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Abstract

We study Dickson bases for binary field representation. Such representation
seems interesting when no optimal normal basis exists for the field. We express
the product of two elements as Toeplitz or Hankel matrix vector product. This
provides a parallel multiplier which is subquadratic in space and logarithmic in
time.

1 Introduction

Finite filed arithmetic is extensively used in cryptography. For public key cryptosys-
tems, the size (i.e. the number of elements) of the field may be quite large, say 22048.
Finite field multiplication over such a large field requires a considerable amount of
resources (time or space). For binary extension fields, used in many practical public
key cryptosystems, field elements can be represented with respect to a normal basis,
where squaring operations are almost free of cost. In order to reduce the cost of
multiplication over the extension field, instead of using an arbitrary normal basis, it
is desirable to use an optimal normal basis. The latter however does not exist for
all extension fields, in which case one may use Dickson bases [1, 6] and develop an
efficient field multiplier.

In this paper we consider subquadratic space complexity multipliers using the
Dickson basis. To this end, using low weight Dickson polynomials, we formulate the
problem of field multiplication as a product of a Toeplitz or Hankel matrix and a
vector, and apply subquadratic space complexity algorithm for the product [4], which
gives us a subquadratic space complexity field multipliers.

The article is organized as follows. In Section 2 we present some general results on
Dickson polynomials. In Section 3 we give the outline of the subquadratic multiplier
of matrix vector product of [4]. Then in Section 4 we give a matrix vector product
approach in Dickson basis representation. We wind up with complexity comparison
and a brief conclusion.
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2 Dickson Polynomials

Dickson polynomials over finite fields were introduced by L.E. Dickson in [1]. These
polynomials have several applications and interesting properties, the main one being
a permutation property over finite fields. For a complete explanation on this the
reader may refer to [5]. Our interest here concerns the use of Dickson polynomial for
finite field representation for efficient binary field multiplication. There are two kinds
of Dickson polynomials, and there are several ways to define and construct both of
them. We give here the definition of [5] of the first kind Dickson polynomials.

Definition 1 (Dickson Polynomial[5] page 9). Let R be a ring and a ∈ R. The

Dickson polynomial of the first kind Dn(X, a) is defined by

Dn(X, a) =

⌊n/2⌋
∑

i=0

n

n− i

(
n− i

n

)

(−a)iXn−2i.

For n = 0, we set D0(X, a) = 2 and for n = 1 we have D1(X, a) = X.

In [5] it has been shown that Dickson polynomials can be computed using the
following recursive relation







D0(X, a) = 2,
D1(X, a) = X,
Dn(X, a) = XDn−1(X, a)− aDn−2.

(1)

Using these relations we obtain the Dickson polynomials Dn(X, 1) in F2[X ] for
n ≤ 20 given in Table 1.

The following theorem will be extensively used for the construction of subquadratic
multiplier in the Dickson basis.

Theorem 1. We denote βi = Di(X, 1) the n-th Dickson polynomial in F2[X ]. Then

for all i, j ≥ 0 the following equation holds

βiβj = βi+j + β|i−j|. (2)

Proof. This theorem is a consequence of equation (1).
We will show it by induction on i and j. Using Table 1 We can easily check that

equation (2) holds for i, j ≤ 1. We suppose that the equation is true for all i, j ≤ n
and we prove that the equation is true for i, j ≤ n + 1. We first prove it for i = n + 1
and j ≤ n

βn+1βj = (Xβn + βn−1)βj

= Xβnβj + βn−1βj = X(βn+j + β|n−j|) + (βn−1+j + β|n−1−j|),

by induction hypothesis. Now we have

βn+1βj = (Xβn+j + βn+j−1) + (Xβ|n−j| + β|n−1−j|)
= βn+1+j + β|n+1−j|.

