
Practical Robust Communication in DHTs Tolerating a Byzantine Adversary

Maxwell Young Aniket Kate Ian Goldberg Martin Karsten

University of Waterloo, ON, Canada

{m22young,akate,iang,mkarsten}@cs.uwaterloo.ca

Abstract

There are several analytical results on distributed

hash tables (DHTs) that can tolerate Byzantine faults.

Unfortunately, in such systems, critical operations such

as data retrieval and message sending incur significant

communication costs. For example, a simple scheme

used in many Byzantine fault-tolerant DHT construc-

tions of n nodes requires O(log3 n) messages; this

is likely impractical for real-world applications. Cur-

rently, the best known message complexity is O(log2 n)
in expectation; however, the corresponding protocol

suffers from prohibitive costs owing to hidden con-

stants in the asymptotic notation and to setup costs.

In this paper, we focus on reducing the communi-

cation costs against a computationally bounded ad-

versary. We employ threshold cryptography and dis-

tributed key generation to define two protocols both

of which are more efficient than existing solutions. In

comparison, our first protocol is deterministic with

O(log2 n) message complexity and our second pro-

tocol is randomized with expected O(log n) message

complexity. Further, both the hidden constants and

setup costs for our protocols are small and no trusted

third party is required. Finally, we present results from

microbenchmarks conducted over PlanetLab showing

that our protocols are practical for deployment under

significant levels of churn and adversarial behaviour.

1. Introduction

The peer-to-peer (P2P) paradigm is a popular ap-

proach to providing large-scale decentralized services.

However, the lack of admission control in many such

systems makes them vulnerable to malicious interfer-

ence [24], [50], [55]. This is a practical concern since

large-scale P2P systems are in existence today such as

the Azureus DHT [16] and the KAD DHT [51], both

of which see more than one million users per day. In

addition to file sharing, there are proposals for using

P2P systems to protect archived data [18], mitigate the

impact of computer worms [3] and re-implement the

Domain Name System [54]; such applications would

likely benefit from increased security.

There are a number of results on P2P systems

that can provably tolerate Byzantine faults [4]–[6],

[17], [22], [28], [37], [46]. This includes the Sybil

attack [15] although for ease of exposition, we refer to

a Byzantine adversary throughout this work; our results

can also be used in conjunction with some proposals

specific to the Sybil attack (see the survey of [53]).

To date, the majority of results pertain to distributed

hash tables (DHTs). A common technique in DHTs

that tolerate adversarial faults is the use of quorums

which are sets of peers such that a minority of the

members suffer adversarial faults. A quorum replaces

an individual peer as the atomic unit. Adversarial

behavior can be overcome by majority action allowing

for communication between correct peers; we call this

robust communication. Since critical operations such

as data queries are performed in concert by members

of a quorum, robust communication must be efficient.

Several protocols using quorums have been pro-

posed; however, there is a common theme in the way

such quorums are utilized. A message m originating

from a sending peer p traverses a sequence of quorums

Q1, Q2, . . . , Qℓ until a destination peer is reached.

A typical example is a query for content where the

destination is a peer q holding a data item. Initially p
notifies its own quorum Q1 that it wishes to transmit

m. Each peer in Q1 forwards m to all peers in

Q2. A peer in Q2 determines the correct message

by majority filtering on all incoming messages and,

in turn, sends to all peers in the next quorum. This

forwarding process continues until the quorum Qℓ

holding p is reached. Assuming that a majority of

peers in each quorum are correct, transmission of m
is guaranteed. Unfortunately, this simple protocol is

costly. If all quorums have size s and the path length

is ℓ, then the message complexity is ℓ · s2. Typically,

s = Θ(log n) and, as in Chord [52], ℓ = O(log n)
which gives a O(log3 n) message complexity which is

likely prohibitively expensive for practical values of n.

Saia and Young [46] give a randomized protocol

which provably achieves O(log2 n) messages in ex-

pectation. While communication between two quorums

incurs an expected constant number of messages, the

analysis in [46] yields a prohibitively large constant.

Furthermore, with probability 1 − o(1) some peers

will incur ω(1) message complexity (see appendix for

details). The protocol also employs a link architecture

between peers requiring the use of a Byzantine agree-

ment protocol. Finally, maintenance and asynchronic-

ity issues remain unresolved.

Therefore, while results exist on the feasibility of

robust communication, work on the practicalities has

lagged behind. This dearth presents an impediment to

the deployment of such systems and we seek to address

this outstanding problem.

1.1. Our Contributions

We improve over all previously known results in-

volving communication between quorums [5], [17],

[37], [46]. We summarize our main results below:

Theorem 1. In the computational setting, for an

adversary that controls up to an ǫ < 1/3-fraction of

any quorum of size at most s, there are two protocols

for achieving robust communication of a message m
to a set of peers D ⊆ Qi for some quorum Qi over a

path of length ℓ. Our Robust Communication Protocol

I (RCP-I) has the following properties:

• The total message complexity (number of mes-

sages sent and received) and the message com-

plexity of the sending peer is each at most 2 · s+
4 · s · (ℓ− 2) + |D|.

• The message complexity of every non-sending

peer along the lookup path is at most 4.

• The latency (number of roundtrip communication

rounds) is at most 2 · (ℓ− 2) + 2.

For our Robust Communication Protocol II (RCP-II):

• The expected total message complexity and the

expected message complexity of the sending peer

is each at most 2 · s + (ℓ−2)
(1−ǫ)·c + (ℓ− 2) + |D|.

• The expected message complexity of a non-

sending peer on the lookup path is at most
2

(1−ǫ)·c·s .

• The expected latency is at most
(ℓ−2)

(1−ǫ)·c + 2.

Here, the constant c > 0 is the probability that the

response time of a correct peer is at most ∆.

Using the Chord-based construction of [17], the

message complexity of RCP-I is O(log2 n) and for

RCP-II it is O(log n) in expectation. We tolerate a

large fraction of adversarial peers; strictly less than

a 1/3-fraction compared to the roughly 1/4-fraction

in [46]. Our use of a distributed key generation (DKG)

scheme allows for security without a trusted party or

costly updating of public/private keys outside of each

quorum. This obviates the need for a trusted third party.

To the best of our knowledge, this is the first use of

DKG in a Byzantine-tolerant P2P setting.

Finally, we provide microbenchmark results involv-

ing two quorums using PlanetLab. Our experimentation

demonstrates that our protocols perform well under

significant levels of churn and faulty behaviour. In

particular, for a 105-node system with a path length of

ℓ = 20, our results imply RCP-I and RCP-II complete

in under 4 seconds and 5 seconds, respectively.

2. Related Work

We begin by summarizing a number of related

applied results for achieving Byzantine fault tolerance.

We then give an overview of a number of theoretical

results in the area.

State machine replication (SMR) is a standard

method for implementing highly fault-tolerant ser-

vices [48]. Services are replicated over multiple servers

providing a high-integrity distributed system.

A large body of literature exists on implementing

Byzantine protocols. While P2P systems do not align

perfectly with the state machine replication (SMR)

paradigm [48], the large body of literature on Byzan-

tine fault-tolerant replication is relevant to our work.

Early work by Reiter [41] yielded protocols for Byzan-

tine agreement and atomic broadcast. Our first protocol

shares some common features with the multicast pro-

tocol of [41], yet we differ significantly since in the

P2P domain we must contend with issues of scala-

bility, churn, and spurious requests aimed at consum-

ing resources. More recently, Castro and Liskov [11]

demonstrated efficient Byzantine fault-tolerant SMR;

however, this seems unsuitable for a P2P setting due

to scaling issues. Several other Byzantine fault-tolerant

systems have been implemented such as SINTRA [10],

FARSITE [2], the Query/Update protocol [1] and the

HQ system [13]; however, scalability issues make the

use of these protocols in a P2P setting unlikely.

Two implemented large-scale Byzantine fault tol-

erant storage architectures are OceanStore [32] and

Rosebud [44]. The latter scales up to tens of thousands

of nodes and handles changing membership. However,

with only a single Byzantine node per replication

group, Rosebud incurs significant overhead. In con-

trast, our protocols perform efficiently with 10% of

the peers being Byzantine. Rosebud relies on a config-

uration service (CS) which tracks system membership,

ejects faulty nodes, and handles new nodes. The CS,

implemented over a set of nodes, introduces a potential

bottleneck and possibly a point of attack; similarly, a

“primary tier” of replicas is used in OceanStore. In

comparison, our protocol is completely decentralized

and no special set of nodes is required.

Both Rodrigues, Kouznetsov and Bhattacharjee [43]

and Rodrigues, Liskov and Shrira [45] give proposals

for applying the SMR approach on a large scale; the

latter describes a P2P system. However, both works

rely on a CS and neither provides empirical results or

discusses the details of secure data retrieval and mes-

sage passing. Wang et al. [56] design and implement

a routing scheme that tolerates Byzantine faults and

demonstrates good performance. However, they require

both a certificate authority (CA) and a special set of

nodes, called a neighborhood authority, similar to a

CS.

