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Abstract. Pairings on the Jacobians of (hyper-)elliptic curves have received considerable
attention not only as a tool to attack curve based cryptosystems but also as a building block
for constructing cryptographic schemes with new and novel properties. Motivated by the
work of Scott [34], we investigate how to use efficiently computable automorphisms to speed
up pairing computations on two families of non-supersingular genus 2 hyperelliptic curves
over prime fields. Our findings lead to new variants of Miller’s algorithm in which the length
of the main loop can be up to 4 times shorter than that of the original Miller’s algorithm in
the best case. We also implement the calculation of the Tate pairing on both a supersingular
and a non-supersingular genus 2 curve with the same embedding degree of k = 4. Combining
the new algorithm with known optimization techniques, we show that pairing computations
on non-supersingular genus 2 curves over primes fields use up to 56.2% fewer field opera-
tions and run about 10% faster than supersingular genus 2 curves for the same security level.
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1 Introduction

Pairing based cryptography is a relatively new area of cryptography centered around particular
functions with interesting properties. Initially, bilinear pairings were introduced to cryptography
for attacking instances of the discrete logarithm problem (DLP) on elliptic curves and hyperelliptic
curves [14, 28]. With the advent of non-interactive key distribution [33], tripartite key exchange
[24], and identity based encryption [5], the design of pairing based cryptographic protocols has
received a lot of attention from the research community. The implementation of pairing based
protocols requires the efficient computation of pairings. To date, the Weil and Tate pairings and
their variants such as the Eta and Ate pairings on Jacobians of (hyper-)elliptic curves are the only
efficient instantiations of cryptographically useful bilinear maps.

There has been a lot of work on efficient implementation of pairings on elliptic curves, and many
important techniques have been proposed to accelerate the computation of the Tate pairing and its
variants on elliptic curves [2–4, 22]. Furthermore, the subject of pairing computations on hyperel-
liptic curves is also receiving an increasing amount of attention. Choie and Lee [6] investigated the
implementation of the Tate pairing on supersingular genus 2 hyperelliptic curves over prime fields.
Later on, Ó hÉigeartaigh and Scott [21] improved the implementation of [6] significantly by using
a new variant of Miller’s algorithm combined with various optimization techniques. Duursma and
Lee [10] presented a closed formula for the Tate pairing computation on a very special family of
supersingular hyperelliptic curves. Barreto et. al. [2] generalized the results of Duursma and Lee
and proposed the Eta pairing approach for efficiently computing the Tate pairing on supersingular
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genus 2 curves over binary fields. In particular, their algorithm leads to the fastest pairing imple-
mentation in the literature. In [27], Lee et. al. considered the Eta pairing computation on general
divisors on supersingular genus 3 hyperelliptic curves with the form of y2 = x7 − x± 1. Recently,
the Ate pairing, originally defined for elliptic curves, has been generalized to hyperelliptic curves
[18] as well. Although the Eta and Ate pairings hold the record for speed at the present time, we
will focus our attention on the Tate pairing in this paper. The main reason is that the Tate pairing
is uniformly available across a wide range of hyperelliptic curves and subgroups, whereas the Eta
pairing is only defined for supersingular curves and the Ate pairing incurs a huge performance
penalty in the context of ordinary genus 2 curves ([18, Table 6]).

Motivated by previous work in [34, 38, 39], we consider pairing computations on two families of
non-supersingular genus 2 hyperelliptic curves over prime fields. We first explicitly give efficiently
computable automorphisms (also isogenies) and the dual isogenies on the divisor class group of
these curves. We then exploit the automorphism in lieu of the order of the torsion group to construct
the rational functions required in Miller’s algorithm, and shorten the length of the main loop in
Miller’s algorithm as a result. Based on the new construction of the rational functions, we propose
new variants of Miller’s algorithm for computing the Tate pairing on certain non-supersingular
genus 2 curves over prime fields. In the best case, the length of the loop in our new variant can
be up to 4 times shorter than that of the original Miller’s algorithm. Furthermore, we generate
a non-supersingular pairing-friendly genus 2 curve with embedding degree 4 and compare the
performance of our new algorithm with that of the variant proposed by Ó hÉigeartaigh and Scott
[21] for supersingular genus 2 curves. Theoretical analysis shows that our new algorithm uses
56.2% fewer field operations than that of [21] for the same security level. However, the size of
the field where the non-supersingular curve is defined is 1.285 times larger than that of the field
used for supersingular curves, which somewhat offsets these gains. Nevertheless, our experimental
results show that using the non-supersingular genus 2 curve one can still obtain a 10% performance
improvement over the supersingular curve.

The rest of this paper is organized as follows. Section 2 gives a short introduction to the Tate
pairing on hyperelliptic curves and Miller’s algorithm for computing the pairing. In Section 3 we
recall supersingular genus 2 curves over prime fields which have been used for pairing computations,
and introduce two families of non-supersingular genus 2 curves with efficiently computable auto-
morphisms. In Section 4 we prove the main results of our contribution and propose new variants
of Miller’s algorithm. Section 5 details the various techniques for efficiently implementing the Tate
pairing on a non-supersingular genus 2 curve with embedding degree 4, analyzes the computational
cost of our new algorithm and gives experimental results. Finally, Section 6 concludes this paper.

2 Mathematical Background

In this section, we present a brief introduction to the definition of the Tate pairing on hyperelliptic
curves and also review Miller’s algorithm for computing pairings. For more details, the reader is
referred to [1].

2.1 Tate Pairing on Hyperelliptic Curves

Let Fq be a finite field with q elements, and Fq be its algebraic closure. Let C be a hyperelliptic
curve of genus g over Fq, and let JC denote the degree zero divisor class group of C. We say that a
subgroup of the divisor class group JC(Fq) has embedding degree k if the order n of the subgroup
divides qk − 1, but does not divide qi − 1 for any 0 < i < k. For our purpose, n should be a
(large) prime with n | #JC(Fq) and gcd(n, q) = 1. Let JC(Fqk)[n] be the n-torsion group and
JC(Fqk)/nJC(Fqk) be the quotient group. Then the Tate pairing is a well defined, non-degenerate,
bilinear map [14]:

〈·, ·〉n : JC(Fqk)[n]× JC(Fqk)/nJC(Fqk) → F∗qk/(F∗qk)n,
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defined as follows: let D1 ∈ JC(Fqk)[n], with div(fn,D1) = nD1 for some rational function fn,D1 ∈
Fqk(C)∗. Let D2 ∈ JC(Fqk)/nJC(Fqk) with supp(D1) ∩ supp(D2) = ∅ (to ensure a non-trivial
pairing value). The Tate pairing of two divisor classes D1 and D2 is then defined as

〈D1, D2〉n = fn,D1(D2) =
∏

P∈C(Fq)

fn,D1(P )ordP (D2).

