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Abstract—We explore how Private Information Retrieval
(PIR) can help users keep their sensitive information from
being leaked in an SQL query. We show how to retrieve
data from a relational database with PIR by hiding sensitive
constants contained in the predicates of a query. Experimental
results and microbenchmarking tests show our approach incurs
reasonable storage overhead for the added privacy benefit and
performs between 7 and 480 times faster than previous work.

I. I NTRODUCTION

Most software systems request sensitive information from
users to construct a query, but privacy concerns can make
a user unwilling to provide such information. The problem
addressed by private information retrieval (PIR) [4], [13]is
to provide such a user with the means to retrieve data from a
database without the database (or the database administrator)
learning any information about the particular item that was
retrieved. Development of practical PIR schemes is crucial
to maintaining user privacy in important application domains
like patent databases, pharmaceutical databases, online cen-
suses, real-time stock quotes, location-based services, and
Internet domain registration. For instance, the current pro-
cess for Internet domain name registration requires a user
to first disclose the name for the new domain to an Internet
domain registrar. Subsequently, the registrar could then use
this inside information to preemptively register the new
domain and thereby deprive the user of the registration
privilege for that domain. This practice is known asfront
running [26]. The registrar is motivated to engage in front
running because of the revenue to be derived from reselling
the domain at an inflated price, and from placing ads on
the domain’s landing page. Many users, therefore, find it
unacceptable to disclose the sensitive information contained
in their queries by the simple act of querying a server.

Users’ concern for query privacy and our proposed ap-
proach to address it are by no means limited to domain
names; they apply to publicly accessible databases in sev-
eral application domains, as suggested by the examples
above. Although ICANN claims the practice of domain
front running has subsided [26], we will, however, use
the domain name example in this paper to enable head-to-
head performance comparisons with a similar approach by
Reardon et al. [35], which is based on this same example.

While today’s most developed and deployed privacy tech-
niques, such as onion routers and mix networks, offer
anonymizing protection for users’ identities, they cannot
preserve the privacy of the users’ queries. For the front
running example, the user could tunnel the query through
Tor [17] to preserve the privacy of his or her network
address. Nevertheless, the server could still observe the
user’s desired domain name, and launch a successful front
running attack.

The development of a practical PIR-based technique for
protecting query privacy offers users and service providers
an attractive value proposition. Users are increasingly aware
of the problem of privacy and the need to maintain privacy
in their online activities. The growing awareness is partly
due to increased dependence on the Internet for performing
daily activities — including online banking, Twittering, and
social networking — and partly because of the rising trend of
online privacy invasion. Privacy-conscious users will accept
a service built on PIR for query privacy protection because
no currently deployed security or privacy mechanism offers
the needed protection; they will likely be willing to trade
off query performance for query privacy and even pay to
subscribe for such a service. Similarly, service providers
may adopt such a system because of its potential for revenue
generation through subscriptions and ad displays. As more
Internet users value privacy, most online businesses wouldbe
motivated to embrace privacy-preserving technologies that
can improve their competitiveness to win this growing user
population. Since the protection of a user’s identity is nota
problem addressed by PIR, existing service models relying
on service providers being able to identify a user for the
purpose of targeted ads will not be disabled by this proposal.
In other words, protection of query privacy will provide
additional revenue generation opportunities for these service
providers, while still allowing for the utilization of informa-
tion collected through other means to send targeted ads to
the users. Thus, users and service providers have plausible
incentives to use a PIR-based solution for maintaining query
privacy. In addition, the very existence of a practical privacy-
preserving database query technique could be enough to
persuade privacy legislators that it is reasonable to demand
that certain sorts of databases enforce privacy policies, since
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it is possible to deploy these techniques without severely
limiting the utility of such databases.

To address the protection of the query, we study how
client applications embed personal information into queries,
particularly for systems that use SQL for data access. We
focus on the protection of SQL queries over relational
databases because such databases are widely deployed.

Our goal of preserving the privacy of sensitive infor-
mation within an SQL query requires an extension to the
rudimentary data access model of PIR. These models are
limited to retrieving a single bit, a block of bits [4], [13],
[28], or a textual keyword [12]. These theoretical primitives
are a limiting factor in deploying successful PIR-based
systems. There is therefore a need for an extension to a more
expressive data access model, and to a model that enables
data retrieval from structured data sources, such as from a
relational database.

Dynamic SQLis an incomplete SQL statement within a
software system, meant to be fully constructed and executed
at runtime [39]. It provides a flexible, efficient, and secure
way of using SQL in software systems. The flexibility
enables systems to construct and submit SQL queries to the
database at runtime. Dynamic SQL is efficient because it
requires only a single compilation thatpreparesthe query
for its subsequent executions. In addition, dynamic SQL is
more secure because malicious SQL code injection is much
more difficult. We observe that the shape or textual content
of an SQL query prepared within a system is not private, but
the constants the user supplies at runtime are private, and
must be protected. For domain name registration, the textual
content of the query is exposed to the database, but only the
textual keyword for the domain name is really private. For
example, theshapeof the dynamic query in Listing 1 is
not private; the question mark? is used as a placeholder
for a private value to be provided before the query is
executed at runtime. Of note is the related observation
made between parameterized SQL queries and parse tree
validation [9], [23]. In this context, runtime parse trees
obtained from combining user inputs with parameterized
queries are validated to ensure consistency with parse trees
for programmer-specified queries, thereby defeating SQL
injection. Unlike valid inputs which only alter the semantics
of a parse tree, SQL injection attempts to change both the
syntax and semantics of a parse tree [24].

Listing 1 Example Dynamic SQL query (see Appendix A
for the corresponding database schema)
SELECT t1.domain, t1.expiry, t2.contact
FROM regdomains t1, registrar t2
WHERE (t1.reg_id = t2.reg_id) AND

(t1.domain = ? )

Our approach to preserving query privacy over a relational
database is based on hiding such private constants of a query.

The client sends adesensitizedversion of the prepared SQL
query appropriately modified to remove private information.
The database executes this public SQL query, and generates
appropriate cached indices to support further rounds of
interaction with the client. The client subsequently performs
a number of keyword-based PIR operations [12] using the
value for the placeholders against the indices to obtain the
result for the query.

None of the existing proposals related to enabling privacy-
preserving queries and robust data access models for private
information retrieval makes the noted observation about the
privacy of constants within an otherwise-public query. These
include techniques that eliminate database optimization by
localizing query processing to the user’s computer [35],
problems on querying Database-as-a-Service [25], [22],
those that require an encrypted database before permitting
private data access [38], and those restricted to simple
keyword search on textual data sources [6]. This observation
is crucial for preserving the expressiveness and benefits
of SQL, and for keeping the interface between a database
and existing software systems from changing while building
in support for user query privacy. Our approach improves
over previous work with additional database optimization
opportunities and fewer PIR operations needed to retrieve
data. To the best of our knowledge, we are the first to
propose a practical technique that leverages PIR to preserve
the privacy of sensitive information in an SQL query over
existing commercial and open-source relational database
systems.

Our contributions.We address the problem of preserving
the privacy of sensitive information within an SQL query
using PIR. In doing this, we address two obstacles to
deploying successful PIR-based systems. First, we develop
a generic data access model for private information retrieval
from a relational database using SQL. We show how to hide
sensitive data within a query and how to use PIR to retrieve
data from a relational database. Second, we develop an ap-
proach for embedding PIR schemes into the well-established
context and organization of relational database systems. It
has been argued that performing a trivial PIR operation,
which involves having a database send its entire data to
the user, and having the user select the item of interest, is
more efficient than running a computational PIR scheme [1],
[40]; however, information-theoretic PIR schemes are much
more efficient. We show how the latter PIR schemes can
be applied in realistic scenarios, achieving both efficiency
and query expressivity. Since relational databases and SQL
are the most influential of all database models and query
languages, we argue that many realistic systems needing
query privacy protection will find our approach quite useful.

The rest of this paper is organized as follows: Section II
provides background information on PIR, the relational
model, SQL, and database indexing. Section III discusses
related work, while Section IV details the threat model,
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security, and assumptions for the paper. Section V provides
a description of the approach for hiding sensitive constants
within an SQL query. We provide detailed discussions of
the algorithm in Section VI. Section VII gives an overview
of the prototype implementation and microbenchmarking
results of this prototype privacy mechanism. Section VIII
highlights results and discussions of the experiment used to
evaluate the prototype in greater depth. Section IX concludes
the paper and suggests some future work.

II. PRELIMINARIES

A. Private Information Retrieval (PIR)

PIR provides a means to retrieve data from a database
without revealing any information about which item is
retrieved. In its simplest form, the database stores ann-bit
string X, organized asr data blocks, each of sizeb bits.
The user’s private input or query is an indexi ∈ {1, ..., r}
representing theith data block. A trivial solution for PIR is
for the database to send allr blocks to the user and have
the user select the block of interest at indexi (i.e., Xi), but
this carries a very poor communication complexity.

