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Abstract—We explore how Private Information Retrieval While today’s most developed and deployed privacy tech-

(PIR) can help users keep their sensitive information from niques, such as onion routers and mix networks, offer
being leaked in an SQL query. We show how fo retrieve  5n40vmizing protection for users’ identities, they cannot

data from a relational database with PIR by hiding sensitive th . f th , . For the f
constants contained in the predicates of a query. Experimental preserve the privacy of the users’ queries. For the front

results and microbenchmarking tests show our approach incurs ~ 'unning example, the user could tunnel the query through
reasonable storage overhead for the added privacy benefit and Tor [17] to preserve the privacy of his or her network

performs between 7 and 480 times faster than previous work. address. Nevertheless, the server could still observe the
user’s desired domain name, and launch a successful front
I. INTRODUCTION running attack.

Most software systems request sensitive information from The development of a practical PIR-based technique for
users to construct a query, but privacy concerns can makgrotecting query privacy offers users and service progider
a user unwilling to provide such information. The problem an attractive value proposition. Users are increasinglgraw
addressed by private information retrieval (PIR) [4], [18] of the problem of privacy and the need to maintain privacy
to provide such a user with the means to retrieve data from & their online activities. The growing awareness is partly
database without the database (or the database administratdue to increased dependence on the Internet for performing
learning any information about the particular item that wasdaily activities — including online banking, Twitteringnd
retrieved. Development of practical PIR schemes is cruciasocial networking — and partly because of the rising trend of
to maintaining user privacy in important application donsai  online privacy invasion. Privacy-conscious users willejic
like patent databases, pharmaceutical databases, oeline c a service built on PIR for query privacy protection because
suses, real-time stock quotes, location-based services, ano currently deployed security or privacy mechanism offers
Internet domain registration. For instance, the current pr the needed protection; they will likely be willing to trade
cess for Internet domain name registration requires a useaff query performance for query privacy and even pay to
to first disclose the name for the new domain to an Internesubscribe for such a service. Similarly, service providers
domain registrar. Subsequently, the registrar could tlen u may adopt such a system because of its potential for revenue
this inside information to preemptively register the newgeneration through subscriptions and ad displays. As more
domain and thereby deprive the user of the registratiorinternet users value privacy, most online businesses wmild
privilege for that domain. This practice is known fient ~ motivated to embrace privacy-preserving technologies tha
running [26]. The registrar is motivated to engage in front can improve their competitiveness to win this growing user
running because of the revenue to be derived from resellingopulation. Since the protection of a user’s identity is aot
the domain at an inflated price, and from placing ads orproblem addressed by PIR, existing service models relying
the domain’s landing page. Many users, therefore, find ibn service providers being able to identify a user for the
unacceptable to disclose the sensitive information coathi purpose of targeted ads will not be disabled by this proposal
in their queries by the simple act of querying a server. In other words, protection of query privacy will provide

Users’ concern for query privacy and our proposed ap-additional revenue generation opportunities for theseicer
proach to address it are by no means limited to domairproviders, while still allowing for the utilization of infona-
names; they apply to publicly accessible databases in setion collected through other means to send targeted ads to
eral application domains, as suggested by the exampldbe users. Thus, users and service providers have plausible
above. Although ICANN claims the practice of domain incentives to use a PIR-based solution for maintainingyuer
front running has subsided [26], we will, however, useprivacy. In addition, the very existence of a practical aciy-
the domain name example in this paper to enable head-t@reserving database query technique could be enough to
head performance comparisons with a similar approach bpersuade privacy legislators that it is reasonable to ddman
Reardon et al. [35], which is based on this same examplethat certain sorts of databases enforce privacy policieses



it is possible to deploy these techniques without severelffhe client sends desensitizedersion of the prepared SQL
limiting the utility of such databases. query appropriately modified to remove private information
To address the protection of the query, we study howThe database executes this public SQL query, and generates
client applications embed personal information into cemri appropriate cached indices to support further rounds of
particularly for systems that use SQL for data access. Winteraction with the client. The client subsequently perfs
focus on the protection of SQL queries over relationala number of keyword-based PIR operations [12] using the
databases because such databases are widely deployed. value for the placeholders against the indices to obtain the
Our goal of preserving the privacy of sensitive infor- result for the query.
mation within an SQL query requires an extension to the None of the existing proposals related to enabling privacy-
rudimentary data access model of PIR. These models af€serving queries and robust data access models forerivat
limited to retrieving a single bit, a block of bits [4], [13], information retrieval makes the noted observation aboet th
[28], or a textual keyword [12]. These theoretical primetv privacy of constants within an otherwise-public query. 3ée
are a limiting factor in deploying successful PIR-basedinclude techniques that eliminate database optimizatipn b
systems. There is therefore a need for an extension to a mol@calizing query processing to the user's computer [35],
expressive data access model, and to a model that enabl@&blems on querying Database-as-a-Service [25], [22],

data retrieval from structured data sources, such as from ®ose that require an encrypted database before permitting
relational database. private data access [38], and those restricted to simple

