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Abstract

Mobile smartphone users frequently need to search for pemnints of interest from a location based
service, but in a way that preserves the privacy of the usmrations. We present a technique for private
information retrieval that allows a user to retrieve infation from a database server without revealing
what is actually being retrieved from the server. We perftrenretrieval operation in a computationally
efficient manner to make it practical for resource-consrdinardware such as smartphones, which have
limited processing power, memory, and wireless bandwitthparticular, our algorithm makes use of
a variable-sized cloaking region that increases the loogitivacy of the user at the cost of additional
computation, but maintains the same traffic cost. Our prajgises not require the use of a trusted third-
party component, and ensures that we find a good compromisedre user privacy and computational
efficiency. We evaluated our approach with a proof-of-cghamplementation over a commercial-grade
database of points of interest. Query response time oniexgetal hardware dropped from between 25
and 70 seconds to less than a second for state or provineglgeanularity of location privacy. We also
measured the performance of our query technique on a sroag@nd wireless network.
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1 Introduction

Users of mobile devices tend to frequently have a need to find Points Cé$h{&0OIs), such as restaurants,
hotels, or gas stations, in close proximity to their current locations. Colleabibtiese POls are typically
stored in databases administered by Location Based Service (LBS) gr®gidch as Google, Yahoo!, and
Microsoft, and are accessed by the company’s own mobile client applisairoare licensed to third party
independent software vendors. A user first establishes his or hemtyosition on a smartphone such
as a RIM BlackBerry, Apple iPhone, or Google Android device througiositioning technology such as
GPS (Global Positioning System) or cell tower triangulation, and uses it awitdia for the search. The
problem is that if the user’s actual location is provided as the origin to the WB&h performs the lookup
of the POls, then the LBS will learn that location. In addition, a history oftiooa visited may be recorded



and could potentially be used to target the user with unexpected conténasuocal advertisements, or
worse, used to track him or her. The user’s identity may be divulgedghrthe inclusion of the originating
dynamic IP address, e-mail address, or phone number in requests tB$hselver so that the results of
an LBS query can be routed back to the correct user via a TCP dataaamm e-mail reply, or SMS
reply, respectively. If a location can always be correlated to eaakestgthen the user’s current pattern of
activity and even personal safety is being entrusted to a third party, ti@yeof unknown origin and intent.
Although search engines routinely cache portions of previous queredan to deliver more relevant results
in the future, we are concerned when the user’s exact location histtvacised, and not just the key words
used in the search.

For many users, this constitutes an unacceptable violation of privacyeféorts should be made to
avoid it. As location technology becomes commonplace, users will becomeagmgly aware of and
concerned about location privacy. Not only are privacy and petissafety important considerations, but
recent advances in mobile advertising have even opened the possibiligatblo-based spam. In February
2010, the Energy and Commerce Joint Subcommittee of the U.S. House asRefatives held a joint
hearing on the implications of location-based services on the privacynsfuosers. Our challenge has
been to design a system whereby a user can retrieve useful POI itffmmmaathout having to disclose
his or her exact location to a third party such as the LBS server. Thesheeatd also not have to reveal
what particular POls were searched for and found, as each P@uregically includes precise location
coordinates. Thus, the server will be unable to infer the user’s dulweation or likely destination, or
accumulate a history of requests made for profiling purposes. Genepabkisg, a user will typically be
comfortable with a certain degree of privacy, meaning that the user ceuwdggected to be anywhere within
a certain geographic area, such as a city or neighbourhood withowtfféescovery.

Today’s smartphones have high-performing processors which gablgufor cryptographic operations
that can enable location privacy. For instance, the Apple iPhone 3G8igs@ Samsung ARM 833 MHz
CPU, while the BlackBerry Storm 2 contains a Qualcomm 528 MHz CPU. Hewyé¢lvese devices have
limited memory and bandwidth. For instance, the iPhone and Storm are both limit&fl ME of dynamic
RAM, 32 GB of flash memory, and operate on 3G wireless networks nor faeta the (theoretical) 7.2
Mbps HSDPA network. Consider these data limits with respect to a typical cocrahBiOl database for
the U.S. and Canada, which can contain 6 to 12 million entries and require 1 B & @ore of flash
data storage. Requiring that the smartphone download the entire databa&sel request so as not to
provide information about its current location is clearly not practical;[B@f is requiring that it periodically
download just the updated data to ensure accuracy of results, giverattieal bandwidth limits, data usage
limits, and associated overage charges (penalties for exceeding the linstepdphone data plans. Thus,
it is desirable to provide a cryptographic way for a mobile user to requestiltformation while preserving
location privacy. Although extra server-side processing demandsbawstticipated on a privacy-enhanced
LBS server, it may easily be scaled to multiple computers in a distributed fashioch is a reasonable
tradeoff.

1.1 Requirementsand Assumptions

Our basic scenario entails a mobile device user who operates a smartpitlohecation technology and
wireless data transfer capability. The user searches for nearby(RP®]s1earest neighbour) by first con-
structing and sending a query to a known LBS server over the wireléasme The LBS server retrieves
the query, performs a search of its POI database, and returns arsstitt§ to the user containing all POls
found in the specified region. Our protocol must meet the following remeérgs:

e The LBS server must not learn the user’'s exact location. It may onlytifgdengeneral region that
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is large enough, in terms of area and the number of POls it contains, terasifficient level of
privacy to the user’s satisfaction.

e There must be no third parties, trusted or otherwise, in the protocol betlveeiser and the server.

e The implementation must be computationally efficient on resource-constrharddare such as a
smartphone. A user may be expected to tolerate a delay of no more thaal seeends for any kind
of query.

e The approach cannot rely on a secure processor that is not typioaltgl fon a commercial smart-
phone.

Clearly, these requirements present the need for a mechanism to dir&gatlyerenformation in a secure
and private way without revealing the contents of the query results, ahdwthe need for an intermediary
between the user and the database server to provide some kind of a nfaskiingn. Fortunately, there is
a branch of cryptography that is associated with retrieving informatian fialatabase without revealing
which item is being retrieved; it is known as Private Information Retrievi@&PL1]. Our proposed solution
is sufficiently generic to allow an application to rely on any PIR scheme. We theleame assumptions as
that of the underlying PIR scheme, where retrieval is either by objeck iodkeyword [10]. We describe a
server that can find the relevant POI entries based on the user’s loodiitterest included in the request;
this is possible because the entries in the POI database are indexed byct@inlo

Although PIR satisfies our baseline privacy constraints, current imphati@ms of it fail to satisfy our
third condition, which is usable performance on modern smartphone hardwur challenge has been
to complement PIR with a new algorithmic approach that effectively redueearttount of computations
without significantly sacrificing the user’s location privacy.

Note that we make no effort to hide the user’s identity from the location-bssedce. We assume
that it is acceptable to reveal the user’s identity for the purpose of rothisngesponse to a location-based
request, and for offering a customized LBS experience. A user thainddhes to hide his or her identity
to some extent may wish to make use of an onion router, such as Tor [18fudg we note that there are
application domains where the protection of a user’s location using ouogedgechnique is superior to
anonymizing the user’s identity. For example, it is easy to try to identify a usermade a query with a
particular geographical coordinate, simply by looking up the user whe &t¢he corresponding residential
address and assuming the request did not originate elsewhere. Ondh&amid, our proposed technique
hides query contents from the LBS, and leaves no useful clues faruateg the user’s current location.