The three important requirements for any PIR scheme are
correctness, privacy and non-triviality [14]. The requirement
of correctness ensures that the scheme returns the correct
block Xi to the user. The requirement of privacy assures
the scheme does not leak any information to the database
about the user’s private inputi and the retrieved block
Xi. The non-triviality requirement expects a communication
complexity that is better than the trivial solution; that is,
sublinear inn. An additional requirement, which is not often
addressed in the published literature, is implementation effi-
ciency. In fact, the literature has dedicated most attention to
reducing communication complexity at the expense of com-
putational complexity [1], [40]. While the performance of
information-theoretic PIR schemes are generally better [21],
this neglect of computational overhead has led to single-
database PIR schemes that are slow for large databases [40].
On the other hand, multi-server information-theoretic PIR
schemes are much more efficient than the trivial solution and
their use is justified in situations where the user lacks the
bandwidth and local storage resources required for the trivial
download of data. Recent attempts at building practical
single-database PIR [45] using general-purpose secure co-
processors offers several orders of magnitude improvement
in performance. Nevertheless, the potential application of
PIR in several practical domains has been largely unrealized
with no “fruitful” or “real world” practical application.

When the PIR problem was first introduced in 1995 [13],
it was proven that a better-than-trivial solution with
information-theoretic privacy is impossible to achieve with
a single database. Information-theoretic privacy ensuresthat
the adversary cannot learn the user’s query, regardless
of its current or future computational abilities. Using at
least two replicated databases, however, PIR schemes with

information-theoretic privacy are possible, and sometimes
hold attractive properties like robustness and byzantine ro-
bustness [21]. The first single-database PIR proposal was
in 1997 [11]. This PIR scheme assures privacy against
an adversary with limited computational capability only;
i.e., polynomially bounded attackers. This type of privacy
protection is known as computational privacy, and is a
weaker notion than information-theoretic privacy. However,
computational PIR (CPIR) [11], [28] offers the benefit of
being able to field a single database, unlike information-
theoretic PIR [4], [13] that requires replication and some
form of restriction on how the databases can communicate.

Basic PIR schemes place no restriction on information
leaked about other items in the database, which are not of
interest to the user. However, an extension of PIR, known as
SymmetricPIR (SPIR) [29], adds that restriction by insisting
that a user learnsonly the result of her query. The restriction
is crucial in situations where the database privacy is equally
of concern.

Another cryptographic construction related to PIR is
oblivious transfer(OT) [30], [31]. In OT, a database (or
sender) transmits some of its items to a user (or chooser), in
a manner that preserves their mutual privacy. The database
has assurance that the user does not learn any information
beyond what he or she is entitled to, and the user has
assurance that the database is oblivious or unaware of which
particular items it received. OT and SPIR can thus be seen
to be generalizations of PIR. Those protocols could easily
be used in place of PIR in our work, with the concomitant
extra computational cost.

Freedman et al. [18] provides a solution for database
search with keywords in various settings including OT, using
oblivious polynomial evaluation and homomorphic encryp-
tion. However, each database tuple, which they referred to
as a payload, still needs to be tagged with an appropriate
keyword. The key improvements over earlier results [30],
[31] is the preservation of privacy against a fixed number
of queries after an initial setup, a fixed number of rounds
for oblivious query evaluation, and the ability to deal with
exponential domain sizes.

B. The relational model and SQL

The relational modelforms the basis for data storage in
many database systems. Data in this model is organized as
a collection of tables and the relationships between them.
Tables are also calledrelations. Each record or row of a
relation is atuple, and each column represents anattribute.
SQL is a language for manipulating and retrieving data from
the relations of a database. [39]

The basic form of an SQL query consists of theSELECT,
FROM, andWHEREclauses (see Listing 2). The SELECT
clause produces a relation consisting of the attributes in
the seta1, a2, ..., an. The FROM clause performs across
product (or Cartesian product) operation on the relations,
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by combining each tuple ofR1 with each tuple ofR2 (and
similarly for R3, . . . , Rn); each of the resulting tuples has
all the attributes of all of the relations. The WHERE clause
selects the tuples from the cross product that satisfy a given
condition or predicateP . The predicateP is a boolean
expression on constants and the attributes ofR1, R2, ..., Rn

and involves comparison operators=, <>, <, >, <=, >=
as well as logical operatorsAND, OR, andNOT . Often,
the predicate includes a join that further constrains the tuples
for the cross product.

Listing 2 Basic form of an SQL query.
SELECT a1, a2, ..., an

FROM R1, R2, ..., Rn

WHERE P

Another clause of interest to our work is theHAVING
clause. This clause is similar to the WHERE clause; how-
ever, it allows aggregate expressions, such asSUM(∗) and
COUNT (∗), in its predicate expressions. In practice, the
predicates of these two clauses constrain the result of a query
to some selected tuples. For example, a predicate “domain
= ‘somedomain.com’ ” restricts the tuples of some selection
to those with the domain value ‘somedomain.com’.

C. Indexing

A database index is a supplementary data structure used
to efficiently access data from the database. Data are indexed
either directly by the values of one or more attributes or by
hashes (generally not cryptographic hashes) of those values.
The attributes used to define an index form thekey. Indices
are typically organized into tree structures, such asB+ trees.
The number of nodes between the root and any leaf of a
B+ tree is constant, because the tree is balanced. Internal
or non-leaf nodes do not contain data; they only maintain
references to children or leaf nodes. Data are either stored
in the leaf nodes, or the leaf nodes maintain references to
the corresponding tuples in the database. Furthermore, the
leaf nodes ofB+ trees may be linked together to enable
sequential data access during range queries over the index;
range queriesreturn all data with an index attribute value
in a specified range.

Hashed indices are specifically useful forpoint queries,
which return a single data item for a given key. For many
situations where efficient retrieval over a set of unique keys
is needed, hashed indices are preferred overB+ tree indices.
However, it is challenging to generate hash functions that
will hash each key to a unique hash value. Many hashed
indices used in commercial databases, for this reason, use
data partitioning (bucketization) [25] techniques to hasha
range of values to a single bucket, instead of to individual
buckets. Recent advances [8] inperfect hash functions
(PHF) have produced a family of hash functions that can
efficiently maps a large set ofn key values to a set ofm
integers without collisions, wheren is less than or equal to

m. A perfect hash function isminimal whenn = m. These
PHF that can work with large sets of keys (on the order
of billions), unlike earlier developments, such as gperf [37],
that can only manage small sets of keys.

Performance parameters of PHF are generation or con-
struction speed to index a set of keys, representation size
or bits stored per key and evaluation time. The state-of-
the-art construction [5] takes linear time; the representation
size can be as low as 0.67 bits per key form = 2n. The
evaluation time isO(1). In addition to point queries, an
order-preserving PHF [15] can be useful for evaluating range
queries over aB+ tree index.

III. R ELATED WORK

A common assumption for PIR schemes is that the user
knows the index or address of the item to be retrieved.
However, Chor et al. [12] proposed a way to access data with
PIR using keyword searches over three data structures: bi-
nary search tree, trie and perfect hashing. Our work extends
keyword-based PIR toB+ trees and PHF. In addition, we
provide an implemented system and combine the technique
with the expressive SQL. The technique in [12] neither
explores B+ trees nor considers executing SQL queries
using keyword-based PIR.

Reardon et al. [35] similarly explore using SQL for private
information retrieval, and proposed the TransPIR prototype
system. This work is the closest to our proposal and will be
used as the basis for comparisons. TransPIR performs tradi-
tional database functions (such as parsing and optimization)
locally on the client; it uses PIR for data block retrieval
from the database server, whose function has been reduced
to a block-serving PIR server. The benefit of TransPIR is
that the database will not learn any information even about
the textual content of the user’s query. The drawbacks are
poor query performance because the database is unable to
perform any optimization, and the lack of interoperability
with any existing relational database system.

Private matching and private set intersection schemes [19],
[27] consider the problem of computing the intersection of
two private sets from two users, such that each user only
learns the sets’ intersection. Our work is significantly differ-
ent from private intersection schemes because SQL queries
are richer and more complex than simple set intersection.
In addition, an SQL query describes the expected result of
a query, which may not contain any itemized listing of the
data, whereas private set intersection schemes require the
exact data to be the input of a query. The differences of these
schemes from our work remain if one considers a modified
private matching scheme, where only one party (the user)
needs to learn of the result of the intersection.

Significant effort has been devoted to the problem of
searching on encrypted data [3], [41], [47]. Shi et al. [38]
considers the problem of storing encrypted data in an un-
trusted repository. To retrieve a subset of the encrypted data,
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the user must possess a key that will only decrypt the data
matching some preauthorized attributes or keywords. They
considered the encryption and auditing of network flows,
but the approach is also applicable to financial audit logs,
medical privacy, and identity-based biometric encryption
systems. Our work is different from encrypted data search
in three ways. First, we do not require encryption of the
data, regardless of the assumption of the adversary being an
insider to the database server. The privacy provided with PIR
aims to hide the particular data that is of interest, in the midst
of the entire unencrypted data set. Second, the type of query
supported with our approach is much more extensive. Third,
encrypted data search is typically performed on unstructured
or textual data, whereas our approach deals with structured
data in the repository of relational databases.