Note that the Tate pairing as detailed above is only defined up to n-th powers. One can show that
if the function fn,D1 is properly normalized, we only need to evaluate the rational function fn,D1

at the effective part of the reduced divisor D2 in order to compute the Tate pairing [18].
In practice, the fact that the Tate pairing is only defined up to n-th power is usually undesirable,

and many pairing-based protocols require a unique pairing value. Hence one defines the reduced
pairing as

〈D1, D2〉(q
k−1)/n

n = fn,D1(D2)(q
k−1)/n ∈ µn ⊂ F∗qk ,

where µn = {u ∈ F∗qk | un = 1} is the group of n-th roots of unity. In the rest of this paper we will
refer to the extra powering required to compute the reduced pairing as the final exponentiation.
One of the important properties of the reduced pairing we will use in this paper is that for any
positive integer N satisfying n | N and N | qk − 1 we have

〈D1, D2〉(q
k−1)/n

n = 〈D1, D2〉(q
k−1)/N

N . (1)

2.2 Miller’s Algorithm

The main task involved in the computation of the Tate pairing 〈D1, D2〉n is to construct a rational
function fn,D1 such that div(fn,D1) = nD1. In [29] (see also [30]), Miller described a polynomial
time algorithm, known universally as Miller’s algorithm, to construct the function fn,D1 and com-
pute the Weil pairing on elliptic curves. However, the algorithm can be easily adapted to compute
the Tate pairing on hyperelliptic curves.

Let GiD1,jD1 ∈ Fqk(C)∗ be a rational function with div(GiD1,jD1) = iD1 + jD1 − (iD1 ⊕ jD1)
where ⊕ is the group law on JC and (iD1 ⊕ jD1) is reduced. Miller’s algorithm constructs the
rational function fn,D1 based on the following iterative formula:

fi+j,D1 = fi,D1fj,D1GiD1,jD1 .

Algorithm 1 shows the basic version of Miller’s algorithm for computing the reduced Tate pairing
on hyperelliptic curves according to the above iterative relation. A more detailed version of Miller’s
algorithm for hyperelliptic curves can be found in [18].

Algorithm 1 Miller’s Algorithm for Hyperelliptic Curves (basic version)

IN: D1 ∈ JC(Fqk )[n], D2 ∈ JC(Fqk ), represented by D1 and D2 with supp(D1) ∩ supp(D2) = ∅
OUT: 〈D1, D2〉(q

k−1)/n
n

1. f ← 1, T ← D1

2. for i ← blog2(n)c − 1 downto 0 do

3. . Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T )

4. f ← f2 ·GT,T (D2), T ← [2]T

5. if ni = 1 then

6. . Compute T
′

and GT,D1(x, y) such that T
′
= T + D1 − div(GT,D1)

7. f ← f ·GT,D1(D2), T ← T ⊕D1

8. Return f (qk−1)/n
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Choie and Lee [6] described how to explicitly find the rational function G(x, y) in the above
algorithm 1 for the case of genus 2 hyperelliptic curves. Their results can be summarized as follows:
Let D1 = [u1, v1] and D2 = [u2, v2] be the two reduced divisors in JC(Fqk) that are being added. In
the composition stage of Cantor’s algorithm, we compute the polynomial δ(x) which is the greatest
common divisor of u1, u2 and v1 + v2 and a divisor D

′
3 = [u

′
3, v

′
3], which is in the same divisor class

as D3 = [u3, v3] = D1 + D2. At this point, two cases may occur:

1. If the divisor D
′
3 is already reduced following the composition stage, then the rational function

G(x, y) = δ(x).

2. If this is not the case, then the rational function G(x, y) = δ(x) · y−v
′
3(x)

u3(x) .

In the most frequent cases3 δ = 1 and thus G(x, y) = y−v
′
3(x)

u3(x) .

3 Supersingular Curves and Non-supersingular Curves

In this section, we first recall supersingular genus 2 curves over Fp which have been used to
implement the Tate pairing. Then, by making a small change to the definition of these curves,
we produce two families of non-supersingular genus 2 curves over Fp with efficiently computable
automorphisms which provide potential advantages for pairing computations.

3.1 Supersingular Genus 2 Curves over Fp

Theoretically, supersingular genus 2 hyperelliptic curves exist over Fp with an embedding degree
of k = 6 [32]. However, only supersingular genus 2 curves with an embedding degree of k = 4 are
known to the cryptographic community at the present time [7]. In [6, 21], the authors investigated
the efficient implementation of the Tate pairing on supersingular genus 2 curves with embedding
degree 4. The curve used in their implementation is defined by the following equation:

C1 : y2 = x5 + a, a ∈ F∗p and p ≡ 2, 3 (mod 5).

On these supersingular curves a modified pairing 〈D1, ψ(D1)〉(p
k−1)/n

n is computed, where the
map ψ1(·) is a distortion map that maps elements in C1(Fp) to C1(Fp4). The distortion map ψ1

is given as ψ1(x, y) = (ξ5x, y), where ξ5 is a primitive 5-th root of unity in Fp4 . We also note that
another family of supersingular genus 2 curves over Fp with embedding degree 4 [7] is also suitable
for implementing pairings. Such curves are given by an equation of the form

C2 : y2 = x5 + ax, a ∈ F∗p ∩QRp and p ≡ 5 (mod 8),

where QRp denotes the set of quadratic non-residues modulo p. The distortion map for the curve
C2 is defined as ψ2(x, y) = (ξ2

8x, ξ8y), where ξ8 is a primitive 8-th root of unity in Fp4 .

3.2 Non-Supersingular Genus 2 Curves over Fp

Motivated by the work in [34, 38, 39], we consider now the following two families of non-supersingular
genus 2 hyperelliptic curves over Fp:

C ′1 : y2 = x5 + a, a ∈ F∗p and p ≡ 1 (mod 5),

C ′2 : y2 = x5 + ax, a ∈ F∗p and p ≡ 1 (mod 8).

3 For addition, the inputs are two co-prime polynomials of degree 2, and for doubling the input is a square
free polynomial of degree 2.
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Curves of this form exist which are pairing friendly (see Section 4). Note that the only difference
between the curves Ci and C ′i (i = 1, 2) is the congruence condition applied to the characteristic
p. Although distortion maps do not exist on these non-supersingular curves, both C ′1 and C ′2
have efficiently-computable endomorphisms. In fact, these endomorphisms also induce efficient
automorphisms on the divisor class groups of C ′1 and C ′2, which have been used to accelerate
the scalar multiplication for hyperelliptic curve cryptosystems [31] and to attack the discrete log
problems on the Jacobians [9, 17]. In the next section, we will show how to speed up the computation
of the Tate pairing using these efficiently computable automorphisms on the curves C ′1 and C ′2.
We first recall some basic facts which will be used in this work.