For the other case i = n+1 and j = n+1, the product βnβn+1, βn+1βn+1 is obtained
using similar tricks.
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Table 1: Dickson polynomials

β1 X
β2 X2

β3 X3 + X
β4 X4

β5 X5 + X3 + X
β6 X6 + X2

β7 X7 + X5 + X
β8 X8

β9 X9 + X7 + X5 + X
β10 X10 + X6 + X2

β11 X11 + X9 + X5 + X3 + X
β12 X12 + X4

β13 X13 + X11 + X9 + X3 + X
β14 X14 + X10 + X2

β15 X15 + X13 + X9 + X
β16 X16

β17 X17 + X15 + X13 + X9 + X
β18 X18 + X14 + X10 + X2

Polynomial and finite field representation using Dickson polynomials.

A consequence of equation (1) is that each βi or i ≥ 1 has degree i. As a result
each polynomial A =

∑n
i=0 AiX

i ∈ F2[X ] can be expressed as

A = a0 +

n∑

i=1

aiβi.

Such expression can be obtained using Algorithm 2.
For example for A = 1 + X2 + X5 the execution of the previous algorithm gives

R← 1 + X2 + X5

begin for

i = 5 R← R + β5 = 1 + X + X2 + X3, a5 ← 1
i = 4 a4 ← 0
i = 3 R← R + β3 = 1 + X2, a3 ← 1
i = 2 R← R + β2 = 1, a2 ← 1
i = 1 a1 ← 0
end for

a0 ← 1
A = 1 + β2 + β3 + β5

Since each polynomial can be written in term of Dickson polynomials, we can use
Dickson polynomials for basis representation of binary fields.
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Algorithm 1 Conversion of polynomial from regular polynomial to Dickson polyno-
mial
Require: A polynomial A(X) ∈ F2[X ] of degree n.

R← A
for i = n to 1 do

if Ri = 1 then

ai ← 1
R← R + βi

else

ai ← 0
end if

end for

a0 ← R
Ensure: Return (a0, . . . , an)

Theorem 2. Let P be an irreducible polynomial of degree n in F2[X ]. The system

B = {β1, . . . , βn} forms a basis of F2n = F2[X ]/(P ) over F2.

Proof. To show that B is a basis we have to show that each element A ∈ F2n can be
expressed as

A =
n∑

i=1

aiβi with ai ∈ {0, 1},

and this expression is unique.
Let us first show that for each A ∈ F2n an expression in B exists. The polynomial

P is an irreducible polynomial in F2[X ] and using Algorithm 2 it can be expressed as

P = 1 +
n−1∑

i=1

piβi + βn.

Let A ∈ F[X ]/(P ) which is a polynomial of degree less than n and can also be written

as A = a0 +
∑n−1

i=0 aiβi with Algorithm 2. To get required expression of A in B we
need to express the coefficient a0 in B. To do this, we use the expression of P in B.
Since 1 =

∑n−1
i=1 piβi + βn mod P we can replace a0 by

∑n−1
i=1 a0piβi + a0βn. We

finally obtain

A =

n−1∑

i=1

(ai + a0pi)βi + a0βn.

Now we show that such expression is unique. If we have a second different expres-
sion A =

∑n
i=1 a′

iβi, then by adding the two we get

n∑

i=1

(ai + a′
i)βi = 0. (3)
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Let d the maximal subscript such that ad 6= a′
d. We rewrite βd = Xd + β′

d where
deg β′

d < d and then using (3) we obtain

d−1∑

i=1

(ai + a′
i)βi + (ad + a′

d)β
′
d + (ad + a′

d)X
d = 0.

Now deg(
∑d−1

i=1 (ai+a′
i)βi+(ad+a′

d)β
′
d) ≤ d−1, and thus we must have (ad+a′

d)X
d =

0, this contradicts the fact that ad 6= a′
d.

