
An Efficient Identification Protocol and

the Knowledge-of-Exponent Assumption∗

J. Wu† and D.R. Stinson‡

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada

{j32wu, dstinson}@uwaterloo.ca

Abstract

In this paper, we propose an extremely simple identification protocol and prove its security
using the Knowledge-of-Exponent Assumption (KEA). We also discuss the applicability of KEA
in various protocol settings as well. Recently, doubts have been raised about applying KEA
in some protocols where an adversary has auxiliary inputs. However, we suggest that KEA
is applicable in these cases. We present two variants of KEA, Generalized KEA (GKEA) and
Auxiliary-Input KEA (AI-KEA), to clarify the proper use of KEA.

1 Introduction

An identification protocol or scheme is an interactive protocol between a prover and a verifier. The
prover tries to identify herself to the verifier by demonstrating knowledge of a certain key associated
with the prover. Historically, there have been two distinct approaches to designing identification
protocols. One approach is to start with an underlying signature scheme or public key encryption
system. The other approach is to design a protocol “from scratch” based on a specific computational
problem such as the discrete logarithm problem. A large number of identification schemes following
this approach make use of the zero-knowledge proof of knowledge technique, e.g., the Fiat-Shamir
(FS) Scheme [11], the Schnorr Scheme [15], the Feige-Fiat-Shamir (FFS) Scheme [10], and the
Guillou-Quisquater (GQ) Scheme [12]. In general, these zero-knowledge proof of knowledge type
identification schemes are not secure against a strong attack consisting of active intruder attacks
and reset attacks [18].

In [18], Stinson and Wu propose an efficient 2-flow zero-knowledge identification protocol. The
protocol is secure against active intruder attacks and reset attacks, and it is very efficient as well.
The total message length and computation required in one session are close to that of the Schnorr
identification scheme, which is amongst the most efficient identification schemes used in practice.
The security of the protocol is proved using the knowledge-of-exponent assumption (KEA) and
computational Diffie-Hellman (CDH) assumption in the random oracle model.

KEA was first proposed by Damg̊ard in [8]. Informally, KEA says that, in a prime order group
〈g〉, given ga with a unknown, the only way (except with negligible probability) to construct in

∗first posted on Dec 21 2007; updated on May 16 2008
†research supported by an NSERC post-graduate scholarship
‡research supported by NSERC discovery grant 203114-06

1

polynomial time a pair of the form (x, xa) is to first compute x = gr for some r, and then compute
xa = (ga)r. A formal definition is as follows.

Definition 1.1. The Knowledge-of-Exponent Assumption is as follows: Let g be a generator of a
prime order group 〈g〉. k = log |〈g〉| is the security parameter. For any probabilistic polynomial-time
(PPT) algorithm A that takes as input g and ga, where a is chosen from [0, |〈g〉| − 1] uniformly
at random, and which produces as output a pair of the form (x, y), x ∈ 〈g〉, there exists a PPT
“extractor” E, which takes the same input and outputs the pair (x, y) along with an exponent r
such that for sufficiently large k,

Pr [y = xa and gr 6= x] <
1

Q(k)

for any polynomial Q.

Our formal definition of KEA is based on [3], but it is a slight extension in that we explicitly
mandate that x ∈ 〈g〉. Without this condition, the assumption no longer holds. For example,
suppose A chooses r and outputs (x = −gr, y = (ga)r). If a is even (and there is a 50% chance
that it is, since a is chosen randomly), then xa = y, but no PPT algorithm can find r such that
gr = x, (ga)r = y because x /∈ 〈g〉.

KEA has been used in a number of applications. In [13], Hada and Tanaka used KEA (in the
name DA-1) to prove the existence of 3-round zero-knowledge proofs. In [3], Bellare and Palacia
revisited KEA (in the name KEA1) and rectified the proof of [13], but KEA is not found false. In
[4], Bellare and Palacia used KEA (in the name DHK0) to prove the paintext-aware property of
DEG. In [9], Dent used KEA (in the name DHK) to prove the paintext-aware property of Cramer-
Shoup scheme [7]. In [14], Krawcyzk used KEA (in the name KEA1) to prove the security of
HMQV, a high-performance key agreement protocol. In [18] and [19], Stinson and Wu used KEA
to prove the security of an efficient identification protocol and the security of a key agreement
protocol respectively.

