
This manuscript is also available at: http://patricklonga.bravehost.com/publications.html.

Novel Precomputation Schemes for Elliptic Curve

Cryptosystems

Patrick Longa, and Catherine Gebotys

Department of Electrical and Computer Engineering

University of Waterloo, Canada
{plonga, cgebotys}@uwaterloo.ca

Abstract. We present an innovative technique to add elliptic curve points with the

form P Q± , and discuss its application to the generation of precomputed tables for

the scalar multiplication. Our analysis shows that the proposed schemes offer, to the

best of our knowledge, the lowest costs for precomputing points on both single and

multiple scalar multiplication and for various elliptic curve forms, including the

highly efficient Jacobi quartics and Edwards curves.

Keywords: Elliptic curve cryptosystem, scalar multiplication, multiple scalar
multiplication, precomputation scheme, conjugate addition.

1 Introduction

In mid 80’s, Miller and Koblitz independently proposed the use of elliptic curves for

cryptographic purposes [17,9]. Since then, Elliptic Curve Cryptography (ECC) has gained
increasing research and commercial interest.

Scalar multiplication, denoted by kP, where k is a scalar and P is a point on the elliptic

curve, is the central operation of most elliptic curve cryptosystems. A plethora of methods

exist in the literature to execute this operation efficiently, mainly exploiting some efficient

representation of the scalar. For instance, the Non-Adjacent Form (NAF) is a standard

representation with the fewest nonzero terms using digits from the set { 1,0,1}− .
In some settings, however, it is required to compute a multiple scalar multiplication

with the form kP+lQ, where k and l are scalars and P and Q are points on the curve. In this

scenario, well-known methods are Interleaving [18] and the Joint Sparse Form (JSF) [21].

A practical strategy that reduces further the number of required additions at the expense

of some extra memory is the use of precomputations. In this case, a table of points is built

and stored in advance (precomputation stage) for later use during the execution of the

scalar multiplication itself (evaluation stage). Although these window-based methods

effectively reduce the number of nonzero terms in most representations, a potential

drawback is the cost of computing such a table, which grows with the window size.

Thus, it is an important research effort to minimize the cost of the precomputation stage
to reduce the total cost of scalar multiplication. Further, although improved elliptic curve

2 P. Longa and C. Gebotys

shapes with faster explicit formulae are currently the focus of intense research [2,6], there

is still a lack of analysis of precomputation schemes that are efficient for these settings.

In that direction, this work proposes efficient precomputation schemes and analyzes

their performance on three relevant elliptic curve settings: standard elliptic curves using

Jacobian coordinates, Jacobi quartics using an extended coordinate system [6,7] and

Edwards curves using inverted Edwards coordinates [3].

The proposed schemes are based on the following simple idea: if P+Q has been

computed for two distinct points P, Q, the subtraction of those points only requires a few

additional field operations1. In the remainder, we will refer to this operation, namely

(())P Q P Q− = + − , as “conjugate” addition. It will turn out that this operation will allow

computing precomputed tables very efficiently. We apply the strategy of the conjugate

addition to calculate tables of the form id P and i ic P d Q± , which are commonly found in

most single and multiple scalar multiplication algorithms.
Further, our precomputation schemes are compared and analyzed for three possible

cases, which are basically determined by the system used to represent points: projective

coordinates, affine coordinates with restriction to one inversion per point, and affine

coordinates (without restriction in the number of inversions). Our extensive analysis

allows us to determine which case is the most efficient for a particular scenario and for

determined I/M (field inversion/multiplication) ratios.

Our work is organized as follows. In Section 2, we detail some background about ECC

over prime fields. Then, in Section 3 we describe our strategy to derive low-cost formulas

for the conjugate addition in the different settings under study. In Section 4, we introduce

the new schemes for precomputing points for tables with the forms id P and i ic P d Q± ,

and discuss their costs. In Section 5, we analyze and compare the performance of the

proposed schemes with the previously most efficient methods. A discussion of some other

applications of the strategy of the conjugate addition follows in Section 6. Some

conclusions summarizing the contributions of this work are presented at the end.

2 Preliminaries

An elliptic curve E over a prime field pF is defined by the short Weierstrass equation
2 3:E y x ax b= + + , where , pa b ∈ F

and 3 24 27 0a b∆ = + ≠ , and which will be referred

in the remainder as the standard elliptic curve form. The points on the curve E and the

identity element O, known as the point at infinity, form an abelian group whose group law

mainly consists of two basic operations: doubling (2P) and addition (P+Q) of points.

The main operations in most elliptic curve-based cryptosystems have the forms kP and

kP+lQ, known as (single) scalar multiplication and multiple scalar multiplication.

1 Okeya et al. [19] showed that an inversion can be saved when computing P±Q in affine

coordinates (see also [8]). We expand the idea to projective coordinates where further reductions
are possible.

Novel Precomputation Schemes 3

Affine coordinates (referred to as A in the remainder) uses (,)x y

to represent points.

However, since this system requires field inversions, it is generally expensive over prime

fields. When using efficient forms for the prime p (as recommended by [4]), it has been

observed that the cost of inversion can be as high as 1I > 30M. For example, benchmarks

by [11] and [1] show I/M ratios between 30-40 and 50-100, respectively.

In efficient implementations, point representations with the form (: :)X Y Z , known as

projective coordinates, were introduced to replace inversions. For example, an efficient

case of this projective representation is given by Jacobian coordinates (referred to as J),

where each projective point (: :)i i iX Y Z corresponds to the affine point 2 3(/ , /)i i i iX Z Y Z .

In this case, equation E acquires the form 2 3 4 6Y X aXZ bZ= + + , and the negative of an

element (, ,)i i iP X Y Z= is given by (, ,)i i iP X Y Z− = − .

In recent years, other curve forms with faster group laws have appeared in the

literature. In this work, we focus on two of them: Jacobi quartics and Edwards curves,

whose explicit formulas have been found to be particularly fast. We briefly describe both

curve shapes in the following. Note that we consider that constant curve parameters are

fixed to small values so that the cost of performing any operation with them is negligible.

Jacobi quartic curve. It is defined by the curve 2 4 22 1y x ax= + + , where pa ∈F ,
2 1a ≠ . The projective curve is 2 4 2 2 42Y X aX Z Z= + + , where a given projective point

(: :)i i iX Y Z corresponds to the affine point 2(/ , /)i i i iX Z Y Z . In this case, the negative of

an element (, ,)i i iP X Y Z= is represented by (, ,)i i iP X Y Z− = − . The most efficient

formulae for these curves have been developed by Hisil et al. [6,7] using an extended

coordinate system of the form 2 2(: : : :)i i i i iX Y Z X Z that will be referred as JQ.