3 Asymptotic Complexities of Toeplitz Matrix Vec-

tor Product

In this section we recall some basics matrix-vector multiplication and their corre-
sponding space and time complexities [4]. A Toeplitz matrix is defined as

Definition 2. An n × n Toeplitz matrix is a matrix [ti,j ]0≤i,j≤n−1 such that ti,j =
ti−1,j−1 for 1 ≥ i, j.

If 2|n we can use a two way approach presented in Table 2, to compute a matrix
vector product T ·V where T is an n× n Toeplitz matrix. If 3|n we can use the three

way approach which is also presented in Table 2.

Table 2: Subquadratic Toeplitz matrix vector product

Matrix decomposition
Two way Three way

T =

[
T1 T0

T2 T1

] [
V0

V1

]

T =





T2 T1 T0

T3 T2 T1

T4 T3 T2









V0

V1

V2





Recursive formulas

T · V =

[
P0 + P2

P1 + P2

]

T · V =





P0 + P3 + P4

P1 + P3 + P5

P2 + P4 + P5





where where
P0 = (T0 + T1)V1,
P1 = (T1 + T2)V0,
P2 = T1(V0 + V1),

P0 = (T0 + T1 + T2)V2,
P1 = (T0 + T1 + T3)V1,
P2 = (T2 + T3 + T4)V0,
P3 = T1(V1 + V2, )
P4 = T2(V0 + V2),
P5 = T3(V0 + V1),

If n is a power of 2 or a power of 3 the formulas of Table 2 can be used recursively
to perform T · V . Using these recursive processes through parallel computation, the
resulting multipliers [4] have the complexity given in Table 3.
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Table 3: Asymptotic complexity

Two-way split method Three-way split method

# AND nlog
2
(3) nlog

3
(6)

# XOR 5.5nlog
2
(3) − 6n + 0.5 24

5 nlog
3
(6) − 5n + 1

5
Delay TA + 2 log2(n)TX TA + 3 log3(n)TX

The above subquadratic approach can also be used when H is an Hankel matrix.
We recall the definition of an Hankel matrix.

Definition 3 (Hankel matrix). Let H = [hi,j ]0≤i,j≤n−1 be an n× n matrix. We say

that H is Hankel if

hi,j = hi−1,j+1 for 1 ≤ i and j < n− 1 (4)

Moreover we say that H is an essentially Hankel matrix, if H satisfies (4) unless

for i = n− 1 and for 0 ≤ j ≤ n− 1 where hn−1,j = 0.

Let H be an Hankel matrix. The matrix H ′ with the same rows as H in the
reverse order

H ′ = [hn−1−i,j ]0≤i,j≤n−1

is a Toeplitz matrix. Consequently to perform W = H · V , we compute W ′ = H ′ · V
using the subquadratic of Table 3 method and then reverse the order of the coefficients
of W ′ to get W .

4 Field multiplication using low weight Dickson poly-

nomials

In this section we consider multiplication of two elements of the binary field F2n =
F2[X ]/(P ) where the polynomial P is a low weight Dickson polynomial. In particular
we consider two and three-term Dickson polynomials P , i.e., Dickson binomials and
trinomials. Like low weight conventional polynomials the use of low weight Dickson
polynomials is expected to yield lower space complexity multipliers.

4.1 Irreducible Dickson binomials

In this subsection we will focus on finite field F2n = F2[X ]/(P ) where P is two
terms irreducible polynomial of the form P = βn + 1 where βn is the n-th Dickson
polynomial. The elements of F2n are expressed in the Dickson basis B = {β1, . . . , βn}.

The following theorem shows that the product of two elements A and B in F2n

can be computed as a matrix-vector product MA ·B where MA is a sum of a Toeplitz
matrix and an essentially Hankel matrix.
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Theorem 3. Let n be an integer such that βn + 1 is irreducible and let F2n =
F2[X ]/(βn + 1). Let A =

∑n
i=1 aiβi and B =

∑n
i=1 biβi be two elements of F2n

expressed in B. The coefficients in B of the product A×B can be computed as










an an−1 + a1 · · · a2 + an−2 a1 + an−1

a1 an · · · a3 + an−3 a2 + an−2

...
...

an−2 · · · · · · an an−1 + a1

an−1 · · · · · · a1 an










·






b1

...

bn






+










a2 a3 · · · an−1 0 an−1

a3 a4 · · · 0 an−1 an−2

...
...