When a typical mobile phone accesses a third-party LBS provider thiwiteless 3G data connection,
we assume that it reveals only its identity and the query itself to the provideavdittably, a mobile
communications carrier is always aware of the user’s location based eeltliewers in contact, and so it
must not collude with the LBS provider. Our assumption relies on the LBSiggowot being integrated
into the carrier’s infrastructure, such as a traffic reporting servicgu=ll tower data that discovers a user’s
location passively. Our assumption is valid for the vast majority of LBS apjiits, which are unaffiliated
with the carrier; these include search portals, social applications, gaigds, and many other types. When
communicating with such an application, the mobile user’s IP address is ofmmiteetermining the user’s
physical location, as it is dynamically assigned independent of locatiody ®oentral gateway that is
administered by the telecommunications carrier will be identified. We assumedtahar information
will be gleaned by the LBS provider. In the case where a mobile user utilizds iWstead, the user will
be assigned an address that points to the nearby access point, haavel/enay need to employ other
techniques, such as Tor, to mask the address.



1.2 Our Resaults

We propose a novel hybrid LBS technique that integrates location cloakithgrivate information retrieval.

We have also implemented and evaluated our proposal to determine its practinakityource-constrained
hardware. The results show that users can achieve a good compratigeb privacy and computational
efficiency with our technique unlike all other existing LBS proposals.

2 Related Work

We provide a brief overview of cloaking- and PIR-based approafidrelocation privacy. A survey and
classification of methods for location privacy in LBS can be found in [S®filarly, in a position paper in
2008 [16], Ghinita introduced a taxonomy for LBS privacy techniques.

2.1 Location cloaking techniques

Location cloaking in general seeks to prevent an attacker from belagaimatch queries to particular users
and to thus compromise their privacy. The attacker may be in a position tovelisaffic flowing through
the network or even be situated at the LBS provider endpoint.

One popular cloaking technigue is based on the principleafonymity, where a user is hidden among
k-1 other users. Queries from multiple users are typically aggregated abagraity server which forms
an intermediary between the user and the LBS provider. This centraymuityrserver can provide spatial
and temporal cloaking functions, so that an attacker will encounter diffimatching multiple queries that
are observed with users at particular locations and at particular points in Maay cloaking solutions
for location privacy suggest either a central anonymity server asidedd23, 40], or other means such as
decentralized trusted peers [13] or distribukeanonymity [42].

The chief problem is that the anonymity server must normally be part of te&tiicomputing envi-
ronment and represents a single point of vulnerability. If it is succhgsftiacked, or collusion with the
LBS server occurs, then the locations of all users may be divulged. als@s observed that although a
cloaking technique by itself is advantageous in that it does not result isased computational cost on the
server, it can carry with it a high communication cost from the LBS providéhne client. This can mean a
large and unacceptable penalty for mobile phone users. Finally, if agddaenple population results from
the number of active users in a particular geographic area, it may Himestaf satisfy the desired degree of
anonymity. If the anonymity server delays execution of a request unti-r®nymity condition is satisfied,
then this delay may prove to be unacceptable to the user from a featuretioiezoint of view.

We describe some specific location cloaking techniques for the rest ofittection.

211 Trusted Anonymity server

In [23], mobile nodes communicate with external services through an arigngerver. Each node sends
its position and time information, and the server perturbs the position datadaugts a cloaking algorithm
to reduce the risk of correlation of queries and identification of the usalisd randomly reorders messages
to prevent linking of incoming and outgoing traffic. The problem is that des/iaust constantly report their
position so that the density in a region can be ascertained, which is additiaffialthat our solution does
not require.

In [40], the problem of continuous location-based services is prasewtg@ch entails frequent loca-
tion updates from users versus occasional and independent quemi@sonymity server is entrusted with
periodically identifying a cloaking area for the user according to the latsitipns of mobile nodes. A
drawback with this kind of technique is that devices must constantly repairtdtirrent position. In our



technique, a sufficiently large cloaking region can be chosen such thiiténcompass an expected path
of travel during which location updates will be issued.

In [31], a location anonymity server blurs the user’s exact location inéion inside cloaked spatial
regions. A privacy-aware query processer embedded inside theid B§ed to handle these regions. A
novelty is the specification of anonymity requirements through a user grpadile. Also, an adaptive
location optimizer is presented that allows specification of a location regioneabbvarious levels to
satisfy the user’s privacy requirements. The reliance on a centrayemty server is still a drawback.

2.1.2 Decentralized trusted peers

Some researchers suggest a decentralized approach to overcorherthersings and security threats in-
herent in an anonymity server that acts as an intermediary between theadliethte server.

A decentralized approach overcomes the shortcomings and securitistimearent in an anonymity
server. For instance, in [13], a peer-to-peer spatial cloaking algoiglpresented. Before requesting any
location-based service, the user forms a group from peers disdoviarsingle-hop communication and/or
multi-hop routing. Basically, a user constructs a cloaking region arouatbpeeers, and nominates one
of them to be an agent that will send the query to the database serveorigal user then filters out
the answer from all the other false positives generated for the othes.p&be peer discovery relies on
calculating hop distance and latency to other nodes, which is unsuitablérébese networks. A drawback
of this approach is the requirement that the user must also trust the péefrgsior her location, and the
LBS with the contents of the request.

2.1.3 Distributed k-anonymity

Some of the drawbacks of the above approaches are addressed withutid k-anonymity [42], where
homomorphic encryption is used to allow network operators to collaboratéengordh a user whether k-
anonymity holds for his or her current area without the operators leaarig additional information. In
this case, the user can ensure that k-anonymity is achieved.

2.2 PIR-based techniques
221 Overview

A PIR technique can be used to ensure that queries and their resultemrprivate. Specifically, PIR
provides a user with a way to retrieve il@mfrom adatabasewithout the database (or the database admin-
istrator) learning any information about which particular item was retrieléd.satisfies our requirements
for privacy and low communication cost. However, existing PIR technipage drawbacks of high com-
putational cost for applications that require low latency.

The PIR database is typically organized asqdbit string, broken up inte blocks, eactn/r bits long.

The user’s private input or query is typically an index {1, ..., } representing thé" block of bits. A trivial
solution for PIR is for the database to sendrablocks to the user and have the user select the desired block
at indexs, but this carries a maximum cost of communication and is unsuitable in a rescomstrained
environment such as a wireless network.

The three important requirements for PIR are correctness, privatyamtriviality [14]. Correctness
requires that the user obtain the correct database bit or block. Yrequires the database to learn nothing
about the user’s private inpubr the retrieved block of bits. Non-triviality expects a better solution than the
trivial one; that is, the communication complexity between the user and theedatatust be sub-linearin
Another requirement, which is not often addressed in the published literagumplementation efficiency.

In fact, the literature has dedicated the most attention to reducing communiocatigexity at the expense



of computational complexity [1, 37]. This neglect of computational ovethess led to PIR constructions
that are impractical on resource-constrained hardware. The proffd& én several application domains
like patent databases, pharmaceutical databases, online censtisneestbck quotes, and location based
services, has been largely unrealized.