A closely related research stream is the problem of
privately searching an encrypted index over an out-
sourced database in the computing context of Database-
as-a-Service [25], [22]. Hacigümüş et al. [22] presents a
technique for executing SQL queries over a user-encrypted
database hosted in a service provider’s server. The goal is
to protect the data from the service provider, but still enable
the user to query the database. The context of use for the
Database-as-a-service paradigm differs from that of PIR.
The service provider typically owns the data that multiple
users query with PIR. The goal is not to hide data from the
server, but to hide data access patterns, which could leak
information about users’ requests.

A related problem to PIR is that of privately searching
an unencrypted stream of documents [6], [33]. In these
schemes, the client selects some keywords, and then encrypts
them before sending it to a server. The server performs a
search using the keywords over a stream of unencrypted
documents and returns the list of documents containing the
keywords back to the client. The server remains oblivious of
which particular document it returns, and the confidentiality
of the keywords is preserved. Existing constructions are
limited to returning documents that give exact matches on
a keyword list, or two keyword lists combined with logical
“OR” or “AND”. These types of queries are much simpler
than a relational database query, which may contain multiple
operators — comparison, logical, and so on. In addition,
range queries are not presently possible with private stream
searching because exact keywords must be specified for the
search. The performance of private stream searching con-
structions is also comparable with that of a single database
PIR, because most such schemes rely on homomorphic
encryption using the Paillier cryptosystem [34].

An interesting attempt to build a practical pseudonymous
message retrieval system using the technique of PIR is
presented in [36]. The system, known as the Pynchon Gate,
helps preserve the anonymity of users as they privately
retrieve messages using pseudonyms from a centralized
server. Unlike our use of PIR to preserve a user’s query

privacy, the goal of the Pynchon Gate is to maintain privacy
for users’ identities. It does this by ensuring the messages
a user retrieves cannot be linked to his or her pseudonym.
The construction resists traffic analysis, though users may
need to perform some dummy PIR queries to prevent a
passive observer from learning the number of messages she
has received.

IV. T HREAT MODEL, SECURITY AND ASSUMPTIONS

A. Security and adversary capabilities

Our main assumption is that the shape of SQL queries
submitted by the users is public or known to the database
administrator. Applicable practical scenarios include design-
time specification of dynamic SQL by programmers, who
expect the users to supply sensitive constants at runtime.
Moreover, the database schema and all dynamic SQL queries
expected to be submitted to, for example, a patent database,
are not really hidden from the patent database administrator.
Simultaneous protection of both the shape and constants of
a query are outside of the scope of this work, and would
likely require treating the database management system as
other than a black box.

The approach presented in this paper is sufficiently
generic to allow an application to rely on any block-
based PIR system, including single-server, multi-server,and
coprocessor-assisted variants. We assume an adversary with
the same capability as that assumed for the underlying PIR
protocol. The two common adversary capabilities considered
in theoretical private information retrieval schemes are the
curious passive adversary and the byzantine adversary [4],
[13]. Either of these adversaries can be a database adminis-
trator or any other insider to a PIR server.

A curious passive adversary can observe PIR-encoded
queries, but should be incapable of decoding the content. In
addition, it should not be possible to differentiate between
queries or identify the data that makes up the result of
a query. In our context, the information this adversary
can observe is the desensitized SQL query from the client
and the PIR queries. The information obtained from the
desensitized query does not compromise the privacy of the
user’s query, since it does not contain any private constants.
Similarly, the adversary cannot obtain any information from
the PIR queries because PIR protocols are designed to be
resistant against an adversary of this capability.

A byzantine adversary with additional capabilities is as-
sumed for some multi-server PIR protocols [4], [21]. In this
model, the data in some of the servers could be outdated,
or some of the servers could be down, malfunctioning or
malicious. Nevertheless, the client is still able to compute the
correct result and determine which servers misbehaved, and
the servers are still unable to learn the client’s query. Again,
in our specific context, the adversary may compromise some
of the servers in a multi-server PIR scenario by generating
and obtaining the result for a substitute fake query or
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executing the original query on these servers, but modifying
some of the tuples in the results arbitrarily. The adversary
may respond to a PIR request with a corrupted query result
or even desist from acting on the request. Nevertheless, all
of these active attack scenarios can be effectively mitigated
with a byzantine-robust multi-server PIR scheme.

B. Data size assumptions

We service PIR requests using indexed data extracted from
relational databases. The size of these data depends on the
number of tuples resulting from the desensitized query. We
note that even in the event that thisdesensitizedquery yields
a small number of tuples (including just one), the privacy
of the sensitive partof the SQL queryis not compromised.
The properties of PIR ensure that the adversary gains no
information about the sensitive constants from observing the
PIR protocol, over what he already knew by observing the
desensitized query.

On the other hand, many database schemas are designed
in a way that a number of relations will contain very few
rows of data, all of which are meant to be retrieved and
used by every user. Therefore, it is pointless to perform
PIR operations on these items, since every user is expected
to retrieve them all at some point. The adversary does
not violate a user’s query privacy by observing this public
retrieval.

C. Avoiding server collusion

Information-theoretic PIR is generally more computation-
ally efficient than computational PIR, but requires that the
servers not collude if privacy is to be preserved; this is
the same assumption commonly made in other privacy-
preserving technologies, such as mix networks [10] and
Tor [17]. We present scenarios in which collusion among
servers is unlikely, yielding an opportunity to use the more
efficient information-theoretic PIR.

The first scenario is when several independent service
providers host a copy of the database. This applies to
naturally distributed databases, such as Internet domain reg-
istries. In this particular instance, the problem of colluding
servers is mitigated by practical business concerns. Realisti-
cally, the Internet domain database is maintained by different
geographically dispersed organizations that are independent
of the registrars that a user may query. However, different
registrars would be responsible for the content’s distribution
to end users as well as integration of partners through banner
ads and promotions. Since the registrars are operating in the
same line of business where they compete to win users and
deliver domain registry services, as well as having their own
advertising models to reap economic benefits, there is no
real incentive to collude in order to break the privacy of any
user. In this model, it is feasible that a user would perform
a domain name registration query on multiple registrars’
servers concurrently. The user would then combine the

results, without fear of the queries revealing its content.
Additionally, individual service agreements can foreclose
any chance of collusion with a third party on legal grounds.
Users then enjoy greater confidence in using the service, and
the registrars in turn can capitalize on revenue generation
opportunities such as pay-per-use subscriptions and revenue-
sharing ad opportunities.

The second scenario that offers less danger of collusion
is when the query needs to be private only for a short time.
In this case, the user may be comfortable with knowing that
by the time the servers collude in order to learn her query,
the query’s privacy is no longer required.

Note that even in scenarios where collusion cannot be
forestalled, our system can still use any computational PIR
protocol; recent such protocols [1], [45] offer considerable
efficiency improvements over previous work in the area.

V. H IDING SENSITIVE CONSTANTS

A. Overview

Our approach is to preserve the privacy of sensitive data
within the WHERE and HAVING predicates of an SQL
query. For brevity, we will focus on the WHERE clause; a
similar processing procedure applies to the HAVING clause.
This may require the user (or application) to specify the
constants that may be sensitive. For the example query in
Listing 3, the domain name is sensitive because it could
presumably be used for domain name front running, and the
creation date may be sensitive as well.

Our approach splits the processing of SQL queries con-
taining sensitive data into two stages. In the first stage, the
client computes a public subquery, which is simply the orig-
inal query that has been stripped of the predicate conditions
containing sensitive data. The client sends this subquery to
the server, and the server executes it to obtain a result for
the subquery. The desired result for the original query is
contained within the subquery result, but the database is not
aware of the particular tuples that are of interest.

In the second stage, the client performs PIR operations
to retrieve the tuples of interest from the subquery result.
To enable this, the database creates a cached index on the
subquery result and sends metadata for querying the index
to the client. The client subsequently performs PIR retrievals
on the index and finally combines the retrieved items to build
the result for the original query. An alternative approach to
storing materialized tuples or subquery results in an index

Listing 3 Example SQL query with a WHERE clause
featuring sensitive domain name information.
SELECT t1.contact, t1.email,

t2.created, t2.expiry
FROM registrar t1, regdomains t2
WHERE (t1.reg_id = t2.reg_id) AND

(t2.created > 20090101) AND
(t2.domain = ’anydomain.com’)
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ServerClient

subquery

subquery

subquery result

index on subquery result

index helper data

PIR query q(i) on index

PIR retrieval of q(i)

PIR result

PIR result

...

...

