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Abstract

In the typical client/server model for data retrieval, the content of the client’s query is
exposed to allow the server to evaluate the query and return the result. However, in some
situations, it may be desirable to keep the content of the query confidential. To achieve this,
systems can make use of private information retrieval (PIR)technology, which allows the
retrieval of data without compromising the information contained in the query. Currently, the
use of PIR comes with a great restriction on the data access language, severely limiting the
practicality of such systems. In this paper we show how to extend PIR systems so that SQL-
like queries can be privately evaluated over relational databases. We present TRANSPIR, an
implementation of our extensions, and analyze its performance. Our work brings relational-
complete query capabilities to traditional private information retrieval schemes, which gives
greater utility to a private information retriever withoutimpacting the confidentiality of her
query.
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1 Introduction

The problem of Private Information Retrieval (PIR) [6] is to enable a client to request information
from a server such that the server learns no information about what theclient has requested. Such
functionality could have many practical uses where the information in a queryis confidential, such
as querying a patent database without eavesdroppers discovering the(private) nature of your work,
or privately searching messages from a public host, without anyone associating your identity to
your message box by the content of the query.

We consider a motivating example that highly relevant to today’s e-commerce sector: the
searching of awhois database. Awhois database contains registration information for world-wide
web (WWW) domain names. If a person is interested in registering a domain name, she would first
query awhois server to see if the domain is currently registered; if not, she may register it.
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The problem arises when the server administrator (or a third-party observer of the network traf-
fic) views the content of thewhois query. The fact the query is being issued establishes that some-
one is interested in registering the domain, which increases its potential value.The eavesdropper
can then register the domain before the original query issuer has the opportunity, and subsequently
charge the original query issuer an inflated price to purchase the domain.This practice is known as
domain front running [14].

A PIR-based query interface towhois data would remedy this problem, allowing people to
query the availability of domain names without the servers ever knowing the content of the query.
Most PIR schemes, however, are restricted to retrieving blocks at known offsets in the database.
This restrictive data access model makes practical use of PIR technology very limited. Thus,
support for more expressive query languages over PIR databasesis needed before such systems
can be realistically deployed.

Relational algebra provides the underlying theory for today’s most prevalent query languages
for data access, such as SQL [13] and XQuery [22]. As such, it is anobvious starting point for
building an expressive data access model for private information retrieval. In this paper we propose
TRANSPIR (Transparent Relational Algebra eNabled Storage for Private Information Retrieval),
a system for privately evaluating relational queries with the goal of minimizing communication
complexity. Relational algebra allows for a more expressive query language which increases the
utility of PIR. We discuss how to translate relational algebra queries intoquery plans comprised of
function calls to a virtual database interface. The virtual database in turn responds to these calls by
fetching the appropriate PIR blocks from the PIR server based on the layout of the database. To
reduce the communication complexity, we construct indices over the relations inthe database that
aid in executing queries while attempting to minimize the requests for data required.

Our experimental results indicate such a system is feasible for performing queries with small
output sizes, such as point searches, small ranges searches, or a small set of tuples satisfying
multiple constraints on indexed attributes. The processing time for a sequenceof PIR queries is
equal to the processing time for a single PIR request times the number of blocks being retrieved,
and so for cases where entire relations need to be retrieved, or to retrieve a large number of arbitrary
tuples from distinct blocks, the processing time becomes a significant burden to operation.

The main contributions of this work are as follows:

• We improve the state of the art of private information retrieval by enabling SQL-like queries
to be privately evaluated over relational databases.

• We evaluate our experimental implementation of the system, illustrating the feasibility of
relational query processing over PIR.

The remainder of the paper is organized as follows. Section 2 reviews PIRand the relational model.
Section 3 presents our system model and the encoding of relational databases as a PIR array, as well
as discussing the query optimizer and the problems introduced when querying private databases.
Section 4 contains details about our implementation and experimental results. Section 5 offers
some future work on this topic, and Section 6 concludes.

2



2 Preliminaries

2.1 Private Information Retrieval

Private information retrieval is the problem of allowing clients to obtain information from a server
without revealing to any observer, including the server, what informationhas been requested. This
field was initiated with the study of oblivious transfer [18], which aimed to allow servers to send
information while remaining oblivious as to what was sent. Initial lower boundsby Chor et al.
proved that if PIR was being provided by a single server then information-theoretic privacy, mean-
ing privacy against computationally unbounded adversaries, is only possible if the client requests
the entire database and performs the query off-line [6]. To circumvent this bandwidth-intensive
solution, the authors presented a PIR system that information-theoretically separated the query be-
tween two servers. The client is given a protocol to convert their desired bit into structured server
queries and combine the results to retrieve their desired bit privately [6]. Their security model
assumed that the servers will not collude, but will record any information they happened to come
across, known as the honest-but-curious security model in the literature.

Concisely, the client would request the exclusive-or of a set of bits from both servers. These
sets were redundant in all but the bit of interest, and so the client would take the exclusive-or of
the results to answer the query. If the size of the requests were proportional to half the database
size, and neither server knew if their request included the bit of interest,then neither server could
learn statistical information about what bit the client has requested. Since queries in this model
have complexityΘ(n) for a database of sizen, their paper then provided ways to reduce the size

of queries toO
(

n
1

3

)

without impacting the unconditional privacy of the scheme [6]. Chor and

Gilboa suggested computational PIR, where a client’s query is protected byproblems used in cryp-
tography that are believed to be computationally hard for an adversary to compute [4]. This is
weaker security in contrast with information-theoretic security, and knowntechniques are much
more computationally expensive than information-theoretic PIR, but it can yield protocols with
smaller communication complexity, and fewer servers.

