secuskgr First, a trusted server becomes a powerful
target for an adversary and a compromise of the key distibrduld be disastrous for its users. Second, if
one of the transport keys is compromised at a later datef #lleogroup keys transported with that key are
revealed. This can result in a loss of privacy for past comoations, illustrating that these systems lack



forward secrecy. Some of these approaches offer forwargésemn a weaker sense—adding someone to a
group does not permit her to read past messages. We definarfbsecrecy more strongly—past messages
should not be readable even by external adversaries thgiroomse keys in the future. Specifically, after
some amount of time any given plaintext message should beaoatoverable to an adversary, even if that
adversary compromises the secrets of all participants lanchas a copy of all past network transmissions.

We are interested in a network environment watv connectivity nodes do not have long-lived network
connections to other nodes and a node may be able to comrteunigly occasionally with another node
in the network. This environment models mobile users comoating opportunistically with a short-range
network such as Bluetooth.

The goal of this work is to provide a group communicationtefyg that removes the need for a trusted
server and affords forward secrecy to its users in such dmadenvironment, where messages cannot be
immediately delivered to the entire group. Additionallye wtrive to prevent indefinite eavesdropping even
if all the currently used keys were compromised. We have émginted a system callédeeQto achieve
this goal. KleeQ is designed for collaboration amongique, which is a set of well-trusted parties where
no two cligue members are strangers. They share data byingdatir peers’ view of the total conversation
through a procedure callgzhtching

Forward secrecy is obtained by regularly changing a clisaezed based on old secrets and previous mes-
sages, while taking care to ensure that all clique membevern-enes that are available only rarely—can
continue to communicate. Key rotation is handled indepethgldor all clique members, so no key in-
formation is sent over the network. Old keys, secrets andsages are deleted to limit the impact of a
compromised or stolen device. We assume trustworthingsawthe cliqgue, and thus do not protect against
clandestine attacks that compromise clique members. Thepréndefinite eavesdropping we attach key
negotiation parameters to messages sent so that the sanrbeaenewed independently of any existing
keys.

The remainder of this paper is organized as follows. SeQidliscusses related work in group commu-
nication. Section 3 discusses the formation of cliqueduding secret negotiation. Section 4 presents the
method used by KleeQ to send messages between the memhsisn Sg@resents message blocks, explain-
ing how they are found, verified and removed. Section 6 d&sithe security aspects of KleeQ, describing
how the secrets of a clique are negotiated, rotated, andgedn&ection 7 presents organic subcliques as
a method of adapting to settings of limited connectivity ligue members undergoing extended absences,
and section 8 concludes.

2 Related Work

Our implementation differs from many existing group comiications strategies because of the use of for-
ward secrecy, the lack of a central trusted key distribugerver, and the lack of implied full connectivity.
Forward secrecy is an important security feature to ensateat compromised key does not reveal all mes-
sages historically sent. The lack of a key server is impoftarsecurity because a trusted server becomes a
powerful target for attackers and places limitations ondih@c network.



Research into key management for groups with dynamic meshipehave yielded efficient solutions that
lack forward secrecy. Wong et al. [14] describe an implem@siystem that manages group communication
by having a trusted server distribute keys, with a focus @tagdlity for large groups while minimizing
encryptions and communications load of the server. Whenusaxs wish to join or leave the group, re-
keying occurs to prevent the release of old messages; hoveaeh user maintains a unique key with the
server that is used to individually encrypt re-keying imf@tion. As such, the compromise of this key results
in the compromise of transmitted group keys and the lossrefdl secrecy.

Similarly, Tseng [13] presents a key tree structure to siyngroup inclusion and exclusion. They assign a
group member to be the Group Controller, and focus on redubia storage demand required of the Group
Controller. Key rotation occurs only when group membergtfipnges, and re-keying information is sent
using existing keys.

To preserve forward secrecy in the two systems above, a kgtiagon protocol can be executed to generate
ephemeral keys used to transport frequent re-keying irddom. However the necessity of a central key
server or a continually online group controller is a burdenwish to remove with KleeQ.

Kronos [11] is a re-keying approach for secure multicast momications. It uses a domain key distributor
and a collection of area key distributors to refresh keysraitfixed time frame. Similar to KleeQ, it uses
private state information for the computation of new keyshaiit transmission. However the area key
distributors send key information to the group members exesting keys which inhibits forward secrecy.

