
A Distributed Private-Key Generator for

Identity-Based Cryptography

Aniket Kate Ian Goldberg

David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada N2L 3G1

{akate,iang}@cs.uwaterloo.ca

Abstract

Identity-based cryptography can greatly reduce the complexity of sending encrypted messages over the Inter-

net. However, it necessarily requires a private-key generator (PKG), which can create private keys for clients, and

so can passively eavesdrop on all encrypted communications. Although a distributed private-key generator has

been suggested as a way to mitigate this problem, to date there have been no practical implementations provided

for one. This paper presents the first realistic architecture and an implementation for a distributed private-key

generator for use over the Internet.

We improve the adversary model in the proactive verifiable secret sharing scheme by Herzberg et al. and

define master-key modification and secret share recovery protocols in our new model. Our periodic master-key

modification achieves forward secrecy of the master key; this feature has been missing in other proactive security

schemes, but is of great importance in identity-based applications. Recognizing the utility of modifying the set

of nodes and the security threshold in a distributed PKG, we present protocols for these operations. We also

compare our architecture to other verifiable secret sharing architectures for the Internet and demonstrate that

ours has both better message efficiency as well as a more complete feature set. Finally, with a geographically

distributed installation of our application, we verify its efficiency and practicality.

Keywords: identity-based cryptography, private-key generator, proactive verifiable secret sharing, distributed key

generation

1 Introduction

Identity-Based Cryptography. In 1984, Shamir [42] introduced the notion of identity-based cryptography (IBC)

as an approach to simplify public-key and certificate management in a public-key infrastructure (PKI) and presented

an open problem to provide a identity-based encryption (IBE) scheme. After seventeen years, Boneh and Franklin

[6] proposed the first practical and secure IBE scheme (BF-IBE) using bilinear maps. After this seminal work, in the

last few years, significant progress has been made in IBC in the forms of hierarchical IBE [5, 24, 45], identity-based

signature (IBS) schemes [11, 46], identity-based authentication and key agreement [12, 40], and other identity-based

primitives.

In an IBC system, a client chooses any arbitrary string such as her e-mail address to be her public key. Conse-

quently, with a standardized public-key string format, an IBC scheme completely eliminates the need for public-key

certificates. As an example, in an IBE scheme, a sender can encrypt a message for a receiver knowing just the iden-

tity of the receiver and importantly, without obtaining and verifying the receiver’s public-key certificate. Naturally,

in such a system, a client herself is not capable of generating a private key for her identity and there is a trusted party

called a private-key generator (PKG) which performs the system setup and provides private keys to system clients.

In a practical IBE scheme, given a client’s identity ID, the PKG uses a secret called master-key to generate the

client’s private key dID. As the PKG computes a private key for a client, it can decrypt all her messages passively.

1



This inherent key escrow property asks for complete trust in the PKG, which is difficult to find in most realistic

scenarios.

Need for the Distributed PKG. The amount of trust placed in the holder of an IBC master-key is far greater

than that placed in the holder of the private key of a certifying authority (CA) in a PKI. In a PKI, in order to attack a

client, the CA has to actively generate a fake certificate for the client containing a fake public-key/private-key pair.

In this case, it is often possible for the client to detect and prove the malicious nature of the CA. The CA cannot

perform any passive attack; specifically, it cannot decrypt a message encrypted for the client using a client-generated

public key and it cannot sign some document for the client, if the verifier gets a correct certificate from the client.

On the other hand, in IBC,

• knowing the master-key, the PKG can decrypt or sign the messages for any client, without any active

attack and consequent detection,

• the PKG can make clients’ private keys public without any possible detection, and

• in a validity period-based key revocation system [6], bringing down the PKG is sufficient to bring the system

to a complete halt (single point of failure).

Therefore, with inherent key escrow and a single point of failure, the PKG in IBC needs to be far more trusted than

the CA in a PKI, and this has been considered as a reason for the slow adoption of IBC schemes.

Boneh and Franklin [6] suggest the use of verifiable secret sharing (VSS) to solve this problem. They share the

master-key among multiple PKGs using Shamir’s secret sharing with a dealer [41] and also hint towards the use

of the completely distributed schemes of Gennaro et al. [20]. In an (n, t)-distributed PKG, the master-key of the

IBC system is distributed among n PKG nodes such that a set of nodes of size t or smaller has no information about

the master-key, while a client extracts her private key by obtaining private-key shares from any t + 1 or more

nodes; she can then use the system’s public key to verify the correctness of her thus-extracted key. Although various

proposed practical applications using BF-IBE, such as key distribution in ad-hoc networks [29] or pairing-based

onion routing [28], require a distributed PKG to function correctly, there is no distributed PKG implementation

available yet. This practical need for a distributed PKG that can function over the Internet forms the motivation of

this paper.

Proactive Secret Sharing. It is well known that the most common attacks on security mechanisms are system at-

tacks, where the system’s cryptographic keys are directly exposed, rather than the cryptanalytic attacks more studied

in the literature. Due to the endless supply of security flaws in almost all existing software, these system attacks are

often easy to implement. In the previous paragraph, we saw that a distribution of trust among several system nodes,

known as threshold cryptography, provides a solution to this problem. Although threshold cryptography enhances

security against system break-ins, its effect is limited. Given sufficient time, a mobile attacker can break into system

nodes one by one (gradual break-in) and eventually compromise the security of the whole system.

Proactive secret sharing [26], which combines distributed trust with periodic share refreshing, protects a system

against these gradual break-ins. In a system with proactive secret sharing, the system’s time is divided into phases. At

the beginning of each phase, nodes’ secret shares are refreshed such that new shares are independent of previous ones,

except for the fact that they interpolate to the same system key. With an assumption from threshold cryptography

that the adversary may corrupt at most t nodes in each phase, the system now becomes completely secure as shares

from older phases are useless to the adversary.

Forward Secrecy. Threshold cryptography with proactive secret sharing assumes a weak correlation of the failures

of the various system nodes. In practice, however, this is not likely. System nodes tend to employ a limited choice of

software and operating systems. A real-world adversary that can break into t nodes using a software flaw can most

likely break into one more node—or even all—exploiting the same flaw. Therefore, although threshold cryptography

with proactive secret sharing is a robust and resilient solution in theory, we need a mechanism to reduce the losses

to the minimum possible in the case of a complete system break-in.

2



In original proactive secret sharing, only the nodes’ shares are refreshed at the end of each phase, while the

system key remains the same. In such a setting, with a break-in into more than t nodes in a single phase, the

adversary annihilates the security of the system retroactively since its inception. In order to reduce the severity of

such an attack, proactive secret sharing scheme should have forward secrecy [16], such that even after a complete

break-in, the adversary can only violate the security in that phase, but not any time prior to that. In this paper,

we introduce the concept of forward secrecy in proactive secret sharing by amending the definition of the latter to

include system key refreshing along with the refreshing of nodes’ shares during a phase change.

Contributions. In this paper, we present the first practical architecture and implementation for a distributed

PKG in the BF-IBE setup over the Internet. While doing it, we observe the importance of forward secrecy for a

master-key in practical IBC-based applications, and provide a protocol for periodic master-key modification

based on the secret share renewal protocol by Herzberg el al. [26]. We also enhance the adversary model in [26] and

modify their share recovery protocol to be secure against a stronger adversary. Observing the importance of handling

changes to groups in a realistic distributed PKG implementation, we devise protocols for group modification and

security threshold modification. Finally, we demonstrate the efficiency of our system by comparing it with other

VSS architectures proposed for the Internet and verify its practicality with a geographically distributed installation

of our implementation.