Dynamic SQLis an incomplete SQL statement within a !<eyword search on textual data sources [6]. This observatio

software system, meant to be fully constructed and execute'&f crucial forfpriserv!ng t:e 'exp;essweness and benefits
at runtime [39]. It provides a flexible, efficient, and secure® SQL. and for keeping the interface between a database

way of using SQL in software systems. The flexibility and existing software systems from changing while building

enables systems to construct and submit SQL queries to tH8 SUPPOrt for user query privacy. Our approach improves
database at runtime. Dynamic SQL is efficient because jpver previous work with additional _database opt|m|zat[on
requires only a single compilation thpteparesthe query opportunities and fewer PIR operations needed to retrieve

for its subsequent executions. In addition, dynamic SQL idata. To the best of our knowledge, we are the first to

more secure because malicious SQL code injection is muchrOPOSe a practical technique that leverages PIR to preserv

more difficult. We observe that the shape or textual content€ Privacy of sensitive information in an SQL query over

of an SQL query prepared within a system is not private, puEXisting commercial and open-source relational database
the constants the user supplies at runtime are private, amyStems. o o of .
must be protected. For domain name registration, the textua Our contributionsWe address the problem of preserving

content of the query is exposed to the database, but only tH8€ Privacy of sensitive information within an SQL query

textual keyword for the domain name is really private. Forusing PIR. In doing this, we address two obstacles to
example, theshapeof the dynamic query in Listing 1 is deploying successful PIR-based systems. First, we develop

not private; the question marRk is used as a placeholder a generic data access model for private information rettiev
for a private value to be provided before the query isfrom.a} relationalldgtabase using SQL. We show how to hide
executed at runtime. Of note is the related observatiory€NSitive data within a query and how to use PIR to retrieve

made between parameterized SQL queries and parse trgéta from a rEIat'Or‘al database. Seqond, we develop an ap-
validation [9], [23]. In this context, runtime parse trees proach for embedd_lng_PIR schem_es into the well-established
obtained from combining user inputs with parameterizeocontext and organization of relr_;\t|0nal q§tabase systems. !
queries are validated to ensure consistency with parss tred@S been argued that performing a trivial PIR operation,
for programmer-specified queries, thereby defeating SQIY"h'Ch involves ha}vmg a database send.lts entire data to
injection. Unlike valid inputs which only alter the semasti the user, and having the user select the item of interest, is

of a parse tree, SQL injection attempts to change both thahore efficient than running a computational PIR scheme [1],
syntax and semantics of a parse tree [24]. [40]; however, information-theoretic PIR schemes are much

more efficient. We show how the latter PIR schemes can
Listing 1 Example Dynamic SQL query (see Appendix A be applied in realistic scenarios, achieving both effigjenc

for the corresponding database schema) and query expressivity. Since relational databases and SQL

SELECT t1.donmin, t1.expiry, t2.contact are the most influential of all database models and query

FROM regdomains t1, registrar t2 languages, we argue that many realistic systems needing

WHERE (tl.reg_id = t2.reg_id) AND query privacy protection will find our approach quite useful
(tl.domain = ?)

The rest of this paper is organized as follows: Section I
provides background information on PIR, the relational

Our approach to preserving query privacy over a relationamodel, SQL, and database indexing. Section Il discusses
database is based on hiding such private constants of a.querglated work, while Section IV details the threat model,