...

compute query result

Figure 1. A sequence diagram for evaluating Alice’s privatequery over
a PIR-enabled relational database.

is to maintain index entries as references to actual database
tuples. In other words, each index entry will simply store
keys and reference database tuples. An index built using this
approach can be considered as maintaining a ‘view’ of the
subquery result (i.e., no data materialization). The approach
offers space savings, but will incur considerable performance
overhead. PIR queries over such indices necessarily require
individual fetching of all tuples in the original subquery
result (at worst), or systematic range-based fetches (at best).
These operations will be slow and much more complex to
implement. For these reasons, our approach explores indices
built on materialized data.

The important benefits of this approach as compared with
the previous approach [35] are the optimizations realizable
from having the database execute the non-private subquery,
and the fewer number of PIR operations required to retrieve
the data of interest. In addition, the PIR operations are
performed against a cached index which will usually be
smaller than the complete database. This is particularly
true if there are joins and non-private conditions in the
WHERE clause that constrain the tuples in the query result.
In particular, a single PIR query is needed for point queries
on hash table indices, while range queries onB+ tree indices
are performed on fewer data blocks. Figure 1 illustrates the
sequence of events during a query evaluation.

We note that often, the non-private subqueries will be
common to many users, and the database does not need to
execute them every time a user makes a request. Neverthe-
less, our algorithm details, presented next in Section V-B,
show the steps for processing a subquery and generating
indices. Such details are useful in anad hocenvironment,
where the shape of a query is unknown to the databasea
priori ; each user writes his or her own query as needed. Our
assumption is that revealing the shape of a query will not
violate the users’ privacy (see Section IV).

B. Algorithm

We describe our algorithm with an example by assum-
ing an information-theoretic PIR setup with two replicated
servers. We focus on hiding sensitive constants in the
predicates of the WHERE clause. The algorithm details for
the SELECT query in Listing 3 follows. We assume the date
20090101 and the domainanydomain.com are private.
Step 1:The client builds an attribute list, a constraint list,
and a desensitized SELECT query, using the attribute names
and the WHERE conditions of the input query. We refer to
the desensitized query as asubquery.

To begin, initialize the attribute list to the attribute names
in the query’s SELECT clause, the constraint list to be
empty, and the subquery to the SELECT and FROM clauses
of the original query.

• Attribute list: {t1.contact, t1.email,
t2.created, t2.expiry}

• Constraint list:{}
• Subquery:
SELECT t1.contact, t1.email,
t2.created, t2.expiry
FROM registrar t1, regdomains t2

Next, consider each WHERE condition in turn. If a
condition features a private constant, then

• add the attribute name to theattribute list(if not already
in the list)

• add (attribute name, constant value, operator) to the
constraint list

Otherwise

• add the condition to the subquery

On completing the above steps, the attribute list and the
constraint list for the input query become:

• Attribute list: {t1.contact, t1.email,
t2.created, t2.expiry, t2.domain}

• Constraint list: {(t2.created, 20090101,
>), (t2.domain, ’anydomain.com’, =)}

The subquery, which is a SELECT query with reduced
conditions, is shown in Listing 4.

Listing 4 Example subquery with reduced conditions.
SELECT t1.contact, t1.email,
t2.created, t2.expiry, t2.domain
FROM registrar t1, regdomains t2
WHERE (t1.reg_id = t2.reg_id)

Step 2:The client sends to each server

• the subquery
• a key attribute name
• an index file type

The key attribute name is selected from the at-
tribute names in the constraint list —t2.created,
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t2.domain in our example. The choice may either be
random, made by the application designer, or determined by
a client optimizer component with some domain knowledge
that could enable it to make an optimal choice. One way to
make a good choice is to consider theselectivity— the ratio
of the number of distinct values taken to the total number
of tuples — expected for each constraint list attribute, and
then choose the one that is most selective. This ensures the
selection of attributes with unique key values before less
selective attributes. For example, in a patent database, the
patent number is a better choice for a key than the author’s
gender. A poor choice of key can lead to more rounds
of PIR queries than necessary. Point queries on a unique
key attribute can be completed with a single PIR query.
Similarly, a good choice of key will reduce the number of
PIR queries for range queries. For the example query, we
chooset2.domain as the key attribute name.

For the index file type, either a PHF or aB+ tree index
type is specified. Other index structures may be possible,
with additional investigation, but these are the ones we
currently support. More details on the selection of index
types is provided below.
Step 3:Each server

• executes the subquery on its relational database
• generates a cached index of the specified type on the

subquery result, using the key attribute name
• returns metadata for searching the indices to the client

The server computes the size of the subquery result. If it
can send the entire result more cheaply than performing
PIR operations on it, it does so. Otherwise, it proceeds with
the index generation. For hash table indices, the server first
computes the perfect hash functions for the key attribute
values. Then it evaluates each key and inserts each tuple
into a hash table. The metadata that is returned to the client
for hash-based indices consists of the PHF parameters, the
count of tuples in the hash table, and some PIR-specific
initialization parameters.

For B+ tree indices, the server bulk inserts the subquery
result into a newB+ tree index file.B+ tree bulk insertion
algorithms provide a high-speed technique for building a
tree from existing data [2]. The server also returns metadata
to the client, including the size of the tree and its first data
block (the root). Generated indices are stored in a disk cache,
external to the database, unlike native database indices.
Step 4:The client receives the responses from the servers
and verifies they are of the appropriate length. For a byzan-
tine robust multi-server PIR, a client may choose to proceed
in spite of errors resulting from non-responding servers or
from responses that are of inconsistent length.

Next, the client

• performs one or more keyword-based PIR queries,
using the value associated with the key attribute name
from the constraint list, and

• builds the desired query result from the data retrieved
with PIR.

The encoding of a private constant in a PIR query proceeds
as follows. For PIR queries over a hash-based index, the
client computes the hash for the private constant using the
PHF functions derived from the metadata1. This hash is also
the block number in the hash table index on the servers.
This block number is input to the PIR scheme to compute
the PIR query for each server. For aB+ tree index, the user
compares the private value for the key attribute with the
values in the root of the tree. The root of the tree is extracted
from the metadata it receives from the server. Each key value
in this root maintains block numbers for the children blocks
or nodes. The block number corresponding to the appropriate
child node will be the input to the PIR scheme.

For hash-based indices, a single PIR query is sufficient
to retrieve the block containing the data of interest from
the hash table. ForB+ tree indices, however, the client
uses PIR to traverse the tree. Each block can hold some
numberm of keys, and at a block level, theB+ tree can be
considered anm-ary tree. The client has already been sent
the root block of the tree, which contains the topm keys.
Using this information, the client can perform a single PIR
block query to fetch one of them blocks so referenced.
It repeats this process until it reaches the leaves of the
tree, at which point it fetches the required data with further
PIR queries. The actual number of PIR queries depends on
the height of the (balanced) tree, and the number of tuples
in the result set. Traversals ofB+ tree indices with our
approach are oblivious in that they leak no information about
nodes’ access pattern; we realize retrieval of a node’s data
as a PIR operation over the data set of all nodes in the
tree. In other words, it does not matter which particular
branch of aB+ tree is the location for the next block to be
retrieved. We do not restrict PIR operations to the subset of
blocks in the subtree rooted at that branch. Instead, each PIR
operation considers the set of blocks in the entireB+ tree.
Range queries that retrieve data from different subtrees leak
no information about to which subtree a particular piece
of data belongs. The only information the server learns is
the number of blocks retrieved by such a query. Therefore,
specific implementations may utilize dummy queries to
prevent the server from leaning the amount of useful data
retrieved by a query [36].

To compute the final query result, the client applies
the other private conditions in the constraint list to the
result obtained with PIR. For the example query, the client
filters out all tuples witht2.created not greater than
20090101 from the tuple data returned with PIR. The
remaining tuples give the final query result.

1Using the CMPH Library [7] for example, the client saves the PHF data
from the metadata into a file. It reopens this file and uses it to compute a
hash by following appropriate API call sequences.
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Capabilities for dealing with complex queries can be built
into the client. For example, it may be more efficient to
request a single index keyed on the concatenation of two
attributes than separate indices. If the client requests separate
indices, it will subsequently perform PIR queries on each of
those indices, using the private value associated with each
attribute from the constraint list. Finally, the client combines
the partial results obtained from the queries with set oper-
ations (union, intersection), and performs local filteringon
the combined result, using private constant values for any
remaining conditions in the constraint list to compute the
final query result. The client thus needs query-optimization
capabilities in addition to the regular query optimization
performed by the server. This is an open area of work closely
related to database optimization.

VI. D ISCUSSION

In this section, we discuss important architectural compo-
nents and design decisions related to the algorithm presented
in Section V.

A. Parsing SQL queries

The algorithm parses an input query — the WHERE
and HAVING clauses in particular. Other subclauses of the
SELECT statements, such as GROUP BY and ORDER BY,
can either be processed as part of a subquery or applied on
the result obtained with PIR. Specific implementations can
adopt the mature parsers developed with open source and
commercial databases.