Edwards curve. It is defined by the curve 2 2 2 21x y dx y+ = + , where {0,1}d ∉ . In [2],

the authors presented explicit formulas for point operations on this curve using standard

projective coordinates. Later in [3], the same authors introduced a more efficient

coordinate system, known as inverted Edwards coordinates (denoted by IE), where each

projective point (: :)i i iX Y Z corresponds to (/ , /)i i i iZ X Z Y in affine. In this case, the

curve equation is given by 2 2 2 2 2 4()X Y Z X Y dZ+ = + , where 0XY Z ≠ , and the

negative of a point (, ,)i i iP X Y Z= is given by (, ,)i i iP X Y Z− = − .

In Table 1, we summarize the costs of the most efficient formulas in projective

coordinates for the three curve forms under consideration. For complete details about

formulas using J coordinates the reader is referred to [12]. Following the common

practice in the literature, costs are expressed by the number of field multiplications (M)

and squarings (S) that are required to perform certain operation, neglecting cheaper

operations as field addition/subtraction (A) and multiplication/division by small constants.

Table 1 includes efficient operations using mixed coordinates, which are useful if input

point(s) are represented in affine (A) coordinates but the result is required in some

projective system P. Also, note that we have included efficient formulas exploiting pre-

stored values. If, for instance, values 2
1Z , 3

1Z , 2
2Z and 3

2Z are available when computing

4 P. Longa and C. Gebotys

an addition in J coordinates then we can saved up to 2M + 2S. Similarly, in the case of

Jacobi quartics it is possible to reduce the original cost of 7M + 4S of the addition formula

to 7M + 3S (see [6] for complete details) by noting that 2()i iX Z+ can be precomputed.

Finally, Table 1 also includes the highly efficient doubling-addition operation (DA)

developed by [14], which involves the recurrent operation 2P+Q and is more efficient

than performing a traditional doubling followed by an addition using J.

Table 1. Costs of point operations in projective coordinates using Jacobian (J), inverted Edwards

(IE) and extended Jacobi quartic (JQ) coordinates.

Point Operation
Cost

Jacobian (J, a = −3) InvEdw (IE) JQuartic (JQ)

 Doubling (D), 2() →P P 3M + 5S 3M + 4S 2M + 5S

 Mixed doubling (mD), 2() →A P 1M + 5S 3M + 3S 7S

 Tripling (T), 3() →P P 7M + 7S 9M + 4S 8M + 4S

 Mixed tripling (mT), 3() →A P 5M + 7S 7M + 3S 5M + 6S

 Addition with stored values, + →P P P 10M + 4S / 9M + 3S - 7M + 3S

 Addition (A), + →P P P 11M + 5S 9M + 1S 7M + 4S

 Mixed addition (mA), + →P A P 7M + 4S 8M + 1S 6M + 3S

 Mixed addition (mmA), + →A A P 4M + 2S 7M 4M + 3S

 DA with stored values, 2() ()+ →P P P 13M + 8S - -

 DA, 2() ()+ →P P P 14M + 9S - -

 Mixed DA, 2() ()+ →P A P 11M + 7S - -

 P: projective coordinates (J, JQ or IE coordinates).

3 Our Strategy: Conjugate Addition

Our strategy to yield efficient precomputation schemes is based on the similarities

between adding and subtracting two points. Basically, if the addition P+Q takes place,

then it is expected that, when subtracting the same points (i.e., P−Q), most of the

intermediate field operations are identical simply because P−Q = P+(−Q) and the

negative of a point only involves the change of at most one of the coordinate values in the

point representation, as described in the previous section.

Let us illustrate the latter with the point addition formula using J. Let 1 1 1(, ,)P X Y Z=

and 2 2 2(, ,)Q X Y Z= be two points on an elliptic curve E. If the addition

3 3 3(, ,)P Q X Y Z+ = is performed using [13, formula (15)] as follows

2 3 2 2
3 12(4 8)X Z Xα β β= − + , 2 2 3 3

3 1 3 12 2()Y Z X X Z Yα β β= − − , 3Z θβ= , (1)

where 3 3
2 11 22()Z Y Z Yα = − , 2 2

2 11 2Z X Z Xβ = − and 2 2 2
1 2 1 2()Z Z Z Zθ = + − − , then P Q−

Novel Precomputation Schemes 5

can be computed as 1 1 1 2 2 2 4 4 4() (, ,) (, ,) (, ,)P Q X Y Z X Y Z X Y Z+ − = + − = reusing the

partial values 3 2 2
12(4 8)Z Xβ β+ , 2 2

12Z X β , 3 3
12Z Y β− , 3Z , 3

21Z Y and 3
12Z Y . The latter can

be performed with the following formula for the conjugate addition

2 3 2 2
4 12(4 8)X Z Xγ β β= − + , 2 2 3 3

4 1 4 12 2()Y Z X X Z Yγ β β= − − , 4 3Z Z= , (2)

where 3 3
2 11 22()Z Y Z Yγ = − + . Note that the cost of the conjugate addition (2) using J is

only 1M+1S, which is significantly less than the cost of a general addition (1) (i.e.,

11M+5S). If we also consider other usually neglected operations, then the cost drops from

11M+5S+9A+2 (2)× +1 (4)× to only 1M+1S+4A+1 (2)× .

It may seem that performing this conjugate operation would involve several extra

registers to store partial values temporarily. However, memory requirements can be

minimized by performing P+Q and P−Q in “parallel”. For instance, a possible execution

sequence for computing P Q± using formulas (1) and (2) would be as follows:

INPUT:
1 1

T X← ,
2 1

T Y← ,
3 1

T Z← ,
4 2

T X← ,
5 2

T Y← ,
6 2

T Z←

OUTPUT:
1 3

T X← ,
2 3

T Y← ,
3 3

T Z← ,
4 4

T X← ,
5 4

T Y←

 1.
2

7 3
T T=

2

1
{ }Z 13.

7 4 8
T T T= −

 { }β 25.

2

1 6
T T=

2{ }α

 2.
4 4 7

T T T= ×
2

1 2
{ }Z X 14.

3 3 7
T T T= ×

3 4
{ }Z Z= 26.

1 1 4
T T T= −

3
{ }X

 3.
8 3 7

T T T= × 3

1
{ }Z 15. 2

6 7
T T= 2{ }β 27.

7 2 7
T T T= × 3 3

2 1
{ }Z Y β

 4.
5 5 8

T T T= × 3

1 2
{ }Z Y 16.

7 6 7
T T T= × 3{ }β 28.

2 8 1
T T T= −

2 2

2 1 3
{ }Z X Xβ −

 5. 2

8 6
T T= 2

2
{ }Z 17.

8 6 8
T T T= × 2 2

2 1
{ }Z X β 29.

2 2 6
T T T= ×

2 2

2 1 3
{ ()}Z X Xα β −

 6.
7 7 8

T T T= + 2 2

1 2
{ }Z Z+ 18.

4 8
2T T= 2 2

2 1
{2 }Z X β 30.