In summary, work on practical Byzantine fault-

tolerance has focused on ensuring consistency and

availability of replicas in the SMR paradigm; as noted

in [43], this does not necessarily characterize the P2P

domain. In many cases, the reliance on a special

set of nodes introduces a potential bottleneck to the

system; in contrast, our use of DKG and threshold

cryptography removes this bottleneck. Finally, both

empirically validated systems and proposals for larger-

scale applications are either not aimed at or do not

directly address the issue of robust communication in

a peer-to-peer-like environment.

There are several theoretical results on Byzantine

fault-tolerant DHTs [5], [17], [22], [37]. These results

make use of quorums, which are sets of Θ(log n) peers

such that a majority of the peers in a quorum are

correct. Awerbuch and Scheideler show how to main-

tain quorums [4]–[6]. Saia and Young [46] demonstrate

more efficient robust communication but, as discussed

earlier, several issues remain unresolved.

Castro et al. [24], Halo [29], and Salsa [36] handle

Byzantine faults by routing along multiple diverse

routes. The proposal in [24] requires a CA whereas we

do not rely on any trusted third party. In both [29] and

[36], the guarantees are unclear against an adversary

who owns a large IP-address space or targets identifiers

over time as described in [5]. In contrast, defenses

for quorum-based protocols are known [4]–[6]. Such

an adaptive adversary could potentially compromise

the “knuckle” nodes in [29] or the global contacts

used in [36]; in contrast, defenses for quorum-based

protocols are known [4]–[6].

There are several other works relating to issues of

security in P2P networks. Finally, the ShadowWalker

system [34] addresses the issue of anonymity and

routes securely using the notion of multiple “shadows”

which are similar to a quorum; however, our protocols

differ significantly. The Brahms system [9] allows

for uniform sampling of peers despite a Byzantine

adversary. The Fireflies architecture [28] allows each

peer to remain informed of live members in the system

despite malicious attacks; however, its applicability

likely extends only to single hop overlays such as in

work by Gupta et al. [21] and secure routing in multi-

hop networks is not treated.

3. System Model

Each peer p is assumed to have a unique identifier,

pID, and a network address, paddr. Byzantine peers are

also referred to as faulty or adversarial; all other peers

are called correct. A fraction of the correct peers

may crash due to a system failure or leave the DHT

gracefully. We model such peers as having crashed.

We adopt an asynchronous communication model

with unbounded message delivery time. However, for

liveness in DKG and in our second protocol, we use a

weak synchrony assumption by Castro and Liskov [12].

Peers p and q are said to communicate directly if

each has the other in its routing table. The target of m
is a set of peers D within a single quorum; m may be

a data item request and D may consist of a single peer

or multiple peers depending on how data is stored.

3.1. The Quorum Topology

There are several different approaches to how quo-

rums are created and maintained [5], [37], [46]; we

refer the reader to [17] for a detailed explanation.

Despite these different approaches, we may view the

setup of quorums as a graph where nodes correspond

to quorums and edges correspond to communication

capability between quorums; we refer to this as the

quorum topology. Figure 1 illustrates how quorums

can be linked in a DHT such as Chord. Peers will

likely have different views of the network and hence

membership lists for Qi may differ for two peers;

however, such issues can be overcome (see [17]). We

assume the following four simple invariants are true:

1) Goodness: each quorum has size Θ(s) for s =
Ω(log n) and possesses at most an ǫ-fraction of

Byzantine peers for ǫ < 1/3.

2) Membership: every peer belongs to at least one

quorum.

Qi

Qh

Qj

p
u

v

p
u

v

Figure 1. (Left) Three peers on a DHT ring where

p links to u and v. (Right) An example of a quorum

topology in a DHT ring where p ∈ Qi, u ∈ Qj and

v ∈ Qh. Thick lines signify inter-quorum links.

3) Intra-Quorum Communication: every peer can

communicate directly to all other members of

its quorums.

4) Inter-Quorum Communication: if Qi and Qj

share an edge in the quorum topology, then

p ∈ Qi may communicate directly with any

member of Qj and the converse is true.

These four invariants are standard in the sense that

previous works on quorums in robust DHTs systems

ensure they hold with probability nearly equal to 1.

For example, results for maintaining the goodness

invariant in DHTs are known [4]–[6]. In terms of the

membership invariant, there exist quorum topologies

where a peer may belong to several different quorums

simultaneously [17], [37]. Finally, to the best of our

knowledge, no implementation of a quorum topology

exists; this represents another gap between theory and

practice. A number of challenges remain in bridging

this gap and such an endeavor is outside the scope

of this current work. However, the literature suggests

that, with the proper deployment, maintaining these

four invariants in real-world DHTs is plausible.

3.2. Assumptions

The adversary is assumed to have full knowledge

of the network topology and control all faulty peers,

which forms a constant fraction of all nodes in the

system. In concert with the goodness invariant, strictly

less than 1/3 of the peers in any quorum can be faulty.

These peers may collude and coordinate their attacks.

Our adversary is computationally bounded with a se-

curity parameter κ and it has do 2κ computation to

break the security of the Gap Diffie-Hellman (GDH)

problem [23] in an appropriate group.

Our protocols guarantee successful transmission of

a message; however, feasibility is not enough. Our

protocols must be efficient, both in terms of (1) the

costs incurred by correct peers for legitimate network

operations and (2) the costs incurred by adversarial

behavior. The latter concern is crucial since it does

no good to provide solutions that allow the adversary

to easily launch costly attacks. We first discuss the

cryptographic techniques for gaining efficiency and

then elaborate on points (1) and (2).

3.3. Threshold Cryptography

We use threshold cryptography to authenticate mes-

sages. The idea behind an (η, t)-threshold scheme is

to distribute a secret key among η parties in order to

remove any single point of failure. Any subset of more

than t parties can jointly reconstruct the secret key

or perform the required computation securely in the

presence of a Byzantine adversary which controls up

to t parties. We use threshold signatures to authenticate

the communication between quorums.

Threshold Signatures: In an (η, t)-threshold signature

scheme, a signing (private) key k is distributed among

η parties by a trusted dealer using a verifiable secret

sharing protocol [25] or by a completely distributed

approach using a DKG protocol [39]. Along with

private key shares ki for each party, the distribution

algorithm also generates a verification (public) key

K and the associated public key shares K̂. To sign

a message m, any subset of t + 1 or more parties

use their shares to generate the signature shares σi.

Any party can combine these signature shares to form

a message-signature pair S = (m,σ) = [m]k that

can be verified using the public key K; however, this

does not reveal k. We refer to a message-signature

pair S as a signature. It is also possible to verify σi

using the public key shares K̂. We assume that no

computationally bounded adversary that corrupts up to

t parties can forge a signature S′ = (m′, σ′) for a

message m′. Further, malicious behavior by up to t
parties cannot prevent generation of a signature.

Many threshold signature schemes have been con-

structed in the literature. However, the threshold signa-

ture schemes other than [7], [19], [49] are impractical

for a variety of reasons. Out of these three practical

schemes, the threshold DSS scheme [19] requires a

significant amount of interaction among all the parties

for every signature generated, while removing the

requirement of a trusted dealer is a difficult multiparty

computation problem in the threshold RSA signature

scheme [49]. The threshold version [7] of the Boneh-

Lynn-Shacham (BLS) signature scheme [23] avoids

all of the above problems. Its key generation does

not mandate a trusted dealer. The signature generation

protocol does not require any interaction among the

signing parties or any ero-knowledge proofs. Further,

the BLS signature size and generation algorithm are

more efficient than RSA and DSS signatures. There-

fore, to authenticate the communication between the

quorums, we use the threshold BLS signature scheme.

This scheme uses the concept of bilinear pairing in

the elliptic curve cryptography (ECC) setting and its

security is based on difficulty of solving GDH problem

(Refer to [7] for a detailed description).

Distributed Key Generation (DKG): In absence of

a trusted party in the P2P paradigm, we use a DKG

scheme to generate the (distributed) private key. An

(η, t)-DKG protocol allows a set of η nodes to con-

struct a shared secret key k such that its shares ki are

distributed over the nodes and no coalition of fewer

than t nodes may reconstruct the secret; no trusted

dealer is required. There is also an associated public

key K and a set of public key shares K̂ for verification.

The protocol in [31] is the first DKG for an asyn-

chronous setting; therefore, it is uniquely suitable for

deployment in a P2P network. Along with a Byzantine

adversary, this protocol also tolerates crash failures.

For a quorum of size s = η, with t Byzantine nodes

and f correct nodes that can crash, the DKG protocol

requires that s ≥ 3t + 2f + 1. In our case, this

security threshold holds due to the goodness invariant

in Section 3.1. The DKG protocol allows for system

dynamics without changing the system public key K
Notably, the message complexity of a batch of peers

(say set P) all joining and/or all leaving the quorum is

the same as for a single peer joining/leaving the quo-

rum, while the bit complexity increases only linearly

with |P | (see [31, Sec. 6]); for efficiency, we batch

such operations during our analysis in Section 5.2. The

DKG protocol also considers mobile adversary [38]

and provides proactive security using share renewal

and share recovery protocols.