Organization. Section 2 covers previous work related to PKG in IBC, proactive VSS and distributed key genera-

tion. In Section 3, we describe our assumptions and system model and based on this model a distributed PKG system

is designed in Section 4. Forward secrecy and proactive security of the system are discussed in Section 5. In Section

6, we introduce the group modification protocols for our distributed PKG nodes. In Section 7, we summarize the

important components of our implementation and compare its performance with alternative systems. We conclude

and examine some interesting future work in Section 8.

2 Related Work

Key escrow and single point of failure are inherent to IBC. In their pioneer IBE scheme, Boneh and Franklin [6] sug-

gested the use of threshold cryptography in the form of a distributed PKG to mitigate these problems. They however

did not consider proactive security and forward secrecy of the master-key. Lee et al. [32] and Gangishetti et al.

[19] propose variants of the distributed PKG involving a more trustworthy key generation centre (KGC) and other

key privacy authorities (KPAs). But, as observed by Chunxiang et al. [14] for [32], these approaches are vulnerable

to passive attack by the KGC, and thus insecure.

In parallel efforts, Gentry’s certificate-based encryption [23] and Al-Riyami and Paterson’s certificateless public

key cryptography [2] address the key escrow problem by combining IBC with public-key cryptography (PKC) and

consequently, sacrifice some of the important features of IBC. Recently, Goyal [25] reduced the required trust in the

PKG by restricting its ability to distribute a client’s private key. However, the PKG in his system still can decrypt

the clients’ messages passively, leaving a secure and practical implementation of a distributed PKG wanting.

The notion of secret sharing was introduced independently by Shamir [41] and Blakley [4] in 1979. Since then,

it has remained an important topic in security research. Significantly, Chor et al. [13] introduced verifiability in

secret sharing and Feldman [18] developed the first efficient and non-interactive protocol for it. Feldman proved the

computational security for the secret and unconditional integrity of shares against a static adversary, which can only

choose its t compromisable nodes before a protocol run. He also suggested a modification to the protocol to prove

the security against adaptive adversary, but claimed [18, Sec. 9.3] that his original protocol is also secure against

adaptive adversaries even though his simulation-based security proof did not work out.

Pedersen presented another VSS [38] with unconditional security for the secret but providing share integrity

under a computational assumption. We observe that in most of the solutions based on Pedersen’s VSS scheme (e.g.

the distributed key generator (DKG) in [20]) the unconditional security for the secret is not achievable. Further,

Pedersen’s scheme also requires the random selection of generators g and h such that no player should know the

relation between them; this adds an additional round of communication in practice. Therefore, with its simplicity

3



and efficiency, Feldman’s VSS forms the basis for most of the VSS-based DKG systems in the literature and for the

one in this paper, as well.

Pedersen also developed a completely distributed VSS-based DKG [37]. In this scheme, each node runs a

variation on Feldman’s VSS (with digital signatures and a commitment function) and distributed shares are added

at the end to generate a combined shared secret. Gennaro et al. [20] observed that use of digital signatures and a

commitment function does not provide any additional security to Pedersen’s DKG and presented a simplification

using just original Feldman’s VSS called the Joint Feldman DKG (JF-DKG). They also claimed that these DKGs

do not guarantee a uniformly random distribution of generated secret keys. In [21], the same set of authors proved

the security of JF-DKG against a static adversary, when it is used with a provably secure Schnorr signature scheme.

They also showed that JF-DKG produces hard instances of discrete logarithm problems (DLPs) and it can be used

with other provably secure schemes [22, Sec. 5]. Although a reduction in their JF-DKG security proof is weak, as

they discussed in [22], an elliptic curve implementation of JF-DKG with appropriately increased key sizes is still

faster than the modification they suggested in [20].

As in Feldman’s VSS, there is no known adaptive adversary attack against Pedersen’s DKG, JF-DKG or the

modification from [20]. They are not considered secure against an adaptive adversary only because their simulation-

based security proofs do not go through when the adversary can corrupt players adaptively. [1, Sec. 3],[22, Sec.

4.4] Canetti et al. [10] presented a scheme provably secure against adaptive adversaries with at least two more

communication rounds as compared to JF-DKG and with interactive zero-knowledge proofs. Recently, Abe and

Fehr [1] developed an adaptively secure VSS without any interactive zero-knowledge proofs. However, an efficient

bidirectional mapping [1, Sec. 4.2] required by their protocol seems to be difficult to obtain over the elliptic curves

required in IBC. Further, as both of these adaptive (provably) secure protocols are far too inefficient for practical use,

we use the efficient Feldman’s VSS which has remained unattacked in the static as well as the adaptive adversary

model for the last 20 years.

Herzberg et al. [26] proposed the first practical proactive secret sharing scheme, which can work with any VSS

(including Feldman’s VSS) based on homomorphic functions in the synchronous communication model. They

provided schemes for share renewal and recovery and claimed their security against t compromised nodes in an

(n, t)-DKG system with mobile adversary [36]. We modify their protocol to be secure against a stronger mobile

adversary, and show that our modifications also thwart an attack on their system which was suggested by Nikov and

Nikova [35]. Further, we also observe the practicality of the modified protocols in partially synchronous networks

such as the Internet.

VSS schemes with unconditional security in the asynchronous communication model [9] also have been devel-

oped; however, they are prohibitively expensive for any realistic use. Recently, Cachin et al. [7] and Zhou et al. [47]

suggested more practical proactive VSS schemes in the asynchronous communication model with some symmetric

assumptions. Still, the proactive security protocol in APSS by Zhou et al., with O(
(

n
t

)

) message complexity, is not

practical, while a share recovery protocol is missing in Asynchronous VSS by Cachin et al. Further, any practical

completely distributed (dealerless) implementation of Asynchronous VSS by Cachin et al. requires at least O(n3)
messages and five rounds of communication, which might be expensive for many systems. Note that two addi-

tional rounds over those suggested in [7] arise from the dealerless setup and distributed creation of group generators.

Asynchronous VSS also does not generate the system’s public key as required in IBC schemes; doing so may require

another round of communication. Most importantly, forward secrecy for the shared secret, also of benefit to IBC, is

not readily available and seems difficult to achieve. Indeed, forward secrecy for the shared secret is not considered

by any other proactive VSS scheme in the literature.

As we intend our distributed PKG implementation to be useful over the Internet, a partially synchronized net-

work, we use our modifications to the Herzberg et al. proactive VSS [26] rather than impractical [9, 47] or inappli-

cable [7] asynchronous VSS schemes.

3 Assumptions and System Model

In this section, we discuss the assumptions and the system model for our distributed PKG system, giving special

attention to its practicality over the Internet.

4



Partially Synchronized System Model. Our distributed PKG system should be deployable over the Internet. The

maximum message-transfer delay and the maximum clock offset there (a few seconds in general) is significantly

smaller than the required timespan of our system’s phase or the master-key modification (a few days). With such

an enormous difference, a failure of the network to deliver a message within a small fixed time bound (in seconds)

can be treated as a failure of the sender. This may lead to a retransmission of the message after appropriate timeout

signals or immediate administrator intervention. As this is possible without any significant loss in the synchrony of

the system, here we treat the Internet as a partially synchronous network [43].