security, and assumptions for the paper. Section V providemformation-theoretic privacy are possible, and somesime
a description of the approach for hiding sensitive constanthold attractive properties like robustness and byzantime r
within an SQL query. We provide detailed discussions ofbustness [21]. The first single-database PIR proposal was
the algorithm in Section VI. Section VII gives an overview in 1997 [11]. This PIR scheme assures privacy against
of the prototype implementation and microbenchmarkingan adversary with limited computational capability only;
results of this prototype privacy mechanism. Section Vllli.e., polynomially bounded attackers. This type of privacy
highlights results and discussions of the experiment ugsed tprotection is known as computational privacy, and is a
evaluate the prototype in greater depth. Section IX coredud weaker notion than information-theoretic privacy. Howeve
the paper and suggests some future work. computational PIR (CPIR) [11], [28] offers the benefit of
being able to field a single database, unlike information-
theoretic PIR [4], [13] that requires replication and some
A. Private Information Retrieval (PIR) form of restriction on how the databases can communicate.
PIR provides a means to retrieve data from a database Basic PIR schemes place no restriction on information
without revealing any information about which item is leaked about other items in the database, which are not of
retrieved. In its simplest form, the database stores:-dnit interest to the user. However, an extension of PIR, known as
string X, organized as data blocks, each of size bits.  SymmetridPIR (SPIR) [29], adds that restriction by insisting
The user’s private input or query is an indéx {1,...,r} that a user learnanly the result of her query. The restriction
representing theé™ data block. A trivial solution for PIR is is crucial in situations where the database privacy is égual
for the database to send allblocks to the user and have of concern.
the user select the block of interest at indefke., X;), but Another cryptographic construction related to PIR is
this carries a very poor communication complexity. oblivious transfer(OT) [30], [31]. In OT, a database (or
The three important requirements for any PIR scheme arsender) transmits some of its items to a user (or chooser), in
correctness, privacy and non-triviality [14]. The requient  a manner that preserves their mutual privacy. The database
of correctness ensures that the scheme returns the corrdws assurance that the user does not learn any information
block X; to the user. The requirement of privacy assureseyond what he or she is entitled to, and the user has
the scheme does not leak any information to the databassssurance that the database is oblivious or unaware of which
about the user’s private input and the retrieved block particular items it received. OT and SPIR can thus be seen
X;. The non-triviality requirement expects a communicationto be generalizations of PIR. Those protocols could easily
complexity that is better than the trivial solution; that is be used in place of PIR in our work, with the concomitant
sublinear inn. An additional requirement, which is not often extra computational cost.
addressed in the published literature, is implementatffin e =~ Freedman et al. [18] provides a solution for database
ciency. In fact, the literature has dedicated most attartio  search with keywords in various settings including OT, gsin
reducing communication complexity at the expense of comeblivious polynomial evaluation and homomorphic encryp-
putational complexity [1], [40]. While the performance of tion. However, each database tuple, which they referred to
information-theoretic PIR schemes are generally betté}, [2 as a payload, still needs to be tagged with an appropriate
this neglect of computational overhead has led to singlekeyword. The key improvements over earlier results [30],
database PIR schemes that are slow for large databases [4[81] is the preservation of privacy against a fixed number
On the other hand, multi-server information-theoretic PIRof queries after an initial setup, a fixed number of rounds
schemes are much more efficient than the trivial solution andor oblivious query evaluation, and the ability to deal with
their use is justified in situations where the user lacks thexponential domain sizes.
bandwidth and local storage resources required for thialtriv )
download of data. Recent attempts at building practicaP- The relational model and SQL
single-database PIR [45] using general-purpose secure co- The relational modelforms the basis for data storage in
processors offers several orders of magnitude improvememhany database systems. Data in this model is organized as
in performance. Nevertheless, the potential applicatibn oa collection of tables and the relationships between them.
PIR in several practical domains has been largely unrehlizeTables are also calletklations Each record or row of a
with no “fruitful” or “real world” practical application. relation is atuple, and each column represents atribute
When the PIR problem was first introduced in 1995 [13],SQL is a language for manipulating and retrieving data from
it was proven that a better-than-trivial solution with the relations of a database. [39]
information-theoretic privacy is impossible to achievehwi The basic form of an SQL query consists of ®ELECT
a single database. Information-theoretic privacy enstitaés FROM, and WHERECclauses (see Listing 2). The SELECT
the adversary cannot learn the user's query, regardlesdause produces a relation consisting of the attributes in
of its current or future computational abilities. Using atthe seta;,as,...,a,. The FROM clause performs eross
least two replicated databases, however, PIR schemes wigiroduct (or Cartesian produdt operation on the relations,

Il. PRELIMINARIES



by combining each tuple oR; with each tuple ofR, (and  m. A perfect hash function iminimalwhenn = m. These
similarly for Rs, ..., R,); each of the resulting tuples has PHF that can work with large sets of keys (on the order
all the attributes of all of the relations. The WHERE clauseof billions), unlike earlier developments, such as gper][3
selects the tuples from the cross product that satisfy angivethat can only manage small sets of keys.