The honest-but-curious security model has been considered insufficiently secure by some pa-
pers [1, 11, 12], and consequently the robustness of PIR has been addressed against stronger ad-
versaries. Beimel and Stahl advance the notion of servers that fail to respond or intentionally or
accidentally respond incorrectly [1], and propose schemes that are robust against such adversaries.
Gertner et al. consider that keeping replicated copies of the database to be a security vulnerabil-
ity in itself, and considered schemes where the database operator information-theoretically could
not determine the contents of the database it was storing [11]. A recent result by Goldberg [12]
improved the robustness of PIR against both these adversaries and introduced the notion of hybrid
PIR, where the client’s privacy is protected by information-theoretic security against a subset of
colluding servers, and further protected by computational security against all servers colluding.
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2.1.1 Useable PIR

The usefulness of privately retrieving a single bit is dubious, and many PIR systems are designed
to allow a client to retrieve sequences of bits, known as blocks [6]. The servers in such systems
are modelled as a database partitioned into a sequence of equal-sized blocks. Communication
efficiency is improved when requesting an entire block as more traffic contains useful data, and the
server can also greatly increase throughput (with a cost in latency) if it receives multiple queries and
computes the responses concurrently. In subsequent work, Chor, Gilboa, and Naor acknowledged
that assuming that clients know a priori which PIR block they wish to retrieve may be unreasonable
[5]. It is particularly unlikely when the client is not personally managing the database. They
introduce the notion of retrieving data based on keywords, and name their system PERKY, for
PrivatE Retrieval by KeYwords. Hence, a client need only know keywords for the data they wish
to retrieve, and the server is capable of replying usefully without learningwhat keywords are being
sought. They give a general reduction for performing a query by having PIR blocks contain the
required results for the possible paths of search keywords. This technique is later substantiated
by giving the example of indexing data using elementary data structures, such as binary search
trees and hash tables. This is the technique upon which we will build in our development of a
complete relational algebra PIR system. Our work differs from that of Chor et al. in three ways.
First, we consider the problem of encoding our index structures for arbitrarily sized PIR blocks to
minimize the number of blocks needed to traverse the index. This problem was beyond the scope
of the foundational work of Chor. Second, the keyword based hash index of Chor depends on
finding a perfect hashing scheme; we relax this requirement by allowing bucket chaining in our
hash index. Lastly, we implement and empirically evaluate our PIR based data structures. Saint-
Jean, in a technical report for a PIR implementation [20], considered as future work the possibility
of supporting string types, non-sequential keys, existential queries, and joins; our proposal supports
all of these features and more.

To simulate the notion of a mail server, Kissner et al. [15] introduced push and pull by key-
words. This work provided for stacks indexed by keywords, where three main operations could be
performed privately: pushing an item onto a keyword’s stack, pulling an item off of a keyword’s
stack, and peeking at the top item of the stack. This system naturally lends itself to a private mail
server. Mail is encrypted for a user with their public key, and pushed intoa stack based on some
non-identifying pseudonymous keyword. The recipient will occasionallypeek and pull any mail
that has been pushed into their mailbox.

Recently, the Pynchon Gate [21] was designed, arguably the first attemptto seriously develop
and deploy a useable pseudonymous mail retrieval system. The authors suggest that existing mail
anonymizing systems had bandwidth problems, were vulnerable to traffic analysis, or were too
burdensome, thus encouraging users to take shortcuts that degrade their privacy. Their system
used multiple privacy-enhancing components, including the PIR system of Chor [6] and anony-
mous remailers [9] for communication in both directions. Since mail retrieval may take a variable
number of PIR operations, each user performed extradummy PIR requests, up to a system-defined
maximum. This prevented mail servers from learning how much mail was being retrieved.
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2.2 Relational Algebra

The relational model provides a logical abstraction for the underlying datarepresentation in a data
management application [7, 8]. Relational algebra provides the formal operators needed to access
the underlying data through its abstraction.

In the following subsections, we review the operators that make up the relational algebra query
language, and informally explain their semantics. We start with a brief and informal description of
the definitions and notation we use to discuss the relational model.

2.2.1 Definitions

A relation is a named set oftuples (records) that constitute the data being represented. Each tuple
has a fixed structure ofattribute values, as dictated by the relation’sschema. A schema consists of
a list of attribute names and types, as well asprimary keys andforeign key constraints. A primary
key is a set of attributes that uniquely identify a tuple. A foreign key constraint restricts values of
attributes in a relation to reference values of attributes in another relation. Apredicate is a binary
expression of the formattribute ⋄ constant or attribute ⋄ attribute, where⋄ denotes a binary
operator over the domain of the attributes, generally one of{=, >,≥, <,≤, 6=}.

2.2.2 The Primitive Relational Operators

Relational algebra is based on six primitive operators, from which all otheroperators are derived.
These operators are rename, selection, projection, union, difference, and cross product. Each op-
erator takes one or two relations as arguments, and generates a relation asoutput. Some operators
may also take an additional argument such as a predicate over the attributes of the relation.

• Rename (ρ) The rename operator is used to rename an attribute in a relation. This operator
is used to avoid naming conflicts in cross products and joins. We omit a discussion of this
operator as it can be trivially supported in our model.

• Selection (σ) The selection operator is used to select particular records from a relationR

that satisfy a given predicatep and is denoted as:

σp(R)

We note that predicates may be arbitrary conjunctions or disjunctions of atomicpredicates;
the following relational algebra equivalences allow us to considerp to be atomic for con-
venience in later sections. This first equivalence shows that conjuncts of predicates in a
selection are equivalent to a nesting of selections with atomic predicates.

σ(a1 ⋄ k1)∧(a2 ⋄ k2)∧···∧(an ⋄ kn)(R) ≡

σ(a1 ⋄ k1)(σ(a2 ⋄ k2)(· · · (σ(an ⋄ kn)(R)) · · · ))
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A disjunction of predicates can be expressed as a union of the selection ofeach atomic
predicate.

σ(a1 ⋄ k1)∨(a2 ⋄ k2)∨···∨(an ⋄ kn)(R) ≡

σ(a1 ⋄ k1)(R) ∪ σ(a2 ⋄ k2)(R) ∪ · · · ∪ σ(an ⋄ kn)(R)

• Projection (π) The projection operator is used to extract desired attributesa1, a2, · · · , an

from a relationR using the following syntax:

πa1,a2,··· ,an
(R)

The result is a relation containing one tuple for each tuple inR, with only the attributes
specified in the argument to the projection operator.