Investigating further, we find that the Internet with a public-key infrastructure (PKI) and an online bulletin board

[39] provides enough synchronization to securely implement a synchronous DKG protocol. Although messages

can arrive in a partially synchronous manner, the master-key modification protocol as a whole proceeds in

synchronized rounds of communication. Importantly, this avoids asynchronous VSS schemes with high computation

and communication overheads. We note that Gennaro et al. [20, Sec. 5] make a similar observation for their

modification to the JF-DKG protocol.

Bulletin Board with PKI. We use a PKI infrastructure to achieve authenticated and confidential communication,

along with non-repudiability, and a bulletin board for message broadcasts. In our system, all messages on the bulletin

board contain signatures by the entities posting them and all secure and authenticated communications between two

nodes use the TLS protocol [15] with PKI certificates. The PKI infrastructure can be implemented as a PKI hierarchy

or a web-of-trust; the online bulletin board can be any online service with atomic append and read operations on

signed messages. Although we implemented our bulletin board from scratch, it could also be realized by using a

broadcast mechanism such as SINTRA [8] or Secure Spread [3].

We require very limited trust in the certifying authority and the bulletin board. In particular, they cannot attack

the system passively and any active attack—such as selective replies by the bulletin board—can be easily verified by

the system nodes. Importantly, these central authorities do not learn the master secret or have a share of it. Further,

in a PKI hierarchy with long-term certificates, a certifying authority does not have to be online except during system

setup and rare group modifications. Similarly, even if a bulletin board becomes unavailable for a short period, the

primary operation of distributed private-key generation remains unhampered.

Distributed Key Generation with Fault Tolerance. Although our system model can support any of the syn-

chronous DKG schemes in the literature, we choose the simplest and most efficient: JF-DKG with n ≥ 2t + 1,

which requires at least two fewer rounds of communications than others. We only require n ≥ 2t + 1 rather than

the n ≥ 3t + 1 needed for asynchronous systems robust against Byzantine failures [31] as the partially synchronous

nature of the network, the timeout messages, the PKI infrastructure and the lack of a modification operation on the

bulletin board provide sufficient synchronous behaviour, as mentioned earlier.

Our distributed PKG achieves proactiveness (with forward secrecy) through a periodic master-key modifi-

cation protocol. In practice, this protocol is, though fast, not instantaneous and cannot be considered as an atomic

action. We overcome this problem using a versioning system implemented with loosely synchronized local clocks

to effect key refreshing and logical clocks [30] for the more tightly synchronized protocols.

Unlike in the asynchronous VSS by Cachin et al. [7], versions (or phases) in our system overlap with each other

during executions of the master-key modification protocol. We expect these transition periods to be very small;

they mainly involve PKG nodes and the bulletin board selecting a subset of modifications based on counting signa-

tures and the nodes appending their signatures on the newly verified commitments on the bulletin board. Further,

unlike [7], we do not assume that every node is honest at the start of each phase. As with [26], nodes may remain

compromised in consecutive phases. We assume that the adversary is t-limited and can compromise up to t nodes;

however, when one of those t compromised nodes is in the recovery phase (the share recovery and renewal protocol

of Section 5.4), the adversary cannot capture another honest node until that node gets completely recovered. It may

of course still demonstrate any malicious behaviour using up to t − 1 other compromised nodes. In the adversary

model of [26], the adversary may only control at most t nodes over the complete timespan of a system phase. In our

system, we assume a stronger and more practical adversary, which may control up to t nodes at any instant of time;

5



thus, over a system phase, our adversary may control more than t nodes. These modifications related to proactive

security are further elaborated in Section 5.1.

Our protocol works for an IBC setting having a setup similar to that of BF-IBE, where, given the master-key

s, the private key for an identity ID is sH(ID). (Here, H is a cryptographic hash function mapping identities to

points in an elliptic curve group where DLP computations are hard.) A distributed computation of private keys for

other IBC protocols involving more complicated private keys, such as 1
s+H(ID)U , presents an interesting problem

which we are currently investigating as future work.

Security Assumptions. We assume a polynomially bounded adversary which can wait for the messages of the

uncorrupted players to be transmitted, then decide on his computation and communication for that round, and still

get his messages delivered to the honest parties on time. As mentioned above, JF-DKG produces hard instances

of the discrete logarithm problems. Thus, similar to JF-DKG with the Schnorr signature scheme, JF-DKG with a

provably secure IBE scheme will most likely be provably secure against such an adversary; a complete proof remains

as interesting future work.

Note that JF-DKG is provably secure against a static adversary. In a theoretical sense, it is not known to be

secure against an adaptive adversary which may corrupt nodes adaptively and solutions requiring provable security

against adaptive adversaries may use the DKG by Canetti et al. [10] without any significant modification to our

model.

4 Distributed Private-key Generation

In this section, we present our core distributed PKG setup and the private key generation protocol. We utilize an

improved Feldman VSS with a PKI infrastructure for PKG nodes and an online bulletin board to implement these

protocols. We assume that a PKI infrastructure, with all nodes carrying their public-key certificates, and an online

bulletin board application are already in place. We initiate the discussion by describing the cryptographic primitives

and computational hardness assumptions we utilize in this paper.

4.1 Preliminaries

Bilinear Pairings. IBC extensively utilizes bilinear pairings over elliptic curves. For two additive cyclic groups G

and Ĝ and a multiplicative cyclic group GT , all of the same prime order q, a bilinear map e is a map e : G×Ĝ → GT

with following properties.

1. Bilinearity: For all P ∈ G, Q ∈ Ĝ and a, b ∈ Zq, e(aP, bQ) = e(P, Q)ab.

2. Non-degeneracy: The map does not send all pairs in G × Ĝ to unity in GT .

3. Computability: There is an efficient algorithm to compute e(P, Q) for any P ∈ G and Q ∈ Ĝ.

The IBC protocols under consideration in this paper, like many pairing-based cryptographic protocols, use a special

form of pairing called a symmetric pairing which has G = Ĝ. For such pairings, e(P, Q) = e(Q, P ) for any

P, Q ∈ G. The modified Weil pairing over elliptic curve groups [44] is an example of a symmetric bilinear pairing.

In the rest of the paper, all bilinear pairings are symmetric.

Assumptions. In all the IBC schemes under consideration, G is a prime order subgroup of an elliptic curve over a

finite field and GT is a multiplicative subgroup of an extension of that finite field. The hardness of the computation

Diffie-Hellman problem (CDH) over the groups G and GT forms the main cryptographic assumption in this paper.

It is a problem of computing abU given U, aU, bU ∈ G for a, b ∈ Z
∗
q . Specifically, the CDH assumption provides

security for the master-key and nodes’ shares given the public parameters of the system. However, we observe

that proving the security of the IBC protocols themselves, using keys generated by our PKG, assumes the hardness

of bilinear Diffie-Hellman problem (BDH) [6]. This problem involves the computation of e(U, U)abc ∈ GT , given

6



U, aU, bU, cU ∈ G for a, b, c ∈ Z
∗
q . Further, in verification of private keys, a client utilizes the fact that if the

pairing computation is feasible for the group G, the Decision Diffie-Hellman problem (DDH) over the group G can

be solved in polynomial time. For U ∈ G, the problem of distinguishing 〈U, aU, bU, abU〉 from 〈U, aU, bU, cU〉 for

a, b, c ∈R Z
∗
q is known as the DDH problem. Joux and Nguyen [27] observe that the DDH problem over G is easy,

as c = ab mod q ⇔ e(U, cU) = e(aU, bU).