Huang and Medhi [4] present a keying system for deriving emrice keys for subsets of a large group of
users based on predistributed key information. Once tlenmdtion is sent, there is no longer a need for a
central server since a group of participants can indepelydesmpute a key for communication. Symmetric
session keys are generated by one group member and senbtbéhgusing the group key, and as such their
scheme has a loss of forward secrecy if the group key is camipeal. Group keys can only be changed by
having the server distribute new key information.

Mayer and Yung [7] present a seriesedfpansiongo convert two-party cryptographic protocols into group
protocols. They provide an expansion for forward secreoyuiph the execution of key establishment pro-
tocols with a group leader at the beginning of each shortllsession. This relies on full connectivity of the
group and the discretization of conversation into shededisessions with overhead, neither of which are
required by KleeQ.

Di Pietro et al. [3] present a system for group communicatiom wireless setting relying on a trusted
server. It considers dynamic group membership and defimagfd and backward secrecy as the inability
for excluded members to read future messages and for irtlmeenbers to read previous messages, respec-
tively. Their scheme of key distribution uses a server tligttridutes information used in conjunction with
locally available secret knowledge to compute new keyss Pphovides forward secrecy against an adver-
sary who compromises the locally available informatiort,relies on a trusted server and permits indefinite
eavesdropping after a compromise.

Borisov et al. [2] have developed a software plug-in to pdleviorward secrecy and limit indefinite eaves-
dropping of private instant messenger conversations. ds &ey negotiation parameters to each message
that is sent, and uses this information to continually derew keys that are used for as few messages as
possible. This approach works well for interactive twotpaonversations but its applicability to KleeQ is



limited because of the ad-hoc nature of the group.

3 Clique Formation

A clique is a group of users who communicate in a broadcasheramll messages addressed to the clique
are eventually delivered to all of its members. Higeof a clique is the number of members in it. Each
cligue has asecretwhich is updated from time to time, and a clique can be unigigdntified by its name
and its secret. Cliques are formed through an interactiwegss involving key negotiation. We assume that
all KleeQ users maintain a public signature key (for exampl®SA key) which is used to authenticate
their negotiation parameters, and all KleeQ members whb teisommunicate have authentic copies of all
relevant public keys. Since clique formation will occur itlaoc environments, we allow users to be added
at any time. The clique can be constructed gradually urtidfdhe desired members have been added.

One member takes the lead in forming a clique by creatingouelfor herself. This is done trivially by
selecting a clique name and a random secret. Members ard ddddively, and an authenticated Diffie-
Hellman key negotiation [5] takes place at each iteratioartsure that no secrets are ever transmitted over
the network. In Diffie-Hellman, both parties in the key negtbn use a secret exponent. A member of the
existing clique uses the current clique secrahd sends her inviteg’. The invitee selects a random secret
s" and sendg®’ to the inviter. The inviter then sends a message to the egistique with the name of the
new member and his key negotiation parameter When the other members receive the message that a
user has been added, they can each comypteand use the value as the secret for a new clique with the
new member. Alternatively, if any of them does not wish to #tid new member, he can continue to use
the old secres$, which remains a secret from the new member.

Two cliques can merge by having each clique send the expatientof g to their current secret and use the
negotiated key as their new secret. In fact, additions ofglsimember can be viewed as merges with one
of the cligues having size one.

Removing a member is more cumbersome. While everyone imaecis fully trusted, it may be necessary
to remove a member, particularly if they have been compredhidNaturally, a subset of KleeQ users can
opt to form a new clique as above and disregard their prewitigge. They may also perform a vote to

remove a member from inside the clique. One cliqgue membédesva message containing a motion to
remove a member, along with the beginning of a multi-party fkegotiation [12]. Each other member can
vote in favour of the motion and contribute to the key nedimtig or vote against the motion and avoid key
negotiation. After all members vote, the subset of voters wintributed to key negotiation can compute
and begin using a new secret based solely on their contiitgjtand the remaining members will be unable
to determine their secret.

4 Conversations

KleeQ manages the messages received by the members of @ cliqummunication is achieved through
the process opatching where two members of a clique mutually provide missing mgss. Each clique



member maintains &xtfor the clique, which is the set of messages he has receivedldd keeps track of
aversion numbefor the clique. This version number is a tuple= (vq, vo, ..., v,) wheren is the size of
the clique, andy; is the number of messages in his text authored by®reique member.