For the curve C ′1, the morphism ψ1 defined by P = (x, y) 7→ ψ1(P ) = (ξ5x, y) (see Section 3.1
and notice ξ5 ∈ Fp now) induces an efficient non-trivial automorphism of order 5 on the divisor
class group JC′1(Fp). The formulae for ψ1 on the Jacobian are given by

ψ1 : [x2 + u1x + u0, v1x + v0] 7→ [x2 + ξ5u1x + ξ2
5u0, ξ

−1
5 v1x + v0]

[x + u0, v0] 7→ [x + ξ5u0, v0]
O 7→ O.

The characteristic polynomial of ψ1 is given by P (t) = t4 + t3 + t2 + t+1. Since the automorphism
ψ1 is also an isogeny, we can construct its dual isogeny as follows:

ψ̂1 : [x2 + u1x + u0, v1x + v0] 7→ [x2 + ξ−1
5 u1x + ξ−2

5 u0, ξ5v1x + v0]
[x + u0, v0] 7→ [x + ξ−1

5 u0, v0]
O 7→ O.

Note that ψ1 ◦ ψ̂1 = [1] and #Ker ψ1 = deg[1] = 1, and ψ̂1 is also a non-trivial automorphism on
the curve C ′1.

Let D ∈ JC′1(Fp) be a reduced divisor of a large prime order n. From [31], we know that the
automorphisms ψ1 and ψ̂1 act respectively as multiplication maps by [λ1] and [λ̂1] on the subgroup
〈D〉 of JC′1(Fp), where λ1 and λ̂1 are the two roots of the equation t4 + t3 + t2 + t+1 ≡ 0 (mod n).
Furthermore, it is easily seen that [λ1]D = ψ1(D) can be obtained with only three or one field
multiplications in Fp for a general divisor and a degenerate divisor, respectively. In the genus 2
context, a general divisor has two finite points in the support, whereas a degenerate divisor has
only a single finite point in its support.

Similarly, for the curve C ′2, the morphism ψ2 defined by P = (x, y) 7→ ψ2(P ) = (ξ2
8x, ξ8y) (see

Section 3.1 and notice ξ8 ∈ Fp now) induces an efficient non-trivial automorphism of order 8 on
the divisor class group JC(Fp) as follows.

ψ2 : [x2 + u1x + u0, v1x + v0] 7→ [x2 + ξ2
8u1x + ξ4

8u0, ξ
−1
8 v1x + ξ8v0]

[x + u0, v0] 7→ [x + ξ2
8u0, ξ8v0]

O 7→ O.

The characteristic polynomial of ψ2 is given by P (t) = t4 + 1 and the dual isogeny of ψ2 is defined
as follows

ψ̂2 : [x2 + u1x + u0, v1x + v0] 7→ [x2 + ξ−2
8 u1x + ξ4

8u0, ξ8v1x + ξ−1
8 v0]

[x + u0, v0] 7→ [x + ξ−2
8 u0, ξ

−1
8 v0]

O 7→ O.

It is not difficult to show that ψ2 ◦ ψ̂2 = [1] and # Ker ψ2 = deg[1] = 1, and ψ̂2 is also a non-
trivial automorphism on the curve C ′2. Let D ∈ JC′2(Fp) be a reduced divisor of a large prime
order n. Then the automorphism ψ2 acts as a multiplication map by λ2 on the subgroup 〈D〉 of
JC′2(Fp), where λ2 is a root of the equation t4 + 1 ≡ 0 (mod n). Moreover, [λ2]D = ψ2(D) can
be computed with four or two field multiplications in Fp for a general divisor and a degenerate
divisor, respectively.
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4 Efficient Pairings on Non-supersingular Genus 2 Curves

In this section we investigate efficient algorithms for computing the Tate pairing on the two families
of genus 2 hyperelliptic curves C ′1 and C ′2 defined in Section 3.2. We show how to use the efficiently-
computable automorphisms on these curves to shorten the length of the loop in Miller’s algorithm.
As a result, we propose new variants of Miller’s algorithm for certain non-supersingular genus 2
curves over large prime fields.

4.1 Pairing Computation with Efficient Automorphisms

In this subsection, we present the main results of this paper in the following theorems and show
their correctness. The pairing computation on the curve C ′1 is first examined.

Theorem 1. Let C ′1 be a non-supersingular genus 2 hyperelliptic curve over Fp as above, with
embedding degree k > 1 and automorphisms ψ1 and ψ̂1 defined as above. Let D1 = [u1(x), v1(x)] ∈
JC′1(Fp) be a reduced divisor of prime order n, where n2 - #JC′1(Fp). Let [λ1] act as the multi-
plication map on the subgroup 〈D1〉 defined as above such that [λ1]D1 = ψ1(D1). Suppose m ∈ Z
is such that mn = λ4

1 + λ3
1 + λ2

1 + λ1 + 1. Let rational functions c1(x,y)
d1(x,y) ,

c2(x,y)
d2(x,y) ,

c3(x,y)
d3(x,y) ∈ Fp(C ′1)

∗

respectively satisfy the following three relations:

[λ1]D1 + [λ2
1]D1 −

(
[λ1]D1 ⊕ [λ2

1]D1

)
= div

(
c1(x, y)
d1(x, y)

)
,

[
λ3

1

]
D1 + [λ4

1]D1 −
(
[λ3

1]D1 ⊕ [λ4
1]D1

)
= div

(
c2(x, y)
d2(x, y)

)
,

[
λ1 + λ2

1

]
D1 + [λ3

1 + λ4
1]D1 −

(
[λ1 + λ2

1]D1 ⊕ [λ3
1 + λ4

1]D1

)
= div

(
c3(x, y)
d3(x, y)

)
.

Let g(x, y) = c1(x,y)·c2(x,y)·c3(x,y)
d1(x,y)·d2(x,y) . Then for D2 ∈ JC′1(Fpk), we have

〈D1, D2〉
m(pk−1)

n
n =

[
f

λ3
1+λ2

1+λ1+1
λ1,D1

(D2) · fλ2
1+λ1+1

λ1,D1

(
ψ̂1(D2)

)
· fλ1+1

λ1,D1

(
ψ̂

2
1(D2)

)
· fλ1,D1

(
ψ

2
1(D2)

)
· g(D2)

] pk−1
n

.

Note that the condition that λ1 satisfies λ4
1 + λ3

1 + λ2
1 + λ1 + 1 ≡ 0 (mod n) guarantees the

existence of the integer m. Furthermore, the pairing value 〈D1, D2〉m(pk−1)/n
n will be non-degenerate

if n - m and supp(D1) ∩ supp(D2) = ∅. We split the proof of the Theorem 1 into the following
lemmas.

Lemma 1. With the notation as above, we have

〈D1, D2〉
m(pk−1)

n
n =

(
fλ4

1+λ3
1+λ2

1+λ1,D1
(D2) · u1(D2)

) pk−1
n

.