0 an−1 a2 a1

0 0 0










·






b1

...

bn




 .

Proof. If we multiply the two elements A and B we get the following:

AB =

(
n∑

i=1

aiβi

)

×

(
n∑

i=1

biβi

)

=

n∑

i,j=1

aibiβiβj . (5)

Then from Theorem 1 we have βiβj = βi+j + β|i−j|, we can rewrite (5) as

AB =





n∑

i,j=1

aibjβi+j





︸ ︷︷ ︸

S1

+





n∑

i,j=1

aibjβ|i−j|





︸ ︷︷ ︸

S2

Now we express this former expression of AB as a sum of Toeplitz or Hankel matrix
vector product.

Let us begin with S1. We remark that S1 has a similar expression as product of
two polynomials of the same degree. In other words, S1 can be computed as ZA · B
where

ZA =

















0 0 · · · 0 0
a1 0 · · · 0 0
...

...
an−1 · · · · · · a1 0
an · · · · · · a2 a1

0 an · · · a3 a1

...
...

0 0 · · · 0 an

















← β1

← β2

...
← βn

← βn+1

← βn+2

...
← β2n

We reduce the matrix ZA modulo P = βn + 1 to get non-zero coefficients only on
rows corresponding to β1, . . . , βn. We use the fact that βn+i for i ≥ 0 satisfies

βn+i = βiβn + βn−i = βi + βn−i.
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This equation is a simple consequence of equation (2) and that βn = 1 mod P .
This implies that the rows corresponding to βn+i are reduced into two rows one
corresponding to βi and the other to βn−i. After performing this reduction and
removing zero rows we get

S1 = ZA ·B =








an an−1 · · · a2 a1

a1 an · · · a3 a2

...
...

an−1 · · · · · · a1 an













b1

...
bn






︸ ︷︷ ︸

S1,1

+










0 0 · · · an an−1

...
...

0 an · · · a3 a1

an an−1 · · · a2 a1

0 · · · · · · 0 0















b1

...
bn






︸ ︷︷ ︸

S1,2

Finally, we get an expression of S1 as matrix vector product where the matrix is
a sum of a Toeplitz and an essentially Hankel matrix.

Now we do the same for S2. We split S2 into two sums

S2 =
(
∑n

i,j=1 aibjβ|i−j|

)

=





n∑

k=1

n−k∑

j=1

aj+kbjβk





︸ ︷︷ ︸

S2,1

+





n∑

k=1

n∑

j=k

aj−kbjβk





︸ ︷︷ ︸

S2,2

. (6)

We express S2,1 and S2,2 as matrix vector products

S2,1 =










a2 a3 · · · an−1 an 0
a3 a4 · · · an 0 0
...

...
an 0 0
0 0 0










·






b1

...
bn




 , (7)

S2,2 =










0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

0 0 a1

0 0










·






b1

...
bn




 . (8)

So now we have each of S1 and S2 in the required form. We can add S1,1 to S2,2
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and S1,2 to S2,1 to get the following expression of S1 + S2 = A×B.

A×B = (S1,1 + S2,2) + (S1,2 + S2,1)

=



















an an−1 + a1 · · · a2 + an−2 a1 + an−1

a1 an · · · a3 + an−3 a2 + an−2

...
...

an−2 · · · · · · an an−1 + a1

an−1 · · · · · · a1 an










+










a2 a3 · · · an−1 0 an−1

a3 a4 · · · 0 an−1 an−2

...
...

0 an−1 a2 a1

0 0 0



















·






b1

...
bn






This ends the proof.