Algorithm 1 is the patching algorithm used whenever two merslof a clique, Alice and Bob, communi-
cate. By exchanging version numbers, each of Alice and Bolpmavide any messages the other is missing.
Next, we prove the correctness of this algorithm.

4.1 Correctness of the Patching Algorithm

This section provides a proof of the correctness of the jpajchlgorithm; that is, that after running the
algorithm, Alice and Bob will have the same text for the cegwhich will be the union of their previous
texts. This section makes use of a partial ordering of messatgnoted:, wherem, < my iff m; andms
were written by the same author and was written beforens.

We can extend this partial ordering to a total orderingin the following way: each clique member main-
tains a logicalLamport timestamp6], initially 0. When two users patch each other they eadhtlseir
Lamport time to one plus the maximum of their current Lampiones. When each message is written, it is
given a timestamp equal to the author’s current Lamport éimgtthen that current time is increased by one.
We note that Lamport times are always nonnegative integéngn if messagen’ was written by clique
memberU and message: was written by clique membdr, we saym’ <, m iff the timestamp onn’ is
less than that om, or they are equal, and < V' in some canonical ordering of the clique members, such
as an alphabetical ordering of their names.

We say thdotal Lamport timeof a clique is the sum of the current Lamport times of eachfriembers.
We note that creating messages and patching other cliquebereralways strictly increases the clique’s
total Lamport time.

We first show that no text ever contains gaps in messages bgle siuthor.

Lemma. Whenever a clique member’s text contains a messagi also contains all messages’ such
thatm’ < m.

Proof. When the clique is created, all cliqgue members’ texts aretgnapd so the statement is vacuously
true when the total Lamport time is 0.

Suppose the statement is false when the total Lamport tirheaisd let this be the earliest time it is false;
that is, the statement is true for all times less thafBince Lamport times are nonnegative integers, we can
always do this.)

At total Lamport timet, let V' be a member of some clique, and suppoese& a message ir'’s text, m’ is
a message not ili’s text, butm’ < m. There are two ways farn to have been added 6's text: eitherlV
wrote the message, or elsel’ receivedm during a patching operation with some other clique mentiser
Note thatl’ may or may not be the author of.

But if m/ is not inV’s text, thenV is not the author ofn’, so by the definition ok, V' is also not the author
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Algorithm 1 The Patching Algorithm

Alice
1. Alice sends her version numbef = (v{,...,v2) to Bob
Bob

1. Bob computes the difference between his version numlzbAkce’s:

’UA _ UB—’UA
(’UlAv"'vvre) = (’UIB_Uiqv"'»US_U;?)

2. R < 0 (The return message)
3. foreachi from 1 ton:

if v& > 0: (Alice is missing messages from authipr
Add theviA most recent messages in Bob’s text authored by®reique member taR

4. Bob sends his version number aRdo Alice
Alice

1. Alice adds messages from BolRsto her text.

2. As above, Alice computes the difference between her (vevgion number and Bob’s version num-
ber: v® = v4 — 0B,

3. As above, Alice computes the set of Bob’s missing messRgasd sends it to Bob.

Bob

1. Bob adds the messages Alice has sent to his text.




of m. Therefore,V receivedm from ¥ in a patching operation, and andm’ were both written by some
authori. Before that patching operation, the total Lamport time igas thart, so sincen was inWW’s text
before the patch, so were all messages written befol®y author:. Therefore, before the patch, we must
have had))” < v}V, V's text contained the first’” messages written by authgrand¥’s text contained the
first v}V messages written by authorThen during the patchR will contain exactly those messages from
authori which W had butV did not. Therefore either’ was already ifi’’s text before the patch, or it was
in R, and was added t&’s text during the patch. Either case contradietsnot being inV’s text after the
patch, and the proof is complete. O

Theorem 1(The Patching Theoremletv? = (v, ... vZ) andv® = (vP,...,v2) be Alice and Bob'’s
version numbers before executing the patching algorithfter &xecuting the algorithm, they will each have
version numbep?8 = (vAB ... vAB) = (max(v{',vP), ..., max(v4, vB)), and each of their texts will

consist of the firsb;“B messages written by each memhber

Proof. As a consequence of the Lemma, we know that whenever a cligaeber has version number
v = (v1,...,vy), his text contains exactly the first messages written by authgifor eachi. Therefore, all

we need to do is compute Alice and Bob’s version numbers #ftepatch, and show that they each equal
AB
v .