2 2 7
T T T= −

3
{ }Y

 7.
3 3 6

T T T= +
1 2

{ }Z Z+ 19.
4 4 7

T T T= +

3 2 2

2 1
{ 2 }Z Xβ β+ 31. 2

6 5
T T= 2{ }γ

 8. 2

3 3
T T= 2

1 2
{() }Z Z+ 20.

4 4
4T T=

3 2 2

2 1
{4 8 }Z Xβ β+ 32.

4 6 4
T T T= −

4
{ }X

 9.
3 3 7

T T T= − { }θ 21.
6 5 2

T T T= −

3 3

1 2 2 1
{ }Z Y Z Y− 33.

8 8 4
T T T= −

2 2

2 1 4
{ }Z X Xβ −

10.
6 6 8

T T T= × 3

2
{ }Z 22.

6 6
2T T= { }α 34.

8 5 8
T T T= ×

2 2

2 1 4
{ ()}Z X Xγ β −

11.
2 2 6

T T T= × 3

2 1
{ }Z Y 23.

5 5 2
T T T= − −

3 3

1 2 2 1
{ ()}Z Y Z Y− + 35.

5 8 7
T T T= −

4
{ }Y

12.
8 1 8

T T T= × 2

2 1
{ }Z X 24.

5 5
2T T= { }γ

The previous execution requires 8 registers only (including temporary registers and

registers storing input coordinates). It is easy to verify that the memory requirement is the

same as that of the addition formula alone. Thus, executing the conjugate addition does

not increase the memory requirements in this case.

We have derived the conjugate addition formulas in projective coordinates (i.e., J, JQ

and IE coord.), and also in affine for the three curves of interest. The costs of these new

formulas are summarized in Table 2. We have also included the costs of the traditional

addition operations that accompany the execution of our formulas. Note that, in some

cases, the traditional operations have been modified slightly so that the cost of the pair

addition/conjugate addition is minimized. Refer to Appendices A-C for complete details.

As it can be seen in Table 2, the new conjugate formulas introduce significant cost

6 P. Longa and C. Gebotys

reductions in comparison to traditional operations (see Table 1). In the following section,

we take advantage of the latter to develop low-cost precomputation schemes.

Table 2. Costs of new conjugate additions for standard, Edwards and Jacobi quartic curves using

projective (J, IE and JQ) and affine coordinates.

Point Operation
Cost

Standard curve Edwards curve Jacobi quartic

 Conjugate addition (A’) , − →P P P 1M + 1S 4M 2M + 1S

 Addition (A), + →P P P 11M + 5S 9M + 1S 7M + 3S

 Conjugate mixed addition (mA’), − →P A P 1M + 1S 4M 2M + 1S

 Mixed addition (mA), + →P A P 7M + 4S 8M + 1S 6M + 3S

 Conjugate mixed addition (mmA’), − →A A P 1M + 1S 3M 1M + 1S

 Mixed addition (mmA), + →A A P 4M + 2S 8M 5M + 3S

 Conjugate addition (A’), − →A A A 2M + 1S 4M 3M

 Addition (A), + →A A A 1I + 2M + 1S 1I + 9M + 1S 1I + 7M + 4S

4 New Precomputation Method for Scalar Multiplication

In this Section, we apply the concept of conjugate addition to derive highly efficient

precomputation schemes first for tables of the form id P and then for tables of the form

i ic P d Q± , where , {1,3,5, , }i ic d m∈ … . We consider three scenarios: precomputed points

are left in projective coordinates (referred to as case 1), precomputed points are calculated

in projective coordinates and then converted to affine using one inversion (referred to as

case 2), and precomputed points are computed and left in affine (referred to as case 3).

4.1 Precomputation Scheme for Table of the form id P , {1, 3,5, , }id m∈∈∈∈ …………

Well-known methods to compute scalar multiplication using a precomputed table with

points id P , where { }1, 3, 5, ...,i id D m∈ = , are Window-w NAF (wNAF) and Fractional

Window-w NAF (Frac-wNAF), in the case of single scalar multiplication, and the

Interleaving method, in the case of multiple scalar multiplication.

We propose a recursive scheme that first tries to reach a “strategic” point and then

applies efficiently the conjugate addition technique described in Section 3. In the

following, we define as “strategic” to those points that can be efficiently computed and

from which is possible to calculate the maximum possible number of precomputed points

at the lowest cost. The steps of our scheme are detailed in the following.

Step 1: Computation of precomputed points. This is the main body of our scheme, and

is presented in Algorithm 4.1. In this step, points can be computed in projective

Novel Precomputation Schemes 7

 Algorithm 4.1 Computation of precomputed points

INPUT: a point P in affine (A) coordinates, and

 an odd value 7m ≥ to build a table of the form id P , where {1, 3, 5, 7, , }id m∈ …

OUTPUT: the precomputed table 0 1 (1)/2{ , 3 , , }mT T P T P T mP−= = = =… in projective or affine coord.

 1. r = 3, l = 1, i = 2, n = v = 0

 2. 0T P= , 1T rP=

 3. 1R T=

 4. While n < (m – 3)/2

 4.1. If 2m r<

 4.1.1. While n < (m – 3)/2

 s lT R T= +

 n = n + 1, 1l l= + , 1s s= +

 4.2. Else

 4.2.1. t = 2
v

 4.2.2. v = v + 1

 4.2.3. 2R R=

 4.2.4. r = 2r, j = t −1, first = 1

 4.2.5. While 0j ≥ do

 i jT R T= − , n = n + 1

 If first = 1, then 1l j= + , s r i= − , first = 0

 1i i= +

 If 2 1m r j≥ + + , then

 (2) /2 jr jT R T+ = + , n = n + 1

 If 0jT T= , then 1i i= +

 1j j= −

 5. Return 0 1 (1)/2{ , , , }mT T T T −= …

coordinates using operations from Table 1 (case 1), or directly in A (case 3). If projective

points are to be converted to A (case 2), then Step 2 should be executed right after.

Basically, Algorithm 4.1 first reaches certain “strategic” point and then computes all

the points that are close to it by efficiently performing additions and conjugate additions.

The “strategic” points proposed in our scheme have the form 1 2i iP P+ = , for 0i ∈ ≥Z

and 0 3P P= (i.e., 6P, 12P, 24P, and so on), which are computed using a combination of

one tripling (performed at the beginning, Step 2) and a sequence of doublings (Step 4.2.3).

Note that there is a minimum number of close points that makes worthwhile the

computation of the following “strategic” point. If that minimum is not fulfilled (evaluation

in Step 4.1) then the algorithm calculates the remaining points from the previous

“strategic” point (loop beginning in Step 4.1.1). The value of such a minimum depends on

the particular costs of point operations. For J, JQ and IE, we have determined that the

lowest cost is achieved if the next “strategic” point is computed always that the m value is

greater or equal to such a “strategic” point (condition in Step 4.1).