In [20], Yao et al raised a question about applying KEA in some protocols such as [4], [9], [14].
They argued that in these protocols, besides the pair (g, ga), the adversary can get auxiliary inputs,
i.e., pairs of the form (xi, xi

a) by observing the protocol executing between other honest parties,
then the adversary can compute a new pair constructed from these auxiliary inputs, say (x =
x1

r1x2
r2 , y = y1

r1y2
r2). In this case, the adversary outputs (x, xa), but it is perhaps not reasonable

to assume the adversary “knows” the exponent r of x, and therefore KEA is not applicable in such
cases.

Our work in this paper is two-fold. First, we propose an identification protocol which achieves
the same security as the Stinson-Wu protocol in [18], but is more efficient. Second, we suggest that
the argument in [20] does not invalidate the application of KEA in [4], [9], [14].

The remainder of the paper is organized as follows. In Section 2, we present our new identifi-
cation protocol and prove its security. In Section 3, we discuss the applicability of KEA, and we
conclude the paper in Section 4.

2 A Simple Identification Protocol

In this section, we propose an extremely simple identification protocol and prove its security based
on KEA.

2

Input. Security parameters k and k′, which are positive integers.
The parameter k′ should be polynomial in k.

1. The TA chooses a large prime p such that p − 1 is divisible
by another large prime q, where log2 p ≈ k′ and log2 q ≈ k.

2. The TA chooses an element g ∈ Zp
∗ having order q.

3. The TA publishes the triple (p, q, g).
4. The TA publishes a hash function h : Zp

∗ → {0, 1}k.
5. Each prover P chooses a private key a uniformly at random

from Zq, computes the public key v = ga mod p, and sends
v to the TA. TA verifies that P does possess the private key
corresponding to v, and issues a certificate to P certifying
that v is indeed P’s public key.

Figure 1: Identification Scheme Setup

2.1 Initial Setup

The initial setup for our scheme is described in Figure 1. We assume the existence of a trusted
authority, denoted by TA, who will issue certificates for all potential participants in the scheme.
Observe that the setup of the scheme is defined in terms of security parameters k′ and k. We would
probably take k′ = 1024 and k = 160 in practice.

2.2 Protocol Description

In a session of the scheme, the prover P tries to convince the verifier V of her identity. V “accepts”
only if P responds to V’s challenge in an appropriate way. The steps in a session of our scheme
are summarized in Figure 2.

In the following, we omit the operation “mod p” to simplify the notation. The message flows
can be depicted as follows:

P
x=gr

←−−− V

P
y=h(xa)−−−−−→ V

Remark. Our protocol can also be implemented in the setting of an elliptic curve E of prime
order q, where q ≈ 2160. In this setting, the verification that xq mod p 6= 1 is unnecessary; it would
suffice to verify that x is a point on E.

2.3 Security proof

The following attacks against an identification scheme have been identified in the literature, cap-
turing the capability of the adversary in different settings: sequential attacks, concurrent attacks,
active-intruder attacks, and reset attacks. For a detailed description of these attacks, see [18].

In this section, we prove the identification protocol is secure against these attacks if KEA holds
and the hash function h() is a random oracle.

The security of an identification protocol is defined as follows:

3

1. V chooses r ∈ Zq uniformly at random and computes

x = gr mod p.

Then V sends x to P.
2. After receiving x, P rejects and stops if xq mod p 6= 1; oth-

erwise P computes

y = h(xa mod p).

and sends y to V; otherwise P rejects and stops.
3. After receiving y, V verifies y. If y2 = h(vr mod p), then V

accepts; otherwise, V rejects.

Figure 2: Identification scheme description

Definition 2.1. An identification protocol is secure if any PPT adversary cannot impersonate a
non-negligible portion of all possible provers with non-negligible probability.

The attack model we use is a combination of active-intruder attacks and reset attacks. Note
that active-intruder attacks cover concurrent attacks, which cover sequential attacks in turn.

Sequential Attacks

In sequential attacks, the adversary can act as a verifier and interact with the prover in various
sessions before the adversary tries to impersonate the prover. The sessions between the adversary
and the prover are carried out sequentially.

We have the following result.

Theorem 2.2. Let a be the private key of a prover P (a is chosen uniformly at random from Zq),
and let x be a random challenge. If the KEA assumption and CDH assumption hold, then for any
PPT A, given Q1 accesses to P and Q2 accesses to h() (where Q1, Q2 are polynomials in k), the
probability that A can compute h(xa) is negligible (i.e., less than 1/Q(k) for any polynomial Q
when k is sufficiently large).