When the PIR problem was first introduced in 1995 [11], it was provahdlsingle-database solution
with information theoretic privacy and a sub-linear communication complexitiyyvgn the user and the
database) is impossible to achieve. Information theoretic privacy assseeprivacy even for an adversary
with unlimited computational capability. Using at least two replicated databasgsoane form of restric-
tions on how the databases can communicate, PIR schemes with informaticgtithpivacy are possible,
and sometimes hold attractive properties like byzantine robustness [@I#0first single-database PIR pro-
posal was in 1997 [9]; its PIR scheme only assures privacy agairshasmsary with limited computational
capability (i.e., polynomially bounded attackers). The type of privacy ptiaie known as computational
privacy, where computational capability is expected to be limited, is a weakienrof privacy compared to
information theoretic privacy. Nonetheless, computational PIR (CPIR)gPoffers the benefit of fielding
a single database, unlike information theoretic PIR [6, 11, 20] that reqjueq@ication and some form of
restrictions on how the databases can communicate. The possibility of adthustmess support to PIR
compensated for the privacy risks of fielding multiple databases [6, 20ldb@rg designed a PIR proto-
col that offers information theoretic privacy with built in robustness prtps for non-responding database
servers and for database servers that respond incorrectly (iroetrg malice).

Basic PIR schemes place no restriction on information leaked about otheriiténesdatabase that are
not of interest to the user; however, an extension of PIR, knowByasmetrid’IR (SPIR) [30], adds that
restriction. The restriction is important in situations where the databasepisaqually of concern. The
only work in an LBS context that attempts to address both user and dafaibaswy is [17]. Although, not
strictly an SPIR scheme, it adopts a cryptographic technique to determineciitiolois enclosed inside a
rectangular cloaking region. The goal of the paper was to reduce thermfdP Ols returned to the user by
a query. Unlike ours, the approach fails to guarantee a constant cpeery size which defeats correlation
attacks, and it requires dynamic partitioning of the search space whicherayntputationally intensive. It
also requires two queries to be executed, whereas a single queonsegpair is sufficient in ours. Another
cryptographic construction related to PIRolslivious transfer(OT) [32, 33]. In OT, a database (or sender)
transmits some of its items to a user (or chooser), in a manner that presezivastkual privacy. The
database has assurance that the user does not learn any informgtod bdat he or she is entitled to,
and the user has assurance that the database is oblivious or un&dwéietoparticular items it received.
OT can thus be regarded as a form of generalization of SPIRs or teesstipf protocols that deal with the
private exchange of information between two parties in a manner thatpesgaivacy for both parties.

2.2.2 PIR-based Location Privacy

PIR has been applied to solving the problem of keeping a user’s locafi@igowhen retrieving location-
based content from a PIR database. This content typically consistsni$ jpd interest (POI's), with each
entry consisting of a description of a place of interest as well as its geloiged location. The only work
cited for PIR in the survey from [39], which does not utilize a third party18]. The key strengths of
the solution in [18] are the nondisclosure of location information and thetlfeadtit is resistant against
correlation attacks for both stationary and highly mobile users. Our agipaitiers from the PIR approach
in [18] in three important ways. First, the approach is specifically basetiedi997 computational PIR
scheme by Kushilevitz et al. [28]. It would require considerable rertiga before it could be used with
recent and more efficient PIR schemes. For instance, it re-organR©4 database into a square matfvix
despite the reduced communications costs attainable from using a rectamgtidiar On the other hand,
our approach is flexible and supports any block-based PIR scheeamd@y, the costs of computation and



communication with the approach at&n) andO(/n), respectively, where is the number of items, or
POls, in the database. The user has no flexibility for dealing with this lineapatational cost for large
and it reveals too many POls to the user; it is too costly for low-bandwidticegvOur hybrid technique
departs from this one-size-fits-all approach and enables usersdtiatedheir desired level of privacy and
efficiency with LBS providers. Thirdly, the scope of the approach didaomsider a privacy-preserving
partitioning approach for the data set. It considers partitioning with kdatneleR-tree in the general sense,
without specific privacy considerations (see Section 4.2 in [18]). Omther hand, we will show how to
use a different method of partitioning of POI data that permits cloaking, Biads@rivacy protection when
used in conjunction with PIR.

The common criticism against this PIR-based approach in the literature is fkabi costly to be
practical [29], and that the computational overhead is unsuitable foures-constrained hardware, such as
smartphones [35].

The taxonomy for LBS privacy in [16] discusses how each techniqalkzes tradeoffs in privacy and
efficiency. The taxonomy, in increasing order of privacy protectiahdecreasing order of performance, is:
two-tier spatial transformations (e.g., SpaceTwist [41]), three-tier $patissformations (e.g., Casper [31])
and cryptographic transformations (e.g., the PIR approach from [IB® paper defines the taxonomy using
the architecture of the various techniques and the transformation of ttig losation (i.e., through pertur-
bation or encryption). Techniques based on the two-tier spatial tranafian do not utilize an anonymity
server and are therefore vulnerable to background knowledge stt@bk three-tier spatial transformation
techniques employ an anonymity server and resist background knawégtdgks, but query performance is
not as good as in the two-tier transformational techniques.

Most of the PIR-based approaches for location privacy rely onwenetbased techniques, which typ-
ically utilize a secure coprocessor (SC) at the LBS server host [2,T24$ hardware creates a computing
space that is protected from the LBS, to realize query privacy. A magvishick of SC-based PIR is that it
requires the acquisition of specialized tamperproof hardware and ifyiseguires periodic reshuffling of
the POls in the database, which is a computationally expensive operat2s][2,

In [25], trusted computing and secure logging were used to preseragdo@rivacy. The paper ad-
dressed the inefficiency of PIR by adopting an alternative solution thaires the Trusted Module to cloak
a user’s location before accessing the POI database. The serw@ggprean learn a user’s cloaking region,
but not the exact location. The motivation for this paper was to avoid ugRgnPsuch a way that it would
have to process all of the POls in the database in order to respond toyalipeause the computational cost
is linear to the size of the database.

2.3 Hybrid techniques

Hybrid techniques [16] permit privacy-efficiency tradeoff decisitmbe made by combining the benefits
of cloaking- and PIR-based techniques.

Chor et al. [12] conjectured a tradeoff between privacy and compuotdtioverhead as a means of
reducing the high computational overhead for some application areafRofCRIr work concretizes and
validates their conjecture in the context of LBS, and also realizes the fwanieleft open in [16], which
is to further reduce the performance overhead of PIR techniquesadthers’ own optimization of PIR
in [18] (paper previously mentioned above) reuses partial computasoifis€i.e., multiplications of large
numbers) and parallelizes the computations. This optimization reduces CPbyc#3%, but the overall
guery response time is still impractical [29, 35]. Ghinita [16] suggests inmpgahe performance of PIR-
based techniques for LBS privacy through a hybrid method that incluad®dR phase on a restricted subset
of the data space. Our work answers the open question of how to ré@upeocessing cost of PIR, without
requiring the LBS to have multiple CPUs to take advantage of parallelizatiomll€&grocessors are not
typically found on smartphones, either.



Asonov et al. [3, 4] propose a relaxation of the strong privacy reguént of PIR to reduce preprocessing
complexity; their PIR requires the support of a secure coproces&)r [is relaxation intends to replace
the strong privacy requirement ab information about the user query being revealed to a weaker privacy
notion of not muchinformation about the user query being revealed. PIR with relaxedqyrigacalled
Repudiative Information Retrieval (RIR). RIR introduced in [4] reqsiadP IR with SC support; however, the
tradeoff solution presented in our work has no such requirements.effer sunning the PIR protocols does
not need to have a SC. Furthermore, while RIR assumes that an obsamet determine with certainty if
the user queries any of the records in the database, our proposalaaecessarily have such requirements.
Our approach reveals the identity of the portion of the database that this irgerested in, but retrieval of
the particular item within the portion is realized with PIR. Database item retrietfalour approach thus
preserves the stronger notion of privacy that PIR offers. For instaifhthe underlying PIR scheme used
with our approach offers information theoretic privacy or computatiorigapy, our approach will maintain
that same level of privacy.