The expression tree provides an easy way to construct the
desensitized query and the constraint list. The parsing pro-
cess builds an expression tree representation for the WHERE
clause conditions. The internal nodes of this expression tree
typically contain arithmetic, relational, and logical operators,
while the leaf nodes consist of attribute names and constants.
Any WHERE clause predicate expression can be a join,
a non-private condition or a private condition. The latter
contains a sensitive constant value, whereas the former two
do not. Our parser allows the user to tag sensitive constants
with the symbol “#” to differentiate them from public
constants. For example, the sensitive constant‘20090511’
is tagged in this query:SELECT * FROM table WHERE
n = 20090605 AND p = #20090511. Each WHERE
clause condition is related to another condition with the
logical AND. Logical OR conditions are not considered as
expression delimiters, but disjunct multiple subexpressions
in the same condition. Typically, relational databases convert
the WHERE clause conditions in the input query to an
equivalent set of conditions in the conjunctive normal form,
to facilitate query optimization.

For an example of AND and OR, consider the two
SELECT queries below, which differ only in their WHERE
clause conditions.

(i) SELECT * FROM table WHERE a =
’SQL’ AND b = ’LEX’

(ii) SELECT * FROM table WHERE a =
’SQL’ OR b = ’LEX’

The client can compute the result for (i) using either one
or two indices, whereas it requires two indices to compute
the result for (ii). To compute the result for (i) with a single
index, the client requests an index fora or b because both
of the conditions in the WHERE clause can only be true
if one of them is true. If it requests an index fora, it will
first perform keyword-based PIR using the literal’SQL’
over this index, and then filter the result obtained with the
second conditionb = ’LEX’. To compute either (i) or (ii)
with two indices, the client requests indices for botha andb,
and then performs two keyword-based PIR searches using
the string literals’SQL’ and ’LEX’ over the respective
indices. Finally, the client computes the intersection of the
tuples in the two PIR results to obtain the result for (i), or
it computes the union to obtain the result for (ii).

We note that a worst case query scenario having several
private conditions combined with an OR operator will have
storage and computational costs linear in the number of
unique attribute names used with the private conditions. In
certain circumstances, it may be possible to eliminate the
storage cost by maintaining references to the tuples data in
the database rather than maintaining a materialized copy in
an index.

Currently, logical NOT conditions cannot be processed
with PIR. We are unable to find any practical PIR scenario
to justify its use. For example, performing PIR queries on a
patent database will generally not require a NOT operator.
We prescribe client-side processing for NOTs, after the data
required for evaluating the condition are retrieved with PIR.

This expression tree is traversed twice. The first traversal
lists the desensitized query’s WHERE conditions, which
includes all joins and all non-private conditions. The log-
ical AND operator combines the joins and the non-private
conditions. The boolean true value can serve as a place-
holder for every private condition. For example, the actual
WHERE clause for the subquery in Listing 4 can beWHERE
(t1.reg_id = t2.reg_id) AND true AND true,
which can be subsequently optimized. The second traversal
lists the private conditions, which are used to build the
constraint list.

B. Indexing subquery results

For many general purposes, it may be impractical to
execute the desensitized query and generate an index on the
query result for every request. The use of an index cache
addresses some of the cost, because the database can use
the same cached index to serve multiple PIR queries (with
the same private attributes, though not necessarily the same
private constants) from multiple users. This mitigates the
computational costs for generating indices. An exception for
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the use of a cache is when the shape of the input query is
unpredictable, especially in an environment where the users
makead hocqueries. In this case, a separate index must be
generated for each unique query.

C. Database servers

Practical implementations could use any commercial or
open-source database server to execute the desensitized
query. The client does not need to install database client
programs to query the database server in the privacy-
friendly manner we describe; however, the client will need
an installation of the private SQL client that implements the
client-side logic of the algorithm. Similarly, a program that
implements the server-side logic of the algorithm must be
installed at the server.

D. Processing specific conditions

We provide an overview on how to deal with private
constants in specific conditions of the WHERE clause.
In particular, we consider simple conditions, as well as
specialized conditions such as BETWEEN, LIKE, and IN.

A simple WHERE clause condition consists of the general
form column relop literal or literal relop column, where
relop is a relational operator, such as=, <>,<,>,<=, and
>=. If the column is used to index a query result, then the
literal will be used as input to the keyword-based PIR. The
operator “=” indicates a point query. If the key attribute
column is unique, then a single result is expected; either
a hash or aB+ tree index is appropriate. On the other
hand, aB+ tree is preferred for non-unique key values,
since there may be multiple tuples in the query result. The
other operators, which imply range queries, requireB+

tree indices. Theliteral or its next or previous neighbours
from the domain of values for the data type, in sorted or
lexicographical order, provide one of the values for the range
search. The other value is determined from the smallest or
largest value in the domain for the data type. The input
values for range search for the conditiont2.created >
20090101, for example, are(20090102, 99991231).

A BETWEEN condition has the general formcolumn

BETWEEN literal1 AND literal2, which is equivalent
to the conditioncolumn >= literal1 AND column <=
literal2. This condition is processed as a range query on
the two literal values.

A LIKE condition has the formcolumn LIKE literal,
whereliteral is a search condition that involves one or more
wildcards, such as % and . The allows for the matching
of a single character, while the % allows for matching strings
of any length, including zero-length strings. Prefix-based
conditions, such asdomain LIKE ‘some%’, and suffix-
based ones, such asdomain LIKE ‘%main.com’ can
easily be processed with aB+ tree index over the attribute,
or the reverse of the attribute, respectively. Other variants
are more easily processed in the client; the client would

first retrieve the data from the server with PIR, and then
perform a more sophisticated filtering on the result, using
the wildcard expression.

An IN condition has the general formcolumn IN

(literal1,literal2, ...). If the attributecolumn has unique
values, then the tuple associated with each literal can be
retrieved with a point query on the same index over the
column attribute. Some PIR implementations, such as [20],
can simultaneously retrieve multiple blocks for a set of literal
values in a single query. Otherwise, a combination of range
and point queries will be required. The client optimizer can
be built to intelligently combine literal values to reduce the
overall number of PIR queries.

Client-side support for database function evaluation is
required when private constants are used as function param-
eters in a WHERE clause expression. Such functions can be
evaluated before the data required are retrieved with PIR, or
afterwards. The latter follows for functions that take private
constantsand attribute names as parameters.

We note that special WHERE clause conditions, such
is IS NULL and IS NOT NULL, do not require any
private constants. It would suffice to include them in the
desensitized query in many situations. Alternatively, they
could be processed locally, especially forad hoc queries,
if they are considered to reveal sensitive information about
the tuples of interest.

Finally, an implementation may decide to localize the
processing of all the above conditions, as well as other
conditions of the WHERE clause. The approach to adopt
depends on the amount of optimization the client is capa-
ble of performing and the requirements of the application
domain.

VII. I MPLEMENTATION AND M ICROBENCHMARKS

A. Implementation

We developed a prototype implementation of our algo-
rithm to hide the sensitive portions of SQL queries using
generally available open source C++ libraries and databases.
We developed a command-line tool to act as the client,
and a server-side database adapter to provide the func-
tions of a PIR server. For the PIR functions, we used the
Percy++ PIR Library [20], [21], which offers three varieties
of privacy protection: computational, information theoretic
and hybrid (a combination of both). We extended Percy++
to support keyword-based PIR. For generating hash table
indices for point queries, we used the C Minimal Perfect
Hash (CMPH) Library [7], [8], version 0.9. We used the
API for CMPH to generate minimum perfect hash functions
for large data sets from query results; these perfect hash
functions require small amounts of disk storage per key. For
buildingB+ tree indices for range queries on large data sets,
we used the Transparent Parallel I/O Environment (TPIE)
Library [16], [44]. Finally, we base the implementation
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on the MySQL [42] relational database, version 5.1.37-
1ubuntu5.1.

B. Experimental setup

We began evaluating our prototype implementation using
a set of six whois-style queries from Reardon et al. [35],
which is the most appropriate existing microbenchmark for
our approach. We explored tests using industry-standard
database benchmarks, such as the Transaction Processing
Performance Council (TPC) [43] benchmarks, and open-
source benchmarking kits such as Open Source Development
Labs Database Test Suite (OSDL DTS) [46], but none of
the tests from these benchmarks is suitable for evaluating
our prototype, as their test databases cannot be readily fitted
into a scenario that would make applying PIR meaningful.
For example, a database schema that is based on completing
online orders will only serve very limited purpose to our goal
of protecting the privacy of sensitive information within a
query.