But this is immediate: for each authirif v > v;! then Bob will send Alice exactly? — v messages
from authori, so she will end up with” such messages, and similarlywff < v. O

5 Blocks and Verification

Despite having a mathematical proof of the patching algors correctness, in practice we still wish to
verify that the messages were transmitted correctly; systgors may occur, network errors are inevitable,
and an adversary might attempt to insert fake messages. $kgawerify that the messages received by one
cliqgue member are the same as those being received by ths.oftes is complicated, however, by the ad-
hoc nature of the group: messages are transmitted betwees @ay when they happen to communicate.
Recalling the total ordering of messagesg from section 4, we can arrange all messages into a linear
sequence, but it may be the case that newer messages (obyelradhport time) may arrive before some
older messages. Note, however, that not only dogsrespect causality (if messageis a response to
messagen, then necessarilyr <, ), but it can never be the case that a clique member receiaspanse

to a message before receiving the original message.

To verify that a set of messages is correct, KleeQ dividesdlggence of received messages into consecutive
blocks andsealsa block when it is certain that no message is missing withinlttock. It does so in a
deterministic way that guarantees that all clique membdt$imd the same messages when each calculates
his or her own sealed blocks. The most recently receivedamgess which are not part of any sealed block,
are called theail. Thesealable sets a prefix of messages in the tail such that no message isngisim

the sealable set. Blocks are found and sealed (and thus eehfravn the tail) by examining the sealable set.

Since sealed blocks will be found identically for all usdigy can be used to verify the equality of the
messages they contain. KleeQ users compare cryptogragbies of the contents of the blocks they seal.



Algorithm 2 The Block Finding Algorithm

Inputs

¢ CliqueC with a sequenceV of unsealed messages
Output

e The prefix of M which forms a sealable block, if any
Variables

e ¢: Total number of uniquely seen authors

e p;: Computed position of thé" member’s last message
e j: Message iterator

e S: The sealable set
Procedure
1.t 0

2. p;—nullvieC
3. j «last-messageV)
4. while j >, first-messageM):
i «— Author(j)
if p; = null:
Pi<J
t—1t+1
if t =IC|:
S = (My,..., M)
break while
Jj < previous-messagg)
if t # |C|: return ()
.t+—0
.pi—nullvieC

. j «first-messages)

© © N o O

. while j <last-messade):
i «— Author(j)
if p; =null:
Pi—J
t—t+1
if t =|C|:
end < max;(p;)
return (Si,...,Send)

else p; — j
J <next-messadg)
10. return ()




If the hashes differ between users, then an error has odaarteansmission and the blocks can be compared
for resolution. When all users have verified the contentstidbek, the block can be deleted since no clique
member will need to request a message it contains. In se&tawill see that blocks also play an important
role in key rotation and forward secrecy.

5.1 The Block Finding Algorithm

Algorithm 2 presents the block finding method that is used#td blocks from the tail. After each patching,
cligue members repeatedly run this algorithms to find antildeeks until the algorithm returns the empty
block (.

The procedure is broken into two phases. The first phases($t€f) returns the sealable set from the tail and
the second phase (steps 6—10) returns the first block in Hielde set. A block is defined as the smallest
set of sequential messages, starting from the beginningeo$ealable set, such that every cligue member
has authored at least one message in the block. We choogieflrigion so that we usually find at most
one sealable block after each expansion of the sealableseging multiple blocks with no intervening
communication provides no additional benefit for the insegbcost.

Figure 1 illustrates this algorithm. In Figure 1(a) we hageeaived 22 messages from our clique. Each
message is assigned one of four colours, indicating whidhefour cligue members authored it. These
messages are sorted in the diagram according to increasimgart time; that is, by the total orderirg;, .

In Figure 1(a) we see that we have previously found and seasledlock of messages, and now we run the
algorithm to try to find the next block.

We run the first phase of the algorithm to find the sealablepsetijred in Figure 1(b). This is the longest
prefix of the tail with the property that we have received asage from every author at or to the right of
the rightmost element of the sealable set. This ensureshbed are no messages yet to be received that
have Lamport times within our sealable set. Note that thimisthe case outside our sealable set; we may
yet receive messages from the dark grey author with a Lantipzetbefore the rightmost message from the
light grey author, for example.

The second phase of the algorithm examines only the sealabland looks for the first block: the shortest
prefix of the sealable set that contains a message from ewtdrgraThe result is shown in Figure 1(c). After
this returned block is sealed, the system will be in the gtattured in Figure 1(d). Note that no further

blocks are available to be found at this point; the block figdalgorithm will locate more blocks only after

we receive more messages in our next patching.