Example 1. Let us consider the field F29 . It is defined as F29 = F2[X ]/(β9 +1). The
Dickson basis of F29 is B = {β1, . . . , β9}. The multiplication of two elements A and B
can be computed as a matrix vector product. As stated in Theorem 3 the matrix can
be decomposed as the sum of a Toeplitz TA matrix and an essentially Hankel matrix
HA. The Toeplitz matrix TA is

TA =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4 a6 + a3 a2 + a7 a1 + a8

a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4 a6 + a3 a2 + a7

a2 a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4 a6 + a3

a3 a2 a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5 a5 + a4

a4 a3 a2 a1 a9 a8 + a1 a7 + a2 a6 + a3 a4 + a5

a5 a4 a3 a2 a1 a9 a8 + a1 a7 + a2 a6 + a3

a6 a5 a4 a3 a2 a1 a9 a8 + a1 a7 + a2

a7 a6 a5 a4 a3 a2 a1 a9 a8 + a1

a8 a7 a6 a5 a4 a3 a2 a1 a9

3

7

7

7

7

7

7

7

7

7

7

7

7

5

and the essentially Hankel matrix HA is

HA =

















a2 a3 a4 a5 a6 a7 a8 0 a8

a3 a4 a5 a6 a7 a8 0 a8 a7

a4 a5 a6 a7 a8 0 a8 a7 a6

a5 a6 a7 a8 0 a8 a7 a6 a5

a6 a7 a8 0 a8 a7 a6 a5 a4

a7 a8 0 a8 a7 a6 a5 a4 a3

a8 0 a8 a7 a6 a5 a4 a3 a2

0 a8 a7 a6 a5 a4 a3 a2 a1

0 0 0 0 0 0 0 0 0
















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4.2 Dickson trinomials

Now we assume that the field F2n is defined by a three-term irreducible Dickson
trinomial P

P = 1 + βk + βn, with k ≤ n/2.

The elements in F2n = F2[X ]/(P ) are expressed in the Dickson basis B = {β1, . . . , βn}.
Our aim is to express the product of two elements A, and B of F2n as Toeplitz or
Hankel matrix vector product. We first have

C = AB =





n∑

i,j=1

aibjβi+j





︸ ︷︷ ︸

S1

+





n∑

i,j=1

aibjβ|i−j|





︸ ︷︷ ︸

S2

Similar to the previous subsection, here we express S1 and S2 as matrix vector product
separately. Specifically

1. The sum S1 is expressed as ZA ·B where ZA is

ZA =

















0 0 · · · 0 0
a1 0 · · · 0 0
...

...
an−1 · · · · · · a1 0
an · · · · · · a2 a1

0 an · · · a3 a1

...
...

0 0 · · · 0 an

















← β1

← β2

...
← βn

← βn+1

← βn+2

...
← β2n

2. For S2 we get the same expression to (6)

S2 =





n∑

k=1

n−k∑

j=1

aj+kbjβk





︸ ︷︷ ︸

S2,1

+





n∑

k=1

n∑

j=k

aj−kbjβk





︸ ︷︷ ︸

S2,2

. (9)

where

S2 =

0

B

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

4

a2 a3 · · · an−1 an 0
a3 a4 · · · an 0 0
...

...
an 0 0
0 0 0

3

7

7

7

7

7

5

· +

2

6

6

6

6

6

6

6

6

6

6

6

4

0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

0 0 a1

0 0
... 0
0 0

3

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

A

·

2

6

4

b1

...
bn

3

7

5

(10)
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Now we replace S1 and S2 by their corresponding expressions given above in
AB = S1 + S2. We get

AB =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 · · · 0 0
a1 0 · · · 0 0
...

...
an−1 · · · · · · a1 0
an · · · · · · a2 a1

0 an · · · a3 a1

...
...

0 0 · · · 0 an

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

0 0
0 0
0 0
...

...
0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

·

2

6

4

b1

...
bn

3

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

4

a2 a3 · · · an−1 an 0
a3 a4 · · · an 0 0
...