condition or predicateP. The predicateP is a boolean Performance parameters of PHF are generation or con-
expression on constants and the attribute®ofRs, ..., R, struction speed to index a set of keys, representation size
and involves comparison operatees <>, <, >, <=, >= or bits stored per key and evaluation time. The state-of-

as well as logical operatord ND, OR, and NOT. Often,  the-art construction [5] takes linear time; the repredea
the predicate includes a join that further constrains tptes  size can be as low as 0.67 bits per key for= 2n. The

for the cross product. evaluation time isO(1). In addition to point queries, an
_ : order-preserving PHF [15] can be useful for evaluating eang

Listing 2 Basic form of an SQL query. queries over B tree index.

SELECT ai,as,...,an

FROM R1, Rs, ..., Ry [1l. RELATED WORK

VWHERE P

A common assumption for PIR schemes is that the user
Another clause of interest to our work is th¢AVING  knows the index or address of the item to be retrieved.
clause. This clause is similar to the WHERE clause; howHowever, Chor et al. [12] proposed a way to access data with
ever, it allows aggregate e)(pr'essions7 Sucwﬁg\/[(*) and PIR USing keyword searches over three data structures: bi-
COUNT(x), in its predicate expressions. In practice, thenary search tree, trie and perfect hashing. Our work extends

predicates of these two clauses constrain the result ofry quekeyword-based PIR t&* trees and PHF. In addition, we
to some selected tuples. For example, a predicate “domaiprovide an implemented system and combine the technique
= ‘somedomain.com’ ” restricts the tuples of some selectiorVith the expressive SQL. The technique in [12] neither

to those with the domain value ‘somedomain.com’. explores B* trees nor considers executing SQL queries
. using keyword-based PIR.
C. Indexing Reardon et al. [35] similarly explore using SQL for private

A database index is a supplementary data structure usedformation retrieval, and proposed the TransPIR protetyp
to efficiently access data from the database. Data are iddexesystem. This work is the closest to our proposal and will be
either directly by the values of one or more attributes or byused as the basis for comparisons. TransPIR performs tradi-
hashes (generally not cryptographic hashes) of those sialuetional database functions (such as parsing and optimizatio
The attributes used to define an index form Keg Indices  locally on the client; it uses PIR for data block retrieval
are typically organized into tree structures, suctbastrees.  from the database server, whose function has been reduced
The number of nodes between the root and any leaf of & a block-serving PIR server. The benefit of TransPIR is
BT tree is constant, because the tree is balanced. Interntiiat the database will not learn any information even about
or non-leaf nodes do not contain data; they only maintairthe textual content of the user’'s query. The drawbacks are
references to children or leaf nodes. Data are either storegoor query performance because the database is unable to
in the leaf nodes, or the leaf nodes maintain references tperform any optimization, and the lack of interoperability
the corresponding tuples in the database. Furthermore, theith any existing relational database system.
leaf nodes of BT trees may be linked together to enable Private matching and private set intersection schemes [19]
sequential data access during range queries over the indg27] consider the problem of computing the intersection of
range queriesreturn all data with an index attribute value two private sets from two users, such that each user only
in a specified range. learns the sets’ intersection. Our work is significantlyedif