Proof. A simulator S runs the protocol as a prover with the adversary as a verifier in a simulation.
S maintains a hash table T consisting of three columns x, y, h. Let X, Y,H be the set of x, y, h
values respectively. T is initially empty. The algorithm used by S is described in Algorithm 1.

Roughly speaking, S simulates a random oracle. S maintains a hash table, so that when A
sends a challenge x, it receives the same answer as it would when it queries the hash value of xa,
and vice versa. When A sends a challenge x, S relies on the extractor E to find out if A has queried
the hash of xa, and vice versa, so as not to give inconsistent answers. E extracts an r for each
pair of (x, y) where x is a challenge from A and y is a hash input from A. Supposing that A has
made m challenges x1, · · · , xm and n hash queries h(y1), · · · , h(yn). If A makes a new challenge
xm+1, then E will output n triples (xm+1, yj , rm+1,j), 1 ≤ j ≤ n. Similarly, if A makes a new hash
query h(yn+1), then E will output m triples (xi, yn+1, ri,n+1), 1 ≤ i ≤ m. For each triple (x, y, r),
by checking if x = gr and y = vr, S decides if y = xa.

4

Algorithm 1: S

repeat
receive a challenge x or a hash query on y from A;
if challenge x then

if x ∈ X then
return h in the same row in T

else
for each pair (x, y) ∈ {x} × Y do

receive r from extractor E for the pair (x, y)
if x = gr and y = vr then

fill x in the same row as y in T
return h to A

add x to a new row of T
fill in a random h in that row
return h to A

else
if y ∈ Y then

return h in the same row in T

else
for each pair (x, y) ∈ X × {y} do

receive r from extractor E for the pair (x, y)
if x = gr and y = vr then

fill y in the same row as x in T
return h from the same row to A

add x to a new row in T
fill in a random h in that row
return h to A

until ;

Assuming A makes a polynomial number (in k) Q1 of challenges and polynomial number Q2 of
hash queries, it is clear that S runs in polynomial time.

We compare the probability distributions of transcripts A receives in the simulation and the
transcripts A receives in real transactions with P. The transcript consists of all challenges and their
answers, as well as all hash queries and their answers. A difference between the two probability
distributions happens in two cases:

1. A sends a challenge x after it has queried the hash of xa, and receives a reply from S which
is different from the hash of xa.

2. A queries the hash of y after it has sent a challenge x where y = xa, and receives a hash of y
which is different from the reply for x from S.

Given a polynomial number Q1 of challenges and polynomial number Q2 of hash queries, there
are at most Q1Q2 pairs (x, y) considered in the algorithm. For each pair which satisfies y = xa, by
KEA, the above inconsistent event happens with negligible probability. The statistical difference

5

between the two distributions is at most Pr×Q1Q2 ≤ Q1Q2/Q, which is negligible. Therefore, the
two distributions are statistically indistinguishable.

Since the protocol is statistical zero-knowledge for A, it follows that if A can compute h(xa)
in sequential attacks, then A can compute h(xa) without executing the protocol with the prover,
which means A can compute xa given only g, ga and x. This contradicts the CDH assumption.

Concurrent Attacks

In sequential attacks, the adversary can only execute multiple sessions sequentially. In concurrent
attacks, many instances of the protocol can be invoked by the adversary (as verifiers) at arbitrary
times and proceed at an arbitrary pace. The adversary tries to gain some knowledge about the
prover’s private key in the attacks, then the adversary uses it to impersonate the prover. Concurrent
attacks cover sequential attacks. Note that protocols secure under sequential attacks may be
insecure under concurrent attacks.

In our protocol, the prover is stateless and deterministic. The output of the prover only depends
on the input challenge. When the prover receives a challenge, the prover replies immediately and
the session ends, and then she proceeds with the next session. Therefore, concurrent compositions
of sessions of our protocol are equivalent to sequential compositions, thus our protocol remains
secure under concurrent attacks.

Active-intruder Attack

In a concurrent attack, the adversary is only allowed to interact with the prover before he tries to
impersonate the prover. But in the internet communication model, the adversary may be able to
interact with the prover at the same time that he is impersonating the prover. In other words, the
active-intruder attack is a “man-in-the-middle” type of attack.