8 P. Longa and C. Gebotys

Let us illustrate the proposed scheme with the following example.

Example 1. If m = 13, Alg. 4.1 computes the first points as 3 6P P P→ → , where 6P is

the first “strategic” point. From this, 5P and 7P (close points) are calculated by adding

6 ()P P+ − and 6P P+ . Note that the latter operation can be calculated with a conjugate

addition, requiring a very low number of operations. Then, Alg. 4.1 calculates the

following “strategic” point (since m > 12) by doubling 6 12P P→ , and finally computes

close points 9P, 11P and 13P by performing 12 (3)P P+ − , 12 ()P P+ − and 12P P+ ,

respectively. Note again that the latter operation is also a low-cost conjugate addition.

In Appendix D, we have sketched the derivation of points for tables with different

values m. Note that the method described does not include cases m = 3, 5. Computing the

table for m = 3 only requires one mixed tripling. For case m = 5, JQ and J coordinates, it

is more efficient to compute points by performing 2 4P P P→ → , and then obtaining 3P

and 5P with an addition/conjugate addition pair (i.e., 4 ()P P+ − and 4P P+). For case

IE, we suggest to compute the table following the sequence 2 3 5P P P P→ → → .

In the following, we describe the procedure to convert points to A for case 2.

Step 2: Conversion to affine coordinates (if required). If mixed addition (or mixed DA) is

significantly more efficient than general addition (or general DA) in a given setting, then

it would be convenient to express the precomputed table in A.

It is known that conversion to A can be achieved by calculating 2 3(/ , /)i i i iX Z Y Z ,
2(/ , /)i i i iX Z Y Z and (/ , /)i i i iZ X Z Y for J, JQ and IE coordinates, respectively.

For each setting, calculation of denominators (denoted by iu) can be efficiently carried

out by using the well-known Montgomery’s method of simultaneous inversion. In this

way, the number of expensive inversions can be limited to only one.

 First, we compute the inverse 1
1 2()nU u u u −= … , where iu are all distinct

denominators of the expressions above from all the non-trivial points in the table {3P, 5P,

…, mP}. For J and JQ, the number of such denominators is reduced to only

(1) / 2n m c= − − , where c is the number of points computed via conjugate addition, since

points computed with addition/conjugate addition pairs share the same coordinate Z. For

IE, 1n m= − as each point has two distinct denominators, namely iX and iY .

Then, individual denominators iu are recovered from U, and the results multiplied to

their corresponding numerator following the conversion expressions.

As it can be seen the use of conjugate additions reduces the cost of the Montgomery’s

method for the cases of J and JQ coordinates. Following our explanation above, it can be

easily verified that one saves 3 1M S+ per point computed with a conjugate addition.

Cost Analysis. The cost of the scheme proposed mainly depends on the value m in the

precomputed table and the curve form selected. We list in Table 3 the costs in terms of

number of operations for various values m. As operations in A coordinates are relatively

expensive in Jacobi quartic and Edwards curves (see Table 2), we only show the

Novel Precomputation Schemes 9

performance of case 3 in the setting of the standard curve. Note that, in this case, listed

point operations using mixed coordinates should be read as standard operations (e.g., for m

= 7, case 3, the proposed method requires 1T+1D+1A+1A’).

Table 3. Costs of the proposed scheme for case 1 in projective coord. using Jacobian (J) and

extended Jacobi quartic (JQ) coord.; case 2 using one inversion; and case 3 in affine (A) coord.

m Point Operations
Case 1 Case 2 Case 3

J JQ J JQ Standard curve

7 1mT + 1D + 1mA+ 1mA’ 17M + 17S 15M + 17S 1I + 28M + 18S 1I + 24M + 20S 3I + 13M + 7S

9 1mT + 1D + 1mA+ 1mA’ + 1A 27M + 21S 22M + 20S 1I + 43M + 22S 1I + 36M + 25S 4I + 15M + 8S

11 1mT + 1D + 1mA+ 1mA’ + 2A 37M + 25S 29M + 23S 1I + 59M + 27S 1I + 48M + 30S 5I + 17M + 9S

13 1mT + 2D + 2mA+ 2mA’ + 1A 39M + 31S 32M + 30S 1I + 63M + 32S 1I + 53M + 35S 6I + 21M + 11S

15 1mT + 2D + 2mA+ 2mA’ + 1A + 1A’ 40M + 32S 34M + 32S 1I + 67M + 33S 1I + 57M + 37S 6I + 23M + 12S

Depending on the curve form selected, some additional considerations are necessary. In

the case of the standard curve using J, if the evaluation stage uses the efficient addition

with two stored values, then values 2
iZ and 3

iZ should be computed during the

precomputation stage. Naively, the latter would require (1 1)(1) / 2M S m+ − . However,

some additional cost reductions are possible. First, the initial tripling computes the

required values for point 3P (i.e., 2
3PZ and 3

3PZ) without requiring extra operations. Also,

one squaring can be saved every time a doubling is performed to get any “strategic” point

since values 2
iZ are cached. Moreover, it is easy to see that addition and conjugate

addition formulas share the same coordinate Z (see Appendix A). Hence, we only require

1M+1S to get 2
iZ and 3

iZ for two points computed with an addition/conjugate addition

pair. Finally, when performing additions using a “strategic” point Q, its values 2
QZ and

3
QZ are calculated in the first mixed addition, say 1 1(, ,) (,)Q Q QQ P X Y Z x y+ = + . Thus,

following general additions of the form (, ,) (, ,)Q Q Q R R RQ P X Y Z X Y Z+ = + can be

executed using an addition with four stored values.

Similarly, in JQ, if the evaluation stage uses the efficient addition with the stored

value 2()i iX Z+ , then these values should be included in the precomputation cost. We

now describe a few optimizations to minimize this cost. First, one squaring can be saved

every time a doubling is performed to get any “strategic” point by noting that 2()i iX Z+

can be cached from a previous mixed tripling or mixed addition. Also, when performing

additions with a “strategic” point Q, the value 2()Q QX Z+ is calculated in the first mixed

addition. Then, following general additions with the same point Q save one extra squaring.

The costs including the savings described above are detailed in Table 3, case 1. For the

case where points are converted to A (case 2), we have to also consider the cost of

performing the Montgomery’ simultaneous inversion method (Step 2). The cost of the

latter in J and JQ is given by Cost 1 (6 3) ()I L M L S→ = + − +
J A

 and Cost → =
JQ A

1 (5 3) (2)I L M L S+ − + , respectively, where (1) / 2L m= −

and m odd 5≥ . However,

10 P. Longa and C. Gebotys

as described in Section 4.1, Step 2, the proposed scheme allows for some extra savings

since points obtained through an addition/conjugate addition pair share the same

coordinate Z. The reduced costs including these savings are given by

 Cost 1 (6 3 3) ()
proposed

I L c M L c S→ = + − − + −
J A

, (6)

 Cost 1 (5 3 3) (2)
proposed

I L c M L c S→ = + − − + −
JQ A

, (7)

respectively, where c denotes the number of points obtained using a conjugate addition. In

the case of IE, the cost of the Montgomery’s method is as follows

Cost 1 (6 (2) / 1)I L L L M→ = + + − −  IE A

, (8)

The total costs including conversion to A are given in Table 3, case 2. Note that in this

case addition operations with stored values do not apply.