BF-IBE Setup with Distributed PKG. In a BF-IBE setup [6], a trusted authority called a private key generator

(PKG) generates private keys (d) for clients using their well-known identities (ID) and a master-key s. A

client with identity ID receives the private key dID = sH(ID) ∈ G, where H : {0, 1}∗ → G
∗ is a full-domain

cryptographic hash function. In such a setup, with its knowledge of s, the PKG has the key escrow property and is

a single point of failure for the BF-IBE scheme. Boneh and Franklin propose the use of the DKG by Gennaro et al.

[20] to distribute their PKG. Here, we improve this distributed PKG setup and present a practical protocol for the

same.

As already suggested, JF-DKG provides a simpler and more efficient distributed key generation solution than

the new DKG by Gennaro et al. [20]. In JF-DKG, all n nodes initiate the VSS and the qualified ones contribute

to the master-key generation. With the t threshold assumption, there is at least one honest node in any group

of t + 1 nodes. Therefore, in a master-key generation step, we just need t + 1 qualified VSSs. Further, as we

elaborate in Section 5, to achieve proactive security and forward secrecy, we similarly never need more than t + 1
qualified VSSs. In such a scenario, given a large timeframe of a system phase as compared to the average time

to complete a VSS, a node can asynchronously and at any time during the phase decide whether or not to make a

contribution to the master-key. It can make this decision based on the current system state, such as the number

of currently qualified modifications, or its trust of nodes that have already contributed. Although in many practical

systems each node could take part in every master-key modification, this selective modification can be used for

added flexibility. We thus extract an improved Feldman VSS from the JF-DKG protocol for use in our system, rather

than using the latter protocol in its entirety.

4.2 Improved Feldman VSS over an elliptic curve group

We next describe an improved version of the Feldman VSS over an elliptic curve group, which provides the basis

for all of our protocols discussed henceforth. Modifications to the original Feldman VSS in this scheme, which are

quite similar to those in JF-DKG, include converting the dealer into an ordinary node and the use of signatures on

all parameters published on a bulletin board with only append and read operations allowed. These modifications to

the Feldman VSS add only to the practicality of its implementation over the Internet and do not hamper the security

of the protocol while achieving this.

We seek an (n, t)-distributed key generation setup over an elliptic curve group G of order q and generator U . Let

F (z) = a0 + a1z + · · · + atz
t ∈ Zq[z] be the current shared polynomial and s = a0 be the currently shared secret.

Note that no player—not even the bulletin board application—knows F (z) or s. Let sj = F (j) be the secret share

possessed by node Pj for j = 1, . . . , n, and Pub = sU be the corresponding system public key. We create an online

bulletin board containing verified and signed (by the system nodes) commitments Ak = akU for k = 0, . . . , t. Note

that A0 is the system public key. Figure 1 presents our improved Feldman VSS over the elliptic curve group G,

when Pi is a node interested in updating the shared secret s.

4.3 Distributed PKG Setup

Now, using our improved Feldman VSS we present a protocol for the distributed PKG setup. It involves distributed

creation of the system’s master-key with generation of secret shares for n nodes.

1. Given a security parameter κ, the bulletin board application chooses a prime q of size κ, two groups G and GT

of order q, and a bilinear pairing e : G × G → GT . The bulletin board application chooses a cryptographic

hash function H : {0, 1}∗ → G
∗ and a few other scheme-specific parameters. It also chooses a random

generator U ∈ G and sets up the bulletin board by publishing the above system parameters and by initializing

7



Improved Feldman VSS

1. Node Pi chooses a random polynomial fi(z) ∈ Zq[z] of degree t:

fi(z) = ai0 + ai1z + · · · + aitz
t

and broadcasts (on the bulletin board) signed copies of Aik = aikU for k = 0, . . . , t. Here, xi = ai0 = fi(0)
and Yi = ai0U = fi(0)U are Pi’s new contributions to the master-key s and the corresponding public key

sU respectively. It then computes a subshare sij = fi(j) mod q for j = 1, . . . , n and sends it to node Pj over a

secure and authenticated TLS connection.

2. Node Pj verifies the subshare sij received from the node Pi by checking whether

sijU
?
=

t
∑

k=0

jkAik (1)

If the verification succeeds, Pj publishes a confirmation signature for Pi’s Aik values. If it fails, Pj broadcasts

an accusation against Pi. If more than t nodes accuse Pi, the suggested modification to s is disqualified and the

protocol stops. If not, for each accusing party Pj , node Pi broadcasts the corresponding sij , such that (1) holds.

If any of the revealed subshares fails, the suggested modification to s by Pi is disqualified and the protocol for Pi

stops. Otherwise, Pj keeps the new sij , erasing the old one.

3. If there is no disqualification, after t + 1 success messages, including one from Pi itself, the modification fi(z)
suggested by Pi is ready to be acquired by the system. However, the actual acquisition time depends upon the

protocol using this improved Feldman VSS.

4. At the time of acquisition, the bulletin board application computes new Ak values for k = 0, . . . , t as Ak + Aik

and appends them to the bulletin board with a new phase number. Nodes acquire and verify these commitments,

and after successful verifications, publish signatures on those values. After observing t + 1 or more signatures on

the new Ak commitments, each node Pj for j = 1, . . . , n modifies its secret share sj = sj + sij . As a result, the

shared secret and the corresponding public key becomes s = s + xi and Pub = Pub+ Yi = A0 respectively.

5. Anybody can compute the public-key share for the node Pj as Pubj =
∑t

k=0
jkAk.

6. To achieve forward secrecy and proactiveness, once the new secret share sj is computed, node Pj erases sij and

node Pi erases fi(z) and sij for j = 1, . . . , n.

Figure 1: Improved Feldman VSS over an elliptic curve group

the Ak and Aik values to zero for i = 1, . . . , n and k = 0, . . . , t. Consequently, the master-key s is set to

zero.

2. Nodes interested in contributing to s initiate the improved Feldman VSS defined in Figure 1. As an adversary

can compromise a maximum of t nodes, once t + 1 or more nodes successfully finish their protocol runs,

the distributed shares are considered safe. In the literature, such nodes are known as the qualified nodes. We

denote their set as Q.

3. The bulletin board then computes and broadcasts the coefficients Ak (for k = 0 . . . t) for the implied shared

polynomial F (z) · U as Ak =
∑

Pi∈Q
Aik.

4. After verifying the new Ak values, nodes send confirmation signatures to the bulletin board.

5. On receiving t + 1 or more confirmation signatures, the Ak values are finalized. Each node then computes

their secret share as si =
∑

Pj∈Q
sji. They also obtain a signed (by t + 1 or more nodes) copy of Ak values

from the bulletin board.

8



4.4 Private-key Extraction

After a successful setup, PKG nodes are ready to extract private keys for system clients. We assume that at least

t + 1 out of the n nodes will be available to the client. Let O be a set of t + 1 online servers chosen by a client. The

private-key extraction protocol works as follows.

1. A client with identity ID contacts online nodes from the set O.

2. Each node Pi ∈ O verifies the client’s identity and returns a private-key share siH(ID) over a secure and

authenticated channel.

3. Upon receiving t + 1 correct shares of her private key, the client can construct her private key dID as dID =
∑

Pi∈O
λisiH(ID), where the Lagrange coefficient λi =

∏

Pj∈O\{i}
j

j−i
.

4. The client can verify the correctness of the computed private key dID using the polynomial-time solvability of

the DDH problem over the elliptic curve group. In particular, she can check if e(dID, U)
?
= e(H(ID),Pub).

If unsuccessful, she can verify the correctness of each received siH(ID) by checking if e(siH(ID), U)
?
=

e(H(ID),Pubi). An equality proves the correctness of the share, while an inequality indicates misbehaviour

by the node Pi and a consequential complaint.