Proof. From the important property of the reduced pairing (see equation (1)), we have

〈D1, D2〉
m(pk−1)

n
n = 〈D1, D2〉

pk−1
n

mn = fmn,D1(D2)
pk−1

n .

From the condition that mn = λ4
1 + λ3

1 + λ2
1 + λ1 + 1, we get

〈D1, D2〉
m(pk−1)

n
n = fmn,D1(D2)

pk−1
n = fλ4

1+λ3
1+λ2

1+λ1+1,D1
(D2)

pk−1
n .

Since [λ4
1 + λ3

1 + λ2
1 + λ1]D1 = −D1, we obtain the following relation

D1 + [λ1 + λ2
1 + λ3

1 + λ4
1]D1 = D1 + (−D1) = div(u1(x)).
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Therefore, we have

div
(
fλ4

1+λ3
1+λ2

1+λ1+1,D1

)
= (λ4

1 + λ3
1 + λ2

1 + λ1)D1 + D1

= div
(
fλ4

1+λ3
1+λ2

1+λ1,D1

)
+ D1 + [λ1 + λ2

1 + λ3
1 + λ4

1]D1

= div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
,

which proves the result.

The next lemma shows the relation between the divisor div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
and the

divisors div
(
fλ1,[λi

1]D1

)
for i = 0, 1, 2, and 3.

Lemma 2. With the notation as above, we have

div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
= div

(
f

λ3
1+λ2

1+λ1+1
λ1,D1

· fλ2
1+λ1+1

λ1,[λ1]D1
· fλ1+1

λ1,[λ2
1]D1

· fλ1,[λ3
1]D1

· g(x, y)
)

.

Proof. We first note the following relation

div
(

f
λ4
1+λ3

1+λ2
1+λ1,D1

)
= (λ

4
1 + λ

3
1 + λ

2
1 + λ1)D1 − [λ

4
1 + λ

3
1 + λ

2
1 + λ1]D1

= div
(

f
λ4
1+λ3

1,D1

)
+ div

(
f

λ2
1+λ1,D1

)
+ [λ1 + λ

2
1]D1 + [λ

3
1 + λ

4
1]D1 −

(
[λ1 + λ

2
1]D1 ⊕ [λ

3
1 + λ

4
1]D1

)

= div
(

f
λ4
1+λ3

1,D1

)
+ div

(
f

λ2
1+λ1,D1

)
+ div

(
c3(x, y)

d3(x, y)

)

= div

(
f

λ4
1+λ3

1,D1
· f

λ2
1+λ1,D1

· c3(x, y)

d3(x, y)

)

Since [λ4
1 + λ3

1 + λ2
1 + λ1]D1 = −D1, we get d3(x, y) = u1(x). Therefore, we have

div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
= div

(
fλ4

1+λ3
1,D1

· fλ2
1+λ1,D1

· c3(x, y)
)

. (2)

Similarly, we can obtain the following two equalities

div
(
fλ4

1+λ3
1,D1

)
= (λ4

1 + λ3
1)D1 − [λ4

1 + λ3
1]D1

= div
(
fλ4

1,D1

)
+ div

(
fλ3

1,D1

)
+ [λ4

1]D1 + [λ3
1]D1 −

(
[λ3

1]D1 ⊕ [λ4
1]D1

)

= div
(
fλ4

1,D1

)
+ div

(
fλ3

1,D1

)
+ div

(
c2(x, y)
d2(x, y)

)

= div
(

fλ4
1,D1

· fλ3
1,D1

· c2(x, y)
d2(x, y)

)
(3)

and

div
(
fλ2

1+λ1,D1

)
= (λ2

1 + λ1)D1 − [λ2
1 + λ1]D1

= div
(
fλ2

1,D1

)
+ div (fλ1,D1) + [λ2

1]D1 + [λ1]D1 −
(
[λ1]D1 ⊕ [λ2

1]D1

)

= div
(
fλ2

1,D1

)
+ div (fλ1,D1) + div

(
c1(x, y)
d1(x, y)

)

= div
(

fλ2
1,D1

· fλ1,D1 ·
c1(x, y)
d1(x, y)

)
(4)
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Some easy calculations (see Lemma 2 in [2]) give us

div
(
fλ4

1,D1

)
= div

(
f

λ3
1

λ1,D1
· fλ2

1
λ1,[λ1]D1

· fλ1
λ1,[λ2

1]D1
· fλ1,[λ3

1]D1

)
(5)

div
(
fλ3

1,D1

)
= div

(
f

λ2
1

λ1,D1
· fλ1

λ1,[λ1]D1
· fλ1,[λ2

1]D1

)
(6)

div
(
fλ2

1,D1

)
= div

(
fλ1

λ1,D1
· fλ1,[λ1]D1

)
(7)

Combining the equations (2)–(7) proves the result.

The following lemma shows how to evaluate functions fλ1,[λi
1]D1

(i = 1, 2, 3) at the image divisor
D2 by using the function fλ1,D1 .

Lemma 3. With the notation as above, we have (up to a scalar multiple in F∗p)

fλ1,[λ1]D1(D2) = fλ1,D1(ψ̂1(D2)),

fλ1,[λ2
1]D1

(D2) = fλ1,D1(ψ̂
2
1(D2)),

fλ1,[λ3
1]D1

(D2) = fλ1,D1(ψ
2
1(D2)).

Proof. Using the pullback property (see Silverman [36] p. 33) and following the same proof as the
Lemma 1 in [2], we obtain (up to a scalar multiple in F∗p)

fλ1,[λ1]D1 ◦ ψ1 = fλ1,D1 ,

fλ1,[λ2
1]D1

◦ ψ2
1 = fλ1,D1 ,

fλ1,[λ3
1]D1

◦ ψ3
1 = fλ1,D1 .

Using the relations between the isogeny ψ1 and its dual isogeny ψ̂1 (see Section 3.2), we have

fλ1,[λ1]D1 ◦ ψ1 ◦ ψ̂1 = fλ1,[λ1]D1 = fλ1,D1 ◦ ψ̂1,

fλ1,[λ2
1]D1

◦ ψ2
1 ◦ ψ̂2

1 = fλ1,[λ2
1]D1

= fλ1,D1 ◦ ψ̂2
1 ,

fλ1,[λ3
1]D1

◦ ψ3
1 ◦ ψ̂3

1 = fλ1,[λ3
1]D1

= fλ1,D1 ◦ ψ̂3
1 = fλ1,D1 ◦ ψ2

1 ,

which proves the results.

