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Abstract

In the typical client/server model for data retrieval, thentent of the client's query is
exposed to allow the server to evaluate the query and reb@mesult. However, in some
situations, it may be desirable to keep the content of theyquenfidential. To achieve this,
systems can make use of private information retrieval (R&hnology, which allows the
retrieval of data without compromising the information tained in the query. Currently, the
use of PIR comes with a great restriction on the data accegsidge, severely limiting the
practicality of such systems. In this paper we show how terektPIR systems so that SQL-
like queries can be privately evaluated over relationadliases. We presenRANSPIR, an
implementation of our extensions, and analyze its perfamaa Our work brings relational-
complete query capabilities to traditional private infation retrieval schemes, which gives
greater utility to a private information retriever withompacting the confidentiality of her

query.
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1 Introduction

The problem of Private Information Retrieval (PIR) [6] is to enable a tliemequest information
from a server such that the server learns no information about whali¢in¢ has requested. Such
functionality could have many practical uses where the information in a geiepnfidential, such
as querying a patent database without eavesdroppers discover{ipgivhee) nature of your work,
or privately searching messages from a public host, without anyomeiassg your identity to
your message box by the content of the query.

We consider a motivating example that highly relevant to today’s e-commenters the
searching of avhois database. Avhois database contains registration information for world-wide
web (WWW) domain names. If a person is interested in registering a domain saewould first
query awhois server to see if the domain is currently registered; if not, she may register it.



The problem arises when the server administrator (or a third-partywayseithe network traf-
fic) views the content of thehois query. The fact the query is being issued establishes that some-
one is interested in registering the domain, which increases its potential Vidleeesavesdropper
can then register the domain before the original query issuer has thewmpg@and subsequently
charge the original query issuer an inflated price to purchase the dontespractice is known as
domain front running [14].

A PIR-based query interface tohois data would remedy this problem, allowing people to
query the availability of domain names without the servers ever knowing titertioof the query.
Most PIR schemes, however, are restricted to retrieving blocks atrkidfgets in the database.
This restrictive data access model makes practical use of PIR technatogyimited. Thus,
support for more expressive query languages over PIR datalzasesded before such systems
can be realistically deployed.

Relational algebra provides the underlying theory for today’s mosapgat query languages
for data access, such as SQL [13] and XQuery [22]. As such, it isb&ous starting point for
building an expressive data access model for private information raftrienthis paper we propose
TRANSPIR (Transparent Relational Algebra eNabled Storage for Privaterhd#dtion Retrieval),

a system for privately evaluating relational queries with the goal of minimizorgnaunication
complexity. Relational algebra allows for a more expressive query lgggwaich increases the
utility of PIR. We discuss how to translate relational algebra queriesjumioy plans comprised of
function calls to a virtual database interface. The virtual database indsponds to these calls by
fetching the appropriate PIR blocks from the PIR server based on tbatlay the database. To
reduce the communication complexity, we construct indices over the relatitims database that
aid in executing queries while attempting to minimize the requests for data required.

Our experimental results indicate such a system is feasible for performargegwvith small
output sizes, such as point searches, small ranges searchesmall &et of tuples satisfying
multiple constraints on indexed attributes. The processing time for a seqoaERER queries is
equal to the processing time for a single PIR request times the number ofltletig retrieved,
and so for cases where entire relations need to be retrieved, or toeetiEge number of arbitrary
tuples from distinct blocks, the processing time becomes a significantrbtodgeration.

The main contributions of this work are as follows:

e We improve the state of the art of private information retrieval by enablinig-8@ queries
to be privately evaluated over relational databases.

e We evaluate our experimental implementation of the system, illustrating the feasibility o
relational query processing over PIR.

The remainder of the paper is organized as follows. Section 2 reviewaril e relational model.
Section 3 presents our system model and the encoding of relational siedatssa PIR array, as well
as discussing the query optimizer and the problems introduced when gueniate databases.
Section 4 contains details about our implementation and experimental resuttsonSe offers
some future work on this topic, and Section 6 concludes.



2 Preliminaries

2.1 Private Information Retrieval

Private information retrieval is the problem of allowing clients to obtain infornmafiiom a server
without revealing to any observer, including the server, what informédizabeen requested. This
field was initiated with the study of oblivious transfer [18], which aimed to allewsrs to send
information while remaining oblivious as to what was sent. Initial lower bound€hor et al.
proved that if PIR was being provided by a single server then informatieorétic privacy, mean-
ing privacy against computationally unbounded adversaries, is ongilpesf the client requests
the entire database and performs the query off-line [6]. To circumvé&nhbdndwidth-intensive
solution, the authors presented a PIR system that information-theoretiepdyated the query be-
tween two servers. The client is given a protocol to convert their debiténto structured server
queries and combine the results to retrieve their desired bit privately [B&ir Becurity model
assumed that the servers will not collude, but will record any informatiey tlappened to come
across, known as the honest-but-curious security model in the literature.

Concisely, the client would request the exclusive-or of a set of bita tvoth servers. These
sets were redundant in all but the bit of interest, and so the client wouddtl@kexclusive-or of
the results to answer the query. If the size of the requests were praobriiohalf the database
size, and neither server knew if their request included the bit of intdhest,neither server could
learn statistical information about what bit the client has requested. Sueréeq in this model
have complexityo(n) for a database of size, their paper then provided ways to reduce the size

of queries toO (n%) without impacting the unconditional privacy of the scheme [6]. Chor and

Gilboa suggested computational PIR, where a client’s query is proteciablems used in cryp-
tography that are believed to be computationally hard for an adversamgntpute [4]. This is
weaker security in contrast with information-theoretic security, and knehnigques are much
more computationally expensive than information-theoretic PIR, but it cdd pmtocols with
smaller communication complexity, and fewer servers.