4.5 Security Analysis

This system setup is quite similar to that of JF-DKG, although it is far less synchronized. Both of the protocols

present the same structure just before master-key generation and we consider our system as secure as JF-DKG.

Gennaro et al. [22, Sec. 5] provides a detailed security analysis of JF-DKG and prove that JF-DKG produces hard

instances of the discrete-log problem. They also prove the security of the JF-DKG-based threshold Schnorr signature

scheme and suggest that security of other DLP-based schemes can be proved similarly. We observe that the security

of our distributed private-key generation can be proved in a similar way.

5 Realizing Proactiveness

In threshold cryptography, part of a system might come under an attacker’s control. Further, a mobile attacker can

gradually break into other nodes in the system in order to gain control over the complete system. As we discuss in the

introduction, periodic refreshing of the shares as well as the secret itself is therefore important in maintaining both

the system’s existing security as well as forward secrecy. To realize proactive security in a distributed key generation

environment, we need protocols for secret share renewal and recovery, and for periodic secret modification. In

this section, we investigate the existing proactive security solutions and provide efficient practical implementations

for the same. In particular, we investigate and modify the adversary model for the share renewal and recovery

protocols by Herzberg et al. [26] and present secure protocols for periodic master-key modification and secret

share recovery in the stronger model.

5.1 Mobile Adversary Model

Herzberg et al. [26] introduce the first proactive VSS scheme. They provide periodic secret share renewal and

recovery schemes for any DKG based on the Feldman or the Pedersen VSS and show that their protocols for (n, t)-
distributed key generation systems are secure against a mobile adversary controlling up to t nodes in a system phase.

In our DKG, to achieve forward secrecy, the master-key is modified along with the nodes’ shares of it at each

phase change. A stronger adversary model, with the adversary able to control up to t nodes at any given instant,

rather than t nodes over the complete timespan of a system phase, is more appropriate in a practical setting where

phase durations are in days. To obtain security against this stronger adversary, nodes’ shares are also renewed in

the middle of a phase, when a compromised node requires recovery (see Section 5.4). Thus, a recovery protocol in

our model involves a combination of a share recovery for the recovering node and a share renewal (initiated by the

9



recovering node) for the whole group. An adversary compromising t nodes is eligible to compromise an additional

node only after the recovery protocol for one of those t nodes completes.

5.2 Attacks on the Proactive VSS by Herzberg et al.

In an adversary model similar to one defined above, Nikov and Nikova [35] proposed an attack on the share renewal

scheme of Herzberg et al. They observe that the share renewal scheme used at the phase change is only secure

against an adversary controlling up to t− 1 nodes. In that protocol, the polynomials of degree t that are used have a

fixed constant term of 0; an adversary controlling only t nodes (rather than the claimed t + 1) can reconstruct these

polynomials and nullify any sought proactiveness.

This attack does not work on our protocol, as the modification polynomials at a phase change have random

constant terms. The attack is also not applicable during a share renewal of a recovering node, as at that time, the

adversary can control only up to t − 1 nodes. We observe that in the share recovery scheme of Herzberg et al., the

temporary modification polynomial (say h(z) ∈ Zq[z]) has a special property that h(r) = 0, where r is the index

for the receiving node. However, there too, if the adversary controls t nodes including the recovering one, it cannot

compute the shares for honest nodes even though it can compute h.

5.3 Periodic Master-key Modification

In this protocol, each node interested in contributing to the master-key modification for the next system phase

asynchronously starts secret modification using the improved Feldman VSS protocol from Figure 1. At the end of

the current phase (v), the modifications from all the successful protocol runs are selected and added to the current

commitments (A
(v)
k values for k = 0, . . . , t) to obtain the commitments (A

(v+1)
k values) for the phase (v + 1).

Unlike other share renewal schemes, at a phase change, we modify the master-key along with shares. This

provides the desired forward secrecy for the master-key which is an important requirement in many practical

applications in identity-based settings. A modification to the master-key by a compromised node does not

provide any forward secrecy, while that by any honest node preserves forward secrecy for the whole system. The

adversary can compromise up to t nodes and it might not be possible for an honest node to determine which nodes

are compromised. Therefore, to achieve forward secrecy, at the end of our periodic master-key modification

protocol, we expect modifications by at least t + 1 nodes to be incorporated into the master-key.

Although performing a new DKG protocol from scratch in each phase provides equivalent forward secrecy, a

cumulative mechanism of adding modifications (instead of replacing the secret completely) certainly has an added

advantage. In our adversary model, were we to use a separate DKG protocol per system phase, we would need

t + 1 qualified VSS invocations for even proactive security. However, by using a cumulative approach to modify the

master-key, proactive security can be achieved by t or fewer qualified VSSs. Here, even if an adversary knows all

of the qualified VSSs, she cannot determine the master-key. When she leaves one node to compromise another,

the share recovery protocol also renews the shares for the whole system.

We next present the actual modification protocol. We assume that the system is in phase (v) and enters in the

next phase (v + 1) after a predefined period (usually measured in days).

1. Nodes interested in modifying the master-key for the next version (v + 1) initiate the improved Feldman

VSS protocol (Figure 1) sometime during the current phase.

2. At the time of transition, the bulletin board application picks the successful protocol runs. Let Q be the set of

such qualified nodes. It then computes A
(v+1)
k = A

(v)
k +

∑

Pi∈Q
Aik for k = 0, . . . , t and sends these values

to all the nodes.

3. Nodes verify and sign the set Q and the A
(v+1)
k values. Once these elements are approved by t+1 nodes, each

node Pi computes its share for phase (v + 1) as s
(v+1)
i = s

(v)
i +

∑

Pj∈Q
sji.

10



Security Analysis. As already discussed, an adversary in our protocol does not know any root or coefficient of the

modification polynomials fi(z) ∈ Zq[z] chosen by honest nodes Pi; thus, it cannot compute the polynomial fi(z)
with only up to t shares known to him. Therefore, if at least one honest node is involved in every run of the periodic

master-key modification protocol, it is forward secure against such an adversary. This can be easily formally

proved by closely following the security proof of the share renewal protocol by Herzberg et al. [26, Sec. 3.3]

Further, we avoid the attack in [35] on the share renewal protocol by Herzberg et al., as our periodic master-key

modification involves secret modification along with share renewal.

5.4 Secret Share Recovery

In a proactive distributed PKG implementation, the ability of a node to recover its lost share must be ensured.

Otherwise, the adversary can destroy the complete system by gradually corrupting n − t nodes. Once a corruption

is detected, the corresponding node has to be rebooted in a trusted way, using read-only memory for instance. As a

next step, other nodes in the system need to assist the rebooted node to recover its secret share and here, we present

the share recovery scheme to accomplish this in our adversary model.

This secret share reconstruction is based on Herzberg et al.’s share recovery and share renewal schemes. In our

model, we assume that the attacker can compromise more than t nodes during a system phase, though it is restricted

to t nodes at any instant. Thus, the adversary may be controlling t − 1 other nodes, and may know the secret share

for a tth node, which is currently under recovery. After a successful recovery of the tth node, it can compromise

another node. In order to avoid the attacker thus learning t + 1 shares (although controlling only t compromised

nodes), we combine a secret share renewal protocol along with the secret share recovery.