• Union (∪) The union operator is analogous to the set union operator. The result ofR ∪ S

is a single relation containing all tuples from bothR andS. Note that the union operator is
only defined for relations that areunion compatible, that is, they have the same number of
attributes, and the domain of the attributes inR (from left to right) is the same as those ofS.

• Difference (−) The difference operator is analogous to the set difference operator.The result
of R − S is a relation containing all tuples fromR that do not appear inS. The difference
operator is only defined for relations that are union compatible.

• Cross Product (×) The cross product (or Cartesian product) operator is a binary operator
over relations. The result ofR × S produces a relation containing a concatenation of each
record inR with every record inS. Each tuple in the resulting relation has all attributes of
bothR andS.

The two most significant operators that can be derived from the primitive relational algebra
operators are intersection and join. While these operators can be evaluated by the definition of
their construction, in many situations alternate evaluations can be more efficient. We describe
these derived operators below.

• Intersection: Intersection can be expressed using the primitive operators in the following
way:

A ∩ B ≡ A − (A − B)

• Join: The join operator can be implemented by the definition of its primitive components as

A ⊲⊳p B ≡ σp(A × B)

or in the natural join case as

A ⊲⊳ B ≡ σ(A.x1=B.x1∧A.x2=B.x2∧...∧A.xn=B.xn)(A × B)

where the predicate is equality of all common attributes ofA andB.
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As an example of how relational algebra is used, consider the following SQLquery and a
relational algebra translation. The query finds all active domain names andregistration dates in the
whois database, such that the domain will expire before 2008-02-01.

SQL Relational Algebra
SELECT domain, date π{domain, date}(

FROM Registrations σstatus=“ACTIVE” (
WHERE expiry < 20080201 σexpiry<20080201(
AND status = “ACTIVE” Registrations)))

3 System Design

3.1 Model

This paper builds relational-complete PIR on top of private block retrieval. As such, we allow for
any implementation of a PIR protocol—information-theoretic or computational, single or multiple
server, etc.—provided it can compute the single functiongetBlock(i) without the server learning
any information abouti. This function is provided a block numberi and returns the data contained
in that block. The function is implemented in a PIR proxy that performs whatever work is necessary
to fulfill this request.

In the following subsections, we discuss a relational data encoding for PIR, a virtual database
that maps relation information into PIR blocks, and a query processor that translates relational
algebra requests into function calls implemented by the virtual database. This can be viewed as an
implementation of a relational database, with the limitation of being able to retrieve a single block
at a time during query evaluation and without the aid of the server in selecting the block based on
its content.

We note that in implementation, it is worthwhile to parallelize the query plan and dispatch mul-
tiple concurrent block requests. This is a consequence of the nature ofmost PIR systems, including
the one used in our implementation, to perform computation on every block in the database during
each block request. By examining every block, the protocol ensures theprivacy of requests against
the responding servers. It is thus possible for a server to achieve greater throughput if multiple
requests are processed concurrently during a single pass over the database.

We aim to minimize the number of blocks that must be retrieved in satisfying a query. This is
in contrast to traditional relational databases which aim to minimize wall-clock time, potentially
resulting in more data retrieval in order to optimize disk access. We discuss thisissue further in
Section 3.3. An overview of our system is illustrated in Figure 1.

3.2 Encoding Relational Databases for PIR

In this section we describe an encoding of a relational database, includingmetadata, relations, and
indices, as a large array ofwords partitioned into fixed-size blocks; a typical block size for a 1
gigabyte database would be around 32 kilobytes. This is significantly largerthan the block sizes
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Figure 1: TRANSPIR system diagram. The user, query processor, virtual database and PIR proxy
are all located on the client side. The only exposed data are the communications with the PIR
servers, which are protected by the underlying PIR block retrieval protocol.

used in traditional database applications, however to use PIR blocks effectively it is necessary to
use a block size on the order of the square root of the database size. Each word is 8 bits and attribute
values are marshalled as compounds of words as in typical byte-aligned architectures; we use the
term array position to refer to a single word index in the PIR array. Both the client and server
messages in a private block query are typically around the size of one block, and so both can be
quickly transmitted over high-speed Internet connections.

The problem of encoding this database is analogous to encoding resources onto disk pages in
traditional relational databases, with a few distinguishing characteristics. First, our optimization
goal for query answering is to minimize network traffic, so clients incur no penalty for random
access to PIR blocks. Their relative physical storage location is not an issue considered during
query evaluation; this differs from the traditional database setting in which data layout can greatly
affect the performance of query evaluation. For example, clustered indices optimize disk access
by making the index scan order consistent with the page order on disk; i.e., the number of read-
head seeks is minimized when scanning the index. Second, depending on theunderlying PIR
block protocol, the PIR block may be considerably larger than a typical diskpage. This presents
interesting issues in deciding how to encode resources, particularly tree indices, which need to be
traversed and scanned with a minimal number of PIR block accesses. In thiscontext clustered
indices can be beneficial to our system by clustering sequential recordsof an attribute value on the
same block, meaning discrete ranges of records are stored on a minimal (ornear minimal) number
of blocks. Finally, observe that the PIR server is unable to aid in the evaluation of queries as it is
oblivious to the data values being accessed. We must encode our resources such that retrieving the
necessary data in order to process a query accesses the fewest number of PIR blocks possible.

Indices are used to index records over the values of a single attribute. This permits rapid
evaluation of predicates and determination of the cardinality of potential result sets. There are
two kinds of predicates that are considered: equality predicates (point searches) and inequality
predicates (range searches). An equality predicate specifies that the value of the attribute must be
equal to some provided value, such as all domains assigned to a certain owner. A range predicate
permits the attribute to occur within a contiguous range of allowed values, suchas searching for

8



domains registered between two dates. To evaluate a predicate on an index means to return a set
of attribute-index pairs that correspond to all records that satisfy the predicate. To determine the
cardinality means to return the size of the set of matching tuples.