The honest-but-curious security model has been considered insuifficéecure by some pa-
pers [1, 11, 12], and consequently the robustness of PIR has Odessaed against stronger ad-
versaries. Beimel and Stahl advance the notion of servers that fagpomd or intentionally or
accidentally respond incorrectly [1], and propose schemes thatlaustragainst such adversaries.
Gertner et al. consider that keeping replicated copies of the databaseatsdrzurity vulnerabil-
ity in itself, and considered schemes where the database operator inforthegaretically could
not determine the contents of the database it was storing [11]. A recait by Goldberg [12]
improved the robustness of PIR against both these adversaries amliggtdathe notion of hybrid
PIR, where the client’s privacy is protected by information-theoretic rigcagainst a subset of
colluding servers, and further protected by computational security stgalrservers colluding.



2.1.1 Useable PIR

The usefulness of privately retrieving a single bit is dubious, and maRysiP$tems are designed
to allow a client to retrieve sequences of bits, known as blocks [6]. Thweisein such systems
are modelled as a database partitioned into a sequence of equal-sizesl bEmkmunication
efficiency is improved when requesting an entire block as more trafficiosniaeful data, and the
server can also greatly increase throughput (with a cost in latencygdeives multiple queries and
computes the responses concurrently. In subsequent work, ChmyaGand Naor acknowledged
that assuming that clients know a priori which PIR block they wish to retriewebaainreasonable
[5]. It is particularly unlikely when the client is not personally managing théadase. They
introduce the notion of retrieving data based on keywords, and name yisténs PERKY, for
PrivatE Retrieval by KeYwords. Hence, a client need only know kegs&dor the data they wish
to retrieve, and the server is capable of replying usefully without learmireg keywords are being
sought. They give a general reduction for performing a query byngaRIR blocks contain the
required results for the possible paths of search keywords. Thisiteghis later substantiated
by giving the example of indexing data using elementary data structurds,asulsinary search
trees and hash tables. This is the technique upon which we will build in oelajeuent of a
complete relational algebra PIR system. Our work differs from that ofr @hal. in three ways.
First, we consider the problem of encoding our index structures fatrauty sized PIR blocks to
minimize the number of blocks needed to traverse the index. This problemeyaadthe scope
of the foundational work of Chor. Second, the keyword based hat#xiof Chor depends on
finding a perfect hashing scheme; we relax this requirement by allowickebghaining in our
hash index. Lastly, we implement and empirically evaluate our PIR basedtdataiges. Saint-
Jean, in a technical report for a PIR implementation [20], consideragagfwork the possibility
of supporting string types, non-sequential keys, existential queridgpas; our proposal supports
all of these features and more.

To simulate the notion of a mail server, Kissner et al. [15] introduced podhpall by key-
words. This work provided for stacks indexed by keywords, wheneetmain operations could be
performed privately: pushing an item onto a keyword’s stack, pulling an d# of a keyword’s
stack, and peeking at the top item of the stack. This system naturally lendisatagorivate mail
server. Mail is encrypted for a user with their public key, and pushedarstiack based on some
non-identifying pseudonymous keyword. The recipient will occasionadgk and pull any mail
that has been pushed into their mailbox.

Recently, the Pynchon Gate [21] was designed, arguably the first atters@tiously develop
and deploy a useable pseudonymous mail retrieval system. The authgessthat existing mail
anonymizing systems had bandwidth problems, were vulnerable to traffigsemaor were too
burdensome, thus encouraging users to take shortcuts that degradarittaey. Their system
used multiple privacy-enhancing components, including the PIR systenhaf [6] and anony-
mous remailers [9] for communication in both directions. Since mail retrieval nk@yaaariable
number of PIR operations, each user performed akinamy PIR requests, up to a system-defined
maximum. This prevented mail servers from learning how much mail was bditeyes.



2.2 Relational Algebra

The relational model provides a logical abstraction for the underlyingréatasentation in a data
management application [7, 8]. Relational algebra provides the formediops needed to access
the underlying data through its abstraction.

In the following subsections, we review the operators that make up the relbtilgebra query
language, and informally explain their semantics. We start with a brief andnafalescription of
the definitions and notation we use to discuss the relational model.

2.2.1 Definitions

A relation is a named set dfiples (records) that constitute the data being represented. Each tuple
has a fixed structure @ftribute values, as dictated by the relatios&hema. A schema consists of

a list of attribute names and types, as welpesnary keys andforeign key constraints. A primary

key is a set of attributes that uniquely identify a tuple. A foreign key comgtrastricts values of
attributes in a relation to reference values of attributes in another relatipnedicate is a binary
expression of the formttribute ¢ constant or attribute o attribute, whereo denotes a binary
operator over the domain of the attributes, generally onfe=0f>, >, <, <, #}.

2.2.2 The Primitive Relational Operators

Relational algebra is based on six primitive operators, from which all aiperators are derived.
These operators are rename, selection, projection, union, differendeross product. Each op-
erator takes one or two relations as arguments, and generates a relatidgputs Some operators
may also take an additional argument such as a predicate over the attrittiesedation.

e Rename (p) The rename operator is used to rename an attribute in a relation. This operator
is used to avoid naming conflicts in cross products and joins. We omit a discusshis
operator as it can be trivially supported in our model.

e Selection (o) The selection operator is used to select particular records from a reftion
that satisfy a given predicateand is denoted as:

op(R)

We note that predicates may be arbitrary conjunctions or disjunctions of apredicates;
the following relational algebra equivalences allow us to congidier be atomic for con-
venience in later sections. This first equivalence shows that conjuhgiedicates in a
selection are equivalent to a nesting of selections with atomic predicates.

T(a1 o k1)A(az © ka)A-Aan o kn) () =

T(ar o k1) (T(az o k2) (- (Tan o k) () -+ -))



A disjunction of predicates can be expressed as a union of the selecteachfatomic

predicate.
T(ar o k1)V(az o ka)V--V(an o kn) () =
Tlay o k1) () U O(ag 0 ko) (1) U+ U 0(q, o k,) (1)
e Projection (7) The projection operator is used to extract desired attributess, - - - , a,

from a relationR using the following syntax:
Tayaz,an (F)

The result is a relation containing one tuple for each tupl&jrwith only the attributes
specified in the argument to the projection operator.

e Union (U) The union operator is analogous to the set union operator. The reskito
is a single relation containing all tuples from bathandS. Note that the union operator is
only defined for relations that atgion compatible, that is, they have the same number of
attributes, and the domain of the attributediitffrom left to right) is the same as those . ®f

¢ Difference (—) The difference operator is analogous to the set difference opefai@result
of R — S is a relation containing all tuples fro that do not appear i§. The difference
operator is only defined for relations that are union compatible.

e Cross Product (x) The cross product (or Cartesian product) operator is a binary topera
over relations. The result a8 x S produces a relation containing a concatenation of each
record inR with every record inS. Each tuple in the resulting relation has all attributes of
both R andS.