In such a setting, it is not straightforward to define what it means for an attack to be successful.
There are three approaches to handling this definitional issue. The first is based on the idea of
matching conversations [6] by Bellare and Rogaway. A somewhat more formal notion is that of
matching session IDs [5, 1] by Bellare et al. Another approach is due to Stinson [16, §11.1] and
is described using the idea of an active intruder. Informally, an adversary is an active intruder in
a session if he alters, injects, drops, and/or diverts at least one message in the given session. (If
the adversary simply relays messages between the prover and verifier, then the adversary is not an
active intruder.) Based on this notion, we define a successful active-intruder attack as follows:

Definition 2.3. In an active-intruder attack, the adversary is successful if the (honest) verifier
accepts in a session after the adversary becomes active in the same session.

We remark that the notions of matching conversations and an inactive adversary are equivalent,
in that matching conversations take place in a session if and only if there is no active adversary in
that session.

We formalize a property of random oracles which we need in our proof.

Property 2.4. Suppose that h : X → Y is a random oracle, and let x1, · · · , x2 ∈ X. Suppose that
the values yi = h(xi) have been determined for 1 ≤ i ≤ l. Then Pr[h(x) = y|x /∈ {x1, · · · , xl}] = 1

|Y |
for all y ∈ Y . Note that the probability is computed over all possible functions h().

6

This property is called the independence property of a random oracle in [17].
Next we prove that our protocol is secure under active-intruder attacks.

Theorem 2.5. The protocol presented in Figure 2 is secure against polynomial-time active-intruder
attacks in the random oracle model if it is secure under concurrent attacks.

Proof. We need to prove that, after the adversary A is active in a session S, the verifier will reject.
There are a total of three cases to examine:

1. x is altered and y is intact. In this case, the prover receives x′ 6= x and sends back y = h(x′a).
Since x′ 6= x, with overwhelming probability h(xa) 6= h(x′a). Then the verifier rejects with
overwhelming probability.

2. x is intact and y is altered. In this case, the adversary changes y = h(xa) to y 6= h(xa). The
verifier will reject.

3. Both x and y are altered. In this case, A receives x from V, sends x′ 6= x to P, then receives
y′ = h(x′a) from P, and sends y 6= y′ to V. Since the hash function h() is assumed to be a
random oracle, by the independence property of h(), h(x′a) for any x′ 6= x does not help A
to compute h(xa). If A can make V accept, he can do that without receiving h(x′a) from P.
That means a successful concurrent attack.

Summarizing, we conclude that if the adversary is active in a session S, then the verifier will
reject with overwhelming probability in the session S.

Reset Attacks

A reset attack allows the adversary to reset the prover’s internal state. Such attacks are realistic
when the prover is in the possession or control of the adversary, e.g., when the prover is a smartcard.
For example, the adversary may not be able to read a secret key from the secure hardware of the
smartcard, but it may be easy to reset the card by disconnecting the card’s battery.

Our protocol is secure under reset attacks. This follows immediately because the prover is
stateless.

Security Summary

The combination of active-intruder and reset attacks is the strongest attack model that has been
considered for identification schemes to date. Our protocol is secure under this attack model.

2.4 Performance

We compare the performance of our scheme with the Stinson-Wu (SW) scheme in [18]. Assume,
for all protocols, that k′ = 1024 and k = 160. The total message length is 2208 bits in SW scheme,
and 1184 bits in our scheme. Note that a hash function can be used to compress the messages in
SW scheme (by hashing the 1024-bit response to 160 bits) so its message length can be reduced to
1344 bits.

In view of the number of exponentiations, the computational complexity of the two schemes are
the same. Both the prover and verifier need two exponentiations, all with a 160-bit exponent. In

7

the elliptic curve setting, provers in both scheme are required to perform only one “exponentiation”
(i.e., a scalar multiple of a point on the elliptic curve).

Another advantage of the new scheme is its simple security proof, which partially results from
the simple message flow of the scheme.

3 Applicability of KEA

KEA does not explicitly address the setting where (1) several parties receive a pair (g, ga) as an
initial input, (2) each party can also use other parties’ outputs as auxiliary inputs, and finally, (3)
one party A outputs a pair (x, xa). In this setting, is it reasonable to assume that the extractor E
can compute r such that x = gr? This is where the doubts about KEA in [20] arise.

We suggest that in the above case, E can still compute r such that x = gr. The value r is
not “extracted” solely from A, but from all parties that are involved. We formalize the idea as an
auxiliary-input KEA as follows.