3  Our tradeoff solution

We have developed a hybrid solution that consists of PIR to achieve quisgcy in the context of a
location-based service, and a cloaking technique to reduce the compaitatishof PIR to a feasible level.
Our technique essentially describes how the user creates a cloaking aegind his or her true location,
and performs a PIR query on the contents of the cloaking region onlyb&imefits are numerous: the user’s
location is kept hidden from the server to an acceptable degree regmadlehe number of other users in
the area; there is no intermediary server that is responsible for cloakéhthat would need to be trusted;
and the computational cost of the cryptographic algorithms employed is stiligah We ensure that the
user downloads only the POls that are of interest to the smartphonéngeepeless traffic to a minimum
to reduce costs and conserve the battery. We describe our solution ia¢tians

The approach that we propose entails two phases. First, there is aopesging phase in which the
system is set up for use. The pre-processing operation must bedcautieshenever significant changes are
made to the POI database on the server. In practice, it can occur evergdnths during a period of low
usage on the server such as nighttime maintenance activities. Seconds tresxecution phase, in which
the LBS server responds to queries for POls from users. At a high line pre-processing phase consists
of the following steps:

A geographic region is projected onto a two-dimensional plane.
A suitable grid is formed on the plane.

A collection of POls is saved in a database such that each row congso one POI.

Ea A

Each cell of the grid is mapped to a portion of the database, i.e., a paretit#rdatabase rows (each
containing a POI).

5. The grid structure is transmitted and saved on the client device in a locaimgagatabase so that it
can be referenced in a subsequent query.

The execution phase, in which a query is made for a set of nearby e@isists of the following steps:

1. The user determines the area of interest, either based on the cunysitigb position as determined
through GPS, or some other arbitrary area that the user may be travelintpofuture.

2. The user chooses a desirable level of privacy.



3. The client creates a cloaking region corresponding to this leveladqyriwhich will enclose the area
of interest.

4. The client sends the cloaking region to the server. Also, the client identifinich portion of the
cloaking region contains the area of interest, in a way that is hidden frosetier.

5. The server receives the request, and finds the database portiespomding to the cloaking region.
A block of rows is retrieved from this portion based on the user’s spddifieation of interest. The
POls present in these rows are transmitted back to the client.

6. The client decodes the result, and automatically finds the nearest oeigP®l, or presents the full
list of POls returned to the user to choose amongst.

3.1 Leve of privacy for the PIR query

To defeat a server’s ability to narrow down the search space for thevitarterest to the user, PIR protocols
typically process every item, or POI, in the PIR database. This results imputational complexity that is
linear inn (wheren is the number of items in the PIR database). This is the main hindrance to pr&tRcal
deployment [37].

We propose a tradeoff, in the tradition of PIR development over the yteamsake PIR-based solutions
practical. For example, information theoretic privacy necessitates reglagingle database with at least
two replicated databases; another option is to compromise information theatedicypfor lower privacy
(i.e., attain computational privacy). Our proposal is to offer users tlicelof trading off privacy for
better query performance, by specifying the levels of privacy that eyt for their queries. A level of
privacy for the query determines the number of items that the PIR servépnoegss in order to provide a
response. Setting levels of privacy is a common practice in several dowlagme privacy is important (e.g.,
web browsers). In the specific case of location privacy, we arguedhaurce-constrained device users are
willing to trade off privacy to obtain reasonable performance. On the dthed, such users are equally
willing to trade off some levels of performance to gain some levels of privappart.

A user sets the desired privacy level by specifying the size of the clgakigion. The ratio of the
number of POls inside this region to the number of POls in the entire POI datatedines the level of
privacy. The privacy level can be specified in terms of cities/towns (citgl)estates/provinces (provincial
level), and so on, to enhance user-friendliness. Thus, a privagiMalue ofl indicates that the user desires
guery privacy at the same level as that offered by a typical PIR pobt&milarly, if a user sets the query
privacy level t00.6, the PIR query will execute faster. Although the cost is still linear in the numtieems
in terms of computational complexity, the constant term is modified (i.e. in terms eDBigtation), leading
to significant performance gains. At the same time, it will be disclosed to thierdbiat a particular amount
of 0.4n items are not of interest to the user; this leakage of information does nesseiy constitute a
significant breach of location privacy.

The cloaking region is thus identified as a subset of the entire world deddmipthe database. If we
imagine that the world is mapped as a grid of so-called geographic grid cellarthaqually distributed,
then one of these cells will be chosen to comprise the cloaking region. lhehpyivacy level is desired,
then the cloaking region may be expanded to include multiple geographic gsidesel thus a larger portion
of the database that describes the world. It is sufficient to identify eadtcell by its cell number if the
mapping is static and published. The process of mapping the world to a gaaggaid occurs during the
pre-processing phase, described next.
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Figure 1: (a) A Various-size-grid Hilbert Curve (VHC) mapping with unifoPOI density. (b) A user's
true position inside VHC cell 25 (shaded) and within a cloaking region balibgehe single geographical
grid cell 2. The POI results for VHC cell 25 only will be returned in a qudfya larger cloaking region
consisting of geographic grid cells 1 to 4 was specified (for privacy) seme POI results would still be
returned.

3.2 Pre-processing and location cloaking

The first step in the pre-processing phase is to represent a geimgaapa such as the United States and
Canada on a two-dimensional plane using a map projection method such asmhwiwly used Miller
cylindrical projection [38]. Once that is done, the user’s location of @gemay be found on this plane.
It is necessary to obscure the user’s location by creating a cloakiagaaoend the user’s true position or
area of interest. POIs will be found anywhere by the LBS server withinctbasking region. The region
must be sufficiently large in order to achieve sufficient privacy for ther,ubut at the same time it must be
sufficiently small to minimize the amount of computation required on the user's midyiiee to process
the query results, as well as to constrain the amount of wireless data ttegfficed to transport them.

Several techniques allow POls to be mapped to a cloaking region. Onégeehs quad-tree mapping
[23], but it has the disadvantage (from its use in Casper [31]) of fagraim unnecessarily large cloaking
region which can impair performance [5]. Another technique is called VM®@igus-size-grid Hilbert
Curve) mapping [34], which suits our purpose. In particular, it solvespitoblem of the density of POls
varying by geographic area. If the density of POlIs is significantly hiftrea given region (such as a city),
then a higher data traffic cost will result if the size of the cloaking regiomaras constant, and the query
will be much slower. If on the other hand, the density becomes significantlgri¢such as in a sparsely
populated region like the countryside), then the result size may be so mininhdhéhserver may guess
the user’s likely destination with a high degree of confidence, leading tofgssvacy. VHC solves this
problem by creating variable-sized regions that can be used for cthdbk@sed on the density of the POIs
in the geographic area.

Essentially, in VHC, the two-dimensional geographic grid is mapped to a imnendional space such
that it has equal POI density everywhere (see Fig. 1a). Assume thgicalti?Ol database that covers the
regions of Canada and the U.S. will have 6 million POls. If each VHC cell mastain the same number
of POls, such as 60, then there will be a total of 100,000 VHC cells that axlticthis geographic region.
Suppose that the lowest POI density found in the database is 60 POIB,p@04m>. Thus, the maximum
size of a VHC cell will be 40,00@m2.