The two most significant operators that can be derived from the primiglagional algebra
operators are intersection and join. While these operators can be eddhyatke definition of
their construction, in many situations alternate evaluations can be more éffiéha describe
these derived operators below.

e Intersection: Intersection can be expressed using the primitive operators in the fofowin
way:
ANB=A-(A-B)
¢ Join: The join operator can be implemented by the definition of its primitive components a
A<, B =o0,(Ax B)
or in the natural join case as
A B = O(A.xz1=B.x1ANA.xa=B.xa2A...NA.xp=B.x,) (A X B)

where the predicate is equality of all common attributed @ind B.
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As an example of how relational algebra is used, consider the following @ty and a
relational algebra translation. The query finds all active domain name®gistration dates in the
whois database, such that the domain will expire before 2008-02-01.

SQL Relational Algebra
SELECT dormi n, date T {domain, date}
FROM Regi strations O status=“AcTIVE"
WHERE expiry < 20080201 Uempiry<20080201(
AND status = “ACTI VE Registrations)))

3 System Design
3.1 Model

This paper builds relational-complete PIR on top of private block retrievalsuth, we allow for
any implementation of a PIR protocol—information-theoretic or computationallesargnultiple
server, etc.—provided it can compute the single functieilock(i) without the server learning
any information about. This function is provided a block numb&and returns the data contained
in that block. The function is implemented in a PIR proxy that performs whatesk is necessary
to fulfill this request.

In the following subsections, we discuss a relational data encoding RyrePVirtual database
that maps relation information into PIR blocks, and a query processor tratldtes relational
algebra requests into function calls implemented by the virtual database.arhiee/iewed as an
implementation of a relational database, with the limitation of being able to retrievgla biock
at a time during query evaluation and without the aid of the server in selectrigdhk based on
its content.

We note that in implementation, it is worthwhile to parallelize the query plan andtdispaul-
tiple concurrent block requests. This is a consequence of the naturesdPIR systems, including
the one used in our implementation, to perform computation on every block iratabase during
each block request. By examining every block, the protocol ensurgsittaey of requests against
the responding servers. It is thus possible for a server to achieagegtéroughput if multiple
requests are processed concurrently during a single pass ovetdhasia

We aim to minimize the number of blocks that must be retrieved in satisfying a.qlieis/is
in contrast to traditional relational databases which aim to minimize wall-clock tistenpally
resulting in more data retrieval in order to optimize disk access. We discudsdnésfurther in
Section 3.3. An overview of our system is illustrated in Figure 1.

3.2 Encoding Relational Databases for PIR

In this section we describe an encoding of a relational database, incinditaglata, relations, and
indices, as a large array @fords partitioned into fixed-size blocks; a typical block size for a 1
gigabyte database would be around 32 kilobytes. This is significantly l#rgerthe block sizes
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Figure 1: TRANSPIR system diagram. The user, query processor, virtual database RrptdXy
are all located on the client side. The only exposed data are the commurscaitbnthe PIR
servers, which are protected by the underlying PIR block retrievabpoh

used in traditional database applications, however to use PIR blocksiedfg it is necessary to
use a block size on the order of the square root of the database sthewé&al is 8 bits and attribute
values are marshalled as compounds of words as in typical byte-aligct@tbatures; we use the
term array position to refer to a single word index in the PIR array. Both the client and server
messages in a private block query are typically around the size of onle lalod so both can be
quickly transmitted over high-speed Internet connections.

The problem of encoding this database is analogous to encoding resano disk pages in
traditional relational databases, with a few distinguishing characteristicst, &ur optimization
goal for query answering is to minimize network traffic, so clients incur naalig for random
access to PIR blocks. Their relative physical storage location is notsae onsidered during
query evaluation; this differs from the traditional database setting in wiatdldyout can greatly
affect the performance of query evaluation. For example, clusterecemoptimize disk access
by making the index scan order consistent with the page order on disk; eeuthber of read-
head seeks is minimized when scanning the index. Second, depending ondértying PIR
block protocol, the PIR block may be considerably larger than a typicalpdigke. This presents
interesting issues in deciding how to encode resources, particularly tieesnwhich need to be
traversed and scanned with a minimal number of PIR block accesses. kottiext clustered
indices can be beneficial to our system by clustering sequential regioadsattribute value on the
same block, meaning discrete ranges of records are stored on a minimaafoninimal) number
of blocks. Finally, observe that the PIR server is unable to aid in the e@i@iuaf queries as it is
oblivious to the data values being accessed. We must encode ourcesssuch that retrieving the
necessary data in order to process a query accesses the fewest ofifalR blocks possible.

Indices are used to index records over the values of a single attributis. p&hmits rapid
evaluation of predicates and determination of the cardinality of potentialt restis. There are
two kinds of predicates that are considered: equality predicates (pEanttes) and inequality
predicates (range searches). An equality predicate specifies thatlteeof the attribute must be
equal to some provided value, such as all domains assigned to a certan éwiange predicate
permits the attribute to occur within a contiguous range of allowed values,asusbarching for



domains registered between two dates. To evaluate a predicate on an iralex tmeeturn a set
of attribute-index pairs that correspond to all records that satisfy the predicate. To determine the
cardinality means to return the size of the set of matching tuples.

We implement two types of indices: binary search trees (BST) and hasbk.t&8d s are used
to index attributes with total linearly ordered domains, and are able to deteramdimality and
evaluate either equality or range predicates. The hash indices are usdeéxattributes in any
domain, and are able to determine the cardinality or evaluate equality predidatgstable indices
also permit a set of keywords to be associated with a record, building ex ihat maps a keyword
to a set of related records. We do not consider the standard B+ tretusérin our model since our
system does not perform updates to the database. We discuss updlagefsiinre work section.