Assume a rebooted node Pr wants to restore its current secret share s
(v)
r and any t + 1 or more helper nodes

with correct secret shares choose to help it. Let H represent a set of these nodes. In the secret share recovery

scheme, nodes in H choose polynomials hi(z) ∈ Zq[z] of degree t such that hi(r) = 0, run the improved Feldman

VSS protocol (Figure 1) and provide their new temporary shares to Pr. Pr can then compute its secret share s
(v)
r

by interpolating t + 1 shares, without knowing anything about the helper nodes’ original shares. To achieve share

renewal without master-keymodification, Pr chooses a polynomial gr(z) ∈ Zq[z] of degree t such that gr(0) = 0
and runs the improved Feldman VSS protocol to update the system polynomial F (v)(z) = F (v)(z) + gr(z). This

achieves immediate proactive security without changing the master secret mid-phase.

In detail:

1. Each node Pi ∈ H initiates the improved Feldman VSS protocol (Figure 1) with a degree t polynomial

hi(z) ∈ Zq[z] such that hi(r) = 0:

hi(z) = bi0 + bi1z + · · · + bitz
t.

2. Node Pr starts the improved Feldman VSS protocol (Figure 1) with a degree t polynomial gr(z) ∈ Zq[z]

gr(z) = cr0 + cr1z + · · · + crtz
t.

such that cr0 = 0.

3. In the protocol runs started by Pi ∈ H, at least t other nodes should verify that hi(r) = 0 by checking if
∑

k rk(bikU) = 0. (Note that the (bikU) were published as part of the improved Feldman VSS.) Similarly, in

the protocol run started by Pr, at least t nodes should verify that gr(0) = 0 by checking if (cr0U) = 0.

4. Once protocol runs by any t + 1 nodes in H succeed, each of the successful nodes Pi computes its temporary

share ri = s
(v)
i +

∑

j∈H hj(i) and sends it over a secure channel to Pr.

5. Pr verifies the received ri values using the public key shares Pub
(v)
i and broadcasted bikU as follows.

riU
?
=



s
(v)
i +

∑

j∈H

hj(i)



U = Pub
(v)
i +

∑

j∈H

(

t
∑

k=0

ik(bjkU)

)

11



After verification, Pr interpolates the correct shares to compute its share s
(v)
r .

6. Once the protocol run initiated by Pr succeeds, the bulletin board application computes A
(v)
k = A

(v)
k +

∑

Pi∈Q
Cik for k = 0, . . . , t. After verifying the new A

(v)
k values, all the nodes can compute their new secret

shares s
(v)
i = s

(v)
i + sri

7. Nodes in H should compute their new shares only after the temporary shares they sent are verified by Pr.

This local synchronization does not affect the asynchronous nature of the overall protocol. It is possible to

make this share renewal independent or asynchronous to the temporary share verification by Pr. However,

that requires the nodes in H inform Pr whether a temporary share sent by them contains the renewed value or

not. In this description, we avoid this intricacy. Further, the master-key and the system public key are not

modified by this protocol and consequently, clients’ private keys do not need any modifications.

Security Analysis. In our above protocol, as we use only the share renewal and recovery schemes in [26], its

security can be seen as a straightforward extension to the security of those share renewal and recovery schemes.

6 Group Modification Protocols

In a practical distributed PKG system, on a long term basis, it is inevitable that the set of nodes in the PKG group

will need to be modified; new nodes may join the system or old nodes may leave. A modification to the total number

of nodes may also lead to a modification in the security threshold value of the system. In this section, we present

protocols to achieve group modification and security threshold modification in our distributed PKG. These protocols

are based on the share renewal and recovery schemes by Herzberg et al. and their security can be proved in a similar

way.

6.1 Group Modification

In a group modification, we are changing the set of PKG nodes without modifying the threshold parameter (t). This

alters the redundancy parameter (n) of the distributed PKG, changing the number of nodes that can be unavailable

without affecting the operation of the PKG. On the other hand, this does not change the security parameter (t), which

controls how many nodes an attacker can compromise without learning any information about the master-key.

Next, we define protocols to add as well as to remove a node from the group.

Node Addition. As expected, the process to add a new node to the system is similar to the process to retrieve a

share for a recovering node that had lost it. However, in this case, we can safely assume that the adversary does not

a priori know the share for the node to be added. This removes the requirement of running a share renewal protocol

for the node being added. As with node recovery, we assume that the adversary cannot capture the node which is

getting added until the share generation for that node completes. The rest of the share recovery protocol is followed

as-is.

Node Removal. This protocol involves removing a node from the group, such that it should neither be able con-

tribute to the master-key nor possess a share of it. The best way to remove a node from the group is to simply not

provide it with subshares for the next phase’s master-key modification. By doing this, the node may continue to

perform private-key extractions for clients during the current phase, but as new modifications become active in the

next phase, it gets eliminated from the group. It is also possible to remove a node without waiting for the end of a

phase. We achieve this through an execution of the share renewal protocol. In this protocol, t + 1 nodes from the

group, other than the one getting eliminated, start share renewal protocols and provide subshares to all nodes except

the one getting removed. Once these share renewals qualify, all other nodes add the new subshares to their shares

and the node getting removed becomes ineffective.

12



6.2 Security Threshold Modification

Security threshold modification involves changing the threshold limit t for the system, without changing the total

number of nodes n. This amounts to changing the degree of the system polynomial, which requires changing the

polynomial itself.

Security Threshold Addition. Given an (n, t)-distributed PKG, we may wish to convert it into a (n, t + ∆)-
distributed system; this increases the number of nodes that may be compromised without revealing the master-key.

We achieve this easily by increasing the degree of the next phase’s master-key modification polynomials by ∆.

Once any of those modifications qualifies at the end of the phase, the system’s threshold limit will be increased to

t + ∆. It is also possible to perform this modification mid-phase using the share renewal protocol; nodes would

use polynomials of degree t + ∆ with constant term 0. Here, however, we need to insist that the adversary remain

t-limited during the execution of this protocol based on share renewal. Once the the renewals by t + 1 or more node

succeeds, system becomes secure against an adversary controlling t + ∆ nodes.

Security Threshold Reduction. An elegant way for reducing the security parameter t for the system presents an

interesting challenge. We achieve this by running the node addition protocol for an index γ of an nonexistent node

to publicly obtain the share F (v)(γ). We then note that F (v)(z)−F (v)(γ) is a polynomial of degree t, one of whose

roots is γ, and so (z− γ) is a factor. Dividing by (z− γ) yields the desired system polynomial F̂ (z) of degree t− 1.

Nodes perform following steps to achieve the security threshold reduction.

1. Using the node addition protocol for an index γ of an nonexistent node, publicly compute its share F (v)(γ).

2. Each node modifies its individual share to ŝi = (si − F (v)(γ))(i − γ)−1. Since the old shares satisfied

si = F (v)(i), the new shares satisfy ŝi = F̂ (i), and F̂ (z) is of degree t − 1.

Note that this protocol assumes that the adversary is already t−1-limited during the protocol run and it also modifies

the master-key during the process. It is therefore only suitable to be used at the end of a phase. It is of course

also possible to perform a security threshold reduction by throwing away all previous information about shares of

the distributed PKG and starting over with polynomials of reduced degree.

7 System Architecture and Implementation

We design our distributed PKG as a deterministic state machine. Our object-oriented C++ implementation uses

the PBC library [33] for the underlying elliptic curve and finite field operations and a PKI infrastructure with DSA

signatures based on GnuTLS [34] for confidentiality, authentication and non-repudiation. In this section, we briefly

discuss the design and implementation of our distributed PKG.