Now, we create a geographic grid overlaying the U.S. and Canada regibnxed-size square cells
that are 200 km in length (the area of each is 400@8). This corresponds to the maximum size of a single
VHC cell as described above. Each geographic grid cell, howevercoragin any number of smaller-sized
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VHCcell1 | POl 1 POI 2 ... | POI60

VHCcell2 | POI61 | POI6G2 | .. |POI120
Geo cell 1

VHC cell 3 | POI 121 | POI122| .. |POI 180

VHC cell4 | POI 181 | POI182| .. |POI 240

VHC cell 5 | POl 241 | POl 242| ... |POI 300

VHC cell 6 | POI 301 | POI302| .. |POI360
Geo cell 2

VHC cell 7 | POI 361 | POI362| .. |POI420

VHC cell 8 | POl 421 | POI422| .. |POI 480

Figure 2: lllustration of the relationship between geographical grid celg ells, and POls as stored in
database rows.

VHC cells if the POI density of the region is greater (see Fig. 1b).

Finally, the client determines a cloaking region based on a particular priggel which will dictate
the number of geographic grid cells to include inside the cloaking region. diSeghat the client chooses
a privacy level such that the cloaking region consists of four geddgapid cells. The user’s true location
is in one of these grid cells. Inside of the geographic grid cell, there is af setriable-sized VHC cells
according to the distribution of the POls in the geographic grid cell. Thésuarra of interest, in which
POIs will be searched, will be the single current VHC cell found insidegibegraphic grid cell. The
number of POIs per VHC cell is known, and in our case, it is 60. Thusyslee will initiate a request that
will reference the cloaking region, as well as the specific VHC cell in whiehuser is located or interested
in. The user will receive a set of 60 POIs that are found in his or heeot'VHC cell only. The server will
only know that the location of interest is somewhere within the cloaking regifinetl by the geographic
grid cells.

The geographic grid is useful in specifying the size of the cloaking regiahfor identifying which
VHC cells will comprise the cloaking region. The level of privacy, defifredn O to 1, establishes the size
of the cloaking region. The client then sends this cloaking region to thersényidentifying the bounding
coordinates (i.e., the longitude and latitude of the top-left and bottom-righecs). The server will then
be able to identify which VHC cells belong to this cloaking region, and thegefdrich portion of the
database must be read. The client must also encode the VHC cell conthimisuga of interest inside a PIR
qguery. (Each VHC cell in the system is uniquely identified by a numeric vakig.)2 further illustrates the
relationships among a geographical grid, VHC cells and POls.

Thus, our cloaking technique provides a way of reducing the seaede sy the POI database by em-
ploying multiple levels of database segmentation. The cloaking region itself csilded as a single, or
multiple, geographic grid cell or cells. Inside each geographic grid celf@ind one or multiple VHC
cells, the number depending on the POI density. The user’s true locaticside ione of these VHC cells,
and the user retrieves POI's corresponding to that VHC cell only. Aadahe LBS server is concerned,
though, the user could be located anywhere within the larger geograjhicey).

The geographic grid is fixed. The initial grid cell dimensions are confijbesed on the maximum size
of each VHC cell, but once established, will not need to change. Bothie and server must have the
same knowledge of the geographic grid. It can be distributed offlinedalatn the software for the user’s
smartphone). A simple approach to determining grid cell dimensions is to usegaagéic coordinate
system such as Degrees-Minutes-Seconds (DMS) [27]. For instaach grid cell may be two latitude
degrees in length, which roughly equates to 200 km at the 30 degree latifigepulation of tens of
thousands to millions of users may typically inhabit and stay within the boundsraf el that is 200 krf
in size, leading to excellent privacy. Cells of larger size will afford jmoe- and state-level privacy if
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desired.

Both the client and server must agree on the same VHC mapping, and this mamshbe done off-
line in advance. Because it is dependent on population density, it will rerakitively static over time
even as the population grows, and can be dynamically updated on the cfienegsary. In order to contain
knowledge of the mapping to define the cloaking region, the user may malaf asgre-computed map
file that is stored locally on the device. This mapping technique is a replacéonentloaking region that
is simply based on cells of constant size, and ensures that a constgreditddable number of results are
returned for the user’s grid cell.

The idea of using VHC to address the general problem of location priwas proposed in [34], but
in a way that is very different from ours. Specifically, VHC was used tp tha user’s current location to
a 1-dimensional space. Random perturbation was then applied on the dsiinmed value, which was then
mapped back to 2-dimensional space according to the VHC mapping, teeeptbe user’s true location.
In essence, the random perturbation was applied to create confusiam éttacker about the user’s true lo-
cation. Our technique differs in that VHC is used for a different puepiislefines the storage of POI entries
of interest within a geographic cell, which comprises the cloaking regionwayathat allows proximate
POls to be stored as adjacent database entries. We then utilize this claggkimg within the context of a
privacy-preserving PIR protocol. We do not perform perturbatibthe location, which we argue would
result in decreased privacy. Indeed, a non-stationary user vithaskocation is randomly perturbed is still
subject to correlation attack. In our approach, we will demonstrate thabteof computational and com-
munication overhead through our use of PIR is acceptable, as we p@vigghod for retrieving only a
subset of entries of the entire POI database for each query. Ouidaelia also impervious to correlation
attacks.

The device must store a copy of the VHC map in local non-volatile memory, sttihage requirements
are very reasonable. The current geographic grid cell encapgutagruser can be derived from the user’s
current latitude and longitude coordinate, if the mapping convention is knévaingle coordinate for the
intersection point of each VHC cell inside (i.e. one of its corners) can lieerecorded. Hence, a single
coordinate would suffice to store each VHC cell in device memory. For dowkup and to minimize
storage requirements, the coordinates of all VHC cells only in the curemgrgphic cell could be stored.
Assuming that the smallest VHC cell size is:#? in size, then the worst case is that 40,000 coordinates
will need to be stored to account for all VHC’s. Two bytes will be suffitienstore each VHC coordinate,
because the origin of the geographic grid cell is known, so that the taaidth be approximately 80,000
bytes to store all VHC cells. This is the worst theoretical case; in practicall ¥HC cells will only be
encountered in very dense metropolitan areas, and they will not ocougytiae geographic cell.

3.3 Variableleve of privacy

The size of the cloaking region and the performance of a query deperlleouser’s specified level of
privacy. If the user wishes to obtain a higher level of privacy, thersthe of the cloaking region can be
defined to be larger, and to encompass a larger number of geograjhiels (and thus VHC cells), but
the amount of computation on the server will increase accordingly, del#tyinggesponse. Nevertheless, the
chief benefit is that the processing time of the query on the server is fakldicbecause each VHC cell in
each request contains the same number of POIs. The key fact is thahtlumtaof data transmitted will
be roughly proportional to the number of POls in a single VHC cell (dejpgndn the details of the PIR
scheme being employed), but the server will only learn the client’s locatioreteesolution of the cloaking
region. The amount of variation allowed in the size of the cloaking regionldhme kept to a minimum, as
this variable may be used to form part of a fingerprint of a target in &lzdion attack. Allowing a one-cell
or two-by-two-cell region only may be a good compromise. The latter coukhigdoyed by the user on a
permanent basis to avoid the threat of inter-cell movement being discbvere
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Our proposed algorithms for privacy-preserving queries, which ali@wser to specify a level of pri-
vacy, are explained in detail in the appendix.