3.2.1 Database Metadata

The first thing a client must retrieve is information regarding the layout ofdladional database,
known as thecatalog. As this is a necessity for accessing the system, we can allow the client to
retrieve the catalog non-privately. This is reasonable because the eslgflprivacy that occurs is
that the server and external observers become aware that the cliewisinbeaccessome content
within the database. This is not a privacy loss that PIR intends to asstiegelient can use
anonymity software such as Tor [10] to send its PIR requests to the datsdraers if this is in fact
a concern.

Foremost, the catalog contains the layout of the database: the relationshtmas as an
ordered set of attributes, and a list of the attributes that have indicestidReland indices are
virtually arranged by the client using the same method as was used by tke denng the initial
construction of the database, and so the catalog contains the sizes datlmmseand the indices
that are needed to construct the virtual layout. While currently not in ouleimgntation, the
full catalog will also contain host names and TLS public keys for the setbat are hosting the
database. Once the client has obtained an authentic copy of the cataagilldbe able to lay
out the virtual database, devoid of actual values, and query therséovehe missing values only
when the query processor indicates they are needed.

Additionally, the database may want to store statistical information about tHenslasuch
as an approximation of the distribution of attribute values in the relations (eigtagtam). This
information can be used during query evaluation to estimate the selectivityedicptes, which
aids in computing efficient query plans.

3.2.2 Ordered Index Structures

Our system implements ordered indices to map attribute values to their cordespdounples in
the relation. They make use of a full ordering function of the attribute vatuesnstruct a BST.
Tree indices are used to execute three functions: cardinality seapmiiessearches, and range
searches.

Ordered indices are implemented as sequential access BSTs, wher@midasaonly in the



leaves; internal nodes are used to guide the search. The leaf layertogé¢his stored as a sorted
list following the tree to simplify sequential data access, and to group datesvatuPIR blocks.
Each search node contains an attribute value that is used to guide thie se#lre data layer;
the references to other tree nodes are implicit by the structure of the tnee.tle client resolves
which block contains her desired value, she simply retrieves the entire &modiocates the desired
value within. Ranges of values can be found by iterating over the sequieatidgayer until she
completes her query. Because the search nodes are only used to gudtierttio the correct block
in the data layer, most BST searches can be completed with only one or tvikorétdevals.

Trees are initially partitioned into PIR blocks during the construction phaseéndex-building
algorithm constructs a balanced BST, and partitions all the nodes into P¢tRsbdo that binary
searches require the fewest PIR queries in the worst case, similah&-obtivious search trees [2].
It begins by constructing breadth-first subtrees that fill a PIR blau taen merges unfilled blocks
where possible. The clients execute this algorithm to lay out the virtual tréegduitialization,
and when later using it to navigate they populate the nodes they visit with attviddutes via PIR
block requests.

Determining the cardinality of a predicate on binary tree indices is implemented wath tw
binary searches. The searches locate the beginning and end positibastements that tightly
bound the desired range, and their relative offsets in the PIR arraytedite size of the matching
set. Not yet implemented in our design is fetching heuristic information abouttténality of a
set, which would operate by navigating simultaneously along two binarytsgatbs until it can
bound the cardinality within a tolerance based on the number of levels that eheetavch paths
differ.

Point and range searches are computed by binary searching until thestier@ay index whose
attribute satisfies the predicate is reached. The client then retrieves theldeiRthat contains
the attribute-index pairs for matching values. Since these are storednsiatiydoy increasing
attribute value, the client iterates over increasing array positions, reggisequential PIR blocks
when needed, until the results no longer satisfy the predicate.

3.2.3 Keyword Index Structures

Relations may contain attributes whose values have no meaning when soedhekvhois
database this would be the domain name. We need to be able to query for tlem@xisf a
domain name in the table, and retrieve its full record if present.

Our system implements a hash-table based index to maintain records for oragdssfrwords
to lists of pertinent records, which forms a one-to-many relationship. \Wexind this to many-
to-many relationships formed by annotating a record from a set of kelgvdihere are two routines
that these index structures are designed to execute: cardinality searthpoint searches.

Building a hash table begins by computing the reverse index of keywordsdods; keywords
are then represented as integers by using some well-known collision mésisth function to
map keywords to numbers. We use Knuth’s hash function for strings {i€]identity function
for integers, and compositions of these for constructed types, suchies dNote that this isot
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intended to be a cryptographic hash function. For the pragmatic purpbses implementation,
we do not compute individual perfect hash functions suited to the dataggested by Chor [5],
but rather use simple and well-known hash functions.

Data is stored in d&ash table organized by sequentiéibsh buckets, each a PIR block. Hash
buckets are uniquely associated with integers corresponding to bothfékeeinfPIR blocks from
the beginning of the index and the hash value modulo the number of bucketsbEcket manages
an index of the full hash value of each keyword that maps to the buckelengéh of the list of
matching records, and each list of tuples that correspond to a contapeoid.

Cardinality searches on hash tables are computable with a single PIRtretheslient hashes
the keyword for which they are searching locally and retrieves the sjgoreling hash index block.
Our implementation places the list of keyword hashes and result lengths agghmimg of the
block in a table of contents, and so the client simply searches that table tmatetehe cardinality
of her search. Point searches are computed by first looking up tinokeyn the appropriate hash
bucket’s table of contents. The client then examines the length delimited setafintarecords.
Any records that cannot fit inside the primary hash block are insteadsepted by a position in
the database where the set can be found. Each hash table managéds basingeap where all
extra records are placed. This means that point searches can eidlzertén a single PIR request,
or in one request for a table of contents block and one for a hash hedp b

3.3 Query Evaluation

In this section, we discuss how an expression in relational algebra camigled into auery plan
consisting only of PIR block requests. A query plan is a relational alge&rse tree, annotated
with access methods for the relations (at the leaves of the tree) and algoféhmesrforming
the intermediate query processing tasks such as joins. As such, the datimaccess is either
a tuple retrieval from a relation or an index scan. We discussed indexrsa\vin Section 3.2.2
and Section 3.2.3 and we omit the specific details for mapping the low-level dz#asa such as
tuple retrieval, to PIR block requests for brevity. It follows that selectionand projection %)
can be supported by an index search or a sequence of tuple retrievats (), set difference
(—), and cross productsx) can be materialized on the client side following the necessary data
access. Thus, the remainder of this section is dedicated to the discusgemeoéting query plans
for arbitrary relational expressions in terms of tuple and index acceigsthe goal of minimizing
data retrieval by exploiting index search in place of relational scans wh&sible, and by making
use of specialized join-) algorithms which reduce data access by exploiting indices.