4.2 Precomputation Scheme for Table of the form i ic P d Q±±±± , , {1, 3,5, , }i ic d m∈∈∈∈ …………

This scenario mainly applies to methods for computing multiple scalar multiplications

such as those based on JSF. In this case, the application of our strategy of conjugate

additions is straightforward since precomputed points have the form i ic P d Q± , where

, {1,3,5, , }i ic d m∈ … , and each two points cP dQ± can be computed with an

addition/conjugate addition pair.

In the following, we analyze the cost involved when precomputing points for the

specific case of the efficient JSF-based algorithm by Kuang et al. [10]. Extension of the

method to similar table forms easily follows.

Cost Analysis. If both P and Q are unknown before the scalar multiplication is executed,

the points 3P , 3Q , P Q± , 3P Q± , 3P Q± , 3 3P Q± required by the method by [10] need

to be computed on the fly. The latter costs 2mT+2mmA+4mA+2A for case 1 (when points

are left in projective coordinates). With the strategy of conjugate additions, that cost

reduces to 2mT+1mmA+1mmA’+2mA+2mA’+1A+1A’. Note that the advantage

increases for case 2 as our approach allows saving some operations during conversion to

A, as shown in Section 4.1.

In Table 4, we show the cost performance of the proposed scheme for the considered

Table 4. Costs of the proposed scheme for case 1, in projective coord. using Jacobian (J) and

extended Jacobi quartic (JQ) coord.; case 2 using one inversion; and case 3, in affine (A) coord.

Curve form Point Operations Case 1 Case 2 Case 3

 Jacobi Quartic (JQ)
2mT + 1mmA + 1mmA’ + 2mA+ 2mA’

+ 1A + 1A’

41M + 35S 1I + 76M + 44S -

 Edwards (IE) 47M + 24S 1I + 107M + 24S -

 Standard (J) 42M + 32S 1I + 84M + 35S 6I + 30M + 16S

Novel Precomputation Schemes 11

curve shapes. Note that, in the setting of J and JQ, we use again the efficient addition

formulas with stored values and, following the same procedure described in Section 4.1,

we have minimized the impact of the computation of those partial values for case 1. For

case 2 the conversion to A coord. is similar to that of the scheme from Section 4.1 and,

hence, it follows the costs given by (6), (7) and (8) for J, JQ and IE, respectively.

5 Performance Comparison

In this section, we analyze and compare the proposed approach with the most efficient

precomputation schemes available in the literature.

In the case of J, [14] recently proposed a highly efficient scheme, which has been

shown to achieve the lowest cost among methods using only one inversion (case 2). The

cost of this method (referred to as LM method in the remainder) is given by (1M = 0.8S)

LM, case 2Cost 1 (9) (2 6) 1 (10.6 4.8)I L M L S I L M= + + + = + + , (9)

We now derive the cost of the LM method for case 1 using the traditional chain P→

2 3 5P P P mP→ → → →… and the special addition due to [16], but avoiding the final

conversion to A. This involves one mixed doubling and L special additions that cost

5M+2S. Also, the use of additions with pre-stored values during the evaluation stage

requires precalculating values 2
iZ and 3

iZ with a cost of L(1M+1S). Then the total cost is

LM, case 1Cost (6 1) (3 5) (8.4 5)L M L S L M= + + + = + , (10)

Regarding, IE and JQ, we could not find literature related to precomputation schemes

in these settings. Hence, we have analyzed the performance of the straightforward

implementation using the same chain above. The costs for case 1 are as follows

, case 1Cost (9 2) (1 3) (9.8 4.4)L M L S L M= + + + = +
IE

, (11)

, case 1Cost (7 1) (3 7) (9.4 4.6)L M L S L M= − + + = +
JQ

, (12)

for IE and JQ coordinates, respectively. For case 2, the costs are given by

, case 2Cost 1 (15.8 (2) / 3.4)I L L L M= + + − +  IE
, (13)

, case 2Cost 1 (12 4) (5 7) 1 (16 1.6)I L M L S I L M= + − + + = + +
JQ

, (14)

In Table 5, we compare the costs of the described schemes to that of the proposed

scheme from Section 4.1 (see Table 3 and Appendix D) for different windows w. As it can

be seen, the new approach outperforms every other method in cases 1 and 2 for both

IE and JQ. Note that the advantage increases with the window size. For instance, if 1I =

30M, the cost reduction can be as high as 25% (w = 6, JQ).

In the case of standard curves, the LM scheme still achieves the highest performance.

Nevertheless, for case 1, the modified LM scheme (10) and the new approach achieve

12 P. Longa and C. Gebotys

similar performance.

In settings where inversions are not so expensive (low I/M ratios), it could be attractive

the implementation of case 3. In this case, Table 6 shows the performance of the

traditional approach and the proposed method on a standard curve form. Also, the I/M

ratios for which the traditional, the proposed and the LM method achieve the lowest cost

are shown at the bottom of the table. As it can be observed, the LM method offers the

highest performance for a wide range of high I/M ratios on a standard curve, whereas the

proposed method is convenient for low/intermediate values I/M.

Table 5. Costs of different schemes in projective (case 1) and affine coord. (case 2); 1M = 0.8S.

Case Method Curve form w = 3 w = 4 w = 5 w = 6

case 1

 Proposed scheme JQ 10.6Μ 28.6Μ 59.6Μ 116.6Μ

 Method (12) JQ − 32.8Μ 70.4Μ 145.6Μ

 Proposed scheme IE 9.4Μ 28.4Μ 61.2Μ 121.6Μ

 Method (11) IE − 33.8Μ 73.0Μ 151.4Μ

 Proposed scheme J 10.6Μ 30.6Μ 65.6Μ 130.6Μ

 LM Method (10) J − 30.2Μ 63.8Μ 131.0Μ

case 2

 Proposed scheme JQ − 1Ι + 40.0Μ 1Ι + 86.6Μ 1Ι + 173.6Μ

 Method (14) JQ − 1Ι + 49.6Μ 1Ι + 113.6Μ 1Ι + 241.6Μ

 Proposed scheme IE − 1Ι + 46.4Μ 1Ι + 103.2Μ 1Ι + 211.6Μ

 Method (13) IE − 1Ι + 46.8Μ 1Ι + 102.0Μ 1Ι + 212.4Μ

 Proposed scheme J 1Ι + 10.2Μ 1Ι + 42.4Μ 1Ι + 93.4Μ 1Ι + 194.0Μ

 LM Method (9), [14] J − 1Ι + 36.6Μ 1Ι + 79.0Μ 1Ι + 163.8Μ

Table 6. Costs of different schemes in affine coordinates (case 3) and I/M ranges for which each