3.4. Spamming Attacks

A critical concern is that the adversary may launch

spurious communications aimed at consuming re-

sources; we refer to such behavior as spamming. For

example, a malicious peer may initiate a number of

data retrieval requests [50], [55]. Here the situation is

more dire since the impact of such attacks is multiplied

by the group action in a quorum-based system.

Ultimately, there is no perfect defence against an

adversary with the resources to initiate massive spam-

ming attacks and this is not our focus. In such cir-

cumstances, spamming amounts to a denial-of-service

(DoS) attack which forces correct peers to quit the

system; unfortunately, there appears to be no adequate

remedy. On the other hand, an extended cuckoo rule

exists for maintaining the goodness invariants against

limited DoS attacks [6] and this result is compatible

with our proposal. Regardless, handling massive spam-

ming or DoS attacks is a challenging problem that

falls beyond the scope of this current work. Rather we

show that our protocols do not afford the adversary

an advantage in launching such attacks. Our goal is to

prevent the adversary from forcing a peer to perform

expensive operations with impunity. For any operation

initiated by a spammer p, this can be accomplished

by either (A) placing the bulk of the cost of executing

said operation on p or (B) making the detection of

spamming inexpensive. As we will show in Section 4,

our protocol RCP-1 in Section 4.1 employs principle

(A) while our protocol RCP-II in Section 4.2 employs

principle (B).

In addition to cryptographic techniques, we assume

a rule set to reduce the impact of spamming attacks as

introduced by Fiat et al. [17]. A rule set defines accept-

able behavior in a quorum; for example, the number of

data lookup operations a peer may execute per duration

of time, or tit-for-tat behavior for uploads/downloads.

Such rules are known to everyone within a quorum

and can be implemented at the software level or agreed

upon by quorum members. Requests from a peer that

deviates from the rule set are ignored by the other

members of its quorum.

3.5. Efficiency (Not Feasibility) Through

Cryptography: The Prove-and-Verify Scenario

We now discuss the merits of employing crypto-

graphic techniques. In the presence of Byzantine peers,

no single peer can be trusted. Quorums are employed

to overcome this trust deficit through majority action.

Using the simple protocol outlined in Section 1, mes-

sages are guaranteed to reach the intended recipient.

Therefore, quorums allow for robust communication

without the need for cryptographic techniques.

However, spamming attacks still pose a critical

problem. For example, a group of Byzantine peers may

pretend to be a quorum and initiate requests. Therefore,

simply obeying a request because it appears to come

from a quorum does not prevent spamming. A standard

fix is that a quorum responds only to requests that are

“proven” to be legitimate. Yet, there is a cost to proving

legitimacy; we explore this to motivate our protocols.

First, we expand on the utility of a quorum topology in

proving legitimacy. We then show how cryptographic

techniques improve the efficiency of this task.

Utility of the Quorum Topology: We compare two

general scenarios in order to demonstrate the utility

of a quorum topology in proving requests legitimate.

The first assumes that proofs and verifications are

required to initiate operations; call this the prove-

and-verify scenario. The second assumes no proof is

required before acting (although, each peer may keep

a record of misbehaving peers); call this the passive

scenario. P2P systems often lack admission control

and, if forced to leave the system, a Byzantine peer

may simply rejoin the network with a new identity. In

the worst case, perpetual and rapid rejoin operations

result in a DoS attack. Therefore, we make the standard

assumption that there is a cost for joining the network

(for example, monetary costs as in [24] or CAPTCHAs

as suggested in [36]). The best method of enforcing

this cost is beyond the scope of this work.

Let τ denote the rate at which p can issue spurious

requests before being forced to rejoin the system. In

the passive scenario, a Byzantine peer p can contact

any quorum Qi by colluding with other faulty peers

to obtain necessary routing information. Members of

Qi act on any request coming from p. Therefore, a

correct peer may be required to maintain O(n) records

so that spam requests are ignored; clearly, this is

far from ideal. Moreover, here τ is large due to the

abundance of potential targets. In contrast, in a prove-

and-verify system the members of Qi must verify

p’s proof before acting. Proof and verification may

take different forms. For instance, constructions exist

where two peers communicate only if their respective

quorums are linked [17], [37]; that is, the quorum

topology itself acts as proof. Verification occurs by

having a quorum Qi act on p’s request only if each

peer in Qi receives messages from a majority in Qp.

Here τ is smaller; however, there are still shortcomings

to this method of proof and verification.

Efficiency in the Prove-and-Verify Scenario: We

argue two things: (1) the form of proof discussed above

is restrictive and (2) verification is expensive. First, the

proof is restrictive since for Qi and Qj to communicate

without sending through intermediary quorums, they

must maintain links to one another; such maintenance

is costly. Second, the verification process is expensive

because when communication occurs from Qi to Qj , a

correct peer q ∈ Qj must know to which peers in Qi it

must listen; this incurs more maintenance costs. These

are two significant problems with existing schemes.

Cryptography allows us to improve asymptotically

on the message complexity of verification. Under our

protocols, each quorum has a public and private key

established using DKG. Communication can occur be-

tween any two quorums that know and can verify each

other’s public key. Therefore, the form of proof is not

Q3

Qℓ

Peer p

Request

Proof(Q
1)

Q2

Q1

P
r
o
o
f(Q

1)

P
r
o
o
f(Q

2), N
ext

H
op

P
r
o
o
f(Q

3),
N

ext
H

op

P
r
o
o
f(Q

2)

Pro
of(Qℓ−

1
), m

Figure 2. Our general robust communication

scheme. At step i = 1, ..., ℓ − 1, peer p presents

proof, PROOF(Qi), that quorum Qi sanctions p’s

action, and receives new proof from Qi+1 in ad-

dition to routing information for the next hop. At the

final step ℓ,peer p sends PROOF(Qℓ−1) and m.

as restricted by the quorum topology and we exploit

this in RCP-II. Furthermore, verification is cheaper;

using O(s) messages in RCP-I or O(1) expected

messages in RCP-II. Of course, overhead is incurred by

using cryptography. Message sizes increase by an addi-

tional O(κ) bits and keys shares, but not the key itself,

must be updated when membership changes. However,

our experimental results in Section 5 show that this

overhead is tolerable since the computation costs are

significantly smaller than the network latency. Hence,

cryptography provides a more efficient and flexible

implementation of the prove-and-verify scenario.

4. Our Robust Communication Protocols

We propose two robust communication protocols:

RCP-I and RCP-II. Here we outline a general scheme

in Figure 2 that is later refined to give our two pro-

tocols. Consider a sending peer p who wishes to send

a message m to peer q. We assume m is associated

with a key value which yields information necessary

for distributed routing; that is, the next peer to which m
should be forwarded is always known. Peer p notifies

its quorum Q1 that it is performing robust communica-

tion and receives PROOF(Q1). Peer p sends this to Q2

as proof that p’s actions are legitimate; the form of this

proof is discussed later. Depending on the scheme, one

or more members of Q2 examines the proof and, upon

verifying it, sends to p: (1) routing information for Q3

and (2) PROOF(Q2), that will convince Q3 that p’s

actions are legitimate. This continues iteratively until

p contacts the quorum holding q and m is delivered.

We employ the following concepts:

Quorum Public/Private Keys: Each quorum Qi is

associated with a (distributed) public/private key pair

(KQi
, kQi

); however, there are two crucial differences

between how such a key pair is utilized here in

comparison to traditional implementations. First, only

those quorums linked to Qi in the quorum topology,

and not everyone in the network, need to know KQi
.

Second, (KQi
, kQi

) is created using the DKG protocol

and K̂Qi
is the associated set of public key shares.

Individual Public/Private Key Shares: Each peer

p ∈ Qi possesses a private key share (kQi
)p of

kQi
produced using DKG. Unlike the quorum pub-

lic/private key pair of Qi which must be known to

all quorums to which Qi is linked in the quorum

topology, only the members of Qi need to know the

corresponding public key shares K̂Qi
, which plays an

important role in allowing members of Qi to verify

that the signature share sent to peer p is valid.

4.1. Robust Communication Protocol I

We now illustrate RCP-I for a peer p who wishes to

send a message m. The path m takes through quorums

is denoted by Q1, ..., Qℓ. We assume that p ∈ Q1 and

the target of the message is a set of peers D ⊆ Qℓ.

Overview: We outline RCP-I; the pseudocode is given

in Figure 3. Initially, the correct peers of Q1 must

acquiesce to p’s request. Peer p begins by sending

[pID|paddr|key|ts1] to all peers in its quorum Q1. The

value key corresponds to the intended destination of

m and ts1 is a time stamp. The message m can

also be sent, and its hash can be added inside the

signature below; however, for simplicity, we assume

m is sent only in the last step. Each correct peer

q ∈ Q1 then consults the rule set and sends its

signature share to p if p is not in violation. Peer

p interpolates these signature shares to generate the

signature: S1 ← [pID|paddr|key|ts1]kQ1
.