Hashed indices are specifically useful fooint queries  ent from private intersection schemes because SQL queries
which return a single data item for a given key. For manyare richer and more complex than simple set intersection.
situations where efficient retrieval over a set of uniqueskey In addition, an SQL query describes the expected result of
is needed, hashed indices are preferred @vettree indices. a query, which may not contain any itemized listing of the
However, it is challenging to generate hash functions thatlata, whereas private set intersection schemes require the
will hash each key to a unique hash value. Many hasheéxact data to be the input of a query. The differences of these
indices used in commercial databases, for this reason, usehemes from our work remain if one considers a modified
data partitioning (bucketization) [25] techniques to hash private matching scheme, where only one party (the user)
range of values to a single bucket, instead of to individuaineeds to learn of the result of the intersection.
buckets. Recent advances [8] perfect hash functions Significant effort has been devoted to the problem of
(PHF) have produced a family of hash functions that cansearching on encrypted data [3], [41], [47]. Shi et al. [38]
efficiently maps a large set of key values to a set ofrn  considers the problem of storing encrypted data in an un-
integers without collisions, where is less than or equal to trusted repository. To retrieve a subset of the encryptéa, da
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the user must possess a key that will only decrypt the datarivacy, the goal of the Pynchon Gate is to maintain privacy
matching some preauthorized attributes or keywords. Thefor users’ identities. It does this by ensuring the messages
considered the encryption and auditing of network flows,a user retrieves cannot be linked to his or her pseudonym.
but the approach is also applicable to financial audit logsThe construction resists traffic analysis, though users may
medical privacy, and identity-based biometric encryptionneed to perform some dummy PIR queries to prevent a
systems. Our work is different from encrypted data searclpassive observer from learning the number of messages she
in three ways. First, we do not require encryption of thehas received.
data, regardless of the assumption of the adversary being an
insider to the database server. The privacy provided wigh Pl o
aims to hide the particular data that is of interest, in thesni A Security and adversary capabilities
of the entire unencrypted data set. Second, the type of query Our main assumption is that the shape of SQL queries
supported with our approach is much more extensive. Thirdsubmitted by the users is public or known to the database
encrypted data search is typically performed on unstredtur administrator. Applicable practical scenarios includsige-
or textual data, whereas our approach deals with structuretime specification of dynamic SQL by programmers, who
data in the repository of relational databases. expect the users to supply sensitive constants at runtime.
A closely related research stream is the problem ofMoreover, the database schema and all dynamic SQL queries
privately searching an encrypted index over an out-expected to be submitted to, for example, a patent database,
sourced database in the computing context of Databasewe not really hidden from the patent database administrato
as-a-Service [25], [22]. Hacdignis et al. [22] presents a Simultaneous protection of both the shape and constants of
technique for executing SQL queries over a user-encrypted query are outside of the scope of this work, and would
database hosted in a service provider’s server. The goal i&kely require treating the database management system as
to protect the data from the service provider, but still éaab other than a black box.
the user to query the database. The context of use for the The approach presented in this paper is sufficiently
Database-as-a-service paradigm differs from that of PIRgeneric to allow an application to rely on any block-
The service provider typically owns the data that multiplebased PIR system, including single-server, multi-sered,
users query with PIR. The goal is not to hide data from thecoprocessor-assisted variants. We assume an adversary wit
server, but to hide data access patterns, which could leathe same capability as that assumed for the underlying PIR
information about users’ requests. protocol. The two common adversary capabilities consitiere
A related problem to PIR is that of privately searchingin theoretical private information retrieval schemes dre t
an unencrypted stream of documents [6], [33]. In thesecurious passive adversary and the byzantine adversary [4],
schemes, the client selects some keywords, and then escrygii3]. Either of these adversaries can be a database adminis-
them before sending it to a server. The server performs #&ator or any other insider to a PIR server.
search using the keywords over a stream of unencrypted A curious passive adversary can observe PIR-encoded
documents and returns the list of documents containing thqueries, but should be incapable of decoding the content. In
keywords back to the client. The server remains oblivious ofddition, it should not be possible to differentiate betwee
which particular document it returns, and the confidentiali queries or identify the data that makes up the result of
of the keywords is preserved. Existing constructions area query. In our context, the information this adversary
limited to returning documents that give exact matches ortan observe is the desensitized SQL query from the client
a keyword list, or two keyword lists combined with logical and the PIR queries. The information obtained from the
“OR” or “AND". These types of queries are much simpler desensitized query does not compromise the privacy of the
than a relational database query, which may contain meltipl user’s query, since it does not contain any private constant
operators — comparison, logical, and so on. In additionSimilarly, the adversary cannot obtain any informatiomiro
range queries are not presently possible with private isireathe PIR queries because PIR protocols are designed to be
searching because exact keywords must be specified for thresistant against an adversary of this capability.
search. The performance of private stream searching con- A byzantine adversary with additional capabilities is as-
structions is also comparable with that of a single databassumed for some multi-server PIR protocols [4], [21]. In this
PIR, because most such schemes rely on homomorphimodel, the data in some of the servers could be outdated,
encryption using the Paillier cryptosystem [34]. or some of the servers could be down, malfunctioning or
An interesting attempt to build a practical pseudonymouganalicious. Nevertheless, the client is still able to coreghe
message retrieval system using the technique of PIR isorrect result and determine which servers misbehaved, and
presented in [36]. The system, known as the Pynchon Gaté¢he servers are still unable to learn the client’s query.ifdga
helps preserve the anonymity of users as they privatelyn our specific context, the adversary may compromise some
retrieve messages using pseudonyms from a centralizeaf the servers in a multi-server PIR scenario by generating
server. Unlike our use of PIR to preserve a user’s quenand obtaining the result for a substitute fake query or