3.3.1 Query Optimization

Query optimization is the problem of compiling a query into an equivalent genaduation plan
that is optimal (or near optimal) by some cost measure. In traditional datapsissns, the op-
timization target is an estimate of the actual time the query plan will require to exeGtie

estimate is based on the number of records needed at various stagespoitatoon, as well as
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other characteristics such as disk access costs.

For example, a traditional database management system may scan a relatadndteea pred-
icate as part of a query plan, instead of using an index to retrieve onletoeds satisfying the
predicate. The initial plan may be deemed optimal despite accessing moresrdwmndhe index
approach. The reason for this is because a predicate cahdwasatectivity, in which many records
are expected to satisfy the predicate. Because the records are likelstoréeé contiguously on
disk, a scan of the entire relation will optimize disk access. An index trayersshe other hand,
could access records in an arbitrary order with respect to physicidacon disk, resulting in a
longer time to evaluate the query.

The formulation of our problem presents a different optimization target. &yeapconstant
cost for each PIR block access, independent of storage locatitme sdditional types of temporal
optimization considerations taken in traditional systems do not apply in our situstistead, we
aim to minimize the total amount of network traffic, which is directly proportionah®number
of PIR requests in a query plan since retrieval blocks are of a fixedAige, because the database
system is oblivious to the actual data values being retrieved, it is not ablaleage any part of
the queries. Thus the query optimization and plan evaluation must be done dietit side.

Computing Query Plans

There are two sides to the query optimization problem. The first entails a maiopuéthe rela-
tional algebra statement using common heuristics to produce an equivakement that reduces
the size of intermediate results. For brevity, we omit a thorough discussioes# tiptimizations
as they can be found in most relational database texts, such as [19henhbeal idea is to per-
form projections and selections as early as possible, thus reducing thmofiaata considered
at intermediary processing phases. The second side of query optimizatddves choosing an
access plan for each relation referenced in the query, and possititgrfmanipulating the form
of the query to alter the order in which relations are considered. One #esrio decide which
algorithms will be used to join relations. The space of all possible query [gatherefore all
possible ways of accessing and combining the relations, in addition to the nefetional algebra
operators. An overview of these challenges and common approachesringptimization can be
found in [3].

Estimating the cost of a plan often requires information such as the cardinbéitpredicate
which is not available without querying the database (thus adding to thalbeest of query
evaluation). A database may store statistics about the data, which candbé&usstimate the
cardinality of intermediate results without actually accessing the data. In nageg @ plan that is
optimal for one database instance can be sub-optimal for a differefted@&anstance because of
differences in the distributions of attribute values; for example, a rarggiqate may be satisfied
by all tuples of one database instance, and no tuples of another. Beafahss property, it is not
possible to have an optimal query optimization algorithm without perfect kriyelef the data.

In our model we consider the spaceldft-deep plans to reduce the search space, a common
approach taken by many relational query optimizers. This means that thehmitghof any node in
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the plan will correspond to data access for a relation. We do not curmaailytain statistics about
the database, but opt for some simple heuristics to estimate the relative #glettpredicates.
Predicates in the query are analyzed to determine when a full relation asdreaeplaced by an
index scan that simultaneously satisfies the predicate. We choose indsegsdrathe following
simple estimates of selectivity: predicates on primary key attributes are coethithe most selec-
tive, followed by point predicates, then range predicates. Predicatelsistered indices—that is,
indices whose order is the same as the order of the relation—are alvea/mube case of multiple
alternatives. Our system supports two basic join operations: nested lnpard index nested loop
join. A nested loop join is a simple approach for materializing a full join in arbitsétyations. If a
join condition on an indexed attribute is detected in the query, then our optimittese/the index
nested loop join algorithm, a specialized join procedure which reduces cizasabysearching
for the joining tuples, rather than scanning an entire relation. Our optimizefuritiier arrange for
the input with smaller cardinality to be in the outer loop, resulting in fewer redsearches.

3.3.2 Aggregate Operators

Relational algebra with aggregates adds to the utility and expressivehtss gquery language.
Implementing the most common aggregates is a straightforward extension of tk@mesented
thus far. We summarize how to evaluate some common aggregates below.

e Count: The count operator simply returns the cardinality of a query result, réthe the
result itself. The obvious implementation is to evaluate the query and perfnsaa scan
through the result set to obtain a count of the number of records. Iraieeaf a range query
over an indexed attribute however, the cardinality searches discusSedtions 3.2.2 and
3.2.3 are a much more efficient approach.

e Min/Max: The min operator returns the minimal value in a query result. The obvious im-
plementation here is to evaluate the query, sort the result, and return theddirent in the
sorted result. In the presence of a tree index however, the min opesaattrecevaluated by
returning the leftmost leaf-node in the tree that satisfies the query presi{cajest the first
leaf in the tree if no such predicates exist in the query). The evaluatioreahéx operator
is analogous.

e Sum/Average: The sum operator computes the sum of a given attribute over a quelt; res
A linear scan through the result is thus unavoidable, however, in thendes=e a sum is to
be computed over a tree indexed attribute, we can save by computing theseuthedata
stored in the leaf index nodes, rather than the relation’s records. Themédibial since the
size of index nodes will generally be much smaller than the size of recesldting in less
data being accessed to compute the sum. The same approach applies teethe aperator
as well, since we can count the number of results during the scan to comeatesttage.