Definition 3.1. The auxiliary-input KEA (AI-KEA) is as follows. Let g be a generator of a prime
order group 〈g〉. The value k = log |〈g〉| is the security parameter. Let A1, · · · ,Al be a collection
of polynomial-time algorithms that take as input g and ga, where a is chosen uniformly at random
from [0, |〈g〉| − 1]. The value l is polynomial in k, and the number of output of each Ai is also
polynomial in k. Any Ai, 1 ≤ i ≤ l, can also take the output of any Aj , 1 ≤ j ≤ l, as auxiliary
input. Then there exists a polynomial-time “extractor” E that satisfies the following: when any
Ai, 1 ≤ i ≤ l, produces as output a pair of the form (x, y), x ∈ 〈g〉, E outputs the pair (x, y) along
with an exponent r such that for sufficiently large k,

Pr [y = xa and gr 6= x] <
1

Q(k)

for any polynomial Q().

Note that in the AI-KEA, the extractor E may need to access some other parties in {Ai : 1 ≤
i ≤ l} besides the one which directly outputs (x, xa). Roughly speaking, although no single party
in {Ai : 1 ≤ i ≤ l} “knows” r, all these parties together “know” r.

In the multi-party setting in AI-KEA, we can consider the multiple parties as components of
one entity which takes (g, ga) as an input and outputs (x, xa). Then we apply KEA in this setting.
In this case, both AI-KEA and KEA give the same result that the extractor can output r = logg x.
Therefore, we suggest that KEA is applicable to a multi-party setting where AI-KEA is applicable,
thus to validate the use of KEA in the proof in this paper, as well as in [4], [9], [14], [18].

To further analyze AI-KEA, we consider the following question: given multiple pairs of (g1, g1
a),

(g2, g2
a), · · · , if one party outputs a pair (x, xa), then what can the extractor extract from this

specific party? With the similar idea underlying KEA, we assume that the only way to construct
such a pair is to choose r1, r2 · · · , and compute x = g1

r1g2
r2 · · · and y = g1

ar1g2
ar2 · · · . We formalize

the idea as the Generalized Knowledge-of-Exponent Assumption (GKEA).

Definition 3.2. The Generalized Knowledge-of-Exponent Assumption is as follows: Let g be a
generator of a prime order group 〈g〉. The value k = log |〈g〉| is the security parameter. Given
Tn = {(xi, xi

a) : 0 ≤ i ≤ n} where a is chosen from [0, |〈g〉| − 1] uniformly at random and n is

8

polynomial in k, for any PPT algorithm A, if A(Tn) outputs a pair (x, y), then there exists a PPT
extractor E(Tn) which outputs (x, y, c0, · · · , cn), such that for any polynomial Q, it holds that

Pr

[
y = xa and

n∏
i=0

xi
ci 6= x

]
< 1/Q(k)

for k large enough.

Then we have the following result.

Theorem 3.3. If GKEA holds, then the AI-KEA holds.

Proof. In the setting of AI-KEA, we define the following directed acyclic graph (DAG). Each pair
of output (x, xa) of an A is a vertex denoted as Vj , 1 ≤ j ≤ m where m is polynomial in k. (g, ga)
is also a vertex denoted as V0. There is an arc Vi → Vj if A takes Vi as part of the input and
outputs Vj . Let Nin(Vj) be the set {Vi : Vi → Vj}. The vertices are labeled by integers such that
an arc always starts from a vertex with smaller label and ends at a vertex with greater label.

We prove by induction that for all Vj = (xj , xj
a), 1 ≤ j ≤ m, E can compute rj such that

xj = grj .
For vertex V1 = (x1, x1

a), which has only one incoming arc starting from V0 = (g, ga), by
GKEA, E can compute r1 such that x1 = gr1 .

Suppose that for Vj = (xj , xj
a) where j ≥ 1, E can compute rj such that xj = grj .

We consider the vertex Vj+1 = (xj+1, xj+1
a). By GKEA, E can compute ci values such that

xj+1 =
∏

(xi,xi
a)∈Nin(Vj+1)

xi
ci .

Note that for (xi, xi
a) ∈ Nin(Vj+1), we have i ≤ j. Therefore, E can compute ri such that xi = gri .

Then E computes
rj+1 =

∑
Vi∈Nin(V)

rici,

and it holds that xj+1 = grj+1 .
By induction, we conclude that for all Vj = (xj , xj

a), 1 ≤ j ≤ m, E can compute rj such that
xj = grj . It follows that AI-KEA holds.