With the above three lemmas, we can now prove the statement of Theorem 1 as follows:

Proof (of Theorem 1). For D1 ∈ JC′1(Fp)[n] and D2 ∈ JC′1(Fpk), Lemma 3 shows that

fλ1,[λ1]D1(D2) = fλ1,D1(ψ̂1(D2)),

fλ1,[λ2
1]D1

(D2) = fλ1,D1(ψ̂
2
1(D2)),

fλ1,[λ3
1]D1

(D2) = fλ1,D1(ψ
2
1(D2)),

Now, substituting the above three equalities into Lemma 2 implies that

f
λ4
1+λ3

1+λ2
1+λ1,D1

(D2) · u1(D2) = f
λ3
1+λ2

1+λ1+1
λ1,D1

(D2) · fλ2
1+λ1+1

λ1,D1

(
ψ̂1(D2)

)
· fλ1+1

λ1,D1

(
ψ̂

2
1(D2)

)
· fλ1,D1

(
ψ

2
1(D2)

)
· g(D2).

Finally, substituting the above equation into Lemma 1 gives the result of Theorem 1.

Next, we consider how to use the efficiently-computable automorphism ψ2 to accelerate the
computation of the Tate pairing on the curve C ′2. The following Theorem 2 describes our result.
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Theorem 2. Let C ′2 be a non-supersingular genus 2 hyperelliptic curve over Fp as above, with
embedding degree k > 1 and automorphisms ψ2 and ψ̂2 defined as above. Let D1 = [u1(x), v1(x)] ∈
JC′2(Fp) be a reduced divisor of prime order n, where n2 - #JC′2(Fp). Let [λ2] act as the multipli-
cation map on the subgroup 〈D1〉 defined as above such that [λ2]D1 = ψ2(D1). Suppose m ∈ Z is
such that mn = λ4

2 + 1. Then for D2 ∈ JC′2(Fpk), we have

〈D1, D2〉
m(pk−1)

n
n =

[
f

λ3
2

λ2,D1
(D2) · fλ2

2
λ2,D1

(
ψ̂2(D2)

)
· fλ2

λ2,D1

(
ψ̂

2
2(D2)

)
· fλ2,D1

(
ψ̂

3
2(D2)

)
· u1(D2)

] pk−1
n

.

Proof. The proof is similar with that of Theorem 1. Therefore, we omit it here.

From Theorem 1 and Theorem 2, we note that the pairing computation on curve C ′2 is more
efficient than that on curve C ′1. Hence, the following discussions only focus on the curve C ′2.

4.2 A New Variant of Miller’s Algorithm

In this subsection, we propose a new variant of Miller’s algorithm for the family of genus 2 hyper-
elliptic curves C ′2 over Fp with efficiently computable automorphisms ψ2 and ψ̂2. From Theorem 2,
we obtain the following new algorithm for computing the Tate pairing on such curves C ′2, which is
a variant of Miller’s Algorithm (see Algorithm 1 in Section 2.2).

Algorithm 2 Computing the Tate Pairing with Efficient Automorphisms

IN: D1 = [u1, v1] ∈ JC′2(Fp)[n], D2 ∈ JC′2(Fpk ), represented by D1 and D2 with supp(D1) ∩ supp(D2) = ∅,
λ2 = (er, er−1, . . . , e0)2, where ei ∈ {0, 1} for i = 0, . . . , r − 1 and er = 1, and mn = λ4

2 + 1.

OUT: 〈D1, D2〉m(pk−1)/n
n

1. T ← D1, f1 ← 1, f2 ← 1, f3 ← 1, f4 ← 1, f5 ← u1(D2)

2. for i from r − 1 downto 0 do

3. . Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T )

4. T ← [2]T

5. f1 ← f2
1 ·GT,T (D2), f2 ← f2

2 ·GT,T (ψ̂2(D2)), f3 ← f2
3 ·GT,T (ψ̂2

2(D2)), f4 ← f2
4 ·GT,T (ψ̂3

2(D2))

6. if ei = 1 then

7. . Compute T
′

and GT,D1(x, y) such that T
′
= T + D1 − div(GT,D1)

8. T ← T ⊕D1

9. f1 ← f1 ·GT,D1(D2), f2 ← f2 ·GT,D1(ψ̂2(D2)), f3 ← f3 ·GT,D1(ψ̂
2
2(D2)), f4 ← f4 ·GT,D1(ψ̂

3
2(D2))

10. f ← ((fλ2
1 · f2)

λ2 · f3)
λ2 · f4 · f5

11. f ← f (pk−1)/n

12. Return f

For the curve C ′1, we can also obtain a similar variant of Miller’s algorithm as in Algorithm 2,
based on Theorem 1.

5 Implementing the Tate Pairing with Efficient Automorphisms

In this section, we describe various techniques that enable the efficient implementation of the Tate
pairing on a non-supersingular genus 2 curve of type C ′2 over Fp. Furthermore, we also analyze the
computational cost of our new algorithm in detail and give timings for our implementation.
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5.1 Curve Generation

While generating suitable parameters for supersingular genus 2 hyperelliptic curves over prime
fields is easy, it seems to be more difficult to generate pairing-friendly non-supersingular genus 2
curves over Fp because of the complicated algebraic structure of hyperelliptic curves. Only a few
results have appeared in the literature to address this issue [12, 16, 23, 25] and there is ongoing
research in this direction. In [12], Freeman proposed the first explicit construction of pairing-
friendly genus 2 hyperelliptic curves over prime fields with ordinary Jacobians by modeling on the
Cocks-Pinch method for the elliptic curve case [8]. In the appendix of [12], we find two examples
which belong to the curve family C ′1 considered in this paper. Unfortunately, the curve parameters
in the two examples are too large to be optimal for efficient implementation. In a recent paper
[25], Kawazoe and Takahashi presented two different approaches for explicitly constructing pairing-
friendly genus 2 curves of the type y2 = x5 + ax over Fp. One is an analogue of the Cocks-Pinch
method and the other is a cyclotomic method. Their findings are based on the closed formulae
[15, 19] for the order of the Jacobian of hyperelliptic curves of the above type. In this paper we
will restrict to the case p ≡ 1 (mod 8) and generate a suitable non-supersingular pairing-friendly
genus 2 hyperelliptic curves C ′2 with embedding degree 4 using the theorems in [25]. The reason
that we only consider curves with embedding degree 4 in this section is to facilitate performance
comparisons between supersingular and non-supersingular genus 2 curves. However, we would like
to point out that non-supersingular curves with higher embedding degree are available from [25]
and that our method is also applicable to such curves.