While our implementation does not currently support aggregates in the iqtenrace, our backend
query processing infrastructure is equipped to handle them. It caorpettie cardinality searches
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previously discussed for counting and tree index navigation for min/maxnpQbtng sums and
averages is a simple extension of the data access our system curreptiytsup

4 Implementation and Evaluation

We built an experimental implementation of the proposed system usingetbet+ PIR library
[12]. The query processor is written in Python and the virtual databadd¢he PIR proxy are
written in C++. We report on some experiments in Section 4.2 using this implementatidn
discuss our future plans in Section 5.

4.1 Implementation

Our implementation consists of four main components: a query processdtal gatabase, a PIR
proxy, and a PIR block server. The query processor maps SQL statemi® database operations.
The virtual database caches data that has been retrieved from théoPksérver, and maintains
a virtual model of the database layout so that it knows which blocks musttheved in order to
satisfy requests. It also contains the PIR proxy that dispatches tedaeblocks. The PIR block
server holds a raw binary copy of the database, which it uses to r$poequests for data.

Combining these components yields a system which greatly improves the essfahPIR,
allowing complex SQL queries instead of simple address-based block (prreitlieval. This
improvement informs the choice of the nameANSPIR for our work: TRANSPIR goes beyond
the capabilities of traditional PIR.RANSPIR will operate with any PIR system that can compute
the functiongetBlock(i). We chose the open-source PIR system Percy++ which provides a C++
interface to client-server PIR protocols [12]. The author has extetigefiinctionality of Percy++
since its initial publication; it can now process multiple private block requésisli®neously and
requires only a couple of seconds to respond to a private block reguesone gigabyte database.

Our query processor takes as input relational algebra queries in brst$l@ syntax. The
gueries are then compiled into query plans as detailed in Section 3.3.1. Byrnadioethis simple
query optimization procedure, we generate optimal or near-optimal plafioirilze tested cases.

As with any query optimization procedure, there is always room for impnave. We cur-
rently do not make use of database statistics. While this is not an issue famble ehois exam-
ple database, it could be much more relevant in other situations. Also, weamsall set of fairly
simple heuristics to navigate the space of query plans. It would be worthwlgiglore alternative
heuristics which could take advantage of new evaluation algorithms, suodesmerging pro-
cedures. Lastly, the largest restriction of our query processor is iteimory processing design.
Because of this, we can not evaluate queries that have intermediate lagigtshan the available
memory. We plan to address these issues in future revisions Ao 3PIR.

TRANSPIR’s virtual database’s interface is through the catalog object. On cotistiuthe
catalog is initialized with a catalog file containing the data that was discussedtior582.1. The
catalog implements the interface for the virtual database, exposing methodiseieertuples and
search indices to the relation.
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The raw block data, once retrieved from the PIR block server, is caghdhe client side in
pages, each corresponding to a single PIR block. The caching ctassnlas the AtomFactory,
manages all requests and dispatches for data. Each byte of data, asatssociated to its position
in the database, and atoms are accessed by requesting their positiotisfisiomFactory. Groups
of atoms, forming the basic types in our system, are called compounds. Whesdhwishes to
operate on a raw sequence of data, she creates a compound of therg@itype, initialized with
its position in the virtual map. Compounds are equipped with all of the functionadiéged to
interact usefully with raw bytes from the database, such as marshallimgrdialling, comparing,
and hashing. Aggregates are responsible for managing compoungsptelarge ranges of the
virtual map, such as relations and indices. Aggregates are resporwitkadwing the ranges
spanned by their data, the method of constructing their components, angdéseofycompounds
at each position they manage.

4.2 Experimental Design

We performed experiments on our system using a series of randomlyaggshveinoi s-style datasets
of varying sizes (see Section 4.3). The data consists of two relatigespkerelation, consisting of
information about the individuals or companies who register domains oegignars of domains,
and aregistrations relation, containing all of the registered domain names, their registration and
expiration dates, a reference to the registering contact, and a refeietite registrar. Both the
contact and registrar fields have foreign key constraints t@ebgle relation. Both relations also
store arid field to uniquely identify each record. The detailed schema can be foungdpemix
B.

We create a hash index on thegistrations relation’sdomain attribute, and theeoplerelation’s
id attribute. A tree index is created on thegistrations relation’sregistration date andexpiration
date attributes.

4.3 Evaluation

To test the core functionality of relational query evaluation, we designaadita of nine micro-
benchmarks exercising our index structures. These corresporarthsgy, scanning, and evaluat-
ing cardinality queries. Additionally, we tested six typical SQL queries forvadwis data. These
test the interaction between the query processor and the back-endsfatadistically. These
queries test various types of predicates (Q1-Q4), as well as joins@@b, Details of our SQL
benchmarks can be found in appendix A.

These benchmarks were evaluated over three datasets. The small ciatagsts of 1,000,000
registration tuples and 750,000 people tuples, approximately yielding a 25éatéBase (includ-
ing indices), with a block size of 16 KB. The medium dataset consists of 2000egistration
tuples and 1,500,000 people tuples, approximately yielding a 512 MB datalithse block size
of 24 KB. The large dataset consists of 4,000,000 registration tuples,860d,800 people tuples
approximately yielding a 1 GB database with a block size of 32 KB. No spemialis take to align
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tuples to block boundaries; block sizes are chosen for Percy++ asdestin [12].

Our experiment computes the following results: the number of tuples retbynise query, the
time required to execute the query, the number of PIR requests perforntetheatotal bandwidth
required to compute the result. The following linear relationships should hthe iresult set. First,
the number of block requests will be linear with the elapsed time, as servdsl@iRretrieval is
the dominant factor in query processing. The great majority of the elaisedis server-side
processing of the query by the Percy++ PIR backend. Second, thelatgatransfer will be the
number of blocks retrieved times the size of a block times the number of sétweris our case)
times two flows (since client requests are of equal size as server seg)on

The micro-benchmarks are divided into three categories: hash indekiarks, tree index
benchmarks, and cardinality search benchmarks (note that we quecartfieality of arbitrary
predicates, not entire relations which can be trivially answered usingatiadog data). We omit
individual record retrieval benchmarks as these are analogous tonthke dlock retrieval exper-
iments reported in [12], with consideration for the recent improvementsdgirdiacussed. The
results of the micro-benchmark experiments are presented in Table 1.