scheme achieves the lowest cost on the standard curve form; 1M = 0.8S

Method w = 4 w = 5 w = 6

 Proposed scheme 3I + 18.6M 6I + 32.6M 11I + 57.8M

 Traditional 4I + 11.2M 8I + 22.4M 16I + 44.8M

 I/M range (LM Method (9), [14]) I > 9M I > 9.3M I > 10.6M

 I/M range (Proposed, case 3) 7.4M < I < 9M 5.1M < I < 9.3M 2.6M < I < 10.6M

 I/M range (Traditional) I < 7.4M I < 5.1M I < 2.6M

Let us now compare the performance of our scheme for cases 1 and 2, to determine the

best scheme for each scenario. For this analysis, we should also consider the scalar

multiplication cost since different point operations apply to different cases. Note that we

only analyze the performance on Edwards and Jacobi quartic curves, as these are the

Novel Precomputation Schemes 13

settings where our method has been shown to attain the lowest costs (see Table 5).

Let us consider the standard wNAF method. In this case, the cost of a scalar

multiplication is approximately

2

Proposed, case 12 2

(2 1)(1) (1)
D A mA Cost

2 (1) 2 (1)

w

w w

n n
n

w w

−

− −

− − −
+ + +

+ +

    
   
   

,
Proposed, case 2

1
D mA Cost

1

n
n

w

−
+ +

+

   
    

,

for cases 1 and 2, respectively. Table 7 shows the performance of the scalar multiplication

including the costs of the precomputation schemes proposed in this work, cases 1 and 2.

As it can be seen, case 1 achieves the best performance for most common I/M ratios for n

= 160 bits. However, this advantage reduces if n = 512 bits. Ultimately, the particular I/M

ratio of a given implementation would define which case is the most efficient one.

From a different viewpoint, case 1 would be largely preferred if there is no restriction

in the number of precomputations.

Table 7. Costs of scalar multiplication using wNAF and the proposed precomputation schemes

(cases 1 and 2); and I/M range for which case 1 achieves the lowest cost on JQ; 1M = 0.8S

Method
n = 160 bits n = 512 bits

w = 4 w = 5 w = 4 w = 5 w = 6

 Proposed, case 1 1279.6M 1265.4M 4035.7M 3921.5M 3867.4M

 Proposed, case 2 1I + 1267.1M 1I + 1269.2M 1I + 3970.5M 1I + 3874.0M 1I + 3858.8M

 I/M range (case 1) I > 12.5M I > 0M I > 65.2M I > 47.5M I > 8.6M

Finally, we analyze the performance of the proposed scheme for the table i ic P d Q± . In

this case, a multiple scalar multiplication [10] costs approximately [D 0.3083(1)An n+ − +

Proposed, case 10.0617(1)mA] Costn− + and () Proposed, case 2[D 0.37 1 mA] Costn n+ − + for cases

1 and 2, respectively. The latter can be reduced in the case of J coordinates if we consider

the efficient DA operation [14]. The cost in this case can be expressed as follows

() Proposed, case 10.63 0.37 D 0.3083(1)DA 0.0617(1)mDA Costn n n+ + − + − +   , (15)

() () Proposed, case 20.63 0.37 D 0.37 1 mDA Costn n+ + − +   . (16)

Table 8. Costs of multiple scalar multiplication using the JSF3 method [10] and the proposed

precomputation schemes (cases 1 and 2); and I/M ranges for which case 1 achieves the lowest cost

on Jacobi quartic (JQ), inverted Edwards (IE) and Jacobian (J) coordinates; 1M = 0.8S

Method
n = 160 bits n = 512 bits

JQ IE J JQ IE J

 Proposed, case 1 1572.2M 1624.9M 1889.6M 4886.7M 5062.0M 5840.2M

 Proposed, case 2 1I + 1565.4M 1I + 1635.9M 1I + 1796.8M 1I + 4771.4M 1I + 4964.4M 1I + 5511.1M

 I/M range (case 1) I > 6.8M I > 0M I > 92.8M I > 115.3M I > 97.6M I > 329.1M

14 P. Longa and C. Gebotys

Table 8 shows the performance of the scalar multiplication including the costs of our

precomputation scheme, cases 1 and 2.

In Table 8, case 1 again achieves the best performance for most common I/M ratios for

n = 160 bits. However, if n = 512 bits, the range of I/M ratios for which case 2 is more

efficient increases. Also, note that case 2 appears to be the best choice for J coordinates

for a wide range of I/M ratios.

As reference, the costs for JQ and J using a traditional chain for precomputation

would be 1598M or 1I + 1612M, and 1922M or 1I + 1849M, respectively (n = 160 bits).

6 Other Applications

We have discussed the application of the strategy of the conjugate addition to build

efficient precomputation tables with the forms id P and i ic P d Q± . However, this

technique can be easily applied to other table forms such as the one required by the

generalized JSF [20], which requires the computation of (3 1) / 2k k− − non-trivial points.

For instance, for k = 3 scalars, the previous algorithm requires the precomputation of

P Q± , P R± , Q R± , P Q R+ ± , P Q R− ± , which costs about 10 general additions. With

our strategy, the latter is reduced to only 5 addition/conjugate addition pairs (case 1). Note

that the advantage grows exponentially with the number of scalars.

Other obvious application is the extension of our strategy to other settings such as

binary fields. Let us illustrate the latter with the addition formula due to [15] and later

refined by [5]. The cost of adding two points P Q+ with the latter formula takes 13M +

4S. Then, if we need the value P Q− right after, we can store most partial results from

the original addition and obtain the previous value with a cost of only 5M by noticing that

2 2 2 2 2(, ,)Q X X Z Y Z− = + in Lopez-Dahab coordinates. Note that the partial term 2
2 1Y Z

from the original formula is replaced by 2 2 2 2
2 2 2 2 2 2 21 1 1 1()Y Z X Z Y Z X Z Z Y Z− = + = + ,

which only cost one extra multiplication. Straightforward generalizations of this technique

(and also of the proposed precomputation schemes) can be applied to other coordinate

systems and/or elliptic curve forms.

7 Conclusions

We have introduced an innovative technique based on conjugate additions that can be
efficiently exploited to reduce costs in a scalar multiplication. The relevant formulas on
three different settings (namely, standard, Jacobi quartic and Edwards curves) over prime
fields have been derived and shown to attain significant cost reductions in comparison
with traditional formulae. In particular, we have proposed novel precomputation schemes
based on this technique. Our analysis shows that the new schemes are especially attractive
on the highly efficient Jacobi quartic and Edwards curves, enabling even faster
implementations. Finally, we have also discussed other applications of the introduced

Novel Precomputation Schemes 15

strategy to binary fields and other precomputation tables.