4 Security analysis

The location of interest may be either the user’s true, physical locati@arme other location that must be
kept private. For the purpose of this analysis, we will simplify the job of a nmal&cLBS server by assuming
the location of interest is the user’s actual location. Without this assumptieill, fite more difficult for the
server to infer a user’s actual location because the user may issueyaf@ua geographical area without
physically residing in that area.

4.1 Collusion prevention for PIR

The approach presented in this paper is sufficiently generic to allow dicatmm to rely on any existing
computational or information-theoretic PIR (single-server, multi-servéraodware-assisted). We present
an approach for preventing collusion between servers in the caseoomiation-theoretic PIR. This con-
cept is important to our discussion because information-theoretic PIR rttakesual assumption that the
replicated PIR servers that implement it do not collude to violate the priviatthyeaisers.

The problem of colluding servers is mitigated by practical business aosicBealistically, a single POI
database would be maintained by an organization that is independent d$&prbviders that a user may
query. For instance, LBS providers such as Google and Microsoftaoayact the use of a POI source
such as the Yellow Pages, an organization that is responsible for its owentahat it updates regularly.
However, Google and Microsoft would be responsible for the contdidtsibution to end users as well as
integration of partners through banner ads and promotions. Since theldstlers are operating in the
same or similar line of business where they compete to win users and deliveswineadvertising models
to reap economic benefits, there is no real incentive to collude in ordee#k lihe privacy of any user.
In this model, it it conceivable that a user would perform a location-bgsedy and would invoke it on
the multiple LBS providers concurrently, and combine the results, withoubfahe queries divulging the
user’s precise location. Additionally, individual service agreementdaatliose any chance of collusion
with a third party on legal grounds. Users then enjoy greater confidensage of the service, and the LBS
providers in turn can capitalize on revenue generation opportunitiesasuply-per-use subscriptions and
revenue-sharing ad opportunities.

4.2 Subscription service and privacy

There is still an open question concerning the effect of a subscriptiwiteeon the privacy of users. If
the model is structured as one that is pay-per-use, then the LBS prowidstrbe provided with a means
of identifying the user making a request for billing purposes. Similarly, ireotd deliver a customized
experience to a user based on personal preferences or histasgd,udentification of the user must occur.
This practical and reasonable requirement breaks the anonymizing nentgo proposals such as that of
[34]. In contrast, this limitation does not lead to the loss of privacy in our@ggh because it is focused
on preserving the privacy of the location rather than the identity of the 0¢er LBS provider may have
multiple ways of determining which user it was that issued a particular quemertheless, that correlation
will not constitute a loss of privacy. If a requirement exists to keep thesuskentity secret for any reason,
then there is a need to employ cryptographic schemes based on priviet@ks and anonymous e-cash as
described in [8].
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4.3 Privacy and size of the cloaking region

Our solution preserves the privacy of the user’s location irrespectittee number of other users initiating
queries for the same location. The server can infer only the user’s lodadi®ed on the cloaking region.
The user may adjust the size of the cloaking region based on his or lsempépreferences (i.e., desired
level of privacy, query performance, and cost), because a leggeam will entail more computation.

The size of the cloaking region is based on a particular size of geograaand does not need to be
adjusted based on the known distribution of POIs within the region. Theoa$eestablishes a reasonable
level of privacy based on the number of geographic grid cells thatelafgeographic area. The boundary
of the cloaking region utilized in a request is established by the user andesl loa the geographic cell
map contained on the user’s end and the level of privacy parametesiZénef the cloaking region and its
boundaries are not controlled by the server.

In the very unlikely scenario where the user is known to be within the aréaeofloaking region in
advance of the request, then the request itself may be correlated withetbeidentity. This is trivial if
there are known to be no other users in this cloaking region. The techmigge@nonymity can be used with
our approach to prevent such attacks, since an adversary will ideuioaisolate a query to any particular
user or group of users. Nevertheless, in practice, it is assumed trgaahyeaphic grid cells that are used to
define the cloaking region will be sufficiently large to encompass a large ewaflusers, to mitigate this
risk.

In an extreme case, the user may choose a maximum level of privacyteddmpcomputational costs
entailed. In this case, the user will define a cloaking region that includesntive geographic region that
can be queried; e.g., all of North America. The server would executeety qu all the rows of its database,
and so there will be a significant computation cost. However, becausé¢hengoordinates of the cloaking
region are sent in our protocol, and because only the POls for this aserent VHC cell will be returned,
there will be no additional bandwidth costs in this scenario. The level vagyiwill be absolute, in that no
information about the user’s location will be leaked to the server.

In the opposite extreme case, the user may choose a minimum level of pfivaayaximum perfor-
mance benefit. In this case, the user will not utilize the geographic grid tblisktéghe boundary of the
cloaking region. Instead, the user will pick the current VHC cell thatrtehe occupies as the actual cloak-
ing region. The server will then infer that the user’s location must be witlahitidividual VHC cell. All
the POls for that VHC cell will be returned, but the user’s exact locatighin the VHC cell will still be
unknown to the server.

In typical usage, however, the user is expected to define a cloakimnrdwat bounds one or more
geographic grid cells, depending on the desired level of privacyekample, a matrix of 2-by-2 geographic
grid cells, or 3-by-3 cells, etc. This user can always adjust the levptiagdcy for each request. This is
useful in the case where the user is traveling between VHC cells. For éxdfipe user is traveling by car
on a highway, and may cross the current geographic grid cell befeneetkt query is issued, then a larger
cloaking region formed from the neighbouring grid cells may be appropgnaequest.

4.4 Passive attacks

The cloaking region is selected based on the user’s location. Let ugsithat the user’s preferred level of
privacy will be satisfied with a cloaking region that is defined by a matrix bf22 geographic grid cells.
The user will be located in one of these geographic grid cells. Three atalitg@ographic cells must be
chosen to form the cloaking region. If the user proceeds to pick thesgaghic cells randomly from the
surrounding set of geographic cells for each request, then eaghkstagay send a different cloaking region.
After a number of these requests, and if the user remains stationary insidé these geographic grid cells,
then the server will be able to correlate these requests, and determinetlaping grid cell which likely
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contains the user.

In our design, we have elected to specify fixed groups of geogragHicgjls at various levels of privacy.
In other words, if the user remains stationary, then for each requesisé¢inedepending on the privacy level,
will select the same 2-by-2 matrix, or 3-by-3 matrix, etc. Therefore, theeladion attack described above
is impossible because the client will send the same cloaking region for alegder a given privacy level.

Next, consider the case of a mobile user who is physically moving betweendélsC As long as the
user does not move outside of the cloaking region, then the same cloagiog vell be transmitted for all
gueries, and the user will not be subject to a correlation attack, evenustreamnoves between VHC cells.
The same is true if the user moves between geographic grid cells, but still withsame cloaking region
defined by the user’s level of privacy.

If the user moves to a VHC cell that is outside of the original cloaking rediven a new cloaking
region must be formed. The user will now occupy a new geographic glithat will define a new cloaking
region. The server could observe that requests are being madedgbbaaring cloaking regions, and could
infer that the user is somewhere close to the edge of these regions, eelfgdetween them. This is a
consequence of the user having to create cloaking regions such tieaisthever any overlap between them.
The assignment of geographic grid cells to cloaking regions must satisfetiugement, and is done based
on their consecutive ordering on the grid. To avoid the possibility of theeseletecting movement between
cloaking regions, it is recommended that the user instead increase theydevel so that a greater number
of geographic grid cells will define the cloaking region. This enlargedkéhgaregion should contain the
original cloaking region. Now, if the user moves between grid cells, the shoa&ing region will still
cover them, and a correlation attack will be unsuccessful. Thus, thehuseld be aware of his or her likely
movement in the future and choose a privacy level such that the cloadgignrwill contain all current
and likely future locations. If the size of the cloaking region is constantlysaeguup and down, based on
movement and stationary states, then the server may be able to re-caomsiigtoty of the user's movement
patterns. Note that in the general proposed scheme, it is not strictlyeddairthe user to be able to predict
the path of future travel for all requests. It simply confers an optionatawgiment to privacy if the user can
encapsulate an intended path of travel through a more informed choice dbtking region boundaries.