The labels in Table 1 describe the type of test being performed for eauthimark. These
benchmarks cover a range of fundamental query processing opstatiois evident from these
results that tree and hash based index searches over PIR have laléadesrhead when the result
set is a small number of tuples. In particular, our results scale well in allunegsituations;
increasing the size of the database does not impact the number of bloghksedeto perform
operations such as cardinality searches and fetching single tuples.

As can be seen in the tree point and tree range multi-result benchmackéndea set of tuples
at arbitrary locations in the relation has a worst-case block access teqii@ number of tuples
being returned (bounded by the number of blocks in the relation). Thiewseted a priori, since
retrieving a set of data from the database requires, at minimum, retrievisgiddéest set of blocks
that spans all the desired data. Improving the database schema and dat&é#sed on anticipated
gquery needs would mitigate this poor performance. This could be donexdomnple, by clustering
records on commonly queried attributes.

Cardinality searches on hash tables take a single block request aseelxplute client simply
retrieves the table of contents immediately from the appropriate hash bunckettarns the cardi-
nality of the keyword if it exists. Tree cardinality searches take more bleglasts because they
must retrieve two disjoint blocks in the leaf layer to compute the exact cardidlibe range.

Table 2 shows the results for evaluating the SQL queries over all threlgedat® The evalua-
tion of an SQL query may involve multiple index searches, retrieval of indalitlples, along with
client side processing of predicates and materialization of joins. The total ¢éipweted includes
query parsing, optimization, and evaluation for an individual queryaipey with a clear cache.
The other columns of the table are measured the same way as describedrfocri-benchmark
experiments. Again we see that the dominant factor of processing time is inabesping of PIR
requests. Because we did not design the data layout for the particuldoaad, these queries ex-
ercise worst case scenarios in which an entire block must be retrieveddb tuple. Our general
observations for the micro-benchmarks extend to full SQL query psotgén that queries with
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256 MB Database (16 KB Blocks)

| Access Type | Result Size]  Time | PIR Requests Data Transfer
Hash single result 1 Tuple 6.3s 2 Blocks 128 KB
Hash no result 0 Tuples 3.1s 1 Block 64 KB
Hash multi-result 1 Tuple 6.2s 2 Blocks 128 KB
Tree point multi-result 16 Tuples| 55.7s 18 Blocks 1152 KB
Tree no result 0 Tuples 3.1s 1 Block 64 KB
Tree range multi-result 56 Tuples| 175.9s 57 Blocks 3648 KB
Clustered tree point single resu|t 1 Tuple 3.1s 1 Block 64 KB
Hash cardinality search (point) 2 (count) 3.1s 1 Block 64 KB
Tree cardinality search (range) 81 (count) 6.2s 2 Blocks 128 KB

512 MB Database (24 KB Blocks)

| Access Type | Result Size]  Time | PIR Requests Data Transfer
Hash single result 1 Tuple 185s 3 Blocks 288 KB
Hash no result 0 Tuples 6.1s 1 Block 96 KB
Hash multi-result 3 Tuples| 24.3s 4 Blocks 384 KB
Tree point multi-result 33 Tuples| 212.5s 35 Blocks 3360 KB
Tree no result 0 Tuples 6.1s 1 Block 96 KB
Tree range multi-result 86 Tuples| 528.0s 87 Blocks 8352 KB
Clustered point single result 1 Tuple 6.0s 1 Block 96 KB
Hash cardinality search (point) 5 (count) 6.1s 1 Block 96 KB
Tree cardinality search (range)| 599253 (count) 18.14 s 3 Blocks 288 KB

1 GB Database (32 KB Blocks)

| Access Type | Result Size]  Time | PIR Requests Data Transfer
Hash single result 1 Tuple 26.3s 2 Blocks 384 KB
Hash no result O Tuples| 119s 1 Block 128 KB
Hash multi-result 3 Tuples| 47.8s 4 Blocks 512 KB
Tree point multi-result 58 Tuples| 691.9s 58 Blocks 7424 KB
Tree no result O Tuples| 11.9s 1 Block 128 KB
Tree range multi-result 167 Tuples| 1987.3s| 167 Blocks 21376 KB
Clustered point single result 1 Tuple 11.9s 1 Block 128 KB
Hash cardinality search (point) 5 (count) 119s 1 Block 128 KB
Tree cardinality search (range)|| 1344288 (count) 35.7s 3 Blocks 384 KB

Table 1: TRANSPIR micro-benchmark results
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256 MB Database (16 KB Blocks)
| Query|| Results| Time (s) | PIR Reqgs| Data Xfer |

Q1 1 99s 3 192 KB
Q2 16 61.3s 19| 1216 KB
Q3 20 74.1s 23| 1472 KB
Q4 13 73.9s 23| 1472 KB
Q5 1 129s 4 256 KB
Q6 20| 141.4s 44 | 2816 KB

512 MB Database (24 KB Blocks)
| Query|| Results|  Time | PIR Reqgs| Data Xfer |

Q1 1 129s 2 192 KB
Q2 34| 232.1s 37| 3552 KB
Q3 56| 369.2s 59 | 5664 KB
Q4 31| 369.1s 59 | 5664 KB
Q5 1 18.8s 2 192 KB
Q6 56| 7123s 114 | 10944 KB

1 GB Database (32 KB Blocks)
| Query|| Results|  Time | PIR Regs| Data Xfer |

Q1 1 25.1s 2 256 KB
Q2 73| 9270s 76| 9728 KB
Q3 127 | 1588.7 s 130 | 16640 KB
Q4 65| 1587.8s 130 | 16640 KB
Q5 1 36.5s 3 384 KB
Q6 127 | 3086.8 s 253 | 32384 KB

Table 2: TRANSPIR SQL query results
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small result sizes have a tolerable overhead in both time and data transfeevét, as the query
result sizes and database grow larger, the processing time starts to @obibéively large. Ap-
plications that require this type of query processing on large databaséstnongly consider how
much they value the privacy of their queries.