...
an 0 0
0 0 0
...
0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

5

·

2

6

4

b1

...
bn

3

7

5

(11)

In (11) the addition of two 2n× n Toeplitz matrices results in one single 2n× n
Toeplitz matrix. The latter can be horizontally split into the middle to obtain two
n× n Toeplitz matrices, say Tup and Tdown, which can be then multiplied separately
with vector (b1, . . . , bn) with a total cost of two n×n Toeplitz matrix vector products.

The other 2n×n Hankel matrix in (11) has all zero in the lower n rows, contributing
nothing to the cost of the matrix vector multiplication. Thus, the total computational
cost of (11) is no more than three n× n Toeplitz or Hankel matrix-vector products.

Remark 1. Among the above three matrices, two of them are triangular. One can

attempt to reduce the cost of matrix vector product by using this triangular structure.

For example, in the two way split strategy, we can perform T · V as

T · V =

[
T0 T1

0 T0

]

·

[
V0

V1

]

=

[
T0V0 + T1V1

T0V1

]

Such an approach seems to be interesting since the recursive formula needs less

computation than in Table 2. However our analysis shows that asymptotically the

gain is negligible and the resulting dominant term remains the same as in Table 3.

The reduction.

The resulting expression of C in (11) is an unreduced form of A × B, since it
has non zero coefficients ci on rows i = n + 1, . . . , 2n. It must be reduced modulo
P = βn + βk + 1, to get an expression of C in B. We have

βi = βnβi−n + β2n−i

= (βk + 1)βi−n + β2n−i

= βi−n+k
︸ ︷︷ ︸

(R1)

+ β|i−n−k|
︸ ︷︷ ︸

(R2)

+ βi−n
︸︷︷︸

(R3)

+ β2n−i
︸ ︷︷ ︸

(R4)
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In Figure 1 we give the reduction process obtained by replacing in C =
∑2n

i=1 ciβi

each βi for i > n by the expression given above.

Figure 1: Dickson Trinomial Reduction Process

cn cn+1c1 ck ck+1 c2n

c1 ck ck+1 cn

c2n

cn+1c2n c2n−1

cn+2cn+1

cn+1 c2ncn+2

cn+k cn+1

cn+k+1 c2n

+

+

+

+

+

C

R1

R4

R3

R2

R2

The process depicted in Figure 1 must be performed two times to get C expressed
in the Dickson basis B, since k ≤ n/2. The full reducing part requires 8n XOR gates
and is performed in time 6TX .

5 Complexity and Comparison

In this section we provide the corresponding complexity of each of our multipliers
presented in the previous section. The complexity are easily deduced from complexity
given in Table 2.

In a recent paper Mullin et al. [6] pointed out that there were some links between
the Dickson basis and the normal basis. In practice, a Dickson basis is interesting
when no optimal normal basis exists for the considered field. This is the case for
NIST recommended binary fields F2163 and F2283 .

In Table 5 we give fields which can be constructed with a Dickson binomial. In Ta-
ble 6 we give irreducible Dickson trinomials of low degree. We can remark that NIST
fields can be constructed with Dickson trinomials, and thus we obtain a subquadratic
multiplier in each of these cases.

We also note that recently a type II optimal normal basis has been proposed
in [2] using the FFT technique, which normally outperforms other sub-quadratic
complexity multipliers for very large values of n. Hardware architectures of bit-serial

type multipliers using the Dickson basis have been presented in [7].
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Table 4: Complexity of Dickson Multiplier