In each intermediate step i = 2, ..., ℓ−1, p sends its

most recent signature Si−1 and a new time stamp tsi

to each peer q ∈ Qi along the lookup path. Since Qi is

linked to Qi−1 in the quorum topology, each q knows

the public key KQi−1
to verify Si−1. If Si−1 is verified

and tsi is valid, q sends back its signature share,

KQi+1
and the routing information. Peer p collects the

shares to form Si and majority filters on the routing

information for Qi+1. In terms of majority filtering,

both group membership and the corresponding routing

information are agreed upon using DKG. Finally, for

Qℓ, p sends m along with Sℓ−1 to peers in the set D.

Share Corruption Attack: Note the following attack:

a set of Byzantine peers B (Qi send invalid shares

to p and, therefore, p will fail to construct Si. We refer

to this attack as the share corruption attack. Here, the

RCP-I: SENDING PEER p

Initial Step:
1: p ∈ Q1 sends the following request to all peers

in Q1: [pID|paddr|key|ts1]
2: p interpolates all received signature shares to

form: SQ1
← [pID|paddr|key|ts1]kQ1

Intermediate Steps:

3: for i = 2 to ℓ− 1 do

4: p sends SQi−1
and tsi to every peer in Qi and

requests a signature SQi
, public key KQi+1

and

routing information for Qi+1.

5: p interpolates received signature shares to form

SQi
← [pID|paddr|key|tsi]kQi

.

6: p verifies if SQi
is valid using KQi

.

7: if (SQi
is invalid) then

8: p sends signature shares to each peer in Qi.
Final Step:

9: p sends Sℓ−1 to D ⊆ Qℓ along with m.

RCP-I: RECEIVING PEER q ∈ Qi

Initial Step:

1: if (q ∈ Q1 receives a request by p) then

2: q checks that a request by p does not violate

the rule set. If the request is legitimate, q sends

its signature share to p.

Intermediate Steps:

3: if (q receives SQi−1
and tsi from p) then

4: q verifies a SQi−1
using KQi−1

and validates

tsi; if successful, q sends its signature share,

KQi+1
and routing information for Qi+1 to p.

5: if (q receives signature shares from p) then

6: q verifies all shares using public key shares and

informs p of invalid shares.

Figure 3. Pseudocode for RCP-I

individual public/private key shares play a crucial role.

To obtain Si, p sends the received shares to each peer

in Qi using one message per peer. For a share sent to

p by a peer in Qi, each correct peer in Qi verifies the

share using K̂Qi
. All valid shares are then sent back to

p who creates Si. While members of Qi may identify

those peers which p alleges sent an incorrect share,

punitive action is limited since p could be Byzantine.

Note that the shares are not recomputed; hence, the

adversary can only perform this attack once per step.

Lemma 1. RCP I guarantees that m is transmitted to

a target set of peers D ⊆ Qi for some quorum Qi over

a path of length ℓ with the following properties:

• Both the total message complexity and the mes-

sage complexity of the sending peer is each at

most 2 · s + 4 · s · (ℓ− 2) + |D|.
• Each non-sending peer has message complexity

at most 4 messages.

• The latency is at most 2 · (ℓ− 2) + 2.

Proof: First we prove the correctness of our

protocol. We show that if p is correct and has not

violated the rule set, at each step i of the protocol

p either (1) receives a valid signature and routing

information for the next step or (2) terminates the

protocol by delivering m to all members of D;

correctness follows directly. Our proof is by induction

on i:

Base Case: Consider the initial step i = 1 where p
communicates with the peers in its quorum Qp = Q1

about sending the message m. If p is correct and

has not violated the rule set, upon receiving [pID|paddr

|key|ts1] all correct peers will send their shares

to p. Therefore, p is guaranteed to form S by the

goodness invariant. Peer p can then check whether S
is valid and, if so, sets S to be S1. Otherwise, p must

overcome the share corruption attack. Since p belongs

to Q1, peer p knows the individual public key shares

of each peer in Q1 and can therefore detect which

shares are invalid and construct S1. Finally, p already

has the routing information for Q2; therefore, the base

case holds.

Inductive Hypothesis: Assume that at each step up

to step i < ℓ, p has obtained the correct signatures

and routing information.

Inductive Step: At step i + 1, peer p sends Si to

Qi+1. By the inductive hypothesis, this signature is

valid and p possesses the routing information for

Qi+1. If i < ℓ − 1, and no corrupted share attack

occurs, then p’s request for Si+1 and the routing

information for Qi+2 will be satisfied due to the

goodness invariant. Otherwise, p must overcome the

corrupted share attack by sending all signed shares to

all other peers in Qi+1. Each correct peer in Qi+1

can detect and inform p which peers sent an invalid

share. Due to the goodness invariant, peer p can

majority filter on these responses to determine the

invalid shares and then construct Si+1. If i = ℓ− 1, p
possesses the routing information for Qℓ to deliver m
to all members of D ⊆ Qi and the protocol terminates

successfully. In either case, the induction holds.

We now analyze the costs of our protocol. In the first

step, even in the event that a share corruption attack

occurs at most one round-trip round of communication

occurs (between p and Q1). For steps i = 2, ..., ℓ− 1,

if a share corruption attack occurs, at most two round-

trip rounds of message exchange occur: (1) p sends

to Qi and Qi sends back to p and (2) p transmits

shares to Qi who then send the correct shares back

to p. Adding the last step, the latency is 2 · (ℓ− 2) +
2. In terms of message complexity, in the first round,

peer p must send a request to and receive a response

from each peer in Q1; this totals at most 2s messages.

For steps i = 2, ..., ℓ − 1 peer p must both send a

request to and receive a response from each peer in

a quorum; if a corruption attack occurs, p must send

another message to each peer in a quorum (with all

signed shares collected together) and receive back a

response. Therefore, this incurs at most 4 ·s messages.

In the last step p sends to all members of D. Hence, the

message complexity is at most 4 ·s · (ℓ−2)+ |D|+2s.

For every other involved peer q /∈ D, the message

complexity for q is simply at most 4; clearly, peers in

D receive one message.

Spamming Attacks: The sending peer p experiences

more cost than other participating peers. In part, this

is due to the iterative nature of the protocol; however,

largely this is because p must send and receive O(s)
messages per step. In contrast, other participating peers

need only send and receive a constant number of

messages over the execution of the protocol.

Peer p may misbehave in other ways. For instance,

p may repeatedly contact its quorum to initiate robust

communication; however, eventually all correct peers

will ignore p. Similarly, using a correct signature, p
may repeatedly ask q in another quorum for proof

and/or routing information; however, time stamps limit

such replay attacks. In conclusion, such actions cannot

cause correct peers to perform expensive operations.

4.2. Robust Communication Protocol II

We present RCP-II which is randomized yielding It

is sufficient for each node to possess its own internal

random number generator. a small expected message

complexity for both the sending peer and non-sending

peers. In exchange, join and leave operations incur

additional cost in comparison to RCP-I; we discuss

this in Section 4.3.

RCP-II utilizes signed routing table informa-

tion. Each entry of a routing table has the form

[uID, u
′

ID, uaddr,KQi
, tsr], where u is a peer, u′ is the

peer with the next largest identifier, KQi
is the quorum

public key of Qi to which u belongs, and tsr is a

time stamp for when this entry was created. RT Qj

denotes the routing table information for all peers in

Qj . [KQj
]kQi

is the quorum public key of Qj signed

using the private quorum key of Qi; recall, neighbors

in the quorum topology know each others’ public key.

[RT Qj
]kQi

is the routing information signed with the

private key of Qi; entries of the routing table are signed

separately. Routing table information is time stamped

and re-signed periodically when DKG is executed.

Overview: We sketch RCP-II here. For simplicity,

we temporarily assume that peers act correctly; our

pseudocode in Figure 4 is complete for when peers

fail to respond to requests by p. Initially, each correct

peer in Q1 receives [pID|paddr|key|ts] from p. The time

stamp ts is chosen by p and peers in Q1 will acquiesce

to the value if it agrees with the rule set to within some

bound to compensate for clock drift. If the request does

not violate the rule set, then the information is signed

allowing p to form M1 = [pID|paddr| key|ts]kQ1
.

In the second step of the protocol, p knows the

membership of Q2 and selects a peer q2 ∈ Q2

uniformly at random (u.a.r.) without replacement. Peer

p then sends M1 to q2. Assuming q2 is correct, it

verifies M1 using KQ1 and checks that the ts is valid;

the duration for which a time stamp is valid would

be specified by the rule set. Once verified q2 sends p
the information [KQ1]kQ2

, [RT Q3
]kQ2

and [KQ3]kQ2
.

Peer p knows KQ2 since Q1 links to Q2 and verifies

[KQ1]kQ2
, [RT Q3

]kQ2
and [KQ3]kQ2

, and checks that

the time stamp on the routing information is valid. If

so, p constructs M2 = [M1|[KQ1]kQ2
]. Here [KQ1]kQ2

will allow some peer in Q3 to verify KQ1 and M1,

while the signed verified KQ3 will allow p to check

the response from that peer in Q3.