In addition, if an attacker observes the communication between the client esérner, then only the
client’s identity will be disclosed. Neither the contents of the query nor thdteesan be decoded if end-to-
end encryption, such as Transport Layer Security (TLS), is utilizethtocommunications link. The server
must be able to identify the address of a user’'s mobile device in order toit®tgeponse. The address itself
will not give away the user’s position, however. This is the case with resses dynamically assigned
to mobile devices. Only a central gateway that is administered by the telecomtimmscearrier will be
identified, which will not be useful in tracing the physical location of thea.uEke gateway typically assigns
IP addresses dynamically to all mobile users, in a manner that does notdapthe actual location. Recall
that our proposal does not seek to protect the identity of the user freir®8, but rather to keep his or her
location private.

45 Active attacks

45.1 Replay attack

If an attacker observes a request from the client and launches g adfdak against the server, then the
server will respond to the request, but neither the attacker nor ther seiliveeceive any additional infor-
mation on the user’s location. TLS can of course also mitigate this attack ifsages
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45.2 Result tampering attack

A malicious server can return POls that are not found in the cloaking megiat the user can filter the
results out based on their coordinates. If the server returns false #@Iluser will not be able to verify and
detect them. This is unlikely, as the server would need to replace all themdhe portion of the database
(corresponding to the cloaking region) with false information. If the gereeirns an empty result instead
of the actual content in its database portion, then the user may expanditble bg increasing the level of
privacy and increasing the size of the cloaking region or by exploringhbeuring VHC cells within the
cloaking region, but the server will fail to learn anything additional albetuser’s location.

45.3 Timing attack

An attacker could delay a request or a result, such that the results for leglteries would be received by
the client out-of-order. The client will not be confused in this caseaah €0l result will include location
coordinates, and the user can filter the POIs based on the current lHBat he or she is occupying.

5 Experimental evaluation

5.1 Implementations

We developed a C++ prototype and a Java prototype for our propsisgl two available implementations of
the PIR protocol. The evaluation of our approach in terms of feasibility ealdkility is based on the C++
prototype. The point of the Java prototype is to demonstrate the sudqesding of our implementation to
a smartphone platform. We did not intend to compare these implementations oenumith the same set
of parameters. The runtime parameters of the Java prototype are noeidtienelvaluate our approach, but
to show that PIR-enabled applications can be ported to resource-aiopstsmartphone devices.

The C++ prototype is based on Percy++, an open source PIR pretdtten in C++ [19, 20]. The Percy
implementation offers computational, information theoretic and hybrid (a mix of) BIfR. We modified
Percy++ to support our proposal for allowing PIR queries to be baseddatabase portion defined by the
cloaking region and added code for instrumentation. We measured the tdiopal performance of the
PIR algorithm when it does take into account the query level of privaegt, when it does not take it into
account. We ran the PIR implementation against a database of 6 million synthesictR&typical number
of POls in a commercial POl database for the U.S. and Canada [21, 22j0W that a similar experiment
in [18] considers a much smaller database; only 10,000 and 100,000 ROisad-to-head comparison
with [18] is infeasible because we used different PIR implementations andats Each POI consists of
256 bytes that we generated randomly. Again, this size is a conservapikesentation of practical POI
sizes. In comparison, the POls from [18] are only 64 bits in length. (khg) location coordinates are
stored with each POI.

The Java prototype is based on a computational SPIR protocol implemenggjoitfiis SPIR protocol
was derived from the oblivious transfer protocol by Naor and PifRakand is the only publicly avail-
able Java implementation to our knowledge. This second prototype develbpomsists of both a server
component and a client component that we deployed on a smartphonerplatfo

We initially attempted to port the Java prototype from [36] to the BlackBerrg Dsvelopment Environ-
ment 4.7 from Research In Motion, but we encountered numerous dapadlemhe PIR implementation was
written using the Java 2 Standard Edition (J2SE) class framework. HowkeeBlackBerry environment
only supports J2ME (Java 2 Mobile Edition) and the Connected Limited Dewvicdigiiration (CLDC),
which is a strict subset of the class libraries present in J2SE. For exatrgies not include an implemen-
tation of Bigintegerrequired for cryptographic routines, nor does it support floatingtpoath operations.
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Figure 3: Query roundtrip time and level of privacy for various numlwdrBOls returned per query. A
single measurement was taken per data point.

After we explored some other alternatives, it became evident that the impkinenvould require a sig-
nificant rewrite to optimize it for the J2ME environment. An additional difficultgsithat J2ME supports
Java language features equivalent to a version of Java that is na thigimel.3, whereas the PIR library
required a higher version.

We found Google’s Android platform to be accommodating for porting pseppas it supported all
required classes in the implementation from [36]. While Android supportsareegrogramming language,
it does not run on a standard stack-based Sun Java Virtual MachMNB.(It uses a proprietary one called
Dalvik, which is a register-based architecture, but provides tools tcecbdava bytecode into the instruction
set used by the Dalvik VM. The Android platform is based on the Linuxédeand was developed by Google
and later the Open Handset Alliance. The only aspect of the implementationathlat not be adapted
without light modification was the RMI mechanism, which we replaced with HTTdRetoccommunication
between the Android client process and a server process runningleskéiop computer. We ported the
PIR implementation to Android using the Android 1.1 SDK and the Android plugHiiEElipse Ganymede
3.4.1.

5.2 Resultsand Discussion

We measured query roundtrip times for the C++ prototype on a machine witti &9 dual-core AMD
CPU, 3GB RAM, and running Ubuntu Linux. Since the Percy++ PIR uspkdated databases, we set the
number of databases to 2 [20]. Fig. 3 shows query roundtrip times arld tdymivacy for queries returning
various numbers of POIs. The number of POIs returned for eacly ¢qgiequivalent to the number of POls
in a VHC cell. Similarly, the number of POls returned by a query is equivaletite number of blocks (in
bytes), that a traditional PIR query returns. A block of 10 POls is edeint to 2560 bytes of data (each POI
consists of 256 bytes).

The query roundtrip or response times for block sizes 5, 10, 25, 80,280, and 500, at query level of
privacy 1, are between 25 and 70 seconds. This is because eaokofaBt runs against the entire database
of 6 million synthetic POIs. However, the query roundtrip time improves with |deszls of privacy. For
example, the query response times for the above block sizes at a davatyf 0.17 are between 4 and 12
seconds. One must observe that setting the query level of privacytasCetjuivalent to privately querying
a block of POls from a portion of the database consisting of 1.02 million RDA® assume there are equal
number of POIs in all the provinces and states of Canada and US, a feméVaxry set to 0.17 implies a
cloaking region that covers approximately 10 provinces and/or stateser@nsimilar assumption, a user

17



Entri tch:
P S):
32

4

Figure 4: User interface of the Java prototype loaded on an Android tanula

who intends to hide his or her query in a cloaking region consisting of aménme or state will simply set
his or her query level of privacy to a much lower value of 0.02. The yuesponse time for this level of
privacy is approximately 0.3 seconds for an optimal block size, which irtemting configuration consists
of 256 POls. It is easy to observe from the graph that the block thatisterof 250 POls gives the best
performance. Furthermore, the worst performing block size is the amgsting of 5 POIs, the reason being
that smaller block sizes require more rounds of computations to procesdinielilal blocks, compared
to larger block sizes. On the other hand, large block sizes, such as&®@,performance penalties and
overheads which depend on the characteristics of the underlying PEngc and also on the resource
constraints of the runtime hardware (e.g., RAM, disk and memory cache ai@ésetwork bandwidth).
The network cost in the C++ implementation was negligible since the measurenezettaken on a LAN.