Correctness of the Block Finding Algorithm

Correctness is shown in two parts: proving that a sealecklilas no missing messages, and proving that
all clique members will find the same blocks. We assume tlatthave been no errors in transmission or
fraudulent messages.

Lemma. The sealable sef, if nonempty, contains no missing messages.



Lamport Time
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Sealed Block Tail
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Figure 1: Anillustration of the block finding algorithm. Bashaded rectangle represents a message; shades
correspond to unique authors. (a) illustrates the inputéaatgorithm; (b) is the result of the first phase; (c)
is the output of the algorithm; (d) is the state of the systéer ghe returned block is sealed.
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Proof. After step 5,5 will be the longest prefix ofM with the property that for every messagen S, and
for all authorsi, there is a message; >, s in M written by authori.

Suppose usdil’’s sealable sef contains a missing messageby an authoW; that is,V wrote a message
m with m <, §s) but W has not yet receivetch. We knowW has received some message >, Sis|
also written byV. But by the patching theorem, we know tH&t must also have received all messages
written by V' beforemy, includingm, a contradiction. O

Theorem 2. Blocks returned by the block finding algorithm contain nosimig messages.

Proof. If the block finding algorithm returns a sealable block, itaigrefix of the sealable set. By the
Lemma, this block will contain no missing messages, as redui O

Lemma. If the second phase of the algorithm finds a block in the séasdiS, then it would find the same
block in any sealable s&’ for whichS is a prefix ofS’.

Proof. The second phase of the algorithm begins examining the figsssage in the sealable set and con-
tinues until it finds at least one message from each autharetdre, if it successfully finds a block &), it
would find that same block i§’, which starts with a copy af. O

Theorem 3. If a clique membe#’ has found and sealed a sequence of bldgks= B, ..., B, then each
other membeiV of the clique will have found and sealed a sequence of blB¢kswvhere either3Y is a
prefix of BV, or BV is a prefix of3Y .

Proof. By induction on¢, the number of blocks 8" .
Base casel = 0, soB" is empty, and is therefore a prefix Bt .

Inductive case Assume the statement is true whene#&ris of length? — 1. Suppose3Y is of length,

and letV be any other member of the clique. L8} be the first! — 1 blocks of BY. By the inductive
hypothesis, we know that if the length Bt is at most/ — 1, then it is a prefix of3), and so also oB" .

Otherwise, the first — 1 elements of3" are a copy o3}, and all that remains to be shown is that the
element of3Y is the same as th&" element of3".

After finding and sealing the sanfe— 1 blocks,V andW’s sealable sets" andS" will be nonempty
(since they are each able to find and seal another block),cawdl®ach start with the same message. Since
sealable sets cannot be missing messages, we must havedratd)” andS" is a prefix of the other, and
so by the Lemma, the block finding algorithm will return thense™ block in either case. O

As a result of this theorem, we see that as long as all cligualmees continue to both write messages and
communicate, they will all seal off the same sequence ofdsla¢ messages. To solve the problem of clique
members not writing messages, “dummy” messages are autathatuthored for cligue members when
they patch other members. To handle the case where membatd dommunicate for a long time, KleeQ
uses a mechanism calledyanic subcliqueswhich we will discuss in section 7.

11



5.2 Block Verification

The previous section shows that all members of a clique wilhble to find the same set of blocks regard-
less of the sequence of patchings that distributed the messarhis useful property allows members to
independently compute hash digests of the resulting blteksrify their equality.

Each block is given a sequential number equal to the numbalooks sealed before it. The concatenation
of the number and the contents of the messages in the bloeklet to produce the fingerprint of the block.
Two cliqgue members can verify that these fingerprints aralefgube certain that no errors have occurred
during transmission.

If two fingerprints disagree, then perhaps a message hasfémgrenl and inserted into the text. Both users
would send the entire block to each other’s devices. Althoogt yet implemented, it is expected that the
automated verification mechanism would then cease and #re wsuld be prompted that some malicious
activity may have occurred. They would be able to inspectdifferences between the two blocks for
manual resolution.