IV. THREAT MODEL, SECURITY AND ASSUMPTIONS



executing the original query on these servers, but modifyin results, without fear of the queries revealing its content.
some of the tuples in the results arbitrarily. The adversanAdditionally, individual service agreements can foreelos
may respond to a PIR request with a corrupted query resuliny chance of collusion with a third party on legal grounds.
or even desist from acting on the request. Nevertheless, allsers then enjoy greater confidence in using the service, and
of these active attack scenarios can be effectively mijat the registrars in turn can capitalize on revenue generation
with a byzantine-robust multi-server PIR scheme. opportunities such as pay-per-use subscriptions and ueven
sharing ad opportunities.

The second scenario that offers less danger of collusion

We service PIR requests using indexed data extracted fros when the query needs to be private only for a short time.
relational databases. The size of these data depends on timethis case, the user may be comfortable with knowing that
number of tuples resulting from the desensitized query. Wéby the time the servers collude in order to learn her query,
note that even in the event that tiesensitizeduery yields  the query’s privacy is no longer required.
a small number of tuples (including just one), the privacy Note that even in scenarios where collusion cannot be
of the sensitive parbf the SQL queryis not compromised forestalled, our system can still use any computational PIR
The properties of PIR ensure that the adversary gains nprotocol; recent such protocols [1], [45] offer considdeab
information about the sensitive constants from observigg t efficiency improvements over previous work in the area.
PIR protocol, over what he already knew by observing the
desensitized query.

On the other hand, many database schemas are design&d Overview

in a way that a number of relations will contain very few  Qur approach is to preserve the privacy of sensitive data
rows of data, all of which are meant to be retrieved andyithin the WHERE and HAVING predicates of an SQL
used by every user. Therefore, it is pointless to performyuery. For brevity, we will focus on the WHERE clause; a
PIR operations on these items, since every user is expectegnilar processing procedure applies to the HAVING clause.
to retrieve them all at some point. The adversary doeshis may require the user (or application) to specify the
not violate a user's query privacy by observing this publicconstants that may be sensitive. For the example query in
retrieval. Listing 3, the domain name is sensitive because it could
presumably be used for domain name front running, and the
creation date may be sensitive as well.
Information-theoretic PIR is generally more computation- oy approach splits the processing of SQL queries con-
ally efficient than computational PIR, but requires that theaining sensitive data into two stages. In the first stage, th
servers not collude if privacy is to be preserved; this isgjient computes a public subquery, which is simply the orig-
the same assumption commonly made in other privacyinal query that has been stripped of the predicate condition
preserving technologies, such as mix networks [10] an@ontaining sensitive data. The client sends this subquery t
Tor [17]. We present scenarios in which collusion amongihe server, and the server executes it to obtain a result for
servers is unlikely, yielding an opportunity to use the morethe subquery. The desired result for the original query is
efficient information-theoretic PIR. contained within the subquery result, but the databasetis no
The first scenario is when several independent servicgware of the particular tuples that are of interest.
providers host a copy of the database. This applies to |n the second stage, the client performs PIR operations
naturally distributed databases, such as Internet dore@in r o retrieve the tuples of interest from the subquery result.
istries. In this particular instance, the problem of caiiigd T enable this, the database creates a cached index on the
servers is mitigated by practical business concerns. eali subquery result and sends metadata for querying the index
cally, the Internet domain database is maintained by @iffer 5 the client. The client subsequently performs PIR re#igv
geographically dispersed organizations that are indeg®nd on, the index and finally combines the retrieved items to build
of the registrars that a user may query. However, differenthe result for the original query. An alternative approash t

registrars would be responsible for the content's distitu  storing materialized tuples or subquery results in an index
to end users as well as integration of partners through anne
ads and promotions. Since the registrars are operatingin tH.isting 3 Example SQL query with a WHERE clause
same line of business where they compete to win users arféaturing sensitive domain name information.
deliver domain registry services, as well as having thein ow SELECT t 1. contact, t1.enail,
advertising models to reap economic benefits, there is no t2.created, t2. expiry
real incentive to collude in order to break the privacy of anyFROM registrar t1, regdomains t2
In thi del. it is feasible that d £ WHERE (tl.reg_id = t2.reg_id) AND
user. In this model, it is feasible that a user would perform (t2.created > 20090101) AND
a domain name registration query on multiple registrars’ (t2.domai n = ' anydomai n. coni)
servers concurrently. The user would then combine the