We implement two types of indices: binary search trees (BST) and hash tables. BSTs are used
to index attributes with total linearly ordered domains, and are able to determine cardinality and
evaluate either equality or range predicates. The hash indices are used toindex attributes in any
domain, and are able to determine the cardinality or evaluate equality predicates. Hash table indices
also permit a set of keywords to be associated with a record, building an index that maps a keyword
to a set of related records. We do not consider the standard B+ tree structure in our model since our
system does not perform updates to the database. We discuss updates inthe future work section.

3.2.1 Database Metadata

The first thing a client must retrieve is information regarding the layout of therelational database,
known as thecatalog. As this is a necessity for accessing the system, we can allow the client to
retrieve the catalog non-privately. This is reasonable because the only loss of privacy that occurs is
that the server and external observers become aware that the client intends to accesssome content
within the database. This is not a privacy loss that PIR intends to assuage;the client can use
anonymity software such as Tor [10] to send its PIR requests to the database servers if this is in fact
a concern.

Foremost, the catalog contains the layout of the database: the relations, the schemas as an
ordered set of attributes, and a list of the attributes that have indices. Relations and indices are
virtually arranged by the client using the same method as was used by the server during the initial
construction of the database, and so the catalog contains the sizes of the relations and the indices
that are needed to construct the virtual layout. While currently not in our implementation, the
full catalog will also contain host names and TLS public keys for the servers that are hosting the
database. Once the client has obtained an authentic copy of the catalog, she will be able to lay
out the virtual database, devoid of actual values, and query the servers for the missing values only
when the query processor indicates they are needed.

Additionally, the database may want to store statistical information about the relations, such
as an approximation of the distribution of attribute values in the relations (e.g. a histogram). This
information can be used during query evaluation to estimate the selectivity of predicates, which
aids in computing efficient query plans.

3.2.2 Ordered Index Structures

Our system implements ordered indices to map attribute values to their corresponding tuples in
the relation. They make use of a full ordering function of the attribute valuesto construct a BST.
Tree indices are used to execute three functions: cardinality searches,point searches, and range
searches.

Ordered indices are implemented as sequential access BSTs, where data appears only in the
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leaves; internal nodes are used to guide the search. The leaf layer of the tree is stored as a sorted
list following the tree to simplify sequential data access, and to group data values on PIR blocks.
Each search node contains an attribute value that is used to guide the search to the data layer;
the references to other tree nodes are implicit by the structure of the tree. Once the client resolves
which block contains her desired value, she simply retrieves the entire blockand locates the desired
value within. Ranges of values can be found by iterating over the sequential leaf layer until she
completes her query. Because the search nodes are only used to guide the client to the correct block
in the data layer, most BST searches can be completed with only one or two block retrievals.

Trees are initially partitioned into PIR blocks during the construction phase. An index-building
algorithm constructs a balanced BST, and partitions all the nodes into PIR blocks so that binary
searches require the fewest PIR queries in the worst case, similar to cache-oblivious search trees [2].
It begins by constructing breadth-first subtrees that fill a PIR block, and then merges unfilled blocks
where possible. The clients execute this algorithm to lay out the virtual tree during initialization,
and when later using it to navigate they populate the nodes they visit with attributevalues via PIR
block requests.

Determining the cardinality of a predicate on binary tree indices is implemented with two
binary searches. The searches locate the beginning and end positions of the elements that tightly
bound the desired range, and their relative offsets in the PIR array indicate the size of the matching
set. Not yet implemented in our design is fetching heuristic information about thecardinality of a
set, which would operate by navigating simultaneously along two binary search paths until it can
bound the cardinality within a tolerance based on the number of levels that the two search paths
differ.

Point and range searches are computed by binary searching until the smallest array index whose
attribute satisfies the predicate is reached. The client then retrieves the PIRblock that contains
the attribute-index pairs for matching values. Since these are stored sequentially by increasing
attribute value, the client iterates over increasing array positions, retrieving sequential PIR blocks
when needed, until the results no longer satisfy the predicate.

3.2.3 Keyword Index Structures

Relations may contain attributes whose values have no meaning when sorted. For the whois
database this would be the domain name. We need to be able to query for the existence of a
domain name in the table, and retrieve its full record if present.

Our system implements a hash-table based index to maintain records for maps from keywords
to lists of pertinent records, which forms a one-to-many relationship. We can extend this to many-
to-many relationships formed by annotating a record from a set of keywords. There are two routines
that these index structures are designed to execute: cardinality searches and point searches.

Building a hash table begins by computing the reverse index of keywords to records; keywords
are then represented as integers by using some well-known collision resistant hash function to
map keywords to numbers. We use Knuth’s hash function for strings [16], the identity function
for integers, and compositions of these for constructed types, such as dates. Note that this isnot
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intended to be a cryptographic hash function. For the pragmatic purposesof our implementation,
we do not compute individual perfect hash functions suited to the data as suggested by Chor [5],
but rather use simple and well-known hash functions.

Data is stored in ahash table organized by sequentialhash buckets, each a PIR block. Hash
buckets are uniquely associated with integers corresponding to both the offset in PIR blocks from
the beginning of the index and the hash value modulo the number of buckets. Each bucket manages
an index of the full hash value of each keyword that maps to the bucket, thelength of the list of
matching records, and each list of tuples that correspond to a contained keyword.

Cardinality searches on hash tables are computable with a single PIR request. The client hashes
the keyword for which they are searching locally and retrieves the corresponding hash index block.
Our implementation places the list of keyword hashes and result lengths at the beginning of the
block in a table of contents, and so the client simply searches that table to determine the cardinality
of her search. Point searches are computed by first looking up the keyword in the appropriate hash
bucket’s table of contents. The client then examines the length delimited set of matching records.
Any records that cannot fit inside the primary hash block are instead represented by a position in
the database where the set can be found. Each hash table manages a single hash heap where all
extra records are placed. This means that point searches can executeeither in a single PIR request,
or in one request for a table of contents block and one for a hash heap block.