5.3 Safe Deletion

Safe deletions the process by which cligue members can remove old messédtiethe assurance that all
cliqgue members have been fully patched up to that point.uglimembers keep track of block verifications
made with other clique members. Each user maintains a listhafr clique members, and associates with
each member the highest block number that has been verifibdthet person. When a block has been
verified across all members of the clique, then it can be wafeleted. Once a block has been deleted by
all cligue members it cannot be recovered, which is part of KteeQ achieves forward secrecy. The other
part is key management, which we discuss next.

6 Key Management

Itis critical for our application that clique conversattoare encrypted and authenticated. We assume that all
cligue members have authentic copies of each others’ psigiitature keys. Long-lived public encryption
keys are not used, because any message encrypted with segiwakid lack forward secrecy. As we saw

in section 3, clique members use these signature keys ddige formation to execute a multi-party key
negotiation protocol that provides each cligue member witbmmon secret. In addition, each clique has a
public clique name that is known to all cligue members. Theeteand the cliqgue name are used to derive
an initial key for encryption and message authentication.

6.1 Key Negotiation

As discussed in section 3, key negotiation is used to prozidelique members with an initial secret. To
prevent indefinite eavesdropping in the event that the s&c@mpromised, it is important to renew the

12



secret regularly.

Multi-party Diffie-Hellman [12] is used to generate new s#sifor the clique. In this protocol, each member
of the clique receives a set of key negotiation parametedscantributes signed parameters of their own.
This key renewal is done in an ad-hoc manner, where cliguebraesrattach key negotiation parameters to
messages they write. KleeQ will examine the current statephegotiation based on received messages,
and if a cliqgue member has not yet contributed to this rourel egbpends her own contribution. When
all members have contributed, the last writes a messagainomg a set of parameters from which only
contributors can compute the final key. When the block cairtgithat message is sealed, KleeQ will notice
this message is present and begin using the new secret.

6.2 Message Authentication

Message authentication is needed for all communicaticatsottcur between cligue members, such as com-
paring version numbers, sending patches, and verifyingoladks. KleeQ provides group authentication
through the use of Message Authentication Code (MA[B] based on the current shared key and the
message contents themselves. These MACs ensure that geabmessage has not been modified by
an adversary through transmission. We use SHA256-HMACHIYJAC based on adding keying to the
standard SHA-256 hash function [9].

We should note that the use of a MAC only authenticates a mgesssmcoming fronsomecligue member,
not any member in particular, but this is acceptable in oenado of trusted cliqgue members, and forgeries
will eventually be discovered during the block sealing gsxcin any event. Similarly, it does not force non-
repudiation on KleeQ users. If a clique wishes to have npudtion for all messages in the conversation
then it is trivial to use the existing public keys to sign neegess.

6.3 Key Derivation and Rotation

The MAC function is also used to derive an initial key and m@tald keys into fresh ones. When a clique is
formed, clique members are provided an identical set ofinédion: a clique namd/, and a shared secret
s. The initial keyk used for communications is derived in the following manrer- M ACs(N); that is,
the MAC for the cliqgue name keyed by the secret.

By rotating keys after sealing each block, KleeQ messagesfgavard secrecy. Since blocks are iden-
tical for all cligue members, new keys can be derived fromlags and the block contents, and can be
independently computed by all members. The process fordtayion is as follows:

s «— MACk(s)
k — MAC(block contents)

The first line changes the shared secret for each clique nrefhbee key for a message was compromised,
an adversary would still need to know the current secret tegde the key used following key rotation.
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The second line rotates the current key by finding the MAC efdinrent block, keyed by the current secret.
When a new secret is computed through negotiation parasnatieiched to messages, it is used as the new
secret instead of computing A C'(s).

Old keys should be kept in the system until a user is certaitrth other clique member would still be using
that key. When patching requests arrive encrypted with dkey, the member with a newer key can update
the other user using the old key. Then both members will nowlbe to seal off the same blocks and can
communicate with the new key. When a user is certain all mesntfea clique have sealed off a block, he
must securely remove keys and secrets derived before thek. bl

6.4 Message Format

In addition to the usual encryption and authentication, wistaeal with an addressing issue. It is possible
for clique members to get messages destined for other sliguspecially when using a local area broadcast
transport protocol such as Bluetooth or Wi-Fi. Moreovel katation can result in a variety of relevant
encryption keys in a single clique, and the user would neegfftoiently know which key to use. It is
important for cligue members to quickly identify messadest tire related to a clique in which they are a
member, and also to identify which key to use for messageypgton. Finally, it is preferable to encrypt
the name of the clique and current key iteration for the givaf KleeQ users and to hinder targeted
eavesdropping.