B. Data size assumptions

V. HIDING SENSITIVE CONSTANTS

C. Avoiding server collusion




Server | B. Algorithm

Alice PIR Server Database File System We describe our algorithm with an example by assum-
ing an information-theoretic PIR setup with two replicated
servers. We focus on hiding sensitive constants in the
predicates of the WHERE clause. The algorithm details for
the SELECT query in Listing 3 follows. We assume the date
20090101 and the domairanydomai n. comare private.
Step 1:The client builds an attribute list, a constraint list,
and a desensitized SELECT query, using the attribute names
and the WHERE conditions of the input query. We refer to
the desensitized query assabquery

subquery i
»

|
|
| subquery |
| |
|
| subquery result |
index on subquery result
|

index helper data
PIR query q(i) on index

>
»

PIR retrieval of q(i)

|
|
r
|
|
1
|
|
¢
b

——————————lL Y~

A Y Y N

| PIR result
PIR result i i To begin, initialize the attribute list to the attribute nesn
3 ‘ in the query’'s SELECT clause, the constraint list to be
| | empty, and the subquery to the SELECT and FROM clauses
compute query result ! ! ..
| | of the original query.
Figure 1. A sequence diagram for evaluating Alice’s privatery over o Attribute list: {t 1. contact, t1. emai |,
a PIR-enabled relational database. t2.created, t2. expiry}

« Constraint list: {}

is to maintain index entries as references to actual databas . Subquery:

tuples. In other words, each index entry will simply store SELECT t1.contact. t1.email

keys and reference dat_abase tuples._An _in.dex buil_t usisg thi t2 created, t2. ex;:)i ry ’
approach can be. considered as mqlqtalqlng a ‘view’ of the FROM registrar t1, regdomains t2
subquery result (i.e., no data materialization). The aggino
offers space savings, but will incur considerable perforoea i o
overhead. PIR queries over such indices necessarily eequir '\eXt: consider each WHERE condition in turn. If a
individual fetching of all tuples in the original subquery SOndition features a private constant, then

result (at worst), or systematic range-based fetches @).be « add the attribute name to tlagtribute list(if not already
These operations will be slow and much more complex to  in the list)

implement. For these reasons, our approach explores tdice * add (attribute name, constant value, operator) to the
built on materialized data. constraint list

The important benefits of this approach as compared Witlpther\mse
the previous approach [35] are the optimizations realgabl ¢ add the condition to the subquery
from having the database execute the non-private subquery, On completing the above steps, the attribute list and the
and the fewer number of PIR operations required to retrieveonstraint list for the input query become:
the data of interest. In addition, the PIR operations are , Attribute list: {t 1. cont act, t 1. emai | ,
performed against a cached index which will usually be t2.created,t2. expiry,t2. domain}
smaller than the complete database. This is particularly , Constraint list: {(t2.created, 20090101,
true if there are joins and non-private conditions in the >), (t2.domain, ’anydomain.com, =)}
WHERE clause that constrain the tuples in the query result. The subquery,
In particular, a single PIR query is needed for point querie
on hash table indices, while range queriesntree indices
are performed on fewer data blocks. Figure 1 illustrates the isting 4 Example subquery with reduced conditions.
sequence of events during a query evaluation. SELECT t1.contact, td1.email,

. : . t2.created, t2.expiry, t2.donmin
We note that often, the non-private subqueries will berp, registrar t1, regdomains t2

common to many users, and the database does not need@ere (t1.reg id = t2.reg i d)
execute them every time a user makes a request. Neverthe-
less, our algorithm details, presented next in Section V-B
show the steps for processing a subquery and generati
indices. Such details are useful in ad hocenvironment, « the subquery

where the shape of a query is unknown to the datalase @ key attribute name

priori; each user writes his or her own query as needed. Our  an index file type

assumption is that revealing the shape of a query will not The key attribute name is selected from the at-
violate the users’ privacy (see Section V). tribute names in the constraint list —+2. creat ed,

which is a SELECT query with reduced
Yonditions, is shown in Listing 4.

ep 2:The client sends to each server



t 2. domai n in our example. The choice may either be « builds the desired query result from the data retrieved
random, made by the application designer, or determined by  with PIR.