3.3 Query Evaluation

In this section, we discuss how an expression in relational algebra can becompiled into aquery plan
consisting only of PIR block requests. A query plan is a relational algebraparse tree, annotated
with access methods for the relations (at the leaves of the tree) and algorithmsfor performing
the intermediate query processing tasks such as joins. As such, the actualdata access is either
a tuple retrieval from a relation or an index scan. We discussed index traversal in Section 3.2.2
and Section 3.2.3 and we omit the specific details for mapping the low-level data access, such as
tuple retrieval, to PIR block requests for brevity. It follows that selection (σ) and projection (π)
can be supported by an index search or a sequence of tuple retrievals.Union (∪), set difference
(−), and cross products (×) can be materialized on the client side following the necessary data
access. Thus, the remainder of this section is dedicated to the discussion ofgenerating query plans
for arbitrary relational expressions in terms of tuple and index access, with the goal of minimizing
data retrieval by exploiting index search in place of relational scans whenpossible, and by making
use of specialized join (⊲⊳) algorithms which reduce data access by exploiting indices.

3.3.1 Query Optimization

Query optimization is the problem of compiling a query into an equivalent queryevaluation plan
that is optimal (or near optimal) by some cost measure. In traditional databasesystems, the op-
timization target is an estimate of the actual time the query plan will require to execute. This
estimate is based on the number of records needed at various stages of computation, as well as

11



other characteristics such as disk access costs.
For example, a traditional database management system may scan a relation to evaluate a pred-

icate as part of a query plan, instead of using an index to retrieve only the records satisfying the
predicate. The initial plan may be deemed optimal despite accessing more records than the index
approach. The reason for this is because a predicate can havelow selectivity, in which many records
are expected to satisfy the predicate. Because the records are likely to bestored contiguously on
disk, a scan of the entire relation will optimize disk access. An index traversal, on the other hand,
could access records in an arbitrary order with respect to physical location on disk, resulting in a
longer time to evaluate the query.

The formulation of our problem presents a different optimization target. We pay a constant
cost for each PIR block access, independent of storage location, sothe additional types of temporal
optimization considerations taken in traditional systems do not apply in our situation. Instead, we
aim to minimize the total amount of network traffic, which is directly proportional tothe number
of PIR requests in a query plan since retrieval blocks are of a fixed size. Also, because the database
system is oblivious to the actual data values being retrieved, it is not able to evaluate any part of
the queries. Thus the query optimization and plan evaluation must be done on the client side.

Computing Query Plans

There are two sides to the query optimization problem. The first entails a manipulation of the rela-
tional algebra statement using common heuristics to produce an equivalent statement that reduces
the size of intermediate results. For brevity, we omit a thorough discussion of these optimizations
as they can be found in most relational database texts, such as [19]. Thegeneral idea is to per-
form projections and selections as early as possible, thus reducing the amount of data considered
at intermediary processing phases. The second side of query optimizationinvolves choosing an
access plan for each relation referenced in the query, and possibly further manipulating the form
of the query to alter the order in which relations are considered. One then needs to decide which
algorithms will be used to join relations. The space of all possible query plansis therefore all
possible ways of accessing and combining the relations, in addition to the unary relational algebra
operators. An overview of these challenges and common approaches in query optimization can be
found in [3].

Estimating the cost of a plan often requires information such as the cardinality of a predicate
which is not available without querying the database (thus adding to the overall cost of query
evaluation). A database may store statistics about the data, which can be used to estimate the
cardinality of intermediate results without actually accessing the data. In many cases a plan that is
optimal for one database instance can be sub-optimal for a different database instance because of
differences in the distributions of attribute values; for example, a range predicate may be satisfied
by all tuples of one database instance, and no tuples of another. Because of this property, it is not
possible to have an optimal query optimization algorithm without perfect knowledge of the data.

In our model we consider the space ofleft-deep plans to reduce the search space, a common
approach taken by many relational query optimizers. This means that the right child of any node in
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the plan will correspond to data access for a relation. We do not currentlymaintain statistics about
the database, but opt for some simple heuristics to estimate the relative selectivity of predicates.
Predicates in the query are analyzed to determine when a full relation scan can be replaced by an
index scan that simultaneously satisfies the predicate. We choose indices based on the following
simple estimates of selectivity: predicates on primary key attributes are considered the most selec-
tive, followed by point predicates, then range predicates. Predicates on clustered indices—that is,
indices whose order is the same as the order of the relation—are always used in the case of multiple
alternatives. Our system supports two basic join operations: nested loop join, and index nested loop
join. A nested loop join is a simple approach for materializing a full join in arbitrarysituations. If a
join condition on an indexed attribute is detected in the query, then our optimizer will use the index
nested loop join algorithm, a specialized join procedure which reduces data access bysearching
for the joining tuples, rather than scanning an entire relation. Our optimizer willfurther arrange for
the input with smaller cardinality to be in the outer loop, resulting in fewer required searches.

3.3.2 Aggregate Operators

Relational algebra with aggregates adds to the utility and expressiveness of the query language.
Implementing the most common aggregates is a straightforward extension of the work presented
thus far. We summarize how to evaluate some common aggregates below.

• Count: The count operator simply returns the cardinality of a query result, rather than the
result itself. The obvious implementation is to evaluate the query and perform alinear scan
through the result set to obtain a count of the number of records. In the case of a range query
over an indexed attribute however, the cardinality searches discussed inSections 3.2.2 and
3.2.3 are a much more efficient approach.

• Min/Max: The min operator returns the minimal value in a query result. The obvious im-
plementation here is to evaluate the query, sort the result, and return the first element in the
sorted result. In the presence of a tree index however, the min operator can be evaluated by
returning the leftmost leaf-node in the tree that satisfies the query predicates (or just the first
leaf in the tree if no such predicates exist in the query). The evaluation of the max operator
is analogous.

• Sum/Average: The sum operator computes the sum of a given attribute over a query result.
A linear scan through the result is thus unavoidable, however, in the casewhere a sum is to
be computed over a tree indexed attribute, we can save by computing the sum over the data
stored in the leaf index nodes, rather than the relation’s records. This is beneficial since the
size of index nodes will generally be much smaller than the size of records, resulting in less
data being accessed to compute the sum. The same approach applies to the average operator
as well, since we can count the number of results during the scan to compute the average.