We also installed the client for the Java prototype on a G1 Android smartghamer-Mobile, which
features a Qualcomm ARM processor running at 528 MHz, and inclugiazsviB DDR SDRAM, and
256 MB flash memory. Although our locked smartphone was capable oifffgion T-Mobile’s 3G network
in the U.S., it did not support the 3G frequency bands in operation in @arlde ran our tests using the
Rogers EDGE network, which is slower by up to a factor of ten. We crestehdroid application with a
user interface that allows the user to specify the server address andggrameters such as the size of the
cloaking region and the size of the portion of the cloaking region to fetcim blts (see Fig 4).

For a cloaking region consisting of 400 cells (i.e., database rows), ar@l aeBult size of 32 bits
(i.e., size of a database row), the following performance was measuri @ctual Android smartphone:
guery generation required 2.04 s, result processing required 8202l she total roundtrip time (including
transmission over the wireless EDGE packet data network) required®87.¢h comparison, when the
cloaking region was reduced to 100 cells, with the same POI result sizeetf@mance measurements
were: query generation of 4.40 s, result processing of 3.42 s, anthdtrip time of 62.55 s. We observed
little variance in the query encoding time, but the decoding time varied neanhpgronally with the size
of the cloaking region, as one would expect. Overall, the implementation veddeusven though it had
not been originally designed and optimized for the Android platform, and are westricted to a non-3G
network.
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6 Conclusions

In this paper, we have proposed an algorithm for private informatiorevatrthat achieves a good compro-
mise between user location privacy and computational efficiency. Weilmgplemented and evaluated our
algorithm and shown that it is practical on resource-constrained laaedw

Our approach of using a variable-sized cloaking region divided into \¢&llS results in greater location
privacy than the traditional approach of a single cloaking region, whileeasame time decreasing wireless
data traffic usage from an amount proportional to the size of the cloa&gigrr to an amount proportional
to the size of a VHC cell. It also allows the user to dynamically choose variwalslef privacy. Although
increasing the size of the cloaking region does result in higher computatiprogessing the query, we
believe that this tradeoff is very reasonable, given that the procegesimgr of today’s smartphones is still
less of a concern than the speed and cost of wireless network caitiyecti

Our approach of retrieving the points of interest within a single cell, cordairighin a cloaking region,
is much less expensive than the naive approach of requiring the usewtdodd the entire contents of the
cloaking region. At the same time, privacy is not compromised. Because #iteiser or the network
provider must ultimately pay for the cost of the wireless data that is sent, thgsdessociated with the
transfer of wireless traffic are significant, and memory on the device sreoned, it is a great benefit that
traffic is kept to a minimum in our scheme.

On the server side, the increased computational demands of queries hedbed through employment
of multiple, distributed servers. However, it would also be atypical for ntloae one query to be made at
a time, as a smartphone user typically runs only a single application as adieneigiask due to processor,
memory, operating system, and screen size limitations. Overall, we have #hawthe delay experienced
in a POI lookup operation on a typical location based service is minimal. Wedawe so by testing on
actual smartphone hardware available to users today.

Our work could be extended by improving on our general scenarioemher user retrieves all of the
POls that belong to the VHC cell of interest. It is possible that the user wiilfind a suitable POI within
this set, and will wish to search further in neighbouring VHC cells. This mayhé&ease when the result set
does not contain a desired POI. Therefore, the user may wish to eitp@asadarch by searching in a broader
geographical area.

One way to accomplish this would be to perform an additional query for eftie other VHC cells
in the current geographic grid cell. However, there is overhead atsdavith each such request. Another
approach would be to have the user request POls for all of the VHCwaigtis a geographic grid cell. Note
that the size of the cloaking region, which consists of one or more gelnigrgpd cells, remains constant.
This is important in terms of making it difficult for the server to correlate theaaglpd search (for all VHC
cells) with the original search (for a single VHC cell). An optimization of thet fagproach would be to
reduce the number of queries for individual VHC cells, by queryingnfioittiple VHC cells at the same
time. The selection of multiple VHC cells within a geographic grid cell, while mitigating ffez&veness
of a correlation attack, remains an open problem.

Furthermore, there is an optimal block size for any PIR protocol that wiledlor algorithm to give the
best query response time. However, the bandwidth of the communicationalhaay also play some role
in determining which block size is optimal. An extension would be to study what inmedwork bandwidth
will have on the performance of our algorithm, using a variety of PIR implentienta
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A Algorithms

In this appendix, we present the algorithms that implement our proposal w allsser to set his or her
level of query privacy (equivalent to the size of the cloaking regionjhimm PIR query. LetP/IR =
{PIREncode, PIRProcess, PIRDecode} be some PIR protocol wherBI REncode, PIRProcess,
and PI RDecode are the query encoding, response processing, and responséndepmotocols, respec-
tively.

A.1 Query generation (by PIR client)

Let n be the total number of items (or POISs) in the PIR database or databasesdaséhef a PIR protocol
with replicated databasesy,be the number of VHC grid cells in the map where each grid cellrhas
items. Leti be the index of the database block that the user is afterpand0, 1] be the level of query
privacy preset by the user. In models where users pay for compuhtesources used by PIR servers,
this privacy level must have been negotiated by the user and LBS provitie user selects this level by
using an application interface on the smartphone. The level is specifiedria tércities/towns (city level),
state/provinces (provincial level), and so on.

i. Computel = [pn] andselR = {r1,rs,73,...,r¢} to be the set of indices for the items corresponding
to the cloaking region.

ii. Compute(q,7) = PIREncoder(i) as the PIR query encoding forusing only the item indices in
R (i.e., not all the indices in all geographical grid locations in the entire mapeargred). Hereg is
the query to be sent to the database serveryaadgome state information that will be used to decode
the server’s response.

ii. Send{q, R} to the database (or PIR server). Instead of sending may be more efficient to send
only the top left and bottom right coordinates of the bounding rectanglecthadrs the cloaking
region, or the range of identifiers (or numbers) for the VHC grid cells @natwithin the cloaking
region, or for the geographic cells that contain them. In any of thess,dhgePIR server can use the
provided information to determing.

A.2 Response encoding (by PIR server)

i. Retrieve a database portidn = {d;,ds,ds, ..., d;}, whered; is the database item with index.
Each item is a POI data structure with attributes longitude, latitude, name, addnese, category,
website address, and so on.

ii. Execute PIRProcessp(q) to obtain response, which should be the block of POIs in the user’s
VHC grid cell.

iii. Returnr back to the client.

A.3 Response decoding (by PIR client)

ExecutePI RDecoder(T, ) to obtain a database response to the query. The response should be the
set of POls that the query requested.

il The client can locally compute the nearest neighbour using the set afth@lwas returned.
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