An address tag;;4, is provided at the beginning of any communication betwdigue members. It uniquely
refers to the clique for which this message is destined, detifies the key used to encrypt the communica-
tion. The tag consists of the MAC for the clique naiiekeyed by the key: being used to encrypt remainder
of the message:;; «— M ACy(N). Thus, the entire communication for a messagis the address, payload
and MAC: M ACy(N)||Ex(m)||M ACk(N||Ex(m)). To prevent replay attacks, the message contains the
names of the sender and the recipient, as well as the secde®st Lamport time.

Each time a clique key is rotated, the cligue member compbteaddress tag,; and adds it to an internal
look-up table of keys indexed by the tag. When a messageeayrissers can quickly consult the table to
determine if they are capable of decrypting the messagewaith key to use for decryption. When keys
are no longer needed they are removed from the table to grameaitacker from accessing old keys through
a compromised device. Users can maintain a common tabledoéssltags and keys for all cliques in which
they are involved.

Keys are added to the table when they are computable by egak chember individually and independently
of the other members. This relieves the need for transgpkitys over the network or a trusted server to
indicate when to begin using new keys. Since the block'sarustare used to generate new keys, when two
cliqgue members communicate with a new key, they have peddrande facto validation of the block from
which the key was derived. Moreover, because of the cummelaterivation of keys, they have additionally
validated all earlier blocks. This swift validation allofies old blocks to be quickly removed from memory.

It is possible that an adversary could observe various elilmembers sending messages with the same tag
header. While the header would only be the same for messadjesrdd within a single block of the text,
an adversary could use this information to infer the set ofads that are involved in a clique. To protect
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Lamport Time

M

Tail
Tail Sealable Sealable Sealable
Block Block Block
1
Tail Sealed Sealed Sealed Talil
Block Block Block
Full Clique Three-member Subclique

Figure 2: An illustration of the organic subclique algonith Each shaded rectangle represents a message;
shades correspond to unique authors. (a) illustrates the toe the algorithm; (b) is the discovery of a
subcligue; (c) is the state of the system after the smalleclgue is used to seal more blocks.
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against this, we can create multiple clicalesesby appending a small number after the clique name before
calculating the MAC to produce different address tags thetespond to the same key. Since the list of tags

and keys are managed in a hash table, the only disadvanttige reore space is required to store this extra

information.

7 Organic Subcliques

In large cliques with low connectivity it is likely that sonseibset of members may repeatedly patch each
other for a duration without patching other members of tliguel, as seen in Figure 2(a). Such a subset of
users will wish to seal off blocks so that key rotation canuragithout waiting for the missing members.
Users may also take a vacation and be unable to participatatahing, while the remaining KleeQ users
will want to verify their conversation in the interim.

We consider each cligue member as being involved in two etiqihe full cligue, and the reduced clique
based on current connectivity. A user can construct theuged clique by determining how many blocks
could be sealed if the subclique consisted of only the astiosome subset, as seen in Figure 2(b). If
the number of blocks is above some threshold, then a coneskage can be sent where a clique member
indicates he can seal off blocks with reduced cliqué, C C, and asks if any other cligue memberdn

has sent messages from the laftlocks to cligue members outside. Once all members @, vote to seal

off the block, then they can remove the block, verify the diath, and perform key rotation within this new
group, as seen in Figure 2(c). This entire procedure can iierped automatically with a parameterized
threshold of sealable blocks that triggers a voting message

When clique members outside 6f resume patching, the key that was used before the creatitimeof
subclique can resurface. However, the messages assigtieel sabclique will not be available to the ex-
cluded members of the original clique; key rotation and fmthsecrecy may well cause subcligue members
to discard those messages before excluded members rethisgiVes cliques an organic quality, where
subcliques naturally follow the observed connectivityha tligue members.

8 Conclusion

Mobile users with local communication form an ad-hoc netwwith low connectivity. This paper presents

a system called KleeQ, which provides secure group comratioicto users of such a network, even where
the networking environment precludes the use of an alwagBable trusted server. KleeQ provides forward
secrecy by regularly rotating keys, and uses a novel methaatching and sealing message blocks to ensure
that the loosely connected group members are kept in synee@Xhkllows group membership to change
without revealing old messages to new members, and vica,varal can automatically form subgroups
when users have not been heard from in some time.

Our prototype implementation of KleeQ is available for démanl on SourceForge [10].
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