We note that there are protocols where KEA is not applicable. For example, in ElGamal
encryption scheme, the decryption algorithm will output pairs of the form (x, xa) under a chosen
ciphertext attack. In this case, if an adversary outputs a pair of the form (x, xa), it is no longer
reasonable to assume the adversary knows r such that x = gr. The key point is that, when the
adversary observes pairs of (xi, xi

a) from previous sessions of the decryption of ElGamal scheme,
these pairs are generated by the decryption oracle. However, in the simulation, the simulator has
no access to the decryption oracle. In other protocols, e.g., DEG, such pairs (except for (g, ga))
are generated by users to which a simulator has access in the simulation. Therefore, we need to
distinguish the two types of pairs. Those generated by a party to which a simulator has no access in
the simulation are called non-extractable pairs, and those generated by a party to which a simulator
has access in the simulation are called extractable pairs. We conclude that KEA and AI-KEA are
applicable for protocols where there is only one non-extractable pair (i.e., the initial (g, ga) pair).

9

4 Conclusion

In this paper, we propose an extremely simple identification protocol and prove its security using
KEA. Also, we clarified an issue about using KEA for protocols where an adversary can get auxiliary
input. It was not clear if KEA is applicable to such cases. However, we gave an affirmative answer
by presenting and analyzing two variants of KEA, Generalized KEA (GKEA) and Auxiliary-Input
KEA (AI-KEA). These variants of KEA clarify the proper use of KEA.

References

[1] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification protocols secure against
reset attacks. Unpublished manuscript, available from http://www-cse.ucsd.edu/users/
mihir/papers/id-reset.html [this is the full version of [2].].

[2] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification protocols secure against
reset attacks. In EUROCRYPT 2001 Proceedings, volume 2045 of Lecture Notes in Computer
Science, pages 495–511, Berlin, Heidelberg, New York, 2001. Springer.

[3] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In M.K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in
Computer Science, pages 273–289. Springer, 2004.

[4] M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without random
oracles. In P.J. Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer Science,
pages 48–62. Springer, 2004.

[5] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In EUROCRYPT 2000 Proceedings, volume 1807 of Lecture Notes in
Computer Science, pages 139–155, Berlin, Heidelberg, New York, 2000. Springer.

[6] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO ’93 Pro-
ceedings, volume 773 of Lecture Notes in Computer Science, pages 232–249, Berlin, Heidelberg,
New York, 1994. Springer.

[7] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, 2004.

[8] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks.
In CRYPTO ’91: Proceedings of the 11th Annual International Cryptology Conference on
Advances in Cryptology, pages 445–456, London, UK, 1992. Springer-Verlag.

[9] A.W. Dent. The Cramer-Shoup encryption scheme is plaintext aware in the standard model.
In S. Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science,
pages 289–307. Springer, 2006.

[10] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology,
1:77–94, 1988.

10

[11] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and sig-
nature problems. In CRYPTO ’86 Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 186–194, Berlin, Heidelberg, New York, 1987. Springer.

[12] L. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature scheme resulting
from zero-knowledge. In CRYPTO ’88 Proceedings, volume 403 of Lecture Notes in Computer
Science, pages 216–231, Berlin, Heidelberg, New York, 1990. Springer.

[13] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In CRYPTO
’98: Proceedings of the 18th Annual International Cryptology Conference on Advances in Cryp-
tology, pages 408–423, London, UK, 1998. Springer-Verlag.

[14] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In V. Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 546–566. Springer, 2005.

[15] C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4:161–174,
1991.

[16] D.R. Stinson. Cryptography: Theory and Practice, third edition. Chapman & Hall/CRC, Boca
Raton, 2006.

[17] D.R. Stinson. Some observations on the theory of cryptographic hash functions. Des. Codes
Cryptography, 38(2):259–277, 2006.

[18] D.R. Stinson and J. Wu. An efficient and secure two-flow zero-knowledge identification proto-
col. Journal of Mathematical Cryptology, 1:201–220, 2007.

[19] D.R. Stinson and J. Wu. A zero-knowledge identification and key agreement protocol. Cryp-
tology ePrint Archive, Report 2007/116, 2007. http://eprint.iacr.org/.

[20] A.C.C. Yao, F.F. Yao, Y. Zhao, and B. Zhu. Deniable internet key-exchange. Cryptology
ePrint Archive, Report 2007/191, 2007.

11