7.1 System Design

State Machine. In our distributed PKG state machine, we have a bulletin board, n PKG nodes, and numerous

clients as system entities. The bulletin board can be in a non-functional or functional state, while a node can be

in a non-functional, under-recovery or functional state. The non-functional states for the bulletin board and nodes

indicate their behaviour before initialization, while the functional state indicates their possession of a certificate, a

corresponding private key and an appropriate identifying index: zero for the bulletin board and greater than zero

for the nodes. A node may also be in the under-recovery state, which indicates that it has been rebooted after a

compromise, but does not yet possess its master-key share. Nodes in the under-recovery and functional states

are included in the active nodes list and participate in master-key modification; however, nodes in the under-

recovery state cannot be helpers to assist in the recovery of other nodes (see Section 5.4).

13



class CommitmentVector{
SystemParam sysParam;

CommitmentType cType;

NodeID vectorID;

unsigned int phase;

map <NodeID, CommitmentEntry> entries;
...

};

class CommitmentEntry{
NodeID committerID;

EntryTag tag;

unsigned short numcommits;

element t *commitments;

map <NodeID, Signature> signatures;

//Node’s private Subshare

element t subshare;

unsigned short confirmationCnt;

unsigned short accusationCnt;
...

};

class Signature{
NodeID signerID;

SignatureType signType;

unsigned int timestamp;

string DSA;

bool accusedSubsharePresent;

element t accusedSubshare;

string accusedDSA;
...

};

Figure 2: Commitment Data Structure.

PKI. We assume that a PKI in the form of a PKI hierarchy or a web-of-trust is already present for the bulletin

board and all the PKG nodes. The entities use this PKI to perform authenticated and secure communication over

TLS [15] links. In addition to using these PKI certificates for client and server authentication in TLS, some individual

messages are also DSA-signed, in order that they may be of use in proving another party’s malfeasance.

Messages. Messages in our state machine can be categorized into three types: user messages, network messages

and timer messages. A user message, involving a node or a bulletin board application and its user, assists the user

in monitoring the application as well as in checking a correct behaviour by other entities. Network messages realize

all protocol flows in the system among the bulletin board, node, and client applications. As the Internet is not

synchronized (even with TLS links, which can go down, resulting in dropped messages at the application layer),

we also include timer messages. For query-response types of network messages, requesters use pre-defined timeout

messages to resend their queries, as we consider any network or adversary failure as a sender failure. We also use

timer messages to implement end of phase messages, where after a pre-defined interval the bulletin board and nodes

perform end of phase tasks involving the modification of the master-key and its shares. The time interval for

timeouts as well as for the end of phase messages are installation parameters.

Data Structures. The most important data structure in our application is the CommitmentVector, the most im-

portant pieces of which are indicated in Figure 2. This data structure encapsulates commitment entries—the aikU

values from step 1 of Figure 1—and signatures confirming the consistency of those commitments from a number of

other nodes.

7.2 Dataflow for Distributed Key Generation

Figure 3 depicts the message flow for the core distributed key generation process. It involves the messages related

to master-key modification, end of phase, and private-key extraction. Here, subshare proposals are sent by their

generating nodes to the appropriate peer nodes. The peers verify whether the subshares they received are correct

(see step 2 of Figure 1). If they are, the peers send a confirmation signature to the bulletin board; otherwise, they

send an accusation signature. Similarly, nodes use signed messages to they approve or disapprove of the final

master-key modifications chosen by the bulletin board. The Accused Subshare Request, Accused Subshare and

Verified Subshare messages are optional and can only occur when there are accusations.

Although not pictured here for brevity, the actual application also supports additional message flows for system

initiation, node recovery, and group and security threshold modification.

7.3 System Issues

Bulletin Board. We currently implement our bulletin board using the above-defined CommitmentVector data

structure and DSA signatures over TLS links. It is possible to use other broadcast messaging systems such as

14



Figure 3: Distributed Key Generation Message Flow.

SINTRA [8] or Secure Spread [3] in place of our bulletin board. However, as only read and append operations

need to be supported, a simpler system like the one in our current application, which also supports a mechanism for

accusations against the malfunctioning of the bulletin board itself, suffices for the purpose.

DoS attacks and Sybil attacks. The (n, t)-distributed nature of the PKG nodes gives an inherent protection against

DoS attacks on the nodes. Bringing down the bulletin board is more problematic, but is not a fatal problem, as the

primary distributed private-key extraction mechanism continues to work properly, even if the bulletin board is not

available for a short period. Further, this problem also can be mitigated using a more decentralized broadcast

systems.

Neither are Sybil attacks [17] a major concern, as the ad-hoc addition of a node is not a feature of this system.

In practice, additions of new nodes will require confirmation by the PKI, if not a number of the existing nodes.

7.4 Performance Analysis

Efficiency and simplicity have been important design criteria in our architecture and subsequently, the message and

communication complexity for our protocol is the lowest among the proactive VSS designs for the Internet. We start

our discussion on performance analysis by comparing the theoretical complexities of our implementation with other

proposed distributed PKG designs.

Table 1 compares our distributed PKG with other distributed PKG designs: the proactive secret sharing of

Herzberg et al. [26], asynchronous VSS by Cachin et al. [7] and APSS by Zhou et al. [47]. We observe that the

message complexity of our distributed setup and proactive security protocols is lower than that of asynchronous

VSS and APSS. Although our message complexity is equivalent to that of [26], we obtain advantage by introducing

forward secrecy with a periodic master-key modification protocol. Indeed, none of the proactive secret sharing

15



Operation This paper Herzberg Cachin Zhou

et al. [26] et al. [7] et al. [47]

Distributed PKG setup O(n2) O(n2) O(n3) O(n
(

n
t

)

)
Forward secrecy

√
X X X

Availability of the public key
√ √

X X

Periodic master-key modification O(n2) - - -

Secret share renewal O(n2) O(n2) O(n3) O(
(

n
t

)

)
Secret share recovery O(n2) O(n2) - O(

(

n
t

)

)
Group Modification O(n2) - - -

Threshold Modification O(n2) - - -

Table 1: Comparison among distributed PKG designs

schemes before this considered forward secrecy. Further, we improve on the proactive VSS by Herzberg et al. [26]

by introducing group and security threshold modification protocols and by avoiding unnecessary signatures.

To test the efficiency of our implementation, we installed a bulletin board, five PKG nodes and a number of

clients on Linux and FreeBSD machines at various locations in Canada, the United States and Europe. We created

a (5, 2)-distributed PKG system and measured the computational performance of the important operations, such as

commitments and share generation by nodes, share verification and signature generation by the receiving nodes, and

end of phase processing by the bulletin board. For 80-bit security, all these operations take just few milliseconds of

CPU time to complete. The master-key modification protocol requires just half a second of wall-clock time to

receive and process contributions from all five nodes, while the bulletin board’s end of phase processing is just 10

ms of wall-clock time. Finally, our client application takes less than one second of wall-clock time to request key

extraction from each of the nodes, receive their replies, and reconstruct and verify her private key. These measures

demonstrate that our system is eminently practical. Further, the large difference between the duration of a system

phase and that of an execution of our implementation justifies our assumptions about the partially synchronized

nature of the system and the design of our protocols.