While our implementation does not currently support aggregates in the queryinterface, our backend
query processing infrastructure is equipped to handle them. It can perform the cardinality searches
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previously discussed for counting and tree index navigation for min/max. Computing sums and
averages is a simple extension of the data access our system currently supports.

4 Implementation and Evaluation

We built an experimental implementation of the proposed system using thePercy++ PIR library
[12]. The query processor is written in Python and the virtual database and the PIR proxy are
written in C++. We report on some experiments in Section 4.2 using this implementation, and
discuss our future plans in Section 5.

4.1 Implementation

Our implementation consists of four main components: a query processor, a virtual database, a PIR
proxy, and a PIR block server. The query processor maps SQL statements into database operations.
The virtual database caches data that has been retrieved from the PIR block server, and maintains
a virtual model of the database layout so that it knows which blocks must beretrieved in order to
satisfy requests. It also contains the PIR proxy that dispatches requests for blocks. The PIR block
server holds a raw binary copy of the database, which it uses to respond to requests for data.

Combining these components yields a system which greatly improves the usefulness of PIR,
allowing complex SQL queries instead of simple address-based block (or bit!) retrieval. This
improvement informs the choice of the name TRANSPIR for our work: TRANSPIR goes beyond
the capabilities of traditional PIR. TRANSPIR will operate with any PIR system that can compute
the functiongetBlock(i). We chose the open-source PIR system Percy++ which provides a C++
interface to client-server PIR protocols [12]. The author has extendedthe functionality of Percy++
since its initial publication; it can now process multiple private block requests simultaneously and
requires only a couple of seconds to respond to a private block request on a one gigabyte database.

Our query processor takes as input relational algebra queries in an SQL-style syntax. The
queries are then compiled into query plans as detailed in Section 3.3.1. By adhering to this simple
query optimization procedure, we generate optimal or near-optimal plans in all of the tested cases.

As with any query optimization procedure, there is always room for improvement. We cur-
rently do not make use of database statistics. While this is not an issue for the simple whois exam-
ple database, it could be much more relevant in other situations. Also, we usea small set of fairly
simple heuristics to navigate the space of query plans. It would be worthwhileto explore alternative
heuristics which could take advantage of new evaluation algorithms, such asindex merging pro-
cedures. Lastly, the largest restriction of our query processor is its in-memory processing design.
Because of this, we can not evaluate queries that have intermediate resultslarger than the available
memory. We plan to address these issues in future revisions to TRANSPIR.

TRANSPIR’s virtual database’s interface is through the catalog object. On construction, the
catalog is initialized with a catalog file containing the data that was discussed in Section 3.2.1. The
catalog implements the interface for the virtual database, exposing methods to retrieve tuples and
search indices to the relation.
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The raw block data, once retrieved from the PIR block server, is cached on the client side in
pages, each corresponding to a single PIR block. The caching class, known as the AtomFactory,
manages all requests and dispatches for data. Each byte of data, or atom,is associated to its position
in the database, and atoms are accessed by requesting their positions fromthe AtomFactory. Groups
of atoms, forming the basic types in our system, are called compounds. When the user wishes to
operate on a raw sequence of data, she creates a compound of the appropriate type, initialized with
its position in the virtual map. Compounds are equipped with all of the functionalityneeded to
interact usefully with raw bytes from the database, such as marshalling, demarshalling, comparing,
and hashing. Aggregates are responsible for managing compounds; they span large ranges of the
virtual map, such as relations and indices. Aggregates are responsible for knowing the ranges
spanned by their data, the method of constructing their components, and the types of compounds
at each position they manage.

4.2 Experimental Design

We performed experiments on our system using a series of randomly generatedwhois-style datasets
of varying sizes (see Section 4.3). The data consists of two relations: apeople relation, consisting of
information about the individuals or companies who register domains or are registrars of domains,
and aregistrations relation, containing all of the registered domain names, their registration and
expiration dates, a reference to the registering contact, and a reference to the registrar. Both the
contact and registrar fields have foreign key constraints to thepeople relation. Both relations also
store anid field to uniquely identify each record. The detailed schema can be found in Appendix
B.

We create a hash index on theregistrations relation’sdomain attribute, and thepeople relation’s
id attribute. A tree index is created on theregistrations relation’sregistration date andexpiration
date attributes.

4.3 Evaluation

To test the core functionality of relational query evaluation, we designed asuite of nine micro-
benchmarks exercising our index structures. These correspond to searching, scanning, and evaluat-
ing cardinality queries. Additionally, we tested six typical SQL queries for our whois data. These
test the interaction between the query processor and the back-end database holistically. These
queries test various types of predicates (Q1-Q4), as well as joins (Q5,Q6). Details of our SQL
benchmarks can be found in appendix A.

These benchmarks were evaluated over three datasets. The small dataset consists of 1,000,000
registration tuples and 750,000 people tuples, approximately yielding a 256 MBdatabase (includ-
ing indices), with a block size of 16 KB. The medium dataset consists of 2,000,000 registration
tuples and 1,500,000 people tuples, approximately yielding a 512 MB databasewith a block size
of 24 KB. The large dataset consists of 4,000,000 registration tuples and 3,000,000 people tuples
approximately yielding a 1 GB database with a block size of 32 KB. No special care is take to align
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tuples to block boundaries; block sizes are chosen for Percy++ as discussed in [12].
Our experiment computes the following results: the number of tuples returnedby the query, the

time required to execute the query, the number of PIR requests performed, and the total bandwidth
required to compute the result. The following linear relationships should hold inthe result set. First,
the number of block requests will be linear with the elapsed time, as server PIRblock retrieval is
the dominant factor in query processing. The great majority of the elapsedtime is server-side
processing of the query by the Percy++ PIR backend. Second, the total data transfer will be the
number of blocks retrieved times the size of a block times the number of servers(two in our case)
times two flows (since client requests are of equal size as server responses).