Method b Space Time
# AND # XOR

Dick. Bin. 2 2nlog
2
(3) 11nlog

2
(3) − 11n (2 log2(n) + 1)TX + TA

3 2nlog
3
(6) 48/5nlog

3
(6) − 11n + 3/5 (3 log3(n) + 1)TX + TA

Dick. Tri. 2 2nlog
2
(3) 11nlog

2
(3) − 4n + 1 (2 log2(n) + 6)TX + TA

3 2nlog
3
(6) 48/5nlog

3
(6) − 2n + 1/5 (3 log3(n) + 6)TX + TA

ONB I [3] 2 nlog
2
(3) + n 5.5nlog

2
(3) − 4n− 0.5 (2 log2(n) + 1)TX + TA

3 nlog
3
(6) + n 24/5nlog

3
(6) − 3n− 4/5 (3 log3(n) + 1)TX + TA

ONB II [3] 2 2nlog
2
(3) 11nlog

2
(3) − 12n + 1 (2 log2(n) + 1)TX + TA

3 2nlog
3
(6) 48/5nlog

3
(6) − 10n− 2/5 (3 log3(n) + 1)TX + TA

6 Conclusion

In this paper we have presented new parallel multipliers based on Dickson basis rep-
resentation of binary fields. The multiplier for an irreducible Dickson binomial has a
complexity similar to subquadratic multiplier for ONB II. For an irreducible Dickson
trinomial, the multiplier has a slightly more space complexity, but can be used for
fields with degree less than 300.
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A Binomials and trinomials for field definition

In Table 5 we give the degree n ∈ [160, 300] of field F2n = F2[X ]/(P ) where P satisfies

P × (X + 1) = βn+1 + 1,

βn+1 is a Dickson polynomial. For such field, binomial subquadratic multiplier can
be used to perform the multiplication.

Table 5: Degrees of fields which admit a binomial subquadratic multiplier

n 167, 173, 198, 196, 190, 198, 238, 252, 262, 268, 270
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Table 6: Irreducible Dickson trinomials βn + βk + 1

n k

163 43, 67, 97, 100, 128, 155
165 66, 78, 114, 132
167 68, 88
170 5, 11, 25, 55, 61, 71, 125, 155, 157
171 144
172 95
173 40, 82, 85
175 26, 158
176 79, 89
178 65, 73
179 85
181 35, 115, 134
183 138
184 151
187 28, 32, 95, 115, 128, 163
188 73
189 54
191 14, 74, 106, 124, 146
193 188
194 25, 55
197 88, 107, 110, 155, 170
199 86
200 7, 17, 31, 77
201 84
202 7, 187
203 5, 107, 113
205 43, 53, 109, 169, 179, 193
207 18, 180
208 7, 125
211 19, 85, 95
212 73
215 22, 64, 98, 122, 166
218 113, 127, 133, 137
219 120, 156
220 167
221 14, 46, 71, 145, 200, 209
223 82, 190
224 101
225 36, 72, 144
226 121, 205
227 125, 145
229 50
231 30, 114, 156

n k

235 13, 17, 32, 37, 88, 103, 112, 128, 173
237 42
239 124, 164, 220
241 16, 160, 176, 200
242 85, 223
244 121, 169
245 37, 43, 52, 61, 116, 172, 187
247 22, 50, 110, 245
248 65, 137
250 25, 85, 125, 155, 175, 181, 185, 209, 217, 245
251 119, 145, 211
253 7, 10, 23, 115, 142, 158, 170, 205
255 174, 186
256 91, 209
259 5, 20
259 160
260 97
261 234
263 20, 98, 178
265 112
268 25
269 34, 49, 125, 140, 146, 190, 254
271 46
272 7, 235, 245
273 240
274 65, 101, 181, 205, 269
275 44, 59, 88, 176, 227
277 70, 95, 98, 118, 125, 130, 175
279 90, 234
280 17, 103, 173, 197
283 37, 80, 145, 155, 157, 215, 95
285 42, 132
285 246
289 40, 280
290 41, 53, 79, 85, 113, 125, 163, 185
291 24, 25
292 133, 265
293 17, 55, 82, 100, 140, 227, 233, 262, 275, 278
295 46, 62, 154, 254
296 65, 221
298 35, 97
299 119, 145
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