Acknowledgments. This research was supported in part by grants from the Natural
Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Centres
of Excellence (OCE). Also, after finishing this work, we became aware of a similar idea
proposed by Michael Scott during a presentation in ECC2008. He rediscovered the idea of
exploiting similarities between P Q+ and P Q− and suggested a slightly different
sequence to precompute points.

References

 1. M. Brown, D. Hankerson, J. Lopez and A. Menezes, “Software Implementation of the NIST
Elliptic Curves over Prime Fields,” in Progress in Cryptology CT-RSA 2001, LNCS Vol. 2020,
pp. 250-265, Springer, 2001.

 2. D. Bernstein and T. Lange, “Faster Addition and Doubling on Elliptic Curves,” in Advances of

Cryptology - Asiacrypt 2007, LNCS Vol. 4833, pp. 29–50, Springer, 2007.
 3. D. Bernstein and T. Lange, “Inverted Edwards Coordinates,” in Applied Algebra, Algebraic

Algorithms, and Error Correcting Codes Symposium (AAECC 2007), 2007.
 4. FIPS PUB 186-2. Digital Signature Standard (DSS). National Institute of Standards and

Technology (NIST), 2000.
 5. A. Higuchi and N. Takagi, “A Fast Addition Algorithm for Elliptic Curve Arithmetic in GF(2n)

using Projective Coordinates,” in Information Processing Letters, Vol. 76, No 3, pp. 101-103,
2000.

 6. H. Hisil, K. Wong, G. Carter and E. Dawson, “Faster Group Operations on Elliptic Curves,” in
Cryptology ePrint Archive, Report 2007/441, 2007.

 7. H. Hisil, K. Wong, G. Carter and E. Dawson, "An Intersection Form for Jacobi-Quartic
Curves", personal communication, 2008.

 8. K. Järvinen, J. Forsten and J. Skyttä, “FPGA Design of Self-Certified Signature Verification on
Koblitz Curves,” in CHES 2007, LNCS Vol. 4727, pp. 256-271, Springer, 2007.

 9. N. Koblitz, “Elliptic Curve Cryptosystems,” in Mathematics of Computation, Vol. 48, pp. 203–
209, 1987.

10. B. Kuang, Y. Zhu and Y. Zhang, “An Improved Algorithm for uP+vQ using JSF3,” in ACNS

2004, LNCS Vol. 3089, pp. 467-478, Springer, 2004.
11. C.H. Lim and H.S. Hwang, “Fast implementation of Elliptic Curve Arithmetic in GF(pn),” in

Public Key Cryptography (PKC’00), LNCS Vol. 1751, pp. 405-421, Springer, 2000.
12. P. Longa, “ECC Point Arithmetic Formulae (EPAF),” available online at

http://patricklonga.bravehost.com/jacobian.html.
13. P. Longa and A. Miri, “Fast and Flexible Elliptic Curve Point Arithmetic over Prime Fields,”

in IEEE Transactions on Computers, Vol. 57, No 3, pp. 289-302, 2008.
14. P. Longa and A. Miri, “New Composite Operations and Precomputation Scheme for Elliptic

Curve Cryptosystems over Prime Fields,” in Public Key Cryptography (PKC’08), LNCS Vol.
4939, pp. 229-247, Springer, 2008.

15. J. López and R. Dahab, “Improved Algorithms for Elliptic Curve Arithmetic in GF(2n),”
Technical Report IC-98-39, Relatorio Técnico, 1998.

16 P. Longa and C. Gebotys

16. N. Meloni, “New Point Addition Formulae for ECC Applications,” in International Workshop

on the Arithmetic of Finite Fields (WAIFI 2007), LNCS Vol. 4547, pp. 189-201, 2007.
17. V. Miller, “Use of Elliptic Curves in Cryptography,” in Advances in Cryptology - Crypto’85,

LNCS Vol. 218, pp. 417-426, Springer, 1986.
18. B. Möller, “Algorithms for Multi-exponentiation,” in Selected Areas in Cryptography (SAC

2001), LNCS Vol. 2259, pp. 165-180, Springer, 2001.
19. K. Okeya, T. Takagi and C. Vuillaume, “Efficient Representations on Koblitz Curves with

Resistance to Side Channel Attacks,” in ACISP 2005, LNCS Vol. 3574, pp. 218-229, Springer,
2005.

20. J. Proos, “Joint Sparse Forms and Generating Zero Columns when Combing,” Technical

Report CORR 2003-23, University of Waterloo, 2003.
21. J. Solinas, “Low-Weight Binary Representations for Pairs of Integers,” Technical Report

CORR 2001-41, University of Waterloo, 2001.

A Conjugate (Mixed) Addition in Jacobian Coordinates

Let 1 1 1(, ,)P X Y Z= and 2 2 2(, ,)Q X Y Z= be two points on an elliptic curve E. If the

general addition P Q+ is performed using [13, formula (15)] and the partial values
3 2 2

12(4 8)Z Xβ β+ , 2 2
12Z X β , 3 3

12Z Y β− , 3Z , 3
21Z Y and 3

12Z Y are temporarily stored, the

conjugate addition 1 1 1 2 2 2 4 4 4() (, ,) (, ,) (, ,)P Q P Q X Y Z X Y Z X Y Z− = + − = + − = can be

performed with the following:

2 3 2 2
4 12(4 8)X Z Xγ β β= − + , 2 2 3 3

4 1 4 12 2()Y Z X X Z Yγ β β= − − , 4 3Z Z= , (17)

where 3 3
2 11 22()Z Y Z Yγ = − + . This formula only requires 1M + 1S + 4A + 1 (2)× .

In the case of mixed addition, let 1 1 1(, ,)P X Y Z= and 2 2(,)Q x y= be two points on an

elliptic curve E. If the mixed addition P Q+ is performed using [13, formula (16)] and

the partial values 3 2
1(4 8)Xβ β+ , 2

14X β , 3
18Y β− , 3Z and 3

21Z y are temporarily stored,

the conjugate mixed addition 1 1 1 2 2 4 4 4() (, ,) (,) (, ,)P Q P Q X Y Z x y X Y Z− = + − = + − = can

be performed as follows:

2 3 2
4 1(4 8)X Xγ β β= − + , 2 3

4 1 4 1(4) 8Y X X Yγ β β= − − , 4 3Z Z= , (18)

where 3
2 112()Z y Yγ = − + . This formula only costs 1M + 1S + 4A + 1 (2)× .