We ran the microbenchmark tests using two whois-style
data sets, similar to those generated for the evaluation
of TransPIR [35]. The smaller data set consists of106

domain name registration tuples, and0.75×106 registrar and
registrant contact information tuples. The second data set
similarly consists of4×106 and3×106 tuples respectively.
We describe the evaluation queries and the two database
relations in Appendices B and C. We choose the predicate
parameters for the benchmark queries to ensure query selec-
tivity values (ratio of the number of matching tuples to the
total number of tuples) similar to those used in the original
benchmarking of TransPIR [35]. The respective values for
benchmark queries Q1 through Q6 for the small data set
are 1.00 × 10−6, 2.00 × 10−5, 4.20 × 10−5, 5.90 × 10−5,
1.33 × 10−6, and3.87 × 10−2. For the large data set they
are 2.50 × 10−7, 2.00 × 10−5, 4.20 × 10−5, 5.90 × 10−5,
2.50 × 10−7, and4.20 × 10−5.

The measurements for all test queries are based on the
default behaviour of the TPIE Library with respect to
determining the branching factorλ for B+ tree indices. The
following expression shows the computation of branching
factor with this default configuration:

λ =

⌊

γ × size(os block) − size(BID) − size(size t)

size(Key) + size(BID)

⌋

Whereγ, os block, BID, size t, andKey are respec-
tively the data logical blocking factor, operating system
block, block ID, C++size t data type, and the key.size(x)
is the size ofx in bytes. Specifically for our experimental
setup for the large data set, the branching factor for indices
over integer keys is 2730, and it is 409 for indices over
character keys. For the small data set, these values are re-
spectively 1634 and 215. Our implementation stores integer
keys in 8 bytes, and character keys in 72 bytes. The branch-
ing factor values are based on a block size of 32 KB (γ = 8),

and 16 KB (γ = 4), wheresize(os block) = 4096 bytes.
The actual fill factor (again, the default for the TPIE Library)
is 0.6 for internalB+ tree nodes. We report the disk sizes for
indices built for our experiment on the queries with complex
conditions (see Table II).

We ran the all experiments on a server with two quad-core
2.50 GHz Intel Xeon E5420 CPUs, 8 GB RAM, and running
Ubuntu Linux 9.10. We used the information-theoretic PIR
support of Percy++, with two database replicas. The server
also runs a local installation of a MySQL database.

C. Result overview

The results from the benchmark tests indicate that while
our current prototype incurs some storage and computational
costs over non-private queries, the costs seem entirely ac-
ceptable for the added privacy benefit (see Table I later
in this section and Table II in Section VIII). In addition
to being able to deal with complex queries and leverage
database optimization opportunities, our prototype performs
much better than the TransPIR prototype from Reardon et
al. [35] — between 7 and 480 times faster for equiva-
lent data sets. The most indicative factor of performance
improvements with our prototype is the reduction in the
number of PIR queries in most cases. Other factors that
may affect the validity of the result, such as variations in
implementation libraries, are assumed to have negligible
impact on performance. Our work is based on the same
PIR library as that of [35]. Our comparison is based on
the measurements we took by compiling and running the
code for TransPIR on the same experimental hardware
platform as our prototype. We also used the same underlying
PIR library as TransPIR. We initially attempted to run the
microbenchmarking tests for the larger data with TransPIR
on the development hardware platform for our prototype, but
was limited by this commodity hardware because TransPIR
requires a 64-bit processor and a minimum of 6 GB RAM
to index or preprocess the larger data set. The development
hardware had a 32-bit processor and only 3 GB RAM.

D. Microbenchmark experiment

We executed the six whois-style benchmark queries over
the data sets and obtained measurements for the time to exe-
cute the private query, the number of PIR queries performed,
the number of tuples in the query results, the time to execute
the subquery and generate the cached index, and the total
data transfer between the client and the two PIR servers.

Table I shows the results of the experiment. The cost of
indexing (QI) can be amortized over multiple queries. The
indexing measurements for BTREE (and HASH) consist of
the time spent retrieving data from the database (subquery
execution), writing the data (subquery result) to a file and
building an index from this file. Since TransPIR is not
integrated with any relational database, it does not incur
the same database retrieval and file writing costs. However,
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Table I
EXPERIMENTAL RESULTS FOR BENCHMARK TESTS ON THE SMALL DATA

SET COMPARED WITH THOSE OFREARDON ET AL. [35]. BTREE =
RESULT FOR OURB

+ TREE PROTOTYPE, HASH = RESULT FOR OUR

HASH TABLE PROTOTYPE, AND TransPIR = RESULT FROM

TRANSPIR [35]; Time = TIME TO EVALUATE PRIVATE QUERY, PIRs =
NUMBER OF PIR OPERATIONS PERFORMED, Tuples = COUNT OF ROWS

IN QUERY RESULT, QI = TIMING FOR SUBQUERY EXECUTION AND

CACHED INDEX GENERATION, Xfer = TOTAL DATA TRANSFER BETWEEN

THE CLIENT AND THE TWO PIR SERVERS.

Small database with .75 M contact records, 1 M registration
records, and 16 KB blocks
Query Approach Time (s) PIRs Tuples QI (s) Xfer (KB)

Q1 HASH 0 1 1 4 64
BTREE 6 4 1 9 256
TransPIR 7 2 1 120 128

Q2 BTREE 3 3 20 7 192
TransPIR 76 23 20 120 1,472

Q3 BTREE 3 3 42 7 192
TransPIR 149 45 42 120 2,880

Q4 BTREE 13 3 59 8 256
TransPIR 217 62 59 120 3,968

Q5 BTREE 5 4 1 13 256
TransPIR 10 3 1 120 192

Q6‡ BTREE 5 3 29 13 192
TransPIR 558 111 42 —‡ 7,104

Large database with 3 M contact records, 4 M registration
records, and 32 KB blocks
Query Approach Time (s) PIRs Tuples QI (s) Xfer (KB)

Q1 HASH 2 1 1 16 128
BTREE 4 3 1 38 384
TransPIR 25 2 1 1,017 256

Q2 BTREE 5 4 80 32 512
TransPIR 999 83 80 1,017 10,624

Q3 BTREE 5 4 168 32 512
TransPIR 2,055 171 168 1,017 21,888

Q4 BTREE 6 5 236 37 640
TransPIR 2,885 240 236 1,017 30,720

Q5 BTREE 5 3 1 67 384
TransPIR 37 3 1 1,017 384

Q6‡ BTREE 5 4 168 66 512
TransPIR 3,087 253 127 —‡ 32,384

TransPIR incurs a one-time preprocessing cost (QI) which
prepares the database for subsequent query runs. Comparing
this cost to its indexing counterpart with our BTREE and
HASH prototypes shows that our methods are over an order
of magnitude faster.

E. Discussion

The empirical results for the benchmark tests reflect the
benefit of our approach. For all of the tests, we mostly base
our comparison on the timing for query evaluation with PIR
(Time), and sometimes on the index generation timing (QI).
The time to transfer data between the client and the servers
is directly proportional to the amount of data (Xfer), but
we will not use it for comparison purposes because the test
queries were not run over a network.

Our hash index (HASH) prototype performs the best for
query Q1 on both data sets, followed by ourB+ tree

‡We reproduced TransPIR’s measurements from [35] for query Q6
because we could not get TransPIR to run Q6 due to program errors. The
‘—’ under QI indicates measurements missing from [35]

(BTREE) prototype; it achieves better performance for the
large set. The query of Q1 is a point query having a single
condition on the domain name attribute.

Query Q2 is a point query on theexpiry_date at-
tribute, with the query result expected to have multiple
tuples. Again, our BTREE prototype outperforms TransPIR
by a significant margin for both data sets; the improvement
is most noticeable for the large data set. The number of PIR
queries required to evaluate Q2 with BTREE is 5% of the
number required by TransPIR. A similar trend is repeated
for Q3, Q4 and Q6. Note that the HASH prototype could
not be used for Q2 because hash indices accept unique key
attributes only; it can only return a single tuple in its query
result.

Query Q3 is a range query on theexpiry_date at-
tribute. Our BTREE prototype respectively was approxi-
mately 50 and 411 times faster than TransPIR for the small
and large data sets. Of note is the large number of PIR
queries that TransPIR needs to evaluate the query; for the
large data set, our BTREE prototype requires only 2% of that
number. We observed a similar trend for Q4, where BTREE
was 17 and 480 times faster for the small and large sets
respectively. This query features two conditions in the SQL
WHERE clause. The combined measured time for BTREE
— the time taken to both build an index to support the query
and to run the query itself — is still 10 and 67 times faster
than the time it takes TransPIR to execute the query alone.

Query Q5 is a point query with a single join. For the
large data set, it took BTREE only about 14% of the time it
took TransPIR. We observed the time our BTREE spent in
executing the subquery to dominate; only a small fraction
of the time is spent building theB+ tree index.

Our BTREE prototype similarly performs faster for Q6,
with an order of magnitude similar to Q2, Q3, and Q4.