The micro-benchmarks are divided into three categories: hash index benchmarks, tree index
benchmarks, and cardinality search benchmarks (note that we query thecardinality of arbitrary
predicates, not entire relations which can be trivially answered using the catalog data). We omit
individual record retrieval benchmarks as these are analogous to the simple block retrieval exper-
iments reported in [12], with consideration for the recent improvements already discussed. The
results of the micro-benchmark experiments are presented in Table 1.

The labels in Table 1 describe the type of test being performed for each benchmark. These
benchmarks cover a range of fundamental query processing operations. It is evident from these
results that tree and hash based index searches over PIR have a tolerable overhead when the result
set is a small number of tuples. In particular, our results scale well in all measured situations;
increasing the size of the database does not impact the number of blocks required to perform
operations such as cardinality searches and fetching single tuples.

As can be seen in the tree point and tree range multi-result benchmarks, fetching a set of tuples
at arbitrary locations in the relation has a worst-case block access equalto the number of tuples
being returned (bounded by the number of blocks in the relation). This wasexpected a priori, since
retrieving a set of data from the database requires, at minimum, retrieving thesmallest set of blocks
that spans all the desired data. Improving the database schema and data layout based on anticipated
query needs would mitigate this poor performance. This could be done, forexample, by clustering
records on commonly queried attributes.

Cardinality searches on hash tables take a single block request as expected. The client simply
retrieves the table of contents immediately from the appropriate hash bucket and returns the cardi-
nality of the keyword if it exists. Tree cardinality searches take more block requests because they
must retrieve two disjoint blocks in the leaf layer to compute the exact cardinalityof the range.

Table 2 shows the results for evaluating the SQL queries over all three databases. The evalua-
tion of an SQL query may involve multiple index searches, retrieval of individual tuples, along with
client side processing of predicates and materialization of joins. The total time reported includes
query parsing, optimization, and evaluation for an individual query operating with a clear cache.
The other columns of the table are measured the same way as described for the micro-benchmark
experiments. Again we see that the dominant factor of processing time is in the processing of PIR
requests. Because we did not design the data layout for the particular workload, these queries ex-
ercise worst case scenarios in which an entire block must be retrieved for each tuple. Our general
observations for the micro-benchmarks extend to full SQL query processing in that queries with
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256 MB Database (16 KB Blocks)
Access Type Result Size Time PIR Requests Data Transfer

Hash single result 1 Tuple 6.3 s 2 Blocks 128 KB
Hash no result 0 Tuples 3.1 s 1 Block 64 KB
Hash multi-result 1 Tuple 6.2 s 2 Blocks 128 KB
Tree point multi-result 16 Tuples 55.7 s 18 Blocks 1152 KB
Tree no result 0 Tuples 3.1 s 1 Block 64 KB
Tree range multi-result 56 Tuples 175.9 s 57 Blocks 3648 KB
Clustered tree point single result 1 Tuple 3.1 s 1 Block 64 KB
Hash cardinality search (point) 2 (count) 3.1 s 1 Block 64 KB
Tree cardinality search (range) 81 (count) 6.2 s 2 Blocks 128 KB

512 MB Database (24 KB Blocks)
Access Type Result Size Time PIR Requests Data Transfer

Hash single result 1 Tuple 18.5 s 3 Blocks 288 KB
Hash no result 0 Tuples 6.1 s 1 Block 96 KB
Hash multi-result 3 Tuples 24.3 s 4 Blocks 384 KB
Tree point multi-result 33 Tuples 212.5 s 35 Blocks 3360 KB
Tree no result 0 Tuples 6.1 s 1 Block 96 KB
Tree range multi-result 86 Tuples 528.0 s 87 Blocks 8352 KB
Clustered point single result 1 Tuple 6.0 s 1 Block 96 KB
Hash cardinality search (point) 5 (count) 6.1 s 1 Block 96 KB
Tree cardinality search (range) 599253 (count) 18.14 s 3 Blocks 288 KB

1 GB Database (32 KB Blocks)
Access Type Result Size Time PIR Requests Data Transfer

Hash single result 1 Tuple 26.3 s 2 Blocks 384 KB
Hash no result 0 Tuples 11.9 s 1 Block 128 KB
Hash multi-result 3 Tuples 47.8 s 4 Blocks 512 KB
Tree point multi-result 58 Tuples 691.9 s 58 Blocks 7424 KB
Tree no result 0 Tuples 11.9 s 1 Block 128 KB
Tree range multi-result 167 Tuples 1987.3 s 167 Blocks 21376 KB
Clustered point single result 1 Tuple 11.9 s 1 Block 128 KB
Hash cardinality search (point) 5 (count) 11.9 s 1 Block 128 KB
Tree cardinality search (range) 1344288 (count) 35.7 s 3 Blocks 384 KB

Table 1: TRANSPIR micro-benchmark results
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256 MB Database (16 KB Blocks)
Query Results Time (s) PIR Reqs Data Xfer

Q1 1 9.9 s 3 192 KB
Q2 16 61.3 s 19 1216 KB
Q3 20 74.1 s 23 1472 KB
Q4 13 73.9 s 23 1472 KB
Q5 1 12.9 s 4 256 KB
Q6 20 141.4 s 44 2816 KB

512 MB Database (24 KB Blocks)
Query Results Time PIR Reqs Data Xfer

Q1 1 12.9 s 2 192 KB
Q2 34 232.1 s 37 3552 KB
Q3 56 369.2 s 59 5664 KB
Q4 31 369.1 s 59 5664 KB
Q5 1 18.8 s 2 192 KB
Q6 56 712.3 s 114 10944 KB

1 GB Database (32 KB Blocks)
Query Results Time PIR Reqs Data Xfer

Q1 1 25.1 s 2 256 KB
Q2 73 927.0 s 76 9728 KB
Q3 127 1588.7 s 130 16640 KB
Q4 65 1587.8 s 130 16640 KB
Q5 1 36.5 s 3 384 KB
Q6 127 3086.8 s 253 32384 KB

Table 2: TRANSPIR SQL query results
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small result sizes have a tolerable overhead in both time and data transfer. However, as the query
result sizes and database grow larger, the processing time starts to becomeprohibitively large. Ap-
plications that require this type of query processing on large databases must strongly consider how
much they value the privacy of their queries.