8 Conclusion

We have presented the first practical implementation for a distributed PKG for identity-based cryptography. Our

architecture uses a verifiable bulletin board and a PKI to implement the distributed PKG in a partially synchronized

network such as the Internet. In our simple proactive design with a stronger adversary model, we have provided

efficient protocols for non-traditional group and threshold modification operations, along with traditional share se-

cret renewal and recovery protocols. Further, we observed the importance of maintaining forward secrecy of the

shared master-key and have provided the first protocol in the secret sharing literature that combined periodic

master-key modification with intra-phase proactive share updating. We also compared the message complexity

of our protocol with other proactive distributed PKG designs and demonstrated the efficiency and practicality of our

distributed PKG for real-world IBC-based applications. Finally, we installed our application in a geographically

distributed environment, and verified its efficiency and the practicality of our system assumptions.
Going forward, we would like to produce a more generic distributed PKG. Our distributed PKG does not handle

some of the recent IBC schemes having setups different from that of BF-IBE. Considering the potential applications
of these new IBC schemes, we find the problem of providing them with a distributed PKG to be exciting future
work.

References

[1] M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryptog-

raphy. In Advances in Cryptology—CRYPTO’04, pages 317–334, 2004.

16



[2] S. S. Al-Riyami and K. G. Paterson. Certificateless Public Key Cryptography. In Advances in Cryptology—

ASIACRYPT’03, pages 452–473, 2003.

[3] Y. Amir, C. Nita-Rotaru, J. R. Stanton, and G. Tsudik. Secure Spread: An Integrated Architecture for Secure Group

Communication. IEEE Transactions on Dependable and Secure Computing, 2(3):248–261, 2005.

[4] G. R. Blakley. Safeguarding cryptographic keys. In the National Computer Conference, pages 313–317, 1979.

[5] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant size ciphertext. In Advances in

Cryptology—EUROCRYPT’05, pages 440–456, 2005.

[6] D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pairing. In Advances in Cryptology—CRYPTO’01,

pages 213–229, 2001.

[7] C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl. Asynchronous verifiable secret sharing and proactive cryptosys-

tems. In ACM Conference on Computer and Communications Security, pages 88–97, 2002.

[8] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the internet. In DSN, pages 167–176, 2002.

[9] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, The Weizmann Institute of Science,

1996.

[10] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive Security for Threshold Cryptosystems. In

Advances in Cryptology—CRYPTO’99, pages 98–115, 1999.

[11] J. Cha and J. Cheon. An identity-based signature from gap Diffie-Hellman groups. In Public Key Cryptography, pages

18–30, 2003.

[12] Liqun Chen and Caroline Kudla. Identity based authenticated key agreement protocols from pairings. Technical report,

2002. http://eprint.iacr.org/2002/184.

[13] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing and Achieving Simultaneity in the Presence

of Faults (Extended Abstract). In 26th Annual Symposium on Foundations of Computer Science (FOCS), pages 383–395,

1985.

[14] X. Chunxiang, Z. Junhui, and Q. Zhiguang. A Note on Secure Key Issuing in ID-based Cryptography. Technical report,

2005. http://eprint.iacr.org/2005/180.

[15] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol (Version 1.1), Request for Comments (RFC)

4346. http://www.ietf.org/rfc/rfc4346.txt.

[16] W. Diffie, P.C. van Oorschot, and M. Wiener. Authentication and authenticated key exchanges. Designs, Codes and

Cryptography, 2:107–125, 1992.

[17] J. R. Douceur. The Sybil Attack. In International Workshop on Peer-to-Peer Systems (IPTPS ’02), pages 251–260, 2002.

[18] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In 28th Annual Symposium on Foundations

of Computer Science (FOCS), pages 427–437, 1987.

[19] R. Gangishetti, M. Choudary Gorantla, M. Das, and A. Saxena. Threshold key issuing in identity-based cryptosystems.

Computer Standards & Interfaces, 29(2):260–264, 2007.

[20] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for discrete-log based cryptosys-

tems. In Advances in Cryptology—EUROCRYPT’99, pages 295–310, 1999.

[21] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Applications of Pedersen’s Distributed Key Generation

Protocol. In CT-RSA, pages 373–390, 2003.

[22] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key Generation for Discrete-Log Based Cryp-

tosystems. Journal of Cryptology, 20(1):51–83, 2007.

[23] C. Gentry. Certificate-Based Encryption and the Certificate Revocation Problem. In Advances in Cryptology—

EUROCRYPT’03, pages 272–293, 2003.

[24] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Advances in Cryptology—ASIACRYPT’02, pages

548–566, 2002.

[25] V. Goyal. Reducing Trust in the PKG in Identity Based Cryptosystems. In Advances in Cryptology—CRYPTO’07, pages

430–447, 2007.

17



[26] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Secret Sharing Or: How to Cope With Perpetual Leakage.

In Advances in Cryptology—CRYPTO’95, pages 339–352, 1995.

[27] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Computational Diffie-Hellman in Cryptographic

Groups. Journal of Cryptology, 16(4):239–247, 2003.

[28] A. Kate, G. M. Zaverucha, and I. Goldberg. Pairing-Based Onion Routing. In 7th Privacy Enhancing Technologies

Symposium (PET), pages 95–112, 2007.

[29] A. Khalili, J. Katz, and W. Arbaugh. Toward Secure Key Distribution in Truly Ad-Hoc Networks. In IEEE Workshop on

Security and Assurance in Ad-Hoc Networks 2003, pages 342–346, 2003.

[30] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565, 1978.

[31] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst.,

4(3):382–401, 1982.

[32] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo. Secure key issuing in ID-based cryptography. In ACSW Fron-

tiers ’04: Proceedings of the second workshop on Australasian information security, Data Mining and Web Intelligence,

and Software Internationalisation, pages 69–74, 2004.

[33] B. Lynn. PBC Library – The Pairing-Based Cryptography Library. http://crypto.stanford.edu/pbc/, 2008.

Accessed January 2008.

[34] N. Mavroyanopoulos, F. Fiorina, T. Schulz, A. McDonald, and S. Josefsson. The GNU Transport Layer Security Library.

http://www.gnu.org/software/gnutls/, 2008. Accessed January 2008.

[35] V. Nikov and S. Nikova. On Proactive Secret Sharing Schemes. In Selected Areas in Cryptography, pages 308–325, 2004.

[36] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In 10th Annual ACM Symposium

on Princiles of Distributed Computing (PODC), pages 51–59, 1991.

[37] T. P. Pedersen. A Threshold Cryptosystem without a Trusted Party. In Advances in Cryptology—Eurocrypt’91, pages

522–526. Springer-Verlag, 1991.

[38] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In Advances in Cryptology—

CRYPTO’91, pages 129–140, 1991.

[39] R. A. Peters. A Secure Bulletin Board. Master’s thesis, Technische Universiteit Eindhoven, 2005.

[40] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In Symposium on Cryptography and Information

Security (SCIS 2000), 2000.

[41] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[42] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances in Cryptology—CRYPTO, pages 47–53,

1984.

[43] J. Shamsi, C. Chu, and M. Brockmeyer. Towards partially synchronous overlays: Issues and challenges. In AAA-IDEA,

pages 10–17, 2005.

[44] E. Verheul. Evidence that XTR Is More Secure than Supersingular Elliptic Curve Cryptosystems. In Advances in

Cryptology—Eurocrypt’01, pages 195–210, 2001.

[45] B. Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology—EUROCRYPT’05,

pages 114–127, 2005.

[46] T. Yuen and V. Wei. Constant-size hierarchical identity-based signature/signcryption without random oracles. Technical

report, 2005. http://eprint.iacr.org/2005/412.

[47] L. Zhou, F. B. Schneider, and R. van Renesse. APSS: proactive secret sharing in asynchronous systems. ACM Trans. Inf.

Syst. Secur.(TISSec), 8(3):259–286, 2005.

18