This process repeats with minor changes for the

remaining steps. Using RT Q3
from the previous step,

p selects a peer q3 randomly from Q3 and sends

M2. Since Q3 is linked with Q2 in the quorum

topology, q3 knows KQ2, which it uses to verify

[KQ1]kQ2
; this allows q3 to verify M1 signed with

kQ1. Peer q3 then confirms that ts is valid and sends

[KQ2]kQ3
, [RT Q4

]kQ3
and [KQ4]kQ3

to p. Peer p
has a verified public key KQ3 from the previous

step and uses it to verify [KQ2]kQ3
, [RT Q4

]kQ3
, and

[KQ4]kQ3
. Then p constructs M3 = [M2|[KQ2]kQ3

] =
[M1|[KQ1]kQ2

|[KQ2]kQ3
]. This process continues until

m is delivered. Figure 4 gives the pseudocode for

RCP-II. Every peer contacted by p verifies a chain

of certificates, which can be converted into a single

signature using the concept of aggregate signatures [8].

It is possible that p chooses a Byzantine peer that

may not respond. In that case, after some appropriate

time interval, p will select an additional peer in the

quorum. Let X be a random variable denoting the time

required for a correct peer to respond. We make a weak

RCP-II: SENDING PEER p

Initial Step:

1: p sends the following to each peer q ∈ Q1:

[pID|paddr|key|ts]
2: p gathers all responses and constructs:

M1 ← [pID|paddr|key|ts]kQ1

Intermediate Steps:

3: for i = 2 to ℓ− 1 do

4: while (p does not have Mi and has waited

time ∆ since previous selection) do

5: p sends Mi−1 to q ∈ Qi selected u.a.r.

without replacement.

6: if ([KQi−1
]kQi

, [RT Qi+1
]kQi

and

[KQi+1]kQi
are received from any

peer in Qi previously selected) then

7: p uses KQi
to verify KQi+1, RT Qi+1

and KQi−1.

8: if (KQi+1, RT Qi+1
and KQi−1 are all

verified) then

9: Mi ← [Mi−1|[KQi−1
]kQi

]
Final Step:
10: p sends Mℓ−1 to D ⊆ Qℓ along with m.

RCP-II: RECEIVING PEER q

Initial Step:

1: if (q ∈ Q1 recives [pID|paddr|key|ts] from p ∈
Q1) then

2: q checks that p’s request is legitimate and, if

so, sends its signature share.

Intermediate Steps:

3: if (q ∈ Qi receives Mi−1 from p) then

4: for j = i− 1 downto 1 do

5: q uses KQj
to verify KQj−1.

6: Peer q uses KQ1 to verify M1.

7: if verification is successful then

8: q sends [KQi−1
]kQi

, [RT Qi+1
]kQi

and

[KQi+1]kQi
to p.

Figure 4. Pseudocode for RCP-II

assumption that Pr[X ≤ ∆] ≥ c where ∆ is any

duration of time and c>0 is any constant probability.

This does not circumscribe a particular distribution

for response times; in fact, any distribution suffices,

including the Poisson, exponential, and gamma dis-

tributions previously used to characterize round trip

time (RTT) over the Internet. In practice, a peer p
would set its own ∆ value by sampling the network

using methods for estimating RTT [27]. Since there are

only a constant fraction of Byzantine peers, taking the

median from a sufficiently large sample will allow p to

determine ∆. As p receives a response from any of the

previously selected peers in Qi, this is in accordance

with the weak synchrony assumption in Section 3.

Lemma 2. RCP- II guarantees that m is transmitted

to a target set of peers D ⊆ Qi for some quorum Qi

over a path of length ℓ with the following properties:

• Both the total message complexity and the mes-

sage complexity of the sending peer is each at

most 2 · s + (ℓ−2)
(1−ǫ)·c + (ℓ− 2) + |D|.

• Each non-sending peer has expected message

complexity at most 2
(1−ǫ)·c·s .

• The expected latency is at most
(ℓ−2)

(1−ǫ)·c + 2.

Proof: First we prove the correctness of our

protocol and, as before, we show that if p is correct

and has not violated the rule set, at each step i
of the protocol p either (1) establishes a valid

Mi and receives the routing information for the

next hop or (2) terminates the protocol by delivering

m to all members of D. Our proof is by induction on i.

Base Case: Consider the initial step i = 1 where p
communicates with the peers in its quorum Qp = Q1

about sending the message m. If p is correct and

has not violated the rule set, upon receiving [pID|paddr|
key|ts] all correct peers will send their shares to

p. Therefore, p is guaranteed to obtain M1 by the

majority invariant. Peer p already has the routing

information for Q2; therefore, the base case holds.

Inductive Hypothesis: Assume that at step i < ℓ, p
has obtained a correct Mi and routing information for

Qi+1.

Inductive Step: First assume that i = ℓ − 1. Then,

by the induction hypothesis, peer p possesses Mℓ−1

and the necessary routing information to send this

signature and message m to D ⊆ Qi+1; thus the

protocol terminates correctly. Otherwise, assume

i < ℓ− 1; we consider step i + 1. Peer p sends Mi to

a peer q ∈ Qi+1 selected uniformly at random without

replacement. By the inductive hypothesis, the contents

of Mi are valid and p possesses the necessary routing

information. If q is a Byzantine peer, then p’s request

can fail and p can detect an invalid response using

KQi+1 obtained from the previous step. It is also

possible that q is a correct but slow node and do not

respond in a predefined time period. In this case, p
re-issues its request to another randomly selected peer

in Qi+1; eventually, one of selected correct peers will

respond by sending [KQi
]kQi+1

, [RT Qi+2
]kQi+1

and

[KQi+2]kQi+1
to p. Peer p will verify this information

and create a valid Mi+1. Therefore, at this point p

possesses a correct Mi+1 and routing information for

Qi+2; therefore, the induction holds.

Since RCP-II is a randomized algorithm, our costs are

given in expectation. We assume the following: let Xi

be a random variable denoting the time required for

the ith correct peer (note we condition on correctness)

selected u.a.r without replacement by p to respond to

p’s request. We assume that Pr[Xi ≤ ∆] = c where

c > 0 is some constant probability.

We now calculate loose upper bounds of the ex-

pected resource costs. In the first step, in communi-

cating with Q1, peer p handles at most 2 · s messages

and the round-trip latency is 1. Then for each step

i = 2, ..., ℓ−1, let Yi be the random variable with value

1 if the ith peer is both correct and responds within

time ∆; 0 otherwise. Then Pr[Yi = 1] ≤ (1 − ǫ) · c;

for simplicity, set ρ = (1− ǫ) · c to be this probability

of success. Let Y =
∑s

i=1 Yi. The expected number

of selections E[Y] before p receives a response from

a correct peer is at most:

s∑

k=0

(1−ρ)k·ρ·(k+1) = ρ

(
s∑

k=0

(1− ρ)k · k +

s∑

k=0

(1− ρ)k

)

where the first term is upper-bounded by the well-

known telescoping series and the second is simply

a geometric series. Therefore E[Y] ≤ 1
(1−ǫ)·c and

including the last step, the expected latency is at most
ℓ−2

(1−ǫ)·c + 2. The ℓth step requires D messages and one

hop. In terms of expected message complexity, since

each step requires at most 2 messages and the last

step requires |D| messages, we can give a crude upper

bound of 2s + 2
(1−ǫ)·c · (ℓ − 2) + |D|. However, note

that once p hears back from a node, any message from

any other previously selected nodes in the current step

can be easily ignored/filtered. Therefore, per step, p
handles 1

(1−ǫ)·c +1 messages. We can now give a more

accurate upper bound of 2s + ℓ−2
(1−ǫ)·c + (ℓ− 2) + |D|.

Finally, while latency is measured in the number of

communication rounds, we note that the expected

duration of time required for each intermediate round

is ∆
(1−ǫ)·c .

In terms of the expected message complexity of a

non-sending peer q /∈ D in a quorum along the lookup

path, a correct peer chosen by p receives one message

and sends one message. The probability that q is

chosen is at most 1/((1−ǫ) ·s); therefore the expected

message complexity for q is at most 2/((1− ǫ) · s).

While latency is measured in communication

rounds, the time for executing RCP-II depends on

∆ and we discuss this briefly. Accounting for the

response time incurred in the intermediate steps, p
waits for at most time ∆

(1−ǫ)·c per step in expectation as

shown in Lemma 2. Since peer p will have knowledge

of the response time distribution, p may optimize

performance by selecting ∆ so that ∆
c

is minimized.

Spamming Attacks: Due to the iterative nature of

RCP-II, p sends more messages than other partic-

ipating peers, but not to the degree seen in RCP-

I. Instead of making it expensive for p to perform

robust communication, RCP-II uses the following two

properties to deter spamming: (1) it is inexpensive for

a correct peer to detect spam and (2) the congestion

suffered by a correct peer is low since the number of

messages is not magnified by the use of quorums.

To address our first point, p may launch as many

robust communication operations as the rule set allows;

p may even try to circumvent the rule set by directly

sending to a correct peer q; however, it is inexpensive

for q to verify that the proof being sent is invalid.

The operation terminates at that point since q will not

reply. In contrast to the passive scenario of Section 3.5,

q need not keep a history to judge the legitimacy of a

request; it simply verifies the accompanying certificate.

Our second point, and a key difference between

RCP-I and RCP-II, is that with RCP-II an operation

incurs only expected O(ℓ) messages which compares

favourably to a system without a quorum topology.

Therefore, the congestion caused by such requests is

not significantly magnified by the use of quorums

which was a key concern regarding spamming.

Adversarial peers may misbehave in other ways

with many of the same consequences and remedies as

discussed in RCP-I. Even with a generous upper bound

on the expiration of ts, the congestion p can cause

with a replay attack is again limited since only p can

use the certificate. A notable attack, unique to RCP-II,

occurs when a faulty peer gives p stale routing table

information. Since entries are signed and time stamped,

we are guaranteed that in the fairly recent past, the

location indicated by the stale information was in-

deed correct. This fact, coupled with the standard

assumption that ID collisions do not occur, guarantees

that the adversary cannot engineer a situation where

requests are forwarded to a faulty peer. Consequently,

the impact of this attack is limited. The search path

may be slightly lengthened by forwarding to an older

location. Alternatively, stale information may point to a

peer that no longer exists or is not the correct recipient,

which forces p to backtrack one hop. These cases are

easy to handle, but for ease of exposition, they are

not treated in our pseudocode in Figure 4. In short,

routing integrity is not compromised. The fact that

routing tables can be signed periodically every several

minutes without significant CPU cost (see Section 5)

implies that the impact of such an attack is negligible.

4.3. The Join Protocol and Membership Up-

dates

For the sake of being self-contained, we describe

how a peer would join our system. This first involves

a discussion of a result by Awerbuch and Scheideler [5]

which allows a DHT to be robust even if the number

of join and leave events is polynomial in the size of the

network n. More precisely, in each round the adversary

may opt to insert a Byzantine peer (assuming the total

number of Byzantine peers in the system does not

exceed the allotted amount) or remove a Byzantine

peer from the system. The key protocol in defending

against is the cuckoo-rule. We assume the identifier

space of the DHT is normalized to be [0,1). For any

interval I ⊂ [0, 1), the cuckoo rule maintains two

invariants. The first is the balancing invariant which

guarantees that I contains Θ(|I| ·n) peers. The second

is the majority invariant which guarantees the majority

of peers in I are correct. The authors show that for

|I| = Θ(log (n)/n) both invariants can be maintained

with high probability over nc join and leave operations,

where c is a constant that can be tuned according to

the parameters of the protocol. It follows that the peers

in I can be used to form a quorum.

It is important to understand the resource costs of

the cuckoo rule which functions as follows. The ring

[0, 1) is assumed to be broken into disjoint segments

of constant length k/n for some constant k. Each

segment is called a k-region and Rk(x) denotes the

unique k-region containing x. When a peer p joins the

network, it is assigned a random identifier x ∈ [0, 1)
and placed in this location on the ring. All nodes in

Rk(x) are evicted from their locations and placed into

new locations chosen uniformly and independently at

random from [0, 1). Figure 5 illustrates the operations

performed by the cuckoo rule.

The node placements required by the cuckoo rule

can be executed by having quorums use robust com-

munication in order to inform each other about the

arrival of the evicted nodes at their new locations.

Once a quorum Qi knows about the presence of a

recently evicted node q, all correct members of Qi

update their membership lists, share IP addresses, and

aid q in setting up any required links (i.e. such as finger

links in Chord). A detailed discussion of how this could

be done is presented in [17] and random numbers can

be generated using the protocol of [4]. We finish our

discussion of a join protocol by discussing the steps

R
 (
x)

k

p

x

p

p

Figure 5. An illustration of the cuckoo rule. (Left)

Peer p is placed in its random location x. All peers

in the k-region, Rk(x) denoted by dashed lines, are

assigned random locations in [0, 1). (Right) After

the cuckoo rule is executed, peer p is the only peer

in Rk(x).

necessary for maintaining DKG and the consequent

cost of membership changes under both protocols:

RCP-I: Consider a quorum Qi to which a new

peer is added. The membership update protocol of

DKG [31] is executed to redistribute the shares of the

public/private quorum key pair over all members of

Qi. In the process, the individual public/private key

shares are also updated. Notably, no other quorums

are affected by this process as the quorum key pair

remains the same and the individual key shares need

only be known to members of Qi. When a peer leaves

Qi, the departure can be treated as a crash and so long

as the number of crashes does not exceed the crash-

limit f , the DKG (share renewal) protocol need not

be executed. We use this to associate the system churn

rate to DKG session time. Note that the adversary may

crash some of its t nodes, and in principle, the system

can handle t + f node leaves. However, we cannot

associate these additional t crashes with the system

churn due to the inherent arbitrary nature of Byzantine

peers.

RCP-II: When a peer q joins Qi, the DKG protocol

needs to be executed as in the case of RCP-I; however,

there are additional costs due to the need to update

and re-sign the routing table information. In particular,

not only do the peers in Qi need to update and have

signed their routing table information to reflect the

addition of q, all quorums to which Qi is linked under

the quorum topology also need to update and re-sign

their routing table information; note that this does not

require any revocation since the public key does not

change. Therefore, a join event under this scheme does

affect other quorums. When a peer leaves Qi, DKG

may be required as in the case of RCP-I. However,

routing table information for Qi and the quorums to

which it links must again update and re-sign their

routing table information. Therefore, while RCP-II

reduces message complexity, the cost of join/leave

operations is higher in comparison to RCP-I.

5. Experimental Results

We examine the performance of DKG and our two

protocols on the PlanetLab platform [40]. Based on

our experimental results and known churn rates, we

propose parameters for DHTs using our protocols.

5.1. Implementation and Microbenchmarks

The DKG protocol is a crucial component of our

protocols. It is required to initiate a threshold signature

system in a quorum and to securely manage mem-

bership changes. We use a C++ implementation [30]

to measure the performance of DKG. We incorporate

threshold BLS signatures into this implementation and

realize our two protocols using this setup on PlanetLab.

Distributed Key Generation: We test the DKG im-

plementation for quorum sizes s = 10, 15, 20, 25, 30
and present median completion times and median CPU

usage for our experiments in Table 1. The median com-

pletion periods vary from 6 seconds for s = 10 to more

than 5 minutes for s = 30. The bulk of this latency is

due to network delays; in contrast, the required CPU

time is much smaller than the completion periods.

In the next subsection, we examine the feasibility of

these completion periods. Our experiments with DKG

assume that 30% of the peers may crash and 10% of

the peers may be Byzantine. While we can tolerate any

fraction of Byzantine peers less than 1/3, we use these

numbers since in many practical scenarios we expect

the fraction of Byzantine faults to be less than 10%
and modest compared to the fraction of crash failures.

RCP-I and RCP-II: For our RCP-I and RCP-II ex-

periments, we set s = 30, t = 3, and f = 10. In

RCP-I, a node requires 0.14 seconds on average to

obtain a threshold signature from a quorum, if all of

the obtained signature shares are correct. The average

execution time increases to 0.23 seconds in case of a

share corruption attack. Extrapolating to a path length

ℓ, an operation should take 0.14·ℓ to 0.23·ℓ seconds on

average. For a DHT with 105 nodes, the average total

time for RCP-I is then 3 to 4 seconds with ℓ = 20.

In RCP-II, a node takes 0.04 seconds on average

to obtain the required signed public keys and the

signed routing information from a correct peer. An

individual signature verification takes 0.004 seconds

Table 1. Median values of DKG completion time and

CPU time per node for various s values.

s t f Completion Time (sec) CPU Seconds/Node

10 1 3 5.73 0.76
15 2 4 18.0 1.94
20 2 6 68.0 2.55
25 3 7 290.9 6.13
30 3 10 336.7 7.27

on average. The median latency value over Planetlab

is approximately equal to 0.08 seconds. [14] That is,

∆ = 0.08 seconds for c = 0.5. With a chain of signed

public keys of length ℓ, the total communication time

is approximately 0.14+0.04·(ℓ−1)+·∆·(ℓ−2)
c·(1−ǫ) +0.004·

ℓ(ℓ−1)
2 which for 10% Byzantine peers, is 4.68 seconds

in expectation. To a first-approximation, the execution

times of our protocols seem quite reasonable.

System Load: We address the issue of system load

under the assumption that signature verification is the

most significant computational operation. We make

back-of-the-envelope calculations to obtain the ex-

pected order of magnitude for our performance figures.

For RCP-I, from the above discussion, each signature

verification takes 0.004 seconds; thus, the total CPU

time required per execution is 0.004 · ℓ · (1 + s + s2);
this includes the costs due to share corruption attacks.

For ℓ = 20 and s = 30, this value is 75 CPU

seconds, spread out over 600 nodes. Therefore, the

number of executions of RCP-I that can be started per

second on average is n/75 ≈ 103 when n = 105.

Note this rate value is for the entire system. Now, if

no share corruption attacks occur, the total CPU time

required per execution becomes 0.004·ℓ·(1+s) which,

for the same parameter values, is 2.5 CPU seconds.