To find good curve parameters which are suitable for applying our new algorithm, we use the
following searching strategies. From Theorem 2 we note that the subgroup order n should satisfy
mn = λ4

2 + 1 for an integer m. Assume that we require the (160/1024) bit security level. Then
n is a prime around 160 bits and λ2 is at least 40 bits. Furthermore, since the bit length of λ2

determines the length of the loop in Algorithm 2, λ2 should be taken as small as possible. Based
on these observations, we first check all λ2’s of the form λ2 = 2a, a ∈ {41, 42, . . . , 60}. We found
two λ2’s, namely λ2 = 258 and 259, for which λ4

2 + 1 has a prime factor of 164 bits and 162
bits, respectively. However, using the above two primes as the subgroup order n and running the
algorithms of [25], we cannot find any curve. Therefore, we consider the slightly more complicated
choice of λ2 = 2a + 2b, where a, b ∈ {41, 42, . . . , 50} and a > b. After a couple of trials, we found
that choosing λ2 = 243 + 210 generates a non-supersingular pairing-friendly genus 2 hyperelliptic
curve whose Jacobian has embedding degree 4 with respect to a 163-bit prime n. The curve is
given by the equation

C∗2 : y2 = x5 + 9x

over Fp, for a 329-bit prime p, where the hexadecimal representations of n and p are as follows

n = 00000006 a37991af 81ddfa3a ead6ec83 1ca0fc44 75d5add9 (163 bits)

p = 0000016b 953ca333 acf202b3 0476f30f ff085473 6d0a0be4

c542fa48 66e5afba 7bc6cd6d 21ca9fad eef796f1 (329 bits)

In the following five subsections, we will detail various techniques required to efficiently imple-
ment the calculation of the Tate pairing on the above curve C∗2 .

5.2 Finite Field Arithmetic

As the embedding degree of the curve C∗2 in our implementation is k = 4, we first discuss how to
construct the finite field Fp4 . Rather than construct Fp4 as a direct quartic extension of Fp, the
best way is to define the field Fp4 as a quadratic extension of Fp2 , which is in turn a quadratic
extension of Fp. Since the p is congruent to 5 modulo 12 in our implementation, the field Fp2

can be constructed by the irreducible binomial x2 + 3 and the field Fp4 can be constructed as a
quadratic extension of Fp2 by the irreducible binomial x2 −√−3. Letting β = −3, elements of the
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field Fp2 can be represented as a + b
√

β, where a, b ∈ Fp, whereas elements of the field Fp4 can be
represented as c + d 4

√
β, where c, d ∈ Fp2 . Under this tower construction, a multiplication of two

elements and a squaring of one element in Fp4 cost 9M and 6M in Fp, respectively [21].

5.3 Encapsulated Group Operations

In [11], Fan et. al. proposed a method to encapsulate the computation of the line function with the
group operations for genus 2 hyperelliptic curves over prime fields, and derived new mix-addition
and doubling formulae in projective and new (weighted projective) coordinates, respectively. Ap-
plying their explicit formulae to the curve C∗2 defined above, we can respectively calculate the
divisor class addition and doubling with 36M + 5S and 35M + 5S in Fp in new coordinates. We
also include their explicit formulae in the appendix with some modifications for the curve C∗2 .

5.4 Using Degenerate Divisors and Denominator Elimination

For a hyperelliptic curve of genus g > 1, using a degenerate divisor as the image divisor is more
efficient than using a general divisor when evaluating line functions. Frey and Lange [13] discussed
in detail when it is permissible to choose a degenerate divisor as the second argument of Miller’s
algorithm. They also note that, when the embedding degree k is even, one might choose the second
pairing argument from a set S = {(x, y) ∈ C(Fqk) | x ∈ Fqk/2 , y ∈ Fqk\Fqk/2}. Note that the point
in the set S is on the quadratic twist of C/Fqk/2 . When considering C∗2 as a curve defined over Fp2 ,
we can define a quadratic twist of C∗2 over Fp2 , denoted by C∗2,t, as follows

C∗2,t : y2 = x5 + 9c4x,

where c ∈ Fp2 is a quadratic non-residue over Fp2 . It is known that C∗2,t(Fp4) ∼= C∗2 (Fp4) and the
isomorphism of C∗2,t(Fp4) and C∗2 (Fp4) also induces an isomorphism φ of JC∗2,t

(Fp4) and JC∗2 (Fp4)
[26]. As in [11] we first generate a degenerate divisor class Dt = [x − xt, yt] ∈ JC∗2,t

(Fp2) on the
twisted curve C∗2,t/Fp2 . Then the isomorphism φ will map Dt to a degenerate divisor class D2 =
φ(Dt) = [x − c−1xt, c

−5/2yt] ∈ JC∗2 (Fp4) on the curve C∗2 over Fp4 . Note that the denominator
elimination technique applies in this case since x− c−1xt is defined over Fp2 . Furthermore, we do
not need to compute f5 = u1(D2) ∈ Fp2 in Algorithm 2 either, for the same reason.

5.5 Evaluating Line Functions at A Degenerate Divisor

Here we consider the evaluation of line functions at a degenerate divisor D2 = [x − x2, y2] ∈
JC∗2 (Fp4) generated by the method in Section 5.4, where x2 = c−1xt ∈ Fp2 and y2 = c−5/2yt ∈
Fp4\Fp2 . Moreover, we further assume that in this work c =

√−3 is taken as a quadratic non-
residue over Fp2 . Therefore, y2 has only two non-zero coefficients instead of four in a polynomial
basis representation of Fp4 . Furthermore, since the denominator elimination technique applies in
this case, we only need to evaluate the numerators of the rational functions at D2. From [11] we
know that in new coordinates we can respectively work with the numerators c1(x, y) = (r̃z11)y −
((s′1z11)x3+l2x

2+l1x+l0) for group doubling and c2(x, y) = (r̃z21)y−((s′1z21)x3+l2x
2+l1x+l0) for

group addition, where r̃, z11, z21, z31, s
′
1, l2, l1 and l0 are from Table 4 and Table 5 in the appendix.

Note that in Algorithm 2 we need to evaluate the function ci(x, y), i = 1 or 2 at four image divisors
D2 = [x − x2, y2], ψ̂2(D2) = [x − ξ−2

8 x2, ξ
−1
8 y2], ψ̂2

2(D2) = [x − ξ4
8x2, ξ

−2
8 y2] = [x + x2, ξ

−2
8 y2] and

ψ̂3
2(D2) = [x− ξ2

8x2, ξ
−3
8 y2] for each iteration of the loop. Hence we have the following relations

ci(D2) = (r̃z11)y2 − [((s′1z11)x3
2 + l1x2) + (l2x2

2 + l0)],

ci(ψ̂2(D2)) = ((r̃z11)y2)ξ−1
8 − [((s′1z11)x3

2 − l1x2)ξ2
8 − (l2x2

2 − l0)],

ci(ψ̂2
2(D2)) = ((r̃z11)y2)ξ−2

8 + [((s′1z11)x3
2 + l1x2) − (l2x2

2 + l0)],

ci(ψ̂3
2(D2)) = ((r̃z11)y2)ξ−3

8 + [((s′1z11)x3
2 − l1x2)ξ2

8 + (l2x2
2 − l0)].
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We assume that x2
2, x

3
2, ξ

−1
8 and ξ2

8 are precomputed with 7M + 2S over Fp. Since x2, x
2
2 and x3

2

are in Fp2 and y2 has only two non-zero coefficients in the polynomial basis representation of Fp4 ,
ci(D2) can be computed with 10M over Fp. By reusing the intermediate computation results, we
can compute ci(ψ̂2(D2)), ci(ψ̂2

2(D2)) and ci(ψ̂3
2(D2)) with 4M , 2M and 2M over Fp, respectively.

Therefore, the total cost of evaluating the function ci(x, y) at the degenerate divisor D2 is 18M
over Fp per iteration, with a precomputation of 7M + 2S. For the case of evaluating the rational
functions at a general divisor, the reader is referred to [11].

5.6 Final Exponentiation

For a genus 2 curve with an embedding degree of k = 4, the output of Miller’s algorithm needs to
be raised to the power of (p4−1)/n. Calculating this exponentiation can follow two steps as shown
in [21]. Letting f ∈ Fp4 be the output of Miller’s algorithm, the first step is to compute fp2−1

which can be obtained with a conjugation with respect to Fp2 and 1I + 1M in Fp4 . The remaining
exponentiation to (p2 + 1)/n is an expensive operation which can be efficiently computed with the
Lucas laddering algorithm [35] for the curve C∗2 in question.

5.7 Performance Analysis and Comparison

In this section, we analyze the computational complexity of the Algorithm 2 for calculating the
Tate pairing on non-supersingular genus 2 hyperelliptic curves C ′2 and compare the performance
of pairing computations on supersingular and non-supersingular genus 2 curves over prime fields
with the same embedding degree of k = 4 .

We first analyze the algebraic complexity of the pairing computation on curves C ′2 with our new
algorithm (see Section 4.2). Recall that n is the subgroup order and λ2 is a root of the equation
λ4 + 1 ≡ 0 mod n. We assume that the embedding degree k is even and the line functions in
Algorithm 2 are evaluated at a degenerate divisor D2 instead of a general divisor for efficiency
reasons. We also assume that λ2 has a random Hamming weight, meaning that about

(
1
2 log2 λ2

)
additions take place in Algorithm 2 on average. Then the algebraic cost for computing the Tate
pairing is given as (without including the cost of the final exponentiation)

T1 + (log2 λ2)(TD + TG + 4Tsk + 8Tmk) +
(

1
2

log2 λ2

)
(TA + TG + 8Tmk) + T10,

where

1. T2 – the cost of precomputing f5 in Step 1 of Algorithm 2.
2. TD – the cost of doubling a general divisor.
3. TA – the cost of adding two general divisors.
4. TG – the cost of evaluating rational function G(x, y) at the image divisors D2, ψ̂2(D2), ψ̂2

2(D2)
and ψ̂3

2(D2).
5. Tsk – the cost of squaring in Fpk .
6. Tmk – the cost of multiplication in Fpk .
7. T10 – the cost of computing f in Step 10 of Algorithm 2.

When applying various optimization techniques detailed in previous subsections to the partic-
ular curve C∗2 , we can further reduce the above cost of computing the Tate pairing to

43 · (TD + TG + 4Tsk + 4Tmk) + (TA + TG + 4Tmk) + T10,

where TD = 35M + 5S, TA = 36M + 5S, TG = 18M, Tsk = 6M, Tmk = 9M and T10 = 828M .
Furthermore, we also need 7M + 2S for precomputations (see Section 5.5). Note that all multi-
plications and squarings here are over Fp. Therefore, the total cost of computing the Tate pairing
with our optimizations is given as 5784M + 222S in Fp.
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In [6, 11, 21], the authors examined the implementation of the Tate pairing on a family of
supersingular genus 2 hyperelliptic curves C1 (see Section 3.1) over prime fields with embedding
degree 4 in affine and projective coordinates, respectively. We compare the performance of pairing
computations on the supersingular curve C1 and the non-supersingular curve C∗2 in the following
Table 1. Note that both curves have the same embedding degree of k = 4.

Table 1. Performance Comparison of Pairing Computation on Curves C1 and C∗2 (k = 4)

Reference Curve Equation Coordinate Type Cost

Choie and Lee [6] Affine 240I, 17688M, 2163S

Ó hÉigeartaigh and Scott [21] C1 : y2 = x5 + a, Affine 162I, 10375M, 645S

Fan, Gong and Jao [11] a ∈ F∗p, p ≡ 2, 3 mod 5 Projective 13449M, 647S

New 12967M, 811S

This work C∗2 : y2 = x5 + 9x, New 5784M, 222S

p ≡ 1 mod 8

From Table 1, we note that for the same security level the computation of the Tate pairing on the
non-supersingular genus 2 curve C∗2 is algebraically about 56.2% faster than on the supersingular
genus 2 curve C1, under the assumption that field squarings have cost S = 0.8M . Therefore, our
algorithm improves previous work for pairing computations on genus 2 hyperelliptic curves over
prime fields by a considerable margin.

5.8 Experimental Results

For verifying our theoretical analysis in Section 5.7, we report implementation results of computing
the Tate pairing on the supersingular genus 2 curve C1 and non-supersingular genus 2 curve C∗2
in this section. Both curves are defined over Fp and have an embedding degree of k = 4. The code
was written in C and Microsoft Developer Studio 6 was used for compilation and debugging on
a Core 2 DuoTM@2.67 GHz processor. For the curve C1 and the (160/1024) bit security level we
use the curve parameters that are generated in [21], where the subgroup order n = 2159 + 217 + 1
is a Solinas prime [37] and the characteristic p of the finite field Fp is a 256-bit prime. Recall that
the curve C∗2 is defined over a prime field of size 329 bits (see Section 5.1). The operations in the
above two prime fields are implemented with various efficient algorithms in [20]. Table 2 shows
the timings of our finite field library and the corresponding MI-ratio. From Table 2 we note that
the MI-ratios are sufficiently large for the two prime fields in our implementation that using new
coordinates and encapsulated group operations [11] can provide better performance than using
affine coordinates in this case.