Performance of an entire workload is not the sum of individual query performance as clients
may greatly benefit from cached PIR blocks in the proxy when running a sequence of consecutive
queries. This is because some queries may share predicates or traversethe same tree index (such as
Q2, Q3, Q4, and Q6). Queries can benefit from PIR blocks cached byprevious queries and some
blocks may be frequently used, such as a hash index header or the blocks encoding the top regions
of a tree index. Table 3 shows the total time to process the entire workload over each database
without clearing the cache between queries. These times show a substantialimprovement over the
sum of individual query times, indicating that clients processing consecutive queries may benefit if
their queries share predicates or search the same index structures. We note that this improvement
is highly dependent on the workload.

4.4 Query Size

The use of PIR ensures that the contents of each block query are hidden from the database servers.
However, one piece of leaked information is thenumber of PIR queries that were performed. Per-
forming multiple successive queries reveals no information about any particular query, but the total
number of queries may fingerprint a popular request. One approach, used by the Pynchon Gate
[21], is to top up the number of queries made to some system-defined maximum. In general, how-
ever, it is possible for clients to execute queries that retrieve large amountsof data, such as an
entire relation, or the join of multiple relations. Hence, there is no fixed maximum that can be used
for all relational algebra queries. Individual applications, on the otherhand, may certainly exploit
domain-specific knowledge in order to confound an attacker’s ability to guess the query from its
size.

Even in the general case, however, we argue that the number of possible queries greatly deval-
ues the information that is leaked by the client by briefly considering the space of queries. Recall
query plans as discussed in Section 3.3; the leaf layer corresponds to data accesses from relations
or indices. Because each PIR block request from a query plan could correspond to any type of data
access from one of any of the available database resources, there is no way to reliably fingerprint
a query based on the number of PIR blocks requested. For example, the server is unable to differ-
entiate between a large data access (such as a single relation scan) and a number of smaller data
accesses (such as multiple index scans).

We further argue that the server cannot use knowledge of a popular query to fingerprint the
number of block requests in order to break privacy. PIR servers should be entirely unable to identify
popular queries over unpopular ones, as PIR is used exactly to ensurethat servers cannot collect
information on what queries are being performed. Indeed, performing aquery that the server has
already identified as popular obviates the use of PIR entirely. For instance, if a whois server knew
a particular domain request was popular and yet unregistered, then it might act on that knowledge

19



DB Size Time PIR Requests Data Transfer

256 MB 210.7 s 65 4160 KB
500 MB 957.0 s 153 14688 KB
1 GB 4023.2 s 330 42240 KB

Table 3: TRANSPIR SQL workload results

independently of any further requests. This is not the problem we are attempting to solve, and
it would be better addressed by a client-privacy system, such as Tor [10], as opposed to a query-
privacy system, such as TRANSPIR.

5 Future Work

We are in the process of evolving our experimental TRANSPIR implementation into a deployable
and functional API extending the Percy++ project. Some additional avenues for future work include
extending our query language to include richer constructs, such as support for the complete SQL
query language. We note that many of the remaining SQL constructs can be supported in our
framework by additional client side operations. Future considerations for database encoding are
database compression and column-oriented storage. By including database compression techniques
we can further reduce network traffic. Column-oriented storage storesthe relations by column,
rather than by rows. In this layout, all of the data values for the same attributes of subsequent rows
get grouped in the same PIR blocks, allowing queries over non-indexed attributes to be answered
with far fewer PIR requests than the case where entire rows need to be retrieved. The disadvantage
of this approach is that retrieving entire records becomes very expensive. One must have knowledge
of the query workload for the particular application before making this type of design decision.

Allowing updates of the database by a client with write privileges is an interesting direction
for future work. Support for client updates would require an extension of the PIR interface as
proposed, for example, by [17]. Additionally the database would have to employ some sort of
transactional model and concurrency control. This opens up new issues in privacy, since explicitly
locking resources for writing leaks information about the nature of the update. One would have to
explore the idea of aprivate lock to avoid locking the entire database. Such locking information
would be retrieved privately by clients before initiating a transaction. The clients would then have
to employ the locking protocol on the client side, much like the query optimization and query
evaluation phases.
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6 Conclusion

We have proposed and implemented an improvement to private information retrieval to allow ex-
pressive relational algebra queries to be made privately. Our design consists of four components:
the query processor, the virtual database, the PIR proxy and the PIR block server. We used the
Percy++ PIR library for our system and analyzed the performance of our implementation for differ-
ent types of queries. Our experimental results suggest that private relational querying is a feasible
technology to deploy in certain real-world applications.
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A Workload

Q1 – point query (hash-index), single result
SELECT domain, registration date
FROM registrations WHERE domain =
?x

Q2 – point query (tree-index)
SELECT domain FROM registrations
WHERE expiration date = ?x

Q3 – range query (tree-index)
SELECT domain, status FROM
registrations
WHERE expiration date > ?x

Q4 – range predicate (tree-index), range predicate (no index)
SELECT * FROM registrations
WHERE expiration date > ?x AND
registration date < ?y

Q5 – join (index nested loop) with point predicate
SELECT domain, name, email FROM
people,
registrations WHERE domain=?x AND
contact=p id

Q6 – join (index nested loop) with range predicate
SELECT * FROM people,registrations
WHERE
expiration date > ?x AND registrar
= p id
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B Experimental Data Schema

Registrations:
reg id UInt32 (PRIMARY KEY)
domain VARCHAR(64)
exp date UInt16
reg date UInt16
contact UInt32
registrar UInt32
Status UInt8
FOREIGN KEY contact REFERENCES PEOPLE.ID
FOREIGN KEY registrar REFERENCES PEOPLE.ID

People:
p id INT
email VARCHAR(64)
name VARCHAR(64)
addr VARCHAR(512)
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