This implies that 4 · 104 executions can be started per

second on average in the entire system. For RCP-II,

the total CPU time required for execution is given by

0.004 ·
(
ℓ + (ℓ−1)·ℓ

2·(1−ǫ)

)
which, for the same parameters

and ǫ = 1/10 is roughly 1 CPU second on average.

Therefore, approximately 105 executions can be started

per second on average in the entire system.

5.2. Analysis and Discussion

As mentioned in Section 3.1, important questions re-

main with regards to translating theoretical results to a

practical setting. In particular, two quantities of interest

are the size of quorums, s, and the number of quorums

to which each peer belongs, nQ. Unfortunately, pinning

down these quantities is non-trivial. Only asymptotic

analysis is present in the literature. Furthermore, it is

not a simple case of substituting hard numbers because

s depends on a number of parameters: (1) the exact

Table 2. The expected number of seconds before a

quorum experiences a membership change (rQ).

s 10 15 20

nQ 1 2 3 1 2 3 1 2 3
rQ 526 351 175 350 234 117 263 132 88

25 30

1 2 3 1 2 3
210 140 70 175 87 58

guarantees being made (i.e. time until quorum failure),

(2) algorithms for quorum maintenance, (3) the tools of

analysis (i.e. form of Chernoff bounds used) and many

more. Evaluating these parameters is outside the scope

of this work. Instead, we assume a range of values for

s and nQ. As our protocols appear to be the most

efficient to date, the following results illuminate what

currently seems possible in practice.

System Churn and DKG: The performance of our

two protocols will likely depend on system churn. A

common metric for measuring the degree of churn is

session time: the time between when a node joins the

network and when it leaves [42]. As discussed in Sec-

tion 3.5, we make the standard assumption that the cost

of joining the network can be made large enough so as

to prevent the adversary from substantially increasing

the rate of churn through rapid rejoin operations.

Part I - An Argument for Batching: Investiga-

tions have yielded differing measurements for me-

dian session times. The Kazaa system was found to

have a median session time of 144 seconds [20].

In the Gnutella and Napster networks, the median

session time was measured to be approximately 60
minutes [47]. Measurements of the Skype P2P network

yielded a median session time of 5.5 hours for super-

peers [26]. Here, we temporarily assume a median

session time of 60 minutes and a standard Poisson

model of peer arrivals/departures as in [33], [42]. To

calculate churn rate, r (number of arrivals/departures

per second), based on the median session time tmed

(in seconds), we use the formula of [42]: r = (n ·
ln 2)/tmed. For n = 105 and tmed = 3600 seconds,

r ≈ 19. Assuming that join and leave events occur

independently of each other, Table 2 gives the expected

number of seconds, rQ, at which point a quorum will

undergo a membership change when each peer belongs

to nQ quorums. Our choice of nQ ≤ 3 is based upon

the reasonable assumption that overlap occurs only

with immediate neighboring quorums in the ID space.

In several cases, the rQ values are less than the

corresponding median DKG completion times in Ta-

ble 1. Therefore, a quorum may not be able to execute

DKG often enough to accommodate each membership

change. However, join operations can be queued and

performed in batches. Executing DKG for a batch of

joins does not increase the message complexity and

message size increases only linearly in the batch size

(see [31, Sec. 6]). Therefore, batching can mitigate the

effects of churn and it seems plausible that peers would

tolerate some delay in joining in exchange for security.

Part II - Batching and the Security Threshold:

Batching join events improves performance; however,

many peers might leave a quorum before a new batch

is added, thus violating the security threshold. Hence,

we are interested in the session time value required

such that this is not likely to occur. Based on Table 1

for s = 20 and nQ = 1, DKG completes within 68
seconds. The number of leave events a quorum can

suffer while not exceeding the crash limit is f = 6.

If Byzantine peers leave, more crashes are tolerable;

however, identifying such events is impossible, so we

assume the worst case of f = 6. Assuming DKG

executes every rDKG = 1200 seconds, we seek the

median session time such that at most 6 peers leave

the system within 1268 seconds. With n/s = 5000
quorums in the system, each experiencing 6 leave

events within 1268 seconds, the system churn rate is

r = 23.7. This gives tmed = 2930 or, equivalently,

49 minutes. Therefore, with this tmed, we expect the

system to remain secure. Moreover, a quorum only

spends 68/1268 = 5.4% of the time executing DKG.

Certain parameters can be tuned to offer perfor-

mance trade-offs. Decreasing rDKG yields smaller

required median session times; however, the percentage

of time spent on DKG increases. Such tuning would

depend on the desired system performance, the ap-

plication, and s and nQ. Table 3 gives session time

calculations for other values of s, rDKG and nQ.

Required session times increase with s. Notably, for

s = 30 and nQ = 1, tmed does not far exceed the 60
minutes in [47]. As nQ increases, the required session

times grow linearly. However, our maximum of 3.7
hours is still less than tmed measured for super-peers in

the Skype network [26]. We tentatively conclude that

our protocols can be deployed in applications where

session times range from 10 minutes to a few hours

and that such applications currently exist.

5.2.1. Final Comments. The implementation of the

DKG protocol used here is an academic version, and

more efficient implementations may be possible. In

terms of performance improvements, using the ag-

gregate signature scheme [8], messages can be made

more compact yielding a savings in RCP-II. For certain

applications, it may be possible to restrict membership

to those peers that meet certain latency and band-

width criteria. Our choice of nQ ≤ 3 is based upon

Table 3. Median session times (in hours) derived from

values for s, nQ and rDKG (in hours).

s 10 15 20
rDKG 0.167 0.25 0.33

nQ 1 2 3 1 2 3 1 2 3

tmed 0.19 0.39 0.58 0.66 1.32 2.00 0.81 1.62 2.44

25 30
0.42 0.5

1 2 3 1 2 3

1.23 2.46 3.70 1.23 2.47 3.70

the assumption that quorums only overlap with their

immediate neighbors in the ID space. In terms of

fault-tolerance, our experiments were performed with

10% of nodes suffering Byzantine faults; however, we

generally expect the fraction of Byzantine nodes to be

less, thus reducing execution times.

Future Work: The performance of a complete system

is an important open question. The quorum topology

chosen is crucial and optimizing this in practice is

a topic of future work. Another pertinent question

is whether our protocols can be modified to achieve

recursive routing since this could result in lower mes-

sage delivery time. While we focus on DHTs, our

results may apply to other P2P designs and more

general settings where groups of machines, some with

untrustworthy members, must communicate; it would

be of interest to identify such applications.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-Scalable Byzantine Fault-
Tolerant Services. In SOSP, pages 59–74, 2005.

[2] A. Adya, W. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. Douceur, J. Howell, J. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Federated,
Available, and Reliable Storage for an Incompletely
Trusted environment. In OSDI, pages 1–14, 2002.

[3] J. Aspnes, N. Rustagi, and J. Saia. Worm versus alert:
Who Wins in a Battle for Control of a Large-Scale
Network? In OPODIS, pages 443–456, 2007.

[4] B. Awerbuch and C. Scheideler. Robust Random Num-
ber Generation for Peer-to-Peer Systems. In OPODIS,
pages 275–289, 2006.

[5] B. Awerbuch and C. Scheideler. Towards a Scalable
and Robust DHT. In SPAA, pages 318–327, 2006.

[6] B. Awerbuch and C. Scheideler. Towards Scalable and
Robust Overlay Networks. In IPTPS, 2007.

[7] A. Boldyreva. Threshold Signatures, Multisignatures
and Blind Signatures Based on the Gap-Diffie-Hellman-
Group Signature Scheme. In PKC, pages 31–46, 2003.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham.
Aggregate and Verifiably Encrypted Signatures from
Bilinear Maps. In EUROCRYPT, pages 416–432, 2003.

[9] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and
A. Shraer. Brahms: Byzantine Resilient Random Mem-
bership Sampling. In PODC, pages 145–154, 2008.

[10] C. Cachin and J. Poritz.Secure Intrusion-tolerant Repli-
cation on the Internet. In DSN, pages 167–176, 2002.

[11] M. Castro and B. Liskov. Byzantine Fault Tolerance
Can Be Fast. In DSN, pages 513–518, 2001.

[12] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance and Proactive Recovery. ACM Transactions
on Computer Systems, 20(4):398–461, 2002.

[13] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ Replication: A Hybrid Quorum Protocol
for Byzantine Fault Tolerance. In OSDI, pages 177–
190, 1999.

[14] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek,
and R. Morris. Designing a DHT for Low Latency and
High Throughput. In NSDI, pages 85–98, 2004.

[15] J. Douceur. The Sybil Attack. In IPTPS, 2002.
[16] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and

T. Anderson. Profiling a Million User DHT. In IMC,
pages 129 – 134, 2007.

[17] A. Fiat, J. Saia, and M. Young. Making Chord Robust
to Byzantine Attacks. In ESA, pages 803–814, 2005.

[18] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy.
Vanish: Increasing Data Privacy with Self-Destructing
Data. In USENIX Security Symp., pages 299–315, 2009.