B Conjugate (Mixed) Addition in JQ Coordinates

Let 2 2
1 1 1 1 1(, , ,),P X Y Z X Z= and 2 2

2 2 2 1 1(, , ,),Q X Y Z X Z= be two points on a Jacobi

quartic curve. If the addition P Q+ is performed using the following formula due to [6]

3 1 2 1 2(2)(2) 4X Y Y Y Yα β αβ= + + − − , 2 2 2 2
3 1 2 1 24 4Z Z Z X X= − , 2 2

33 ()X X= , 2 2
33 ()Z Z= , (19)

Novel Precomputation Schemes 17

2 2 2 2 2 2 2 2 2 2
3 1 21 2 1 2 1 1 2 2 3 3(4 4 2)[4()() 4] 16()Y X X Z Z X Z X Z a Y Y X Zαβ αβ= + + + + + + − + ,

where 2 2 2
1 1 1 1() ()X Z X Zα = + − + , 2 2 2

2 2 2 2() ()X Z X Zβ = + − + , and the partial values

β , 1(2)Yα + , 22Y , αβ , 1 24Y Y− , 2 2 2 2
1 2 1 2(4 4)X X Z Z+ , 2αβ , 2 2 2 2

1 1 2 24()()X Z X Z+ + +

1 24YY , aαβ , 3Z and 2
3Z are temporarily stored, then the conjugate addition

2 2 2 2
1 1 1 2 2 2 4 4 41 1 2 2() (, , , ,) (, , , ,) (, ,)P Q P Q X Y Z X Z X Y Z X Z X Y Z− = + − = + − = can be

performed with only 2M + 1S + 7A + 1 (16)× as follows :

4 1 2 1 2(2)(2) 4X Y Y YYα β αβ= + − + + − ,
2 2 2 2

4 31 2 1 24 4Z Z Z X X Z= − = ,
2 2

44 ()X X= ,
2 2
4 3Z Z= , (20)

2 2 2 2 2 2 2 2 2 2
4 1 21 2 1 2 1 1 2 2 4 4(4 4 2)[4()() 4] 16()Y X X Z Z X Z X Z a Y Y X Zαβ αβ= + − + + − + − + ,

In the case of mixed addition, let 2 2
1 1 1 1 1(, , ,),P X Y Z X Z= and 2

2 2 2(, ,)Q x y x= be two

points on a Jacobi quartic curve. If the mixed addition P Q+ is performed using the

following formula due to [6]

3 1 2 2 2 1 2(2)() 2X Y x y x Y yα α= + + − − , 2 2 2
3 1 1 22()Z Z X x= − , 2 2

33 ()X X= , 2 2
33 ()Z Z= , (21)

2 2 2 2 2 2 2 2
3 2 2 1 21 2 1 1 1 2 3 32(()[2()(1) 2] 2())Y X x Z x X Z x a x Y y X Zα α= + + + + + + − + ,

where 2 2 2
1 1 1 1() ()X Z X Zα = + − + , and the partial values 1(2)Yα + , 2xα , 1 22Y y− ,

2 2 2
1 2 1()X x Z+ , 2 2 2

1 21 1 2(2()(1) 2)X Z x Y y+ + + , 2a xα , 3Z and 2
3Z are temporarily stored,

then the conjugate mixed addition 2 2 2
1 1 1 2 21 1 2() (, , , ,) (, ,)P Q P Q X Y Z X Z x y x− = + − = + − =

4 4 4(, ,)X Y Z can be performed with 2M + 1S + 7A + 2 (2)×

as follows:

4 1 2 2 2 1 2(2)() 2X Y x y x Y yα α= + − + + − , 2 2 2
4 31 1 22()Z Z X x Z= − = , 2 2

44 ()X X= , 2 2
4 3Z Z= , (22)

2 2 2 2 2 2 2 2
4 2 2 1 21 2 1 1 1 2 4 42(()[2()(1) 2] 2())Y X x Z x X Z x a x Y y X Zα α= + − + + − + − + .

C Conjugate (Mixed) Addition in IE Coordinates

Let 1 1 1(, ,)P X Y Z= and 2 2 2(, ,)Q X Y Z= be two points on Inverted Edwards coordinates.

If the general addition P Q+ is performed using the following formula due to [3] (note

that some terms have been rearranged to save a few field additions):

2
3 1 2 1 2 1 2 1 2 1 2[()]()X X X Y Y d Z Z X X Y Y= + − , 2

3 1 2 1 2 1 2 1 2 2 1[()]()Y X X Y Y d Z Z X Y X Y= − + ,

3 1 2 1 2 1 2 1 2 2 1()()Z Z Z X X Y Y X Y X Y= − + , (23)

and the partial values 2
1 2 1 2 1 2[()]X X Y Y d Z Z+ , 1 2X X , 1 2Y Y , 2

1 2 1 2 1 2[()]X X Y Y d Z Z− ,

1 2X Y , 2 1X Y and 1 2Z Z are temporarily stored, then the conjugate addition

1 1 1 2 2 2 4 4 4() (, ,) (, ,) (, ,)P Q P Q X Y Z X Y Z X Y Z− = + − = + − = can be performed with the

following (with a cost of only 4M + 2A):

18 P. Longa and C. Gebotys

2
4 1 2 1 2 1 2 1 2 1 2[()]()X X X Y Y d Z Z X X Y Y= − + , 2

4 1 2 1 2 1 2 1 2 2 1[()]()Y X X Y Y d Z Z X Y X Y= − + − ,

4 1 2 1 2 1 2 1 2 2 1()()Z Z Z X X Y Y X Y X Y= − + − , (24)

The formula for mixed addition can be obtained by setting 2 1Z = in formula (23) and

has a cost of 9M + 1S + 4A. Then, if the partial values 2
1 2 1 2 1()X x Y y dZ+ , 1 2X x , 1 2Y y ,

2
1 2 1 2 1()X x Y y dZ− , 1 2X y and 2 1x Y are temporarily cached, then the conjugate mixed

addition 1 1 1 2 2 4 4 4() (, ,) (,) (, ,)P Q P Q X Y Z x y X Y Z− = + − = + − = can be performed by:

2
4 1 2 1 2 1 2 1 21[]()X X x Y y dZ X x Y y= − + , 2

4 1 2 1 2 1 2 2 11[]()Y X x Y y dZ X y x Y= − + − ,

4 1 1 2 1 2 1 2 2 1()()Z Z X x Y y X y x Y= − + − , (25)

which only costs 4M + 2A. We remark that memory requirements of the new conjugate

formulas can be minimized by performing P+Q and P−Q in “parallel”.

D Calculation of precomputed points for different values m

The following table shows the proposed precomputing sequences for different values m.

For m = 5, the first sequence corresponds to J and JQ, and the second one to IE

coordinates. Tied arrows denote an addition/conjugate addition pair (or mixed

addition/conjugate mixed addition pair if addition is performed with affine point P).

m Precomputation Scheme m Precomputation Scheme

3

15

5

17

7

19

Novel Precomputation Schemes 19

9

27

11

29

13

31