In all of the benchmark queries, the proposed approach
performs better than TransPIR because it leverages database
optimization opportunities, such as for the processing of
subqueries. In contrast, TransPIR assumes a type of block-
serving database that cannot give any optimization oppor-
tunity. Therefore, in our system the client is relieved from
having to perform many traditional database functions, such
as query processing, in addition to its regular PIR client
functions.

VIII. C OMPLEX QUERY EVALUATION

In addition to the above microbenchmarks, we performed
two other experiments to evaluate our prototype. The first
of these studies the behaviour of our prototype on complex
input queries, such as aggregate queries, BETWEEN and
LIKE queries, and queries with multiple WHERE clause
conditions and joins. Each of these complex queries has
varying privacy requirements for its sensitive constants.We
run the first experiment on the same hardware configuration
as the microbenchmark tests, and the second experiment
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Listing 5 Experimental SQL queries indicating private con-
stants or conditions with “#”.
CQ1 – Private point query on a range with sensitive domain name
information.
SELECT domain, name, address,
email, reg_date, expiry_date
FROM registration, contact
WHERE (contact_id = registrant) AND
(reg_date > 20090501) AND
(domain = #’somedomain.org’)

CQ2 – Private range query with sensitive registrar ID range.
SELECT domain, name,
address, email, expiry_date
FROM registration, contact
WHERE (contact_id = registrant) AND
(status IN (1,4,5,7,9)) AND
(registrar #BETWEEN 198542 AND 749999) AND
(expiry_date BETWEEN 20090101 AND 20091031)

CQ3 – Private aggregate point query with sensitive registrar ID
value.
SELECT registrar, count(domain)
FROM registration, contact
WHERE (contact_id = registrar) AND
(registrar = #635393)
GROUP BY registrar
HAVING count(domain) > 0
ORDER BY registrar ASC

CQ4 – Non-private LIKE query revealing only the prefix of a
domain name.
SELECT domain, name, address,
email, reg_date, expiry_date
FROM registration, contact
WHERE (contact_id = registrant) AND
(domain LIKE ’some%’) AND
(domain = #’somedomain.com’)

CQ5 – Private LIKE query with domain name prefix as wildcard.
SELECT domain, name, address,
email, reg_date, expiry_date
FROM registration, contact
WHERE (contact_id = registrant) AND
(domain #LIKE ’some%’)

on the developmental hardware platform. For the test data,
query selectivity for complex queries CQ1 through CQ5 are
3.70 × 10−6, 5.05 × 10−2, 2.11 × 10−6, 1.30 × 10−3, and
5.34×10−6 for the small data set. Similarly for the large data
set, the values are5.70 × 10−7, 5.12 × 10−2, 1.58 × 10−6,
9.52 × 10−7, and1.50 × 10−6.

In addition to the above microbenchmarks, we performed
two other experiments to evaluate our prototype. The first
of these studies the behaviour of our prototype on complex
input queries, such as aggregate queries, BETWEEN and
LIKE queries, and queries with multiple WHERE clause
conditions and joins. Each of these complex queries has
varying privacy requirements for its sensitive constants.The
second experiment tests whether our prototype leverages

database optimization. Both experiments were performed
on the same commodity hardware configuration as the
microbenchmark tests.

A. Result overview

The results obtained from the experiments demonstrate
the benefits of our approach for dealing with complex
queries. While the storage and computational costs (over
non-private querying) remain, the overall performance and
resource requirements are still reasonable for the added
privacy benefit. The prototype requires additional storagefor
two types of indices used for PIR operations. The first type
of index is generated for a particular shape of query, over one
or more key attributes or combinations of attributes. These
types of indices need permanent storage in the same manner
as native indices for relational databases. The second type
of index is used in anad hocenvironment, where the tuples
in a subquery result can be constrained in an unpredictable
manner, with one or more WHERE clause conditions and
joins. These latter indices must be generated as needed. In
most practical situations, it should be possible for indices to
be based on the former type, just like most software systems
rely on indices prebuilt by the database to efficiently run
their queries.

B. Experiments on queries with complex conditions

We describe and present the results of experiments that
examined the behaviour of our prototype when supplied
with SQL queries that are more complex than the above
microbenchmarks. We provide a number of synthetic query
scenarios having different requirements for privacy, the
corresponding SQL queries with appropriate tagging for the
condition involving sensitive data, and the measurements.As
mentioned above, our SQL parser uses the “#” character to
tag private conditions; we include that tag in the SQL queries
we present in Listing 5. We used the same database schema
(see Appendix C) as the microbenchmarks. The measure-
ments show execution duration for the original query without
privacy provision over the MySQL database, the same query
after removal of conditions with sensitive information over
the MySQL database, and several other measurements taken
from within our prototype using aB+ tree index. All of the
measurements are reported in Table II.

Private point query (CQ1).The task is to obtain a domain
name record from the whois server without revealing the
sensitive domain name information.

Private range query (CQ2).The ICANN Security and Sta-
bility Advisory Committee may be interested in performing
an investigation on some registrars, with IDs ranging from
198542 to 749999. The task is to privately obtain some
domain name information without revealing the range of IDs
for the registrars. We show the query to obtain registration
records with status in the set (1, 4, 5, 7, 9), and expiration
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Table II
MEASUREMENTS TAKEN FROM EXECUTING FIVE COMPLEXSQL QUERIES WITH VARYING REQUIREMENTS FOR PRIVACY. oQm = TIMING FOR

EXECUTING ORIGINAL SQL QUERY DIRECTLY AGAINST A MYSQL DATABASE, BTREE = OVERALL TIMING FOR MEETING PRIVACY REQUIREMENTS

WITH OUR B
+ TREE PROTOTYPE, rQp = SUBQUERY EXECUTION DURATION WITHINBTREE,cI = TIMING FOR GENERATING CACHED INDEX WITHIN

BTREE,Time = TIME TO EVALUATE PRIVATE QUERY WITHIN BTREE,PIRs = NUMBER OF PIR OPERATIONS PERFORMED, Tuples = NUMBER OF

RECORDS IN FINAL QUERY RESULT, rTuples = NUMBER OF INDEXED RECORDS IN SUBQUERY RESULT, Xfer = TOTAL DATA TRANSFER BETWEEN THE

CLIENT AND THE TWO PIR SERVERS, Size= TEMPORARY STORAGE SPACE FOR CACHED INDEX.

Small database with .75 M contact records, 1 M registration records, and 16 KB blocks
Query oQm (s) BTREE (s) = rQp (s) + cI (s) + Time (s) PIRs Tuples rTuples Xfer (KB) Size (MB)

CQ1 0 8 4 2 2 3 1 328,805 192 110.57
CQ2 0 2 0 0 2 17 686 13,594 1,088 4.57
CQ3 0 13 9 2 2 3 1 473,646 192 157.82
CQ4 0 0 0 0 0 2 1 768 128 0.32
CQ5 0 17 9 5 3 4 4 749,472 256 251.82

Large database with 3 M contact records, 4 M registration records, and 32 KB blocks
Query oQm (s) BTREE (s) = rQp (s) + cI (s) + Time (s) PIRs Tuples rTuples Xfer (KB) Size (MB)

CQ1 2 31 19 10 2 3 1 1,753,144 384 579.63
CQ2 1 15 2 0 13 41 3,716 72,568 5,248 25.13
CQ3 0 80 74 3 3 3 1 631,806 384 209.38
CQ4 2 25 12 7 5 3 1 1,050,300 384 348.63
CQ5 2 69 42 24 3 3 6 4,000,000 256 1,324.13

dates between 20090101 and 20091031, without revealing
the registrar ID range.

Private aggregate point query (CQ3).The task is to pri-
vately compute the total number of registrations sponsored
by a particular registrar. The registrar ID is sensitive.

Non-private LIKE query (CQ4).The task is to efficiently
retrieve a single domain name record from a whois server
with some amount of privacy. In other words, a user wants to
reveal a prefix of the domain name to improve performance,
while still preventing the adversary from learning the exact
textual domain name. Since many long domain names have a
common prefix, the user intends to leverage that knowledge
to improve query performance.

Private LIKE query (CQ5).The task is to retrieve reg-
istration records from a whois server without revealing the
LIKE wildcard.

Results.We see from Table II that in most cases, the cost
to evaluate the subquery and create the index dominates the
total time to privately evaluate the query (BTREE), while
the time to evaluate the query on the already-built index
(Time) is minor. An exception is CQ2, which has a relatively
small subquery result (rTuples), while having to do dozens
of (consequently smaller) PIR operations to return thousands
of results to the overall range query. Note that in all but CQ2,
the time to privately evaluate the query on the already-built
index is at most a few seconds longer than performing the
query with no privacy at all; this underscores the advantage
of using cached indices.

We note from our results that it is much more costly to
have the client simply download the cached indices. We
observe, for example, that it will take about 5 times as long,
for a user with 10 Mbps download bandwidth, to download
the index for CQ5 on the large data set. Moreover, this
trivial download of data is impractical for devices with low
bandwidth and storage (e.g., mobile devices).