[19] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin.
Robust Threshold DSS Signatures. In Advances in
Cryptology - EUROCRYPT, pages 354–371, 1996.

[20] P. K. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, Modeling,
and Analysis of a Peer-to-Peer File-Sharing Workload.
In SOSP, pages 314–329, 2003.

[21] A. Gupta, B. Liskov, and R. Rodrigues. One Hop
Lookups for Peer-to-Peer Overlays. In 9

th Conf. on
Hot Topics in Operating Systems, pages 2–2, 2003.

[22] K. Hildrum and J. Kubiatowicz. Asymptotically Ef-
ficient Approaches to Fault-Tolerance in Peer-to-peer
Networks. In DISC, pages 321–336, 2004.

[23] D. Boneh, B. Lynn, and H. Shacham. Short Signatures
from the Weil Pairing. In ASIACRYPT, pages 514–532,
2001.

[24] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure Routing for Structured Peer-to-Peer
Overlay Networks. In OSDI, pages 299–314, 2002.

[25] P. Feldman.A Practical Scheme for Non-Interactive Veri-
fiable Secret Sharing. In FOCS, pages 427–437, 1987.

[26] S.Guha, N.Daswani, and R.Jain.An Experimental Study
of the Skype Peer-to-Peer VoIP System. In IPTPS, 2006.

[27] H. Jiang and C. Dovrolis. Passive Estimation of TCP
Round-Trip Times. CCR, 32:75–88, 2002.

[28] H. Johansen, A. Allavena, and R. van Renesse. Fire-
flies: Scalable Support for Intrusion-Tolerant Network
Overlays. In OSR, pages 3–13, 2006.

[29] A. Kapadia and N. Triandopoulos. Halo: High-
Assurance Locate for Distributed Hash Tables. In
NDSS, 2008.

[30] A. Kate and I. Goldberg. Asynchronous Distributed
Private-Key Generators for Identity-Based Cryptogra-
phy. Cryptology ePrint Archive, Report 355, 2009.

[31] A. Kate and I. Goldberg. Distributed Key Generation
for the Internet. In ICDCS, pages 119–128, 2009.

[32] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, W. Weimer
H. Weatherspoon, C. Wells, and B. Zhao. OceanStore:
An Architecture for Global-Scale Persistent Storage. In

ASPLOS, pages 190–201, 2000.
[33] D. Liben-Nowell, H. Balakrishnan, and D. Karger.

Analysis of the Evolution of Peer-to-Peer Systems. In
PODC, pages 233–242, 2002.

[34] P. Mittal and N. Borisov. ShadowWalker: Peer-to-peer
Anonymous Communication using Redundant Struc-
tured Topologies. In CCS, 2009.

[35] Michael Mitzenmacher. The Power of Two Choices in
Randomzied Load Balancing. PhD thesis, University
of California at Berkeley, 1996.

[36] A. Nambiar and M. Wright. Salsa: A Structured
Approach to Large-Scale Anonymity. In CCS, pages
17–26, 2006.

[37] M. Naor and U. Wieder. A Simple Fault Tolerant
Distributed Hash Table. In IPTPS, pages 88–97, 2003.

[38] R. Ostrovsky and M. Yung. How to Withstand Mobile
Virus Attacks (Ext. Abstract). In PODC’91, pages 51–
59, 1991.

[39] T. P. Pedersen. Non-Interactive and Information-
Theoretic Secure Verifiable Secret Sharing. In
CRYPTO, pages 129–140, 1991.

[40] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. CCR, 33(1):59–64, 2003.

[41] M. K. Reiter. The Rampart Toolkit for Building High-
Integrity Services. In Intl. Workshop on Theory and
Practice in Distributed Systems, pages 99–110, 1995.

[42] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling Churn in a DHT. In USENIX Annual
Technical Conf., pages 127–140, 2004.

[43] R. Rodrigues, P. Kouznetsov, and B. Bhattacharjee.
Large-Scale Byzantine Fault Tolerance: Safe but Not
Always Live. In HotDep, 2007.

[44] R. Rodrigues and B. Liskov. Rosebud: A Scalable
Byzantine-Fault-Tolerant Storage Architecture. Tech-
nical Report TR/932, MIT LCS, December 2003.

[45] R. Rodrigues, B. Liskov, and L. Shrira. The Design of
a Robust Peer-to-Peer System. In 10

th ACM SIGOPS
European Workshop, page 2002, 117-124.

[46] J. Saia and M. Young. Reducing Communication
Costs in Robust Peer-to-Peer Networks. Information
Processing Letters, 106(4):152–158, 2008.

[47] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Systems.
In MMCN, pages 314–329, 2002.

[48] F. B. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Computing Surveys, 22(4):299–319, 1990.

[49] V. Shoup. Practical Threshold Signatures. In Advances
in Cryptology - EUROCRYPT, pages 207–220, 2000.

[50] E. Sit and R. Morris. Security Considerations for Peer-

to-Peer Distributed Hash Tables. In 1
st Intl. Workshop

on Peer-to-Peer Systems, pages 261–269, 2002.
[51] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global

View of KAD. In IMC, pages 117 – 122, 2007.
[52] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,

and H. Balakrishnan. Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications. In
SIGCOMM, pages 149–160, 2001.

[53] G. Urdaneta, G. Pierre, and M. van Steen. A Survey of
DHT Security Techniques. ACM Computing Surveys,
2009. To appear.

[54] V. Pappas and D. Massey and A. Terzis and L. Zhang.

A Comparative Study of the DNS Design with DHT-
Based Alternatives. In INFOCOM, pages 1–13, 2006.

[55] D. S. Wallach. A Survey of Peer-to-Peer Security
Issues. In ISSS, pages 253–258, 2002.

[56] P. Weng, N. Hopper, I. Osipkov, and Y. Kim. Myrmic:
Secure and Robust DHT Routing. Technical Report
2006/20, University of Minnesota, 2006.

6. Appendix

The first protocol of [46] yields a robust communi-

cation protocol with expected constant message com-

plexity. Here, we prove that, with probability 1−o(1),
an execution of this protocol requires a logarithmic

number of peers to exceed this expected cost.

Theorem 2. Consider the first lookup scheme in [46]

over Θ(log n) hops. With probability 1−o(1), at least

Θ(log n) peers will have a message complexity of

Ω
(

log log n
log log log n

)
over the course of the protocol.

Proof: Consider a message being passed from

quorum L to quorum R. The scheme of [46] works

as follows. Let B denote a set of lnn bins. Each peer

in R is mapped to c bins in B uniformly at random.

Then each peer in L is mapped to a single bin in B
uniformly at random. A peer in R listens only to those

peers that get mapped to the same bin as it does. Our

first goal is to show that, with probability 1−o(1), there

exists some bin to which O(ln lnn/ ln ln lnn) peers in

R get mapped. We proceed by adapting the balls-and-

bins argument of [35]. For the Poisson distribution, let

p be the probability that a bin has k balls or more,

then:

pk ≥

(
C ln n
ln n

)k

k! · e
C ln n
ln n

=
Ck

k! · eC

The probability that no bin has at least k = ln lnn
balls is at most (1 − pk)ln n ≤ e−pk·ln n. We wish to

now show that e−pk·ln n < 1
ln2 n

. Taking the logarithm

of each side twice, this is equivalent to proving:

k · lnC + ln(2) n > ln 2 + ln(3) n + ln(k!) + C

substituting k = ln ln n
ln ln ln n

, the left side of the inequality

is:
(

ln(2) n

ln(3) n

)
· lnC + ln(2) n

and by using Stirling’s approximation for x!, the right

side of the inequality is at most:

ln 2 + ln(3) n + ln





√

2 · π ·
ln(2) n

ln(3) n



+ ln(2) n + C

Therefore, for sufficiently large n, the inequality holds

and, by the results in [35] relating tail bounds of the

Poisson and Binomial distributions, the result holds

up to a constant factor.

We will call a bin overloaded if it has Ω
(

log log n
log log log n

)

peers mapped to it under the scheme in [46]. We now

consider the number of peers that get mapped from

L to an overloaded bin over ℓ = Θ(log n) steps of

the message passing protocol in [46]. Let Xi be the

indicator random variable that has value 1 if in step i
of the protocol, at least one overloaded bin exists and

at least one peer in L is mapped to an overloaded

bin; otherwise, Xi is zero. Then Pr[Xi = 0] ≤
o(1) + (1− 1/ ln n)

C ln n
≤ o(1) + e−C for each step

i = 1, ..., ℓ. Therefore, Pr[Xi = 1] ≥ 1−o(1)−e−C =
Θ(1). Let X =

∑
i Xi, then by linearity of expectation

E[X] = Θ(log n). Since the Xis are independent

and i.i.d., it follows by applying standard Chernoff

bounds that Pr[X < (1− δ) ·E[X]] < e−Θ(log n) =
n−Θ(1) = o(1). Therefore, with probability 1 − o(1),
over Θ(log n) steps of the protocol, Θ(log n) peers

will have message complexity Ω
(

log log n
log log log n

)
.