a client optimizer component with some domain knowledgerne encoding of a private constant in a PIR query proceeds
that could enable it to make an optimal choice. One way 10,5 follows. For PIR queries over a hash-based index, the
make a good choice is to consider Bmectivity— the ratio  ¢jient computes the hash for the private constant using the
of the number of distinct values taken to the total numbeipbyE functions derived from the metadatihis hash is also

of tuples — expected for each constraint list attribute, angpe plock number in the hash table index on the servers.
then choose the one that is most selective. This ensures th&,is plock number is input to the PIR scheme to compute
selection of attributes with unique key values before lesspe piIR query for each server. Fo3t tree index, the user
selective attributes. For example, in a patent database, thompares the private value for the key attribute with the
patent number is a better choice for a key than the authorgy|es in the root of the tree. The root of the tree is extrhcte
gender. A poor choice of key can lead to more roundsyom the metadata it receives from the server. Each key value
of PIR queries than necessary. Point queries on a unidug thjs root maintains block numbers for the children blocks

key attribute can be completed with a single PIR query, nodes. The block number corresponding to the appropriate
Similarly, a good choice of key will reduce the number of .hild node will be the input to the PIR scheme.

PIR queries for range queries. For the example query, we For hash-based indices, a single PIR query is sufficient

chooset 2. dormai n as the key attribute nan:nre. _ to retrieve the block containing the data of interest from
For the index file type, either a PHF or/&" tree index  he hash table. FoB* tree indices, however, the client

type is specified. Other index structures may be possiblgyses pIR to traverse the tree. Each block can hold some
with additional investigation, .but these are t.he ONnes W&, mberm of keys, and at a block level, the tree can be
curren.tly support. More details on the selection of indeX.qnsidered am-ary tree. The client has already been sent
types is provided below. the root block of the tree, which contains the topkeys.
Step 3:Each server Using this information, the client can perform a single PIR

« executes the subquery on its relational database block query to fetch one of then blocks so referenced.
» generates a cached index of the specified type on thi repeats this process until it reaches the leaves of the
subquery result, using the key attribute name tree, at which point it fetches the required data with furthe

« returns metadata for searching the indices to the clienPIR queries. The actual number of PIR queries depends on

The server computes the size of the subquery result. If ithe height of the (balanced) tree, and the number of tuples
can send the entire result more cheaply than performind? the result set. Traversals d8* tree indices with our
PIR operations on it, it does so. Otherwise, it proceeds wittPProach are oblivious in that they leak no information abou
the index generation. For hash table indices, the servér firfiodes’ access pattern; we realize retrieval of a node’s data
computes the perfect hash functions for the key attributés @ PIR operation over the data set of all nodes in the
values. Then it evaluates each key and inserts each tupféee. In other words, it does not matter which particular
into a hash table. The metadata that is returned to the clieftranch of aB* tree is the location for the next block to be

for hash-based indices consists of the PHF parameters, thgtrieved. We do not restrict PIR operations to the subset of
count of tuples in the hash table, and some PIR-specifi®locks in the subtree rooted at that branch. Instead, eah PI

initialization parameters. operation considers the set of blocks in the eniire tree.

For B+ tree indices, the server bulk inserts the subquerﬁange queries that retrieve data from different subtress le
result into a newB~ tree index file.B+ tree bulk insertion NO information about to which subtree a particular piece
algorithms provide a high-speed technique for building 20f data belongs. The only information the server learns is
tree from existing data [2]. The server also returns metadatt® number of blocks retrieved by such a query. Therefore,
to the client, including the size of the tree and its first dataSPeCific implementations may utilize dummy queries to
block (the root). Generated indices are stored in a diskesach Prevent the server from leaning the amount of useful data
external to the database, unlike native database indices. etrieved by a query [36]. _
Step 4:The client receives the responses from the servers T0 compute the final query result, the client applies
and verifies they are of the appropriate length. For a byzanthe other private conditions in the constraint list to _the
tine robust multi-server PIR, a client may choose to proceed€sult obtained with PIR. For the example query, the client

in spite of errors resulting from non-responding servers offilters out all tuples witht 2. cr eat ed not greater than

Next. the client remaining tuples give the final query result.

erforms one or more keyword-based PIR queries,
* P . h | iated y"Vh he k ib q 1Using the CMPH Library [7] for example, the client saves theFRtata
using the value associated with the key attribute Namey, the metadata into a file. It reopens this file and uses ibtopute a

from the constraint list, and hash by following appropriate API call sequences.



Capabilities for dealing with complex queries can be built (i) SELECT * FROM tabl e WHERE a

into the client. For example, it may be more efficient to "SQ' AND b = 'LEX
request a single index keyed on the concatenation of two (i) SELECT * FROM table WHERE a =
attributes than separate indices. If the client requegiarