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Abstract

Although distributed key generation (DKG) has been studied for some time, it has never been exam-
ined outside of the synchronous setting. We present the first realistic DKG architecture for use over the
Internet. We propose a practical system model and define an efficient verifiable secret sharing scheme in
it. We observe the necessity of Byzantine agreement for asynchronous DKG and analyze the difficulty
of using a randomized protocol for it. Using our verifiable secret sharing scheme and a leader-based
agreement protocol, we then design a DKG protocol for public-key cryptography. Finally, along with
traditional proactive security, we also introduce group modification primitives in our system.

1 Introduction

A distributed key generation (DKG) protocol is a fundamental building block of both symmetric and asym-
metric threshold cryptography. In essence, an (n, t)-DKG protocol [Ped91] allows a set of n nodes to col-
lectively generate a secret with its shares spread over the nodes such that any subset of size greater than a
threshold t can reveal or use the shared secret, while smaller subsets do not have any knowledge about it.
Unlike secret sharing [Sha79, Bla79], where a dealer generates a secret and distributes its shares among the
nodes, DKG requires no trusted party.

Threshold Cryptography. In symmetric-key cryptography, DKGs are used to design distributed key
distribution centres [NPR99]. Here, a set of n servers jointly realize the function of a conference-key dis-
tribution centre, which generates and provides conference keys to the clients.In public-key cryptography
(PKC), they are essential for dealerless threshold public-key encryption and signature schemes [Des94] and
for truly distributed private-key generation in identity-based cryptography (IBC) [BF01]. In a threshold
public-key encryption scheme, a private key is distributed among a group such that, given a ciphertext,
more than a threshold number of them have to combine their decrypted shares to find the plaintext message.
On the other hand, in a threshold signature scheme, the signing key is distributed among a group such
that more than a threshold number of them has to combine their partial signatures to sign a message. In
threshold encryption and signature schemes, DKG tackles the problem of single point of failure. In IBC, it
also mitigates the key escrow issue. Here, it is impractical or impossible to trust and rely on a single entity,
the private-key generator (PKG), to generate and distribute private keys to IBC clients. A distributed PKG
becomes important when IBC is used in practical systems, outside the usual organizational settings, such as
key distribution in ad-hoc networks [KKA03] or pairing-based onion routing [KZG07]. It is also an important
primitive in distributed pseudo-random functions [NPR99], which are useful in designing distributed coin
tossing algorithms [CKS00] and random oracles [Nie02].

As a whole, numerous applications based on DKG have been proposed (see [GJKR07] and references
therein). However, most of them assume a synchronous communication model or a broadcast channel. The
systems issues to be considered while realizing DKGs over the Internet have largely been ignored and there
is no implementation available yet. This need for a practical DKG forms the motivation of this work.

∗This is the full version of our ICDCS 2009 paper. Revised June 2009.
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Verifiable Secret Sharing—VSS

In secret sharing, clients need to verify a consistent dealing (integrity) to prevent malicious behaviour by
the dealer. A scheme with such a verifiability property is known as verifiable secret sharing [CGMA85].
Feldman [Fel87] developed the first efficient and non-interactive VSS protocol. He used a commitment
with computational security and unconditional share integrity to achieve it. Pedersen presented another
commitment [Ped91] with unconditional security but computational integrity. In computational PKC, with
adversarial access to the public key, unconditional security for the secret is impossible. Further, an additional
round of communication is required at start time when using Pedersen’s scheme in order to randomly select
generators g and h. Consequently, with simplicity and efficiency, Feldman’s commitments form the basis for
many VSSs, including ours.

Proactive VSS. The most common attacks on security mechanisms are system attacks, where the
system’s cryptographic keys are directly exposed, rather than cryptanalytic attacks. Due to the endless
supply of security flaws in almost all existing software, these system attacks are often easy to implement.
Threshold cryptography enhances security against system break-ins, but its effect is limited. Given sufficient
time, a mobile attacker can break into system nodes one by one (gradual break-in) and eventually compromise
the security of the whole system [OY91]. Proactive secret sharing [HJKY95], which combines distributed
trust with periodic share renewal, protects a system against these gradual break-ins. Here, the system’s time
is divided into phases. At the start of each phase, nodes’ secret shares are renewed such that new shares
are independent of previous ones, except for the fact that they interpolate to the same secret key. With an
assumption that the adversary may corrupt at most t nodes in each phase, the system now becomes secure.

Asynchronous VSS. Although the literature for VSS has been vast, asynchronous VSS has not yet
received the required attention. Canetti and Rabin [CR93] developed the first complete VSS scheme with
unconditional security in the asynchronous communication model having no bounds on message transfer
delays or processor speeds. However, this scheme and its successors [ADH08, PCR08], due to their Ω(n5)
communication complexities (bit length of messages transferred), are prohibitively expensive for any realistic
use. Compromising the unconditional security assumption, Cachin et al. (AVSS) [CKAS02], Zhou et al.
(APSS) [ZSvR05], and more recently Schultz et al. (MPSS) [SLL08] suggested more practical asynchronous
VSS schemes. APSS severely restricts t with its Ω

((
n
t

))
message complexity (number of messages transferred),

and is thus very ineffective in general. The bivariate polynomial based AVSS and univariate polynomial
based MPSS have the same reasonable communication complexity of O(n3). However, security is preserved
in MPSS only when sets of nodes used in two consecutive phases are disjoint; this is not ideal in many
scenarios. On other hand, AVSS assimilates a bivariate polynomial into Bracha’s reliable broadcast [Bra84]
and can provide complete flexibility with the sets used without hampering the security. In an asynchronous
VSS protocol with reliability guarantees, any two nodes need to verify the dealer’s commitment of size Ω(n)
with each other to achieve consistency; thus, a protocol with o(n3) communication complexity does not seem
to be possible and AVSS, with optimal communication complexity, forms the basis for our VSS.

Contributions

In this paper, we design the first practical DKG protocol for use over the Internet.

• As our first contribution, we define a realistic system model over the Internet (§2). We combine the
standard Byzantine adversary with crash-recovery and network failures in an asynchronous setting.
We analyze the asynchronous versus partially synchronous dichotomy for the Internet and justify the
choice of treating crashes and network failures separately.

• We present a VSS scheme (HybridVSS) that works in our system model (§3), investigate the necessity
of an agreement scheme for asynchronous DKG, and define a practical DKG protocol (§4). We use
a leader-based agreement scheme in our DKG, as we observe a few pragmatic and efficiency related
issues with the usually suggested randomized agreement schemes.

• Along with proactive security (§5), observing the importance of group modifications for a long-term
system sustainability, we also devise protocols for group modification agreement, node addition, node
removal and threshold and crash-limit modification (§6).
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• Finally, we touch upon the system design and implementation that we are working on anddiscuss the
system’s resilience against denial-of-service (DoS) attacks and Sybil attacks (§7).

2 Assumptions and System Model

In this section, we discuss the assumptions and the system model for our protocols, giving special attention
to their practicality over the Internet.

2.1 Communication Model

Our DKG protocol should be deployable over the Internet. The expected message-transfer delay and the
expected clock offset there (a few seconds, in general) is significantly smaller than the required timespan of a
system phase (a few days). With such an enormous difference, a failure of the network to deliver a message
within a fixed time bound can be treated as a failure of the sender; this may lead to a retransmission of the
message after appropriate timeout signals. As this is possible without any significant loss in the synchrony
of the system, the asynchronous communication assumption seems to be unnecessarily pessimistic here. It
is tempting to treat the Internet as a partially synchronous network (bounded message delivery delays and
processor speeds, but the bounds are unknown and eventual [DLS88]) and develop more efficient protocols
using well-known message delivery time bounds and system run-time assumptions.

However, deciding these time bounds correctly is a difficult problem to solve. Further, even if it is
possible to determine tight bounds between the optimistic and pessimistic cases, there is a considerable
difference between the selected time bounds and the usual computation and communication time. Protocols
explicitly based on synchronous or partially synchronous assumptions invariably use these time bounds
in their definitions, while those based on the asynchronous assumption solely use numbers and types of
messages. A real-world adversary, with knowledge of any time bounds used, can always slow down the
protocols by delaying its messages to the verge of the time bounds. In asynchronous protocols, although it
is assumed that the adversary manages the communication channels and can delay messages as it wishes,
a real-world adversary cannot control communication channels for all the honest nodes. It is practical to
assume that network links between most of the honest nodes are perfect. Consequently, even if the adversary
delays its messages, an asynchronous protocol completes without any delay with honest nodes communicating
promptly. Thus, the asynchrony assumption may increase message complexity or the latency degree (number
of communication rounds), but in practice does not increase the actual execution time. Observing this, we
use the asynchronous communication assumption for our protocols.

Weak Synchrony (only for liveness)

For liveness (the protocol eventually terminates), but not safety (the protocol does not fail or produce
incorrect results), we need a weak synchrony assumption. Otherwise, we could implement consensus in an
asynchronous system, which is impossible [FLP85]. We use a weak synchrony assumption by Castro and
Liskov [CL02] to achieve liveness. Let delay(t) be the time between the moment t when a message is sent
for the first time and the moment when it is received by its destination. The sender keeps retransmitting
the message until it is received correctly. We assume that delay(t) does not grow faster than t indefinitely.
Assuming that network faults are eventually repaired and DoS attacks eventually stop, this assumption seems
to be valid in practice. It is also strictly weaker than the partially synchronous communication assumption.

2.2 Byzantine Adversary, Crash-Recoveries and Link Failures

Most of the distributed computing protocols in the literature assume a t-limited Byzantine adversary, who
compromises up to t out of n system nodes and makes them behave arbitrarily. We aim at proactive security
for our protocols, where the t-limited mobile Byzantine adversary can change its choice of t nodes as time
progresses. Here, a node compromised during a phase remains unused, after recovery, for the remainder of
that phase as its share is already compromised. Any intra-phase share modification for a recovered node
leads to intra-phase share modification to all the nodes, which is unacceptable in general.
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This does not model failures over the Internet in the best way. Other than malicious attacks leading to
compromise, some nodes (say f of them) may just crash silently without showing arbitrary behaviours or
get disconnected from the rest of the network due to network failures or partitioning. Importantly, secrets at
these f nodes are not available to the adversary and modelling them as Byzantine failures not only leads to
sub-optimal resilience of n ≥ 3(t + f)+ 1 instead of n ≥ 3t + 2f + 1, but it also increases the communication
complexity with added security requirements (t + f instead of t). Keeping such nodes inactive, after their
recovery, until the start of next phase is not ideal. This prompts us to use a hybrid model.

Our system adopts the hybrid model by Backes and Cachin [BC03], but with a modification to accom-
modate broken links. From any honest node’s perspective, a crashed node behaves similarly to a node whose
link with it is broken and we model link failures in the form of crashes. For every broken link between two
nodes, we assume that at least one of two nodes is among the list of currently crashed nodes.1 Further, all
non-Byzantine nodes may crash and recover repeatedly with a maximum of f crashed nodes at any instant
and a recovering honest node recovers from a well-defined state using, for example, a read-only memory.
We also assume that the adversary delivers all the messages between two uncrashed nodes. We drop the
requirement of proactive security at this point and pick it back up in §5.

Formally, we consider an asynchronous network of n ≥ 3t+2f +1 nodes P1, . . . , Pn of which the adversary
may corrupt up to t nodes during its existence and may crash another f nodes at any time. For f = 0, 3t+1
nodes are required as a differentiation between slow honest nodes and Byzantine nodes is not possible in an
asynchronous network, while for t = 0, 2f +1 nodes are mandatory to achieve consistency. At least n− t− f
nodes, which are not in the crashed state at the end of a protocol, are termed finally up nodes.

2.3 Complexity and Cryptographic Assumptions

Our adversary is computationally bounded with a security parameter κ. A function ǫ(·) is called negligible
if for all c > 0 there exists a κ0 such that ǫ(k) < 1/κc for all κ > κ0.

Complexity Assumption. An unbounded number of crashes can cause the protocol execution time to
be unbounded. We restrict the adversary by function d(κ) that represents the maximum number of crashes
that the adversary is allowed to perform during its lifetime.

Work done by honest parties can be measured by a protocol statistic X , which is a family of real-valued
non-negative random variables {XA(κ)}, parametrized by adversary A, where each XA(κ) is a random
variable induced by running the system with A. A protocol statistic X is called uniformly bounded if there
exists a fixed polynomial T (κ) such that for all adversaries A, there is a negligible function ǫA, such that
for all k ≥ 0, Pr[XA(κ) > T (κ)] ≤ ǫA(κ). As we consider a computationally bounded adversary, we aim at
polynomially bounded system execution space and time and bounding protocol complexities by a polynomial
in the adversary’s running time.

For crash-recovery situations, Backes and Cachin introduce the notion of d-uniformly bounded statistics
[BC03, Def. 1]. Here, a bounded protocol statistic X is considered to be d-uniformly bounded (by T1 and T2)
for a function d(κ) if there exist two fixed polynomials T1 and T2 such that for all adversaries A, there exists
a negligible function ǫA(κ) such that for all κ ≥ 0, Pr[XA(κ) > d(κ)T1(κ) + T2(κ)] ≤ ǫA(κ). In order words,
the complexity of the protocol is uniformly bounded if no crash occurs (which is ensured by T2), and the
computational overhead caused by each crash is also uniformly bounded (ensured by T1). Similar to [BC03],
we expect that the communication complexity of a protocol is d-uniformly bounded for some polynomial d.

Cryptographic Assumptions. The infeasibility of the adversary to compute discrete logarithms modulo
large primes forms our main cryptographic assumption. We consider a prime p such that there exists a κ-bit
prime q and q|(p − 1). Let G be a multiplicative subgroup of Z∗

p of order q and let g ∈ G be a generator.
For every probabilistic polynomial time algorithm A and x ∈R [1, q], the probability Pr(A(p, q, g, gx) = x)
is negligible.

The adversary is also static and rushing. It has to choose its t compromisable nodes before a protocol
run.2 However, it can wait for the messages of the uncorrupted players to be transmitted, then decide on its

1A node that is crashed means that some of its links are down, not necessarily that they all are.
2As we use Feldman’s VSS, we do not prove security against an adaptive adversary. However, as claimed by Feldman [Fel87,

Sec. 9.3], although the use of simulation-based security proof did not work out for an adaptive adversary, the VSS scheme does
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computation and communication for that round, and still get its messages delivered to the honest parties on
time.

We use a PKI infrastructure in the form of a PKI hierarchy with an external certifying authority (CA)
to achieve authenticated and confidential communication with TLS links, and message authentication with
any digital signature scheme secure against adaptive chosen-message attack [GMR88]. Each node also has
a unique identifying index. We assume that indices and public keys for all nodes are publicly available in
the form of certificates. It is possible to achieve similar security guarantees in a symmetric-key setting with
long-term keys.

3 VSS for the Hybrid Model—HybridVSS

VSS is the most important part of any distributed key generation environment. Our VSS protocol modifies
the AVSS protocol [CKAS02] for our hybrid model. We include recovery messages similar to those from the
reliable broadcast protocol by Backes and Cachin [BC03]. We achieve a constant-factor reduction in the
protocol complexities using symmetric bivariate polynomials. Further, as described in §1, we use the simpler
commitment scheme by Feldman [Fel87] rather than Pedersen’s commitment scheme [Ped91].

3.1 Protocol Description

Our VSS protocol is composed of a sharing protocol (Sh) and a reconstruction protocol (Rec). In protocol
Sh, a dealer Pd upon receiving a (Pd, τ, in, share, s) message, shares a secret s, where a counter τ and the
dealer identity Pd forms a unique session identifier. Node Pi finishes the Sh protocol by outputting a
(Pd, τ, out, shared, C, si) message, where C is the commitment and si is its secret share. Any time after that,
upon receiving a message (Pd, τ, in, reconstruct), Pi starts the Rec protocol. The Rec protocol terminates for
a node Pi when Pi outputs a message (Pd, τ, out, reconstructed, zi), where zi is Pi’s reconstructed value of
the secret s.

Definition 3.1 In session (Pd, τ), protocol VSS in our hybrid model (HybridVSS) having an asynchronous
network of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine adversary and f -limited crashes and network
failures satisfies the following conditions:

Liveness: If the dealer Pd is honest and finally up in the sharing stage of session (Pd, τ), then all honest
finally up nodes complete protocol Sh.

Agreement: If some honest node completes protocol Sh of session (Pd, τ), then all honest finally up nodes
will eventually complete protocol Sh in session (Pd, τ). If all honest finally up nodes subsequently start
protocol Rec for session (Pd, τ), then all honest finally up nodes will finish protocol Rec in session
(Pd, τ).

Consistency: Once t + 1 honest nodes complete protocol Sh for session (Pd, τ), then there exists a fixed
value z such that

• if the dealer is honest and has shared secret s in session (Pd, τ), then z = s, and

• if an honest node Pi reconstructs zi in session (Pd, τ), then zi = z.

Privacy: If an honest dealer has shared secret s in session (Pd, τ) and no honest node has started the Rec

protocol, then, except with negligible probability, the adversary cannot compute the shared secret s.

Efficiency: The communication complexity for any instance of HybridVSS is d-uniformly bounded.

We assume that messages from all the honest and uncrashed nodes are delivered by the adversary.

Figure 1 describes the Sh and Rec protocols for HybridVSS. We use pseudo-code notation and include a
special condition upon to define actions based on messages received from other nodes or system events. C

seem secure against an adaptive attack. This is further supported by the fact that there has been no known adaptive attack
for the last twenty years.
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Sh protocol for node Pi and session (Pd, τ )
upon initialization:

for all C do
AC ← ∅; eC ← 0; rC ← 0
c← 0; cℓ ← 0 for all ℓ ∈ [1, n]

upon a message (Pd, τ, in, share, s): /* only Pd */

choose a random symmetric bivariate polynomial
f(x, y) =

Pt

j,ℓ=0 fjℓx
jyℓ ∈ Zq[x, y]

such that f00 = s and fjℓ = fℓj for j, ℓ ∈ [0, t]
C ← Cjℓ where Cjℓ = gfjℓ for j, ℓ ∈ [0, t]
for all j ∈ [1, n] do

aj(y)← f(j, y)
send the message (Pd, τ, send, C, aj) to Pj

upon a message (Pd, τ, send, C, a) from Pd (first time):

if verify-poly(C, i, a) then
for all j ∈ [1, n] do

send the message (Pd, τ, echo, C, a(j)) to Pj

upon a message (Pd, τ, echo, C, α) from Pm (first time):

if verify-point(C, i, m, α) then
AC ← AC ∪ {(m, α)}; eC ← eC + 1
if eC = ⌈n+t+1

2
⌉ and rC < t + 1 then

Lagrange-interpolate a from AC

for all j ∈ [1, n] do
send the message (Pd, τ, ready, C, a(j)) to Pj

upon a message (Pd, τ, ready, C, α) from Pm (first time):

if verify-point(C, i, m, α) then
AC ← AC ∪ {(m, α)}; rC ← rC + 1
if rC = t + 1 and eC < ⌈n+t+1

2
⌉ then

Lagrange-interpolate a from AC

for all j ∈ [1, n] do
send the message (Pd, τ, ready, C, a(j)) to Pj

else if rC = n− t− f then
si ← a(0)
output (Pd, τ, out, shared, C, si)

upon (Pd, τ, in, recover):

send the message (Pd, τ, help) to all the nodes
send all messages in B

upon a message (Pd, τ, help) from Pℓ:

if cℓ ≤ d(κ) and c ≤ (t + 1)d(κ) then
cℓ ← cℓ + 1; c← c + 1
send all messages of Bℓ

Rec protocol for node Pi and session (Pd, τ )

upon a message (Pd, τ, in, reconstruct):

c← 0; S ← ∅
for all j ∈ [1, n] do

send the message (Pd, τ, reconstruct-share, si) to Pj

upon a message (Pd, τ, reconstruct-share, σ) from Pm:

if (gσ =
Qt

j=0(Cj0)
mj

) then
S ← S ∪ {(m, σ)}; c← c + 1
if c = t + 1 then

interpolate constant term (zi) from S
output (Pd, τ, out, reconstructed, zi)
halt

Figure 1: Protocol HybridVSS

is a matrix of commitment entries and eC and rC are Pi’s associated counters for echo and ready messages,
respectively. In order to facilitate recovery of the crashed nodes, each node Pi stores all outgoing messages
along with their intended recipients in a set B. Bℓ indicates the subset of B intended for the node Pℓ.
Counters c and cℓ keep track of the numbers of overall help requests and help requests sent by each node Pℓ

respectively. We also use the following predicates in our protocol.
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verify-poly(C, i, a) verifies that the given polynomial a of Pi is consistent with the commitment C. Here,

a(y) =
∑t

ℓ=0 aℓy
ℓ is a degree t polynomial. The predicate is true if and only if gaℓ =

∏t

j=0(Cjℓ)
ij

for
all ℓ ∈ [0, t].

verify-point(C, i, m, α) verifies that the given value α corresponds to the polynomial evaluation f(m, i). It

is true if and only if gα =
∏t

j,ℓ=0 (Cjℓ)
mjiℓ

.

3.2 Analysis

The main theorem for HybridVSS is as follows.

Theorem 3.1 Assuming the hardness of the discrete-logarithm problem, protocol HybridVSS implements
asynchronous verifiable secret sharing in the hybrid model for n ≥ 3t + 2f + 1.

We need to show liveness, agreement, consistency, privacy, and efficiency. We combine proof strategies from
AVSS [CKAS02, Sec. 3.3] and reliable broadcast [BC03, Sec. 3.3] to achieve this. We start by referring to
few lemmas.

Lemma 3.1 (Lemma 1 [BC03]) Let Pi be a finally up party during session (Pd, τ). Then every distinct
message sent to Pi by another finally up party Pj during session (Pd, τ) will be received by Pi in a non-crashed
state, provided all associated messages are delivered.

Lemma 3.2 (Lemma 2 [CKAS02]) Suppose an honest node Pi sends a ready message containing com-
mitment Ci and a distinct honest node Pj sends a ready message containing commitment Cj . Then Ci = Cj .

Liveness Here, we prove that if the dealer Pd is honest and finally up during the sharing stage of session
(Pd, τ), then all honest finally up nodes complete protocol Sh.

We assume that the dealer Pd is honest and finally up. According to Lemma 3.1, send messages of the
form (Pd, τ, send, C, ai) sent by Pd to each finally up node Pi will eventually be received and verified by
each such Pi. Each of these honest and finally up nodes (at least n − t − f) will send an echo message of
the form (Pd, τ, echo, C, ai(j)) to each system node Pj . Using Lemma 3.1, every finally up honest node will
thus receive at least n − t − f valid echo messages. A valid echo and ready message is one that satisfies
verify-point. As n − t − f ≥ ⌈n+t+1

2 ⌉ for n ≥ 3t + 2f + 1, every honest finally up node Pj will send ready

message (Pd, τ, ready, C, aj(m)) to every system-node Pm as either the received echo messages are greater
than required bound (⌈n+t+1

2 ⌉) or it has already received t+1 ready messages. As all ready messages will be
eventually received by the finally up nodes according to Lemma 3.1, each finally up honest node will receive
at least n − t − f ≥ 2t + f + 1 verifiably correct ready messages. Consequently, each honest finally up node
will complete the protocol Sh by outputting (Pd, τ, shared) messages.

Agreement We first show that if some honest node completes protocol Sh of (Pd, τ), then all honest finally
up nodes will eventually complete protocol Sh during session (Pd, τ). An honest node completes the sharing
when it receives 2t + f + 1 valid ready messages. At least t + f + 1 of those have been sent by honest
nodes. Using the definitions of verify-poly and verify-point, the honest node sends only valid ready messages.
Further, when sending, an honest node sends ready messages to all system nodes. Thus, using Lemma 3.2,
every honest finally up node receives at least t+f +1 valid ready messages with the same commitment C and
sends a ready message containing C. Consequently, every honest finally up node receives n−t−f ≥ 2t+f+1
valid ready messages with commitment C and completes the Sh protocol.

For protocol Rec, we show that if all honest finally up nodes subsequently begin protocol Rec for session
(Pd, τ), then all honest finally up nodes will finish protocol Rec during session (Pd, τ) by reconstructing
s′i. As discussed above, at the end of the sharing step, every honest finally up node Pi computes the same
commitment C. Moreover, Pi has received enough valid echo or ready messages with commitment C and it
computes valid ready messages and a valid share si with respect to C (si such that (gsi =

∏t
j=0(Cj0)

mj

)
holds). Thus, if all honest servers subsequently start the reconstruction stage, then every server receives
enough valid shares to reconstruct some value, provided the adversary delivers all associated messages.
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Consistency Once an honest node completes protocol Sh for session (Pd, τ), then there exists a fixed value
z such that the following holds.

• If the dealer is honest and has shared secret s during session (Pd, τ), then z = s.

• If an honest node Pi reconstructs zi during session (Pd, τ), then zi = z.

Suppose an honest dealer has shared a degree-t symmetric bivariate polynomial f(x, y) with constant term
equal to the shared secret s. As the dealer is honest, an echo message that an honest node Pi receives from
another honest node Pj contains C, f(j, i). As the required number of echo messages before interpolating the
final univariate polynomial at a node is equal to ⌈n+t+1

2 ⌉, it is impossible for faulty nodes to make a node
accept commitment C′ different from commitment C suggested by the dealer. Subsequently, such an honest
node Pi, after verification with verify-point, interpolates a polynomial a(y) such that a(y) = f(i, y). Assume
an honest node receives t + 1 ready messages before obtaining ⌈n+t+1

2 ⌉ commitment C echo messages. Using
Lemma 3.2 all these ready messages have same commitment and with at least of one of them from an honest
node, it is equal to C. The honest node will interpolate the same a(y) as in the case of the echo messages.
Using the agreement property, if a node completes the protocol Sh, then all honest nodes will eventually
finish it. Let S be any set of t + 1 honest nodes (Pj) that have finished the sharing. Let sj,d represent the
share for node Pj such that sj,d = a(0) = f(j, 0). Let λS

j be Lagrange interpolation coefficients for the set
S and position 0. We have

z =
∑

Pj∈S

λS,0
j sj,d

=
∑

Pj∈S

λS,0
j f(j, 0)

= s

and if the dealer is honest and has shared secret s during session (Pd, τ), then z = s.
To prove the second part, assume that two distinct honest servers Pi and Pj reconstruct values zi and

zj such that zi 6= zj. This means that they are interpolated from two distinct sets Si = {ℓ, s
(i)
ℓ } and

Sj = {ℓ, s
(j)
ℓ } of t + 1 shares each, which are valid with respect to the unique commitment C (using Lemma

3.2) used by Pi and Pj . As the shares in Si and Sj are verified against commitment C and they are valid, it
is easy to see that gzi = C00 = gzj . As g is a generator for a prime order group, zi = zj and the assumption
that zi 6= zj is wrong.

Privacy To prove the privacy property, we use the discrete logarithm assumption. The adversary’s view
consists of polynomials f(i, y) for these Byzantine nodes i, and the commitment matrix C and the generator
g provided by the dealer. Assume that there is an adversary algorithm A that can compute the shared secret
s given g, C and t degree-t polynomials consistent with C. We prove that a challenger B with an oracle
access to such an adversary algorithm A can solve any instance (p, q, g, gx) of discrete logarithm problem.

Given a discrete logarithm instance (p, q, g, gx), the challenger B generates t degree-t polynomials ri(y) ∈
Zq[y] and associates them with non-zero indices i. It then computes gri(0) for each index i, sets gr0(0) = gx

and computes C0,k = Ck,0 for k = [0, t] using the inverse-interpolation method.3 Proceeding similarly, for
each 0 < ℓ ≤ t, it uses C0,ℓ and gri(ℓ) for each index i and computes Cℓ,k = Ck,ℓ and completes the symmetric
commitment matrix C which is consistent with gx as C0,0 and polynomials ri(y). B can then present this
matrix C along with polynomial ri to the adversary algorithm A and return the output s = x as the discrete
logarithm value for tuple (p, q, g, gx). As this is not possible, except with negligible probability, we prove
that if an honest dealer has shared secret s during session (Pd, τ) and no honest node has started the Rec

protocol, then the adversary cannot compute the secret s except with negligible probability.

3This involves computing polynomial coefficients in an exponentiated form given evaluations of that degree-t polynomial at
t + 1 points in an exponentiated form.
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Efficiency Discussion Initially, we discuss complexities when there are no crashes. A protocol execution
without any crashes has O(n2) message complexity and O(κn4) communication complexity where the size
of the message is dominated by commitment matrix C having t(t + 1)/2 = O(n2) entries. Using a collision-
resistant hash function, Cachin el al. [CKAS02, Sec. 3.4] suggest a way to reduce the communication
complexity to O(κn3). In this approach, commitments are generated using the exponentiated form of bivari-

ate polynomial evaluations (A
(i)
j = gf(i,j)). Let A(j) = 〈A

(j)
0 , A

(j)
1 , . . . , A

(j)
n 〉. In this case, the communication

complexity gets reduced by a linear factor using the A(0) vector and a vector h = 〈h0, h1, . . . , hn〉, where H
is collision-resistant hash function and hj = H(A(j)). We use this modification in our implementation and
refer readers to [CKAS02, Sec. 3.4] for a detailed description.4

Now, assume there are crashes and there are subsequent recoveries. As defined earlier, d(κ) bounds the
number of possible crashes in the system. In addition, each of the Byzantine nodes may produce unlimited
false help messages, out of which first d(κ) will be answered by honest nodes. Therefore, each honest node will
in total answer up to (t + 1)d(κ) help messages. The recovery mechanism requires O(n2) messages from the
recovering node and O(n) messages from each helper node. Therefore, the total message and communication
complexity of HybridVSS are O(tdn2) and O(κtdn3) respectively and we obtain a uniform polynomial bound
on the communication complexity.

4 Distributed Key Generation—DKG

HybridVSS requires a dealer (Pd) to select a secret and to initiate a sharing. DKG, going one step further,
generates a secret in a completely distributed fashion, such that none of the system nodes knows the secret,
while any t + 1 nodes can combine their shares to determine it. Although it seems that a DKG is just a
system with n nodes running their VSSs in parallel and summing all the received shares together at the end,
it is not that simple in an asynchronous setting. Agreeing on t + 1 or more VSS instances such that all of
them will finish for all the honest nodes (the agreement on a set problem [BOCG93]), and the difficulty of
differentiating between a slow node and a faulty node in the asynchronous setting are the primary sources
of the added complexity.

In our hybrid system model, with no timing assumption, the node cannot wait for more than n−t−f VSSs
to finish. The adversary can certainly make agreeing on a subset of size t+1 among those nodes impossible,
by appropriately delaying its messages. Cachin et al. [CKAS02] solves a similar agreement problem in their
proactive refresh protocol using a multi-valued validated Byzantine agreement (MVBA) protocol. Known
MVBA protocols [CKPS01] require threshold signature and threshold coin-tossing primitives [CKS00] and
the suggested algorithms for both of these primitives require either a dealer or a DKG. As we aim to avoid
the former in this paper and the latter is our aim itself, we cannot use their MVBA protocol. Randomization
in the form of distributed coin tossing or equivalent randomization functionality is necessary for an expected
constant-round Byzantine agreement; it thwarts the attack possible with an adversary knowing the pre-
defined node selection order. However, an efficient algorithm for dealerless distributed coin tossing without
a DKG is difficult to achieve5, and we refrain from using randomized Byzantine agreement protocols.

We follow a much simpler approach with the same communication complexity as MVBA protocols. We
use a leader-initiated reliable broadcast system with a faulty-leader change facility, inspired by Castro and
Liskov’s view-change protocol [CL02]. We choose this (optimistic phase + pessimistic phase) approach, as
we expect the Byzantine failures to be infrequent in practice. The probability that the current leader of
the system is not behaving correctly is small and it is not worth spending more time and bandwidth by
broadcasting proposals by all the nodes during every MVBA. With this background, we now define and
analyze our DKG protocol.

4.1 Protocol Description.

In our DKG protocol, for session τ and leader L, each node Pd selects a secret value sd and shares it
among the group using protocol Sh of HybridVSS for session (Pd, τ). Each node finishes the DKG protocol

4As we do not use Pedersen’s commitment, we do not need B(j) and hb vectors, here.
5Canetti and Rabin [CR93] define a dealerless distributed coin tossing without a DKG; however, their protocol requires n2

VSSs for each coin toss and is consequently inefficient.
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by outputting a (L, τ, DKG-completed, C, si) message, where si and C are its share and the commitment
respectively and L = L or a subsequent leader

Definition 4.1 In session τ , protocol DKG in our hybrid model having an asynchronous network of n ≥
3t + 2f + 1 nodes with a t-limited Byzantine adversary and f -limited crashes and network failures satisfies
the following conditions:

Liveness: All honest finally up nodes complete protocol DKG in session τ , except with negligible probability.

Agreement: If some honest node completes protocol DKG in session τ , then, except with negligible proba-
bility, all honest finally up nodes will eventually complete protocol DKG in session τ .

Consistency: Once an honest node completes the DKG protocol for session τ , then there exists a fixed value
s such that, if an honest node Pi reconstructs zi in session τ , then zi = s.

Privacy: If no honest node has started the Rec protocol, then, except with negligible probability, the adversary
cannot compute the shared secret s.

Efficiency: The communication complexity for any instance of DKG is d-uniformly bounded.

We assume that messages from all the honest and uncrashed nodes are delivered by the adversary.

We first describe the optimistic phase of our DKG protocol. For each session τ , one among n nodes works
as a leader. The leader L, once it finishes the VSS proposal by t + 1 nodes with (Pd, τ, out, shared, Cd, si,d),

broadcasts the n − t − f ready messages (set R̂) it received for each of those t + 1 finished VSSs (set Q̂).
Nodes include signatures with ready messages to enable the leader to provide a validity proof for its proposal.
In this extended HybridVSS protocol, shared messages look like (Pd, τ, out, shared, Cd, si,d,Rd), where a set
Rd includes n − t − f signed ready messages for session (Pd, τ). Once this broadcast completes, each node
knows t + 1 VSS instances to wait for. Once a node Pi finishes those, it sums the shares si,d to obtain its
final share si.

If the leader is faulty and does not proceed with the protocol or sends arbitrary messages, the protocol
enters into a pessimistic phase. Here, other nodes use a leader-change mechanism to change their leader with
a pre-defined cyclic permutation (π) and provide liveness without damaging system safety. Every unsatisfied
node sends a signed leader-change (lead-ch) request to all the nodes for the next leader π(L) if it receives
an invalid message from the existing leader L or if its timer timed out. Timeouts are based on the function
delay(t) described in §2.1. When a node collects t + 1 lead-ch messages for leaders > L, it is confirmed that
at least one honest node is unsatisfied and it sends a lead-ch message to all the nodes for the smallest leader
among those requested, if it has not done that yet. Once a node receives n−t−f lead-ch requests for a leader
L > L, it accepts L as the new leader and enters into the optimistic phase. The new leader also enters into
the optimistic phase and sends a send message for set Q if it is non-empty or else for set Q̂. Set M contains
⌈n+t+1

2 ⌉ signed echo messages or t + 1 signed ready messages for the associated set Q of completed VSSs.

Set Q avoids two honest nodes finishing with two different VSSs sets, and set M avoids false Q sets from the
dishonest nodes. While sending its proposal, L also includes lead-ch signatures received from n− t− f nodes
to prove its validity to the nodes who have not received enough lead-ch messages. As in HybridVSS, the set
B contains all outgoing messages at a node along with their intended recipients and Bℓ represents the subset
of messages destined for node Pℓ. Counters c and cℓ keep track of the numbers of overall help requests and
help requests sent by each node Pℓ respectively. Figure 2 presents the optimistic and the pessimistic phases
of the DKG protocol. Protocol Rec remains exactly the same.

4.2 Analysis.

The main theorem for our DKG is as follows.

Theorem 4.1 Assuming the hardness of the discrete-logarithm problem, protocol DKG provides an asyn-
chronous distributed key generation mechanism in the hybrid model for n ≥ 3t + 2f + 1.

We need to show the liveness, agreement, consistency, privacy, and efficiency of our DKG.
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Optimistic phase for node Pi in Session (τ) with
Leader L
upon initialization:

eQ ← 0; rQ ← 0 for every Q
Q ← ∅; bQ ← ∅
M← bR← n− t− f signed lead-ch messages for L
c← 0; cℓ ← 0 for all ℓ ∈ [1, n]
lcL ← 0 for each L; lcflag ← false; L++ ← π−1(L)
for all d ∈ [1, n] do

initialize extended-HybridVSS Sh protocol (Pd, τ )

upon (Pd, τ, out, shared, Cd, si,d,Rd) (first time):

bQ ← {Pd}; bR ← {Rd}

if | bQ| = t + 1 and Q = ∅ then
if Pi = L then

send the message (L, τ, send, bQ, bR) to each Pj

else
delay ← delay(t); start timer(delay)

upon a message (L, τ, send,Q,R/M) from L (first time):

if verify-signature(Q,R/M) then
if Q = ∅ or Q = Q then

send the message (L, τ, echo,Q)sign to each Pj

upon a message (L, τ, echo,Q)sign from Pm (first time):

eQ ← eQ + 1
if eQ = ⌈n+t+1

2
⌉ and rQ < t + 1 then

Q ← Q; M← ⌈n+t+1
2
⌉ signed echo messages for Q

send the message (L, τ, ready,Q)sign to each Pj

upon a message (L, τ, ready,Q)sign from Pm(first time):

rQ ← rQ + 1
if rQ = t + 1 and eQ < ⌈n+t+1

2
⌉ then

Q ← Q; M← t + 1 signed ready messages for Q
send the message (L, τ, ready,Q)sign to each Pj

else if rQ = n− t− f then
stop timer, if any
wait for shared output-messages for each Pd ∈ Q
si ←

P
Pd∈Q

si,d; ∀p,q : Cp,q ←
Q

Pd∈Q
(Cd)p,q

output (L, τ, DKG-completed, C, si)

upon timeout

if lcflag = false then
if Q = ∅ then

send msg (τ, lead-ch, π(L), bQ, bR)sign to each Pj

else
send msg (τ, lead-ch, π(L),Q,M)sign to each Pj

lcflag ← true

upon (L, τ, in, recover):

send the message (L, τ, help) to all the nodes.
send all messages in BL,τ

upon a message (L, τ, help) from Pℓ:

if cℓ ≤ d(κ) and c ≤ (t + 1)d(κ) then
cℓ ← cℓ + 1; c← c + 1
send all messages of Bℓ(L,τ)

Leader-change for node Pi in session (τ ) with
Leader L
upon a msg (τ, lead-ch,L,Q,R/M)sign from Pj(first
time):

if L > L and verify-signature(Q,R/M) then
lc

L
← lc

L
+ 1; L++ ← min (L++,L)

if R/M = R then bQ ← Q; bR← R
else Q ← Q; M←M
if (

P
lcL = t + 1 and lcflag = false) then

if Q = ∅ then
send the msg (τ, lead-ch,L++, bQ, bR) to each Pj

else
send the msg (τ, lead-ch,L++,Q,M) to each
Pj

else if (lc
L

= n− t− f) then

M← bR ← n− t− f signed lead-ch messages for
L
L ← L; lcL ← 0; L++ ← π−1(L); lcflag = false
if Pi = L then

if Q = ∅ then
send the message (L, τ, send, bQ, bR) to each
Pj

else
send the message (L, τ, send,Q,M) to each
Pj

else
delay ← delay(t); start timer(delay)

Figure 2: DKG Protocol
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Liveness. In HybridVSS, if the dealer is honest and finally up, then all honest finally up nodes complete
the sharing initiated by it. With n − t − f honest finally up nodes in the system, each honest finally up
node will eventually complete t+1 HybridVSS sharings, as required. Each such node will start a timer upon
completing these t+1 HybridVSSs. If the leader is honest and uncrashed, it also completes t+1 HybridVSSs,
and broadcasts its proposal; based on the liveness property of reliable broadcast [BC03], each honest finally
up node delivers the same verifiable proposal. Honest finally up nodes stop their timers when they complete
this reliable broadcast. To finish, according to the HybridVSS agreement properties, all honest finally up
nodes complete protocol Sh for nodes in this proposal.

If the leader is compromised, crashed or does not finish its broadcast before a timeout at an honest
node, then a signed lead-ch request is broadcasted by that honest node (pessimistic phase). After receiving
n − t − f lead-ch requests, the new leader takes over, each honest node starts a timer for the proposal from
the new leader, and the protocol reenters the optimistic phase. As the number of crashes is polynomially
bounded and the network eventually gets repaired resulting in message delays becoming eventually bounded
by delay(t), an honest finally up leader will eventually reliably broadcast a proposal and protocol DKG will
complete. The requirement of n − t − f lead-ch requests for a leader replacement makes sure that nodes do
not complete the leader-change too soon. An honest node sends a signed lead-ch message for the smallest
leader (among the received set) if it receives t + 1 lead-ch messages, even if it has not observed any fault, as
this indicates that at least one honest node has observed some fault and the node does not want to start the
leader-change too late.

Agreement. An honest node completes DKG when it completes a reliable broadcast of the current leader’s
sharing proposal, finishes HybridVSS sharing by t+1 nodes in that proposal, and computes its final share as
a summation of the shares obtained from these t + 1 sharings. According to the agreement property of the
reliable broadcast, if one honest node completes the protocol, then all honest finally up nodes will eventually
complete the protocol. Further, when only some (but not all) nodes complete the reliable broadcast before
a leader-change, sets Q and M ensure that all nodes complete a reliable broadcast for same Q after the
leader-change. According to the agreement property of the HybridVSS, once an honest node completes a
set of t + 1 sharings, then all honest finally up nodes will eventually complete all of these t + 1 sharings.
Consequently, once an honest node completes DKG, then all honest finally up nodes will eventually complete
the DKG protocol.

Consistency. According to the agreement property, once an honest node completes the DKG for session
(τ), then all (n − t − f) honest finally up nodes will eventually complete the DKG protocol. According
to the consistency property of the reliable broadcast protocol, each of these nodes will decide the same set
of t + 1 sharings. Further, when only some (but not all) nodes complete the reliable broadcast before a
leader-change, sets Q and M make sure that all nodes complete a reliable broadcast for same Q after the
leader-change. For each of the completed sharings, if run individually, each node Pi will reconstruct the
same shared secret zi,d where Pd is the dealer for the sharing. Let zi =

∑
Pd∈Q

zi,d. As nodes add their
shares for the completed t + 1 sharings as the DKG finishes and as Lagrange-interpolation is homomorphic
over addition, on reconstruction after the DKG protocol each node will output the same zi = z(say).

Privacy. In DKG, sharings by t+1 nodes are used, where at least one of those shared secrets was proposed
by an honest party. In a reliable broadcast, two honest nodes always finish protocol with the same message;
therefore, the same t + 1 sharings are completed by all the honest nodes. For a HybridVSS execution, if the
dealer Pd is honest then until the reconstruction protocol starts, the adversary cannot compute the shared
secret sd. Therefore, at the end of DKG protocol, the adversary does not know at least one of the t + 1
shared secrets. As the system’s secret s =

∑
Pd∈Q

sd, the adversary cannot compute the shared secret s.

Efficiency. The message and communication complexities of HybridVSS are O(tdn2) and O(κtdn3) respec-
tively. In the DKG protocol with the asynchronous communication assumption, the system may complete
all n VSS executions, even though the required execution count is just t + 1; thus, the message and com-
munication complexities of the n HybridVSS Sh protocols in DKG are O(tdn3) and O(κtdn4) respectively.
If the DKG protocol completes without entering into the pessimistic phase, then the system only needs
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an additional reliable broadcast of message of size O(κn), message complexity O(tdn2) and communication
complexity O(κtdn3). As a result, the optimal message and communication complexities for the DKG pro-
tocol are O(tdn3) and O(κtdn4) respectively. In the pessimistic case, the total number of leader changes
is bounded by O(d). Each leader change involves O(tdn2) messages and O(κtdn3) communication bits.
For each faulty leader, O(tdn2) messages and O(κtdn3) bits are communicated during its administration.
Therefore, in the worst case, O(td2n2) messages and O(κtd2n3) bits are communicated before the DKG
completes and worst case message and communication complexities of the DKG protocol are O(tdn2(n+ d))
and O(κtdn3(n + d)) respectively. Note that considering just a t-limited Byzantine adversary (and not also
crashes and link failures), the above complexities become O(n3) and O(κn4) respectively. These are same
as the complexities of the proactive refresh protocol for AVSS [CKAS02].

5 Realizing Proactiveness

In proactive security, nodes modify their shares at phase changes such that an adversary’s knowledge of t
shares from one phase becomes useless in the next phase. Here, although the adversary is restricted to t
nodes during any phase, it may corrupt more than t nodes in its complete lifetime without learning anything
about the secret. In this section, to realize proactiveness in our DKG system, we introduce the notion of
phase in our hybrid model (§2) and design share renewal and recovery protocols.

5.1 System Model

Common Phase

In the asynchronous communication model, without a common clock, realizing the concept of a common
phase is difficult. Similar to Cachin et al. [CKAS02], we use local clocks with clock ticks at pre-defined
intervals. The number of clock ticks received by a honest node defines its local phase. In order to achieve
the required synchronization without hampering safety, nodes start the proactive protocol with their local
clock tick, but wait for t other nodes to start the phase before proceeding with it.

Due to the eventual nature of the liveness condition, any timing constraint always affects liveness of an
asynchronous protocol. A share renewal protocol in our model might not terminate within the same phase.
It is possible to achieve liveness at the cost of safety/privacy by continuing with the shares from the previous
phase until new shares are determined. However, we give importance to safety rather than liveness and
system nodes delete their shares as the renewal protocol starts; there is no phase overlap.

Byzantine Adversary

The adversary can corrupt at most t nodes in any local phase τ ≥ 0. We assume that it is possible to remove
the adversary from a node by rebooting it in a trusted way using a read-only device. As the adversary could
have extracted the private key from a recovering node, once rebooted the node should ask the CA to put its
old certificate on its certificate revocation list, generate a new key pair and get the new public key signed.

To maintain liveness in a proactive system with simultaneous Byzantine and crash-recovery nodes, we
assume that the crash-recovery time is more than the message transfer delay between two uncrashed nodes;
specifically, the time the adversary takes to shift from one crashed node to another is larger than required
by a send message between two honest uncrashed nodes. Note that this assumption is required exclusively
due to crash-recovery and link failure assumption; we justify it in §5.2. The adversary may continue to hold
a node in consecutive phases.

It is also possible to use an asynchronous proactive secure message transmission mechanism [BCS03] to
avoid frequent public-private key pair modifications. However, this requires a hardware secure co-processor.

Forward Secrecy

If a private communication channel between two honest nodes is not forward secret, the adversary may
decipher their secret communication by compromising one of them in a later phase. To overcome this
problem, we use an ephemeral Diffie-Hellman cipher suite while creating TLS links and reconstruct them at
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the start of each new phase. This makes sure that a message sent in a local phase τ of the sender is delivered
to the receiver in the same local phase or it is lost.

5.2 Share Renewal Protocol

A share renewal protocol enables DKG nodes to renew their shares such that protocol Rec will output the
same secret and the adversary does not learn anything about it.

Protocol Description.

Definition 5.1 Suppose system nodes hold shares of a secret s shared using a VSS protocol (§3) for a phase
τ − 1. An asynchronous share renewal protocol (Renew) for phase τ in a hybrid model having a network of
n ≥ 3t+2f +1 nodes with t-limited Byzantine adversary and f -limited crashes and network failures satisfies
the following conditions:

Liveness: If the adversary delivers all associated messages within phase τ , then all honest nodes complete
the Renew protocol, except with negligible probability.

Consistency: If at least t + 1 honest nodes complete the Renew protocol during phase τ before detecting a
subsequent clock tick, the system maintains a verifiable sharing of s.

Privacy: The t-limited adversary cannot compute the shared secret s after an execution of the Renew pro-
tocol, except with negligible probability.

Efficiency: The communication complexity for any instance of verifiable share renewal is d-uniformly bounded.

As already discussed, if the adversary restricts the network from delivering all the protocol messages within
the phase, privacy is still preserved, but the secret may get lost, hampering the liveness. This definition is
analogous to the definition of an asynchronous secure refresh protocol by Cachin et al.[CKAS02] We design
a share renewal protocol by making three modifications to our DKG, which are motivated by the refresh
protocol in [CKAS02].

• On receiving a clock tick for phase τ , instead of running the HybridVSS protocol for a random key,
node Pi reshares its share si,τ−1 from phase τ−1. It then erases the old share, the bivariate polynomial
used during resharing, and the univariate polynomials from the send messages, and broadcasts its clock
tick. While retransmitting send messages during a node recovery, only the commitments are sent.

• A node waits for t + 1 identical clock ticks before proceeding with protocol Sh instances.

• Once a node Pi receives n − t − f ready messages for a decided set Q, instead of adding shares si,d

for Pd ∈ Q, it Lagrange-interpolates them for index 0 to obtain the new share. Commitments are

accordingly modified as Vℓ =
∏

Pd∈Q
((Cd,τ )ℓ0)

λ
Q,0

d for ℓ ∈ [0, t].

The main theorem for protocol Renew is as follows.

Theorem 5.1 Assuming the hardness of the discrete-logarithm problem, the Renew protocol implements
asynchronous verifiable share renewal in the hybrid model for n ≥ 3t + 2f + 1.

We need to show liveness, consistency, privacy, and efficiency.

Liveness. Expect for a small modification to maintain forward secrecy [DvOW92], the liveness analysis is
exactly same as that for the DKG protocol. We delete the univariate polynomials from the send messages
stored to facilitate recovery, as their compromise can lead to compromise of the node’s previous-phase share
and subsequently the system’s secret. However, this does not affect the liveness of the system. We observe
that among the ⌈(n + t + 1)/2⌉ echo messages received during an Sh instance of HybridVSS, each honest
node need only receive t + 1 consistent shares of its univariate polynomial in order that the protocol Sh can
continue. With the assumption that at least t + 1 honest and uncrashed nodes receive the send messages
transmitted by an honest and uncrashed node before the adversary can crash them, liveness is guaranteed
for each such Sh instance. The remaining liveness discussion remains exactly the same as that of the DKG
protocol.
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Consistency. According to the consistency property of protocol DKG, for each of the completed sharings,
if run individually, each node Pi will reconstruct same shared secret zi,d where Pd ∈ Q is the dealer for the
sharing. Here, instead of summing shares received from all t+1 selected dealers, nodes Lagrange-interpolate
them for index 0. As Lagrange-interpolation is homomorphic to addition and scalar multiplication, as with
DKG, during reconstruction each node will reconstruct same secret (say) z.

We also need to prove that z = s. Let S represent a set of t+1 nodes that completes the Renew protocol
in a phase τ and have not yet received the next clock tick. Here,

z =
∑

Pi∈S

λS,0
i si,τ

=
∑

Pi∈S

λS,0
i (

∑

Pd∈Q

λQ,0
d si,d)

=
∑

Pd∈Q

λQ,0
d (

∑

Pi∈S

λS,0
i si,d)

=
∑

Pd∈Q

λQ,0
d sd,τ−1

= s

Thus, if at least t + 1 honest nodes complete the share renewal protocol during phase τ before detecting a
subsequent clock tick, the system maintains a verifiable sharing of s.

Privacy. Privacy is proven in exactly the same way as the privacy of our DKG protocol.

Efficiency. The efficiency discussion remains similar to the efficiency discussion in the DKG protocol.
The worst-case message and communication complexities of the Renew protocol are O(tdn2(n + d)) and
O(κtdn3(n + d)) respectively.

5.3 Share Recovery Protocol

The adversary may crash, isolate or compromise some of the nodes. This may get detected by the node
itself or by the system as a whole using the techniques beyond our scope. After detection of crash and
compromise, a node will be rebooted using read-only memory, which however does not provide it with its
share. In a proactive DKG system, the ability of a node to recover its lost share, when rebooted as above or
alienated from the part of the network, must be ensured. Otherwise, the adversary can destroy the complete
system by gradually crashing or isolating n − t nodes.

The recover and help messages in our HybridVSS, DKG and share renewal protocols suffice to handle
share recoveries. To achieve automatic share recovery upon reboot, we add a recover message to nodes’
reboot procedure.

6 Group Modification Protocols

On a long-term basis, it is inevitable that the set of nodes in the system will need to be modified; new nodes
may join or old nodes may leave. To maintain the resilience bound n ≥ 3t + 2f + 1, this may also lead to
a modification in the security threshold t or the crash-limit f of the system. Here, we present protocols to
achieve node addition, node removal, and security-threshold and crash-limit modification.

6.1 Group Modification Agreement

For group modification protocols, it is important to include a mechanism to propose and agree on group
modification proposals. Leaving this to node administrators can not only create bottlenecks in the system,
but it can also provide new avenues of attack. Using reliable broadcast methodology, we propose a simple
agreement protocol for this. To avoid inefficient atomic or causal broadcast primitives [HT93], we impart
commutativity to the group modification proposals. Node addition and removal operations are commutative

15



in nature; however, the threshold and crash-limit modifications are not. We solve this problem by attaching
threshold and crash-limit modification requests to node addition or removal proposals. With every node
addition or removal proposal, a proposer has to specify whether change in the size of the group made by
its proposal should affect the security-threshold or the crash-limit. An interested node will send such a
proposal to all the nodes and nodes who agree with the proposal continue with echo messages from a reliable
broadcast [BC03]. Once it receives n− t− f ready messages, a node adds the proposal into its modification
queue. Like other proactive protocols, assuming that the n− t−f nodes finish with the same set of proposals
during a phase, liveness is assured; additionally, safety is always assured.

6.2 Node Addition

We can increase the redundancy of the system by adding new nodes. It is easily possible to provide shares
to the added nodes at the start of a new phase by including those into the list of nodes. Although the new
nodes cannot contribute with send messages, for any node-additions with new threshold smaller than the old
honest-uncrashed count, sufficient renewal proposals are available.

However, considering possible large durations of phases or even the absence of proactivity, we need a
node-addition protocol that does not rely on share renewal.

Protocol Description.

Definition 6.1 Suppose system nodes hold shares of a secret s shared using the DKG protocol (§3) for a
phase τ . A node addition protocol (NodeAdd) to add a new honest node Pnew during phase τ in a hybrid
model having a network of n ≥ 3t + 2f + 1 nodes with t-limited Byzantine adversary and f -limited crashes
and network failures satisfies the following conditions:

Liveness: If the adversary delivers all associated messages within phase τ , then the new honest node Pnew

completes the protocol NodeAdd, except with negligible probability.

Consistency: Once node Pnew completes protocol NodeAdd during session (τ), then there exists a fixed
value z such that if Pnew reconstructs zi during session (τ), then zi = s.

Privacy: The t-limited adversary cannot compute the shared secret s after an execution of protocol NodeAdd,
except with negligible probability.

Efficiency: The communication complexity for any instance of protocol NodeAdd is d-uniformly bounded.

We obtain this by making three small modifications to our DKG.

• On receiving a Node-Add request, instead of running protocol Sh of HybridVSS for a random key, node
Pi reshares its current share si,τ and broadcasts the Node-Add request received. It then waits for t
other identical Node-Add requests before proceeding.

• Once a node Pi receives n − t − f ready messages for a decided set Q, it Lagrange-interpolates
si,d for Pd ∈ Q for index new and provides subshare si,new to node Pnew with commitments Vℓ =
∏

Pd∈Q
((Cd,τ )ℓ,new)λ

Q,new

d for ℓ ∈ [0, t].

• Node Pnew, upon obtaining t+1 shares for same commitment vector Vℓ for ℓ ∈ [0, t], interpolates them
for index 0 to obtain its share snew.

The main theorem for protocol NodeAdd is as follows.

Theorem 6.1 Assuming the hardness of the discrete-logarithm problem, protocol NodeAdd implements asyn-
chronous verifiable node addition during a phase in the hybrid model for n ≥ 3t + 2f + 1.

We need to show liveness, consistency, privacy, and efficiency. The liveness and efficiency analysis exactly
mirrors that of the DKG protocol. The worst-case message and communication complexities of the Renew
protocol are O(tdn2(n+d)) and O(κtdn3(n+d)) respectively. However, the consistency and privacy analyses
are quite interesting.
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Consistency. According to the consistency property of the reliable broadcast protocol, each of these nodes
will complete the same set of t+1 sharings started for the Node-Add protocol. Assume that set S represents
a set of nodes, which provide t + 1 valid subshares to node Pnew . Here, snew computed by node new is a
valid share of the secret s such that

snew =
∑

Pi∈S

λS,0
i si,new

=
∑

Pi∈S

λS,0
i (

∑

Pd∈Q

λQ,new
d si,d)

=
∑

Pd∈Q

λQ,new
d (

∑

Pi∈S

λS,0
i si,d)

=
∑

Pd∈Q

λQ,new
d sd.

Node new can check the correctness of the received subshares using the commitment vector Vℓ for ℓ ∈ [0, t]
and protocol Rec at node new will reconstruct shared secret s. However, it is interesting to observe that it
is not possible for a new node to generate its share, if we rely on subshares generated during protocol Renew
instead of running a new DKG while adding the nodes.

Privacy. Here, it assumed that the addition of new nodes does not change the security threshold of the
system. If the node to be added is honest, privacy can proven exactly in the same way as privacy in our
DKG protocol. If it is dishonest, then it is one of the t nodes which can be compromised by the adversary
and knowing subshares of its share does not provide enough information to the adversary to extract the
secret key.

6.3 Node Removal

This protocol involves removing a node from the system such that it should no longer be able to reconstruct
the secret. Without modifying the shares for the other nodes, it is not possible to remove a node in the
middle of a phase and we are restricted to removing it at the start of a new phase. To remove a node from
the group involves simply not including it in the next share renewal protocol. An honest node should not
carry out a node removal if that would invalidate the resilience bound n ≥ 3t + 2f + 1.

6.4 Security Threshold and Crash-Limit Modification

Security threshold and crash-limit modification involves changing the threshold limit t or the crash-limit f
of the system. For the same reason as node removal, it is not possible to modify the threshold and crash
limits in the middle of a phase. With their lack of commutativity, we avoid direct threshold t and crash-limit
f modifications. We modify t and f at the phase-change based on the all the node addition and removal
requests confirmed during the previous phase. Nodes update their t and f values accordingly and start their
HybridVSS instances with the updated parameter values. As a feature of the renewal protocol, the threshold
value can be easily changed by just correctly changing the degrees of the resharing polynomials.

7 System Architecture

We design our DKG system as a deterministic state machine using the state machine replication approach
[Lam78, Sch90]. As we aim at building an asynchronous distributed PKG for IBC as a representative DKG
application, we are working on an object-oriented C++ implementation that uses the PBC library [Lyn09] for
the underlying elliptic curve and finite field operations and a PKI infrastructure with DSA signatures based
on GnuTLS [MFS+09] for authentication and non-repudiation. We have already implemented a distributed
PKG for Boneh-Franklin identity-based encryption in a partial-synchronous model [KG07], which is providing
a coding framework for our DKG implementation.
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System Design

In our deterministic state machine design, nodes moves from one state to another based on messages re-
ceived. Messages are categorized into three types: operator messages, network messages and timer messages.
Operator messages, which are of types in and out, define interactions between nodes and their operators.
Network messages realize protocol flows between nodes. As we use a weak synchrony assumption to maintain
liveness, we also include timer messages in the form of start timer and stop timer, which work according
to the delay(t) function described in §2.1.

Defence against DoS and Sybil Attacks

The distributed nature of DKG provides an inherent protection against DoS attacks and the inclusion of
crashed nodes and network failure assumptions makes DoS attacks less feasible. Although leaders might
become primary targets, we mitigate this issue with an efficient leader-changing mechanism. Further, as
all valid communication is done over TLS links, nodes can easily reject messages arriving from non-system
entities. Sybil attacks [Dou02] are not a major concern, as ad-hoc additions of nodes is not a feature of our
system. Nodes are added using the group modification agreement protocol, which involves administrative
interaction at each node.

8 Concluding Remarks

While working towards a realistic DKG architecture, we first investigated the differences between the partially
synchronous and asynchronous communication models and observed that only the asynchronous communi-
cation model realistically fits existing Internet. We also incorporated crash-recoveries and network failures in
the system along with the traditional Byzantine adversary and motivated their requirement in the proactive
system models.

We defined a VSS scheme (HybridVSS) that works in our hybrid communication model. We then observed
the requirement of a Byzantine agreement while implementing the DKG in the asynchronous communica-
tion setting and presented a leader-based system to achieve that in our DKG system. We are currently
implementing our DKG protocol to prove its practicality and efficiency.

To achieve proactive security, we revisited our system model and suggested amendments to introduce the
concept of phases into the asynchronous communication model and to maintain liveness and safety in the
system. We presented share renewal and recovery mechanisms for our DKG protocol. We then observed the
importance of group modification primitives for the long-term system sustainability and proposed protocols
to achieve group modification agreement, node addition, node removal, and security-threshold and crash-
limit modification. We plan to include these protocols in our DKG implementation such as distributed PKG
for IBC.
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