C. Database optimization experiments

We studied the overall response of our prototype to
determine the benefits accrued from database optimization.
The experimental MySQL database runs mostly with the
default settings. The only change made was reducing the
default number of user connections to free up memory for
other processes running on the machine. In other words, we
did not tune the database for optimal performance in the
course of our previous experiments.

Most databases cache query plans and small-sized query
results when a query is executed for the very first time.
Subsequent executions of the same query will be more
responsive by reusing the cached plan and result. For this
experiment, we disabled cache usage by flushing the rela-
tions in our database before running each query. Flushing
relations in MySQL closes the open relations and flushes
the query cache. This ensures the database obtains a fresh
query plan and result set every time.

We ran this experiment on the less powerful hardware
platform we used to develop the prototypes, because the
time to build a fresh query plan does not take a significant
time for the more powerful hardware platform we used for
running the previous tests.

Table III presents the measurements taken for CQ1
through CQ5 over the large data set under default database
behaviour, and the measurements taken when the relations
of the database are flushed. The result obtained for these
queries validates the claim that our approach leverages
database optimization to improve performance. The most
interesting measurements taken in this experiment are the
subquery execution durations (rQp). For CQ1, CQ3, and
CQ5, the difference in measurements is obvious. However,
the effect is not quite obvious for CQ2 and CQ4. For the
latter pair, the fraction of the overall timing spent for PIR
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Table III
EFFECTS OF DATABASE OPTIMIZATION ON QUERY RESPONSIVENESS, OVER THE LARGE DATA SET. BTREE = OVERALL TIMING FOR MEETING

PRIVACY REQUIREMENTS WITH OURB
+ TREE PROTOTYPE, rQp = SUBQUERY EXECUTION DURATION WITHINBTREE,cI = TIMING FOR

GENERATING CACHED INDEX WITHIN BTREE,Time = TIME TO EVALUATE PRIVATE QUERY WITHIN BTREE.

With optimization: default database settings Without optimization: query cache disabled
Query BTREE (s) = rQp (s) + cI (s) + PIR (s) BTREE (s) = rQp (s) + cI (s) + PIR (s)

CQ1 104 50 52 2 122 69 50 3
CQ2 22 3 1 18 29 4 2 23
CQ3 375 347 22 5 454 434 15 6
CQ4 66 25 32 9 66 26 29 11
CQ5 214 90 118 6 436 310 120 6

queries is nonnegligible: 79% and 17% respectively. For
CQ1, CQ3, and CQ5, the portion of the time spent for
PIR is respectively 2%, 1%, and 1%. The results for CQ1,
CQ3, and CQ5 clearly indicate the contributions of database
optimization to query responsiveness with our approach.

D. Improving performance by revealing keyword prefixes.

The performance of a query may be improved by revealing
a prefix or suffix of the sensitive keyword in the query.
Revealing a substring of a keyword helps to constrain the
result set that will be indexed and retrieved with PIR. We
have demonstrated the feasibility of this technique with
complex query CQ4 (Listing 5 and Table II). While this
technique may be infeasible in some application domains,
due to the sensitive nature of the keyword, it does improve
performance in others. This technique does, of course, trade
off improved performance for some loss of privacy, though it
is in fact the user (who can best make this trade-off decision)
who can decide to what extent to use it. Making the best
trade-off decision necessarily requires some knowledge of
the data distribution in terms of the number of tuples there
are for each value in the domain of values for a sensitive
constant. These information can be included in the metadata
a server sends to the client and the client can make this trade-
off decision on behalf of the user based on the user’s preset
preferences. We are actually considering this extension as
part of our future work.

The processing of queries that allow users to reveal either
a prefix or suffix of their private constant will proceed as
follows on a prebuilt index. A user would first request the
root to a particular subtree in a prebuiltB+ tree index
(indexed either on the attribute or the reverse of the attribute,
as above), by supplying a substring for that root. The server
would search for and return the requested root, without PIR.
Subsequent PIR queries by the user will be based on the
subtree with the retrieved root, instead of the entireB+ tree.
In other words, revealing a substring of a user’s private
keyword reveals the portion of the data that is of interest
to the user. However, the level of privacy protection may
still be sufficient for many user and application purposes.

The only realistic situations where performance cannot
be easily improved with this technique are when users must
makead hocqueries that are unknown to the server before a
system is deployed. In such situations, it is difficult to make

a single index generic enough to serve the diversity of the
constraints in anad hocquery.

E. Limitations

Our approach can preserve the privacy of sensitive data
within the WHERE and HAVING clauses of an SQL query,
with the exception of complex LIKE query expressions,
negated conditions with sensitive constants, and SELECT
nested queries within a WHERE clause. The complex-
ity of complex search strings for LIKE queries, such as
(LIKE ’do%abs%.c%m’), is beyond the current capability
of keyword-based PIR. Similarly, negated WHERE clause
conditions, such as (NOT registrant = 45444), are infeasible
to compute with keyword-based PIR. Our solution to dealing
with these conditions in a privacy-friendly manner is to com-
pute them on the client, after the data for the computation has
been retrieved with PIR; converting NOT = queries into their
equivalent range queries is generally less efficient than our
proposed client-based evaluation method. In addition, our
prototype cannot process a nested query within a WHERE
clause. We propose that the same processing described for
a general SQL query be recursively applied for nested
queries in the WHERE clause. The result obtained from a
nested query will become an input to the client optimizer,
for recursively computing the enclosing query for the next
round. There is need for further investigation of the approach
for nested queries returning large result sets and for deeply
nested queries.

IX. CONCLUSION AND FUTURE WORK

We have provided a privacy mechanism that leverages
private information retrieval to preserve the privacy of sen-
sitive constants in an SQL query. We described techniques
to hide sensitive constants found in the WHERE clause
of an SQL query, and to retrieve data from hash table
and B+ tree indices using a private information retrieval
scheme. We developed a prototype privacy mechanism for
our approach offering practical keyword-based PIR and
enabled a practical transition from bit- and block-based PIR
to SQL-enabled PIR. We evaluated the feasibility of our
approach with experiments. The results of the experiments
indicate our approach incurs reasonable performance and
storage demands, considering the added advantage of being
able to perform private SQL queries. We hope that our
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work will provide valuable insight on how to preserve the
privacy of sensitive information for many existing and future
database applications.

Future work can improve on some limitations of our
prototype, such as the processing of nested queries and
enhancing the client to utilize statistical information onthe
data distribution to enhance privacy. The same technique
proposed in this paper can be extended to preserve the
privacy of sensitive information for other query systems,
such as URL query, XQuery, SPARQL and LINQ. Private
information retrieval is only the first step for preserving a
user’s query privacy. An extension to this work can explore
private information storage (PIS) [32], and how to use it
for augmenting the privacy of users in real-world scenarios.
An interesting focus would be to extend PIS to SQL in the
manner of this paper, in order to preserve the privacy of
sensitive data within SQL INSERT, UPDATE and DELETE
data manipulation statements.
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APPENDIX

A. Database schema for examples

CREATE TABLE registrar (
reg_id int(11) NOT NULL,
contact char(60) default NULL,
phone char(80) default NULL,
address char(80) default NULL,
email char(60) default NULL,
PRIMARY KEY (reg_id));

CREATE TABLE regdomains (
id int(11) NOT NULL,
domain char(80) default NULL,
created int(8) default NULL,
expiry int(8) default NULL,
reg_id int(11) NOT NULL,
status varchar(2) default NULL,
PRIMARY KEY (reg_id));

B. Microbenchmark queries from [35]

Q1 – Point query with single result
SELECT domain, reg_date
FROM registration WHERE domain = ?
Q2 – Point query with multiple results
SELECT domain FROM registration
WHERE expiry_date = ?
Q3 – Range query with single condition
SELECT domain, status FROM
registration WHERE expiry_date > ?
Q4 – Range query with multiple conditions
SELECT * FROM registration
WHERE expiry_date > ? AND reg_date < ?
Q5 – Point query with join
SELECT domain, name, email
FROM contact, registration
WHERE domain=? AND registrant = contact_id
Q6 – Range query with join
SELECT * FROM contact,registration WHERE
expiry_date>? AND registrar=contact_id
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C. Database schema for microbenchmarks and experiments
CREATE TABLE contact (
contact_id int(11) NOT NULL,
name char(60) default NULL,
address char(80) default NULL,
email char(60) default NULL,
PRIMARY KEY (contact_id));

CREATE TABLE registration (
reg_id int(11) NOT NULL,
domain char(80) default NULL,
expiry_date int(8) default NULL,
reg_date int(8) default NULL,
registrant int(11) default NULL,
registrar int(11) default NULL,
status varchar(2) default NULL,
PRIMARY KEY (reg_id));

ADD FOREIGN KEY fk_registrant (registrant)
REFERENCES contact(contact_id);
ADD FOREIGN KEY fk_registrar (registrar)
REFERENCES contact(contact_id);
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