Table 2. Timings of Prime Field Fp Library

Curve # of bits of p Multiplication (M) Squaring (S) Inversion (I) MI -ratio

C1 256 0.84µs 0.78µs 41.9µs 53.7

C∗2 329 1.40µs 1.30µs 64.6µs 46.1

Table 3 summarizes previous work and our experimental results for the implementation of the
Tate pairing on the curve C1 and C∗2 for the (160/1024) bit security level. All of the timings are
given in milliseconds.
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Table 3. Experimental Results – (160/1024) Security Level

Reference Curve Coordinate Type Subgroup Order Running Time (ms)

Choie and Lee [6] C1 Affine Random 515

Ó hÉigeartaigh and Scott [21] C1 Affine n = 2159 + 217 + 1 16

This work C1 New n = 2159 + 217 + 1 14.9

C∗2 New λ2 = 243 + 210 13.4

From Table 3, we note that in our implementation the pairing computation on the curve C∗2
is about 10% faster than that on the curve C1, in contrast to the algebraic complexity analysis
in Section 5.7. The reason is that the sizes of the fields over which both curves are defined are
different. Observe that the curve C∗2 is defined over a larger prime field than C1, which significantly
decreases the speed of computing the final exponentiation of the Tate pairing when the curve C∗2
is used. This explains why our new algorithm only obtains a 10% performance improvement in
the implementation. Unfortunately, under current techniques for generating pairing-friendly non-
supersingular genus 2 hyperelliptic curves, we cannot find such a curve of the form y2 = x5 + ax
defined over a 256-bit prime field with an embedding degree of k = 4. Nevertheless, despite the
unequal field size, our implementation on the curve C∗2 is still slightly faster, even though strictly
speaking a direct comparison between fields of different size is complicated as many factors could
affect the comparison one way or another.

6 Conclusion

In this paper, we have proposed new variants of Miller’s algorithm for computing the Tate pairing
on two families of non-supersingular genus 2 hyperelliptic curves over prime fields with efficiently
computable automorphisms. We describe how to use the automorphisms to shorten the length
of the main loop of Miller’s algorithm. As a case study, we combine our new algorithm with
various optimization techniques in the literature to efficiently implement the Tate pairing on a
non-supersingular genus 2 curve y2 = x5 + 9x over Fp with an embedding degree of k = 4.
We also analyze the performance for the new algorithm in detail. When compared with pairing
computations on supersingular genus 2 curves at the same security level, our new algorithm can
obtain 56.2% performance improvements algebraically. Furthermore, favorable experimental results
have been obtained for the implementation of the Tate pairing on both a supersingular and a non-
supersingular genus 2 curve with embedding degree 4.
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Appendix: Explicit Formulae for Genus 2 Curves over Fp

In this appendix, we give efficient explicit formulae for group operations on genus 2 curves over
Fp in new coordinates in the context of pairing computations. Table 4 and Table 5 address the
cases of new coordinates. Given two divisor classes E1 and E2, Table 4 computes the divisor class
E3 = [u3(x), v3(x)] and the rational function l(x) such that E1 + E2 = E3 + div

(
y−l(x)
u3(x)

)
in the

new coordinate system, where l(x) = s′1
rz23

x3 + l2
rz24

x2 + l1
rz24

x+ l0
rz24

. For doubling a reduced divisor
class E1, Table 5 calculates the divisor class E3 = [u3(x), v3(x)] and the rational function l(x) such
that 2E1 = E3+div

(
y−l(x)
u3(x)

)
in projective coordinates, where l(x) = s′1

rz13
x3+ l2

rz14
x2+ l1

rz14
x+ l0

rz14
.
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Table 4. Mixed-Addition Formula on a Genus 2 Curve over Fp (New Coordinates) [11]

Input Genus 2 HEC C : y2 = x5 + ax

E1 = [U11, U10, V11, V10, 1, 1, 1, 1] and E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = E1 ⊕ E2

l(x) such that E1 + E2 = E3 + div
(

y−l(x)
u3(x)

)

Step Expression Cost

1 Compute resultant and precomputations: 7M, 1S

z23 = Z21Z22, z24 = z21z23, Ũ11 = U11z21, Ũ10 = U10z21, y1 = Ũ11 − U21

y2 = U20 − Ũ10, y3 = U11y1, y4 = y2 + y3, r = y2y4 + y2
1U10

2 Compute almost inverse of u2 mod u1: –

inv1 = y1, inv0 = y4

3 Compute s′: 7M

w0 = V10z24 − V20, w1 = V11z24 − V21, w2 = inv0w0

w3 = inv1w1, s
′
1 = y1w0 + y2w1, s

′
0 = w2 − U10w3

4 Precomputations: 4M, 3S

r̃ = rz23, R = r̃2, Z31 = s′1Z21, Z32 = r̃Z21, z31 = Z2
31, z32 = Z2

32, s̃
′
0 = s′0z21

5 Compute l: 5M

l2 = s′1U21 + s̃′0, l0 = s′0U20 + rV20

l1 = (s′1 + s′0)(U21 + U20)− s′1U21 − s′0U20 + rV21

6 Compute U3: 7M, 1S

w1 = Ũ11 + U21, U31 = s′1(2s̃′0 − s′1y1)− z32, l
′
1 = l1s

′
1

U30 = s̃′0(s
′
0 − 2s′1U11) + s

′2
1 (y3 − Ũ10 − U20) + 2l′1 + Rw1

7 Compute V3: 6M

w1 = l2s
′
1 − U31, V30 = U30w1 − z31(l0s

′
1), V31 = U31w1 + z31(U30 − l′1)

Sum 36M, 5S

Table 5. Doubling Formula on a Genus 2 Curve over Fp (New Coordinates) [11]

Input Genus 2 HEC C : y2 = x5 + ax

E1 = [U11, U10, V11, V10, Z11, Z12, z11, z12]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = [2]E1

l(x) such that 2E1 = E3 + div
(

y−l(x)
u3(x)

)

Step Expression Cost

1 Compute resultant and precomputations: 5M, 2S

Ũ10 = U10z11, Ṽ11 = 2V11, Ṽ10 = 2V10, z̃11 = Ṽ10z11, w0 = V 2
11

w1 = U2
11, w2 = 4w0, w3 = z̃11 − U11Ṽ11, r = Ũ10w2 + z̃11w3

2 Compute almost inverse: –

inv′1 = −Ṽ11, inv′0 = w3

3 Compute k′: 3M

w4 = 2Ũ10, k
′
1 = z12(3w1 − w4), k

′
0 = (z12U11)(2w4 − w1)− w0

4 Compute s′: 6M

w0 = k′0inv′0, w1 = k′1inv′1, s
′
1 = z11(z̃11k

′
1 − Ṽ11k

′
0), s

′
0 = w0 − Ũ10w1

5 Precomputations: 5M, 3S

z13 = Z11Z12, r̃ = rz13, R = r̃2, Z31 = s′1Z11

Z32 = r̃Z11, z31 = Z2
31, z32 = Z2

32, s̃
′
0 = s′0z11

6 Compute l: 5M

l2 = s′1U11 + s̃′0, l0 = s′0U10 + rV10, r
′ = rV11

l1 = (s′1 + s′0)(U11 + U10)− s′1U11 − s′0U10 + r′

7 Compute U3: 4M

U30 = 2(r′s′1 + RU11) + s′0s̃
′
0, U31 = 2s′1s̃

′
0 − z32

8 Compute V3: 7M

w1 = l2s
′
1 − U31, V30 = U30w1 − z31(l0s

′
1), V31 = U31w1 + z31(U30 − l1s

′
1)

Sum 35M, 5S