Performance of an entire workload is not the sum of individual querfjopeance as clients
may greatly benefit from cached PIR blocks in the proxy when runnirggjaence of consecutive
queries. This is because some queries may share predicates or ttagesame tree index (such as
Q2, Q3, Q4, and Q6). Queries can benefit from PIR blocks cachgddwous queries and some
blocks may be frequently used, such as a hash index header or the blumding the top regions
of a tree index. Table 3 shows the total time to process the entire workloaceagk database
without clearing the cache between queries. These times show a substapitialement over the
sum of individual query times, indicating that clients processing consecgtieries may benefit if
their queries share predicates or search the same index structuresté/eat this improvement
is highly dependent on the workload.

4.4 Query Size

The use of PIR ensures that the contents of each block query aratiiddethe database servers.
However, one piece of leaked information is thenber of PIR queries that were performed. Per-
forming multiple successive queries reveals no information about anyydartguery, but the total
number of queries may fingerprint a popular request. One approael,hy the Pynchon Gate
[21], is to top up the number of queries made to some system-defined maximuendrag how-
ever, it is possible for clients to execute queries that retrieve large amoldtda, such as an
entire relation, or the join of multiple relations. Hence, there is no fixed maximuncaimebe used
for all relational algebra queries. Individual applications, on the dtlhed, may certainly exploit
domain-specific knowledge in order to confound an attacker’s ability tegtiee query from its
size.

Even in the general case, however, we argue that the number of leapséries greatly deval-
ues the information that is leaked by the client by briefly considering theesplagqueries. Recall
query plans as discussed in Section 3.3; the leaf layer corresponds tacdasses from relations
or indices. Because each PIR block request from a query plan coutgspond to any type of data
access from one of any of the available database resources, therevég/rio reliably fingerprint
a query based on the number of PIR blocks requested. For examplertBeis unable to differ-
entiate between a large data access (such as a single relation scan)usnbes of smaller data
accesses (such as multiple index scans).

We further argue that the server cannot use knowledge of a popudasy ¢p fingerprint the
number of block requests in order to break privacy. PIR serverddhbe entirely unable to identify
popular queries over unpopular ones, as PIR is used exactly to ghatiservers cannot collect
information on what queries are being performed. Indeed, performigeey that the server has
already identified as popular obviates the use of PIR entirely. For instduacehois server knew
a particular domain request was popular and yet unregistered, then itaweighn that knowledge
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| DBSize| Time | PIR Requests Data Transfer|

256 MB || 210.7s 65 4160 KB
500 MB || 957.0s 153 14688 KB
1GB 4023.2s 330 42240 KB

Table 3: TRANSPIR SQL workload results

independently of any further requests. This is not the problem we ammttey to solve, and
it would be better addressed by a client-privacy system, such as Tprd0pposed to a query-
privacy system, such asRRNSPIR.

5 Future Work

We are in the process of evolving our experimentaAlsSPIR implementation into a deployable
and functional API extending the Percy++ project. Some additional @sdfionfuture work include
extending our query language to include richer constructs, such persdipr the complete SQL
query language. We note that many of the remaining SQL constructs caupperted in our
framework by additional client side operations. Future consideratianddiabase encoding are
database compression and column-oriented storage. By including dataipagression techniques
we can further reduce network traffic. Column-oriented storage stbeeselations by column,
rather than by rows. In this layout, all of the data values for the same atsibliseibsequent rows
get grouped in the same PIR blocks, allowing queries over non-indéttéalites to be answered
with far fewer PIR requests than the case where entire rows need ttribead. The disadvantage
of this approach is that retrieving entire records becomes very expge@ne must have knowledge
of the query workload for the particular application before making this tymkesign decision.

Allowing updates of the database by a client with write privileges is an integedtiection
for future work. Support for client updates would require an extensiothe PIR interface as
proposed, for example, by [17]. Additionally the database would havenfay some sort of
transactional model and concurrency control. This opens up newsigspevacy, since explicitly
locking resources for writing leaks information about the nature of thatepdne would have to
explore the idea of arivate lock to avoid locking the entire database. Such locking information
would be retrieved privately by clients before initiating a transaction. Thatsliould then have
to employ the locking protocol on the client side, much like the query optimizationcaery
evaluation phases.
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6

Conclusion

We have proposed and implemented an improvement to private informatiowvaktdeallow ex-
pressive relational algebra queries to be made privately. Our desigistoof four components:
the query processor, the virtual database, the PIR proxy and thel&dR server. We used the
Percy++ PIR library for our system and analyzed the performancerofiplementation for differ-
ent types of queries. Our experimental results suggest that privat@nal querying is a feasible
technology to deploy in certain real-world applications.
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A Workload

Q1 - point query (hash-index), single result
SELECT donmin, registration.date

FROM regi strati ons WHERE donmai n =
?X

Q2 — point query (tree-index)
SELECT domai n FROM regi strati ons
VWHERE expirationdate = ?x

Q3 —range query (tree-index)
SELECT donmi n, status FROM
regi strations

WHERE expirationdate > ?x

Q4 —range predicate (tree-index), range predicate (no index)
SELECT * FROM regi strations
WHERE expirationdate > ?x AND

regi stration_date < ?y

Q5 —join (index nested loop) with point predicate
SELECT dommi n, nane, enmail FROM

peopl e,
regi strati ons WHERE donmai n=?x AND
contact=p. d

Q6 —join (index nested loop) with range predicate
SELECT * FROM peopl e, regi strations

VHERE
expirationdate > ?x AND registrar
= p.id
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B Experimental Data Schema

Regi strati ons:

reg.id
donai n

exp_date
reg._date

cont act

regi strar

St at us

U nt 32 (PRI MARY KEY)
VARCHAR( 64)

Ul nt16

Ul nt 16

Ul nt 32

Ul nt 32

Ul nt8

FOREIGN KEY contact REFERENCES PEOPLE.ID
FOREIGN KEY registrar REFERENCES PEOPLE.ID

Peopl e:

pid I NT

emai | VARCHAR( 64)
name VARCHAR( 64)
addr VARCHAR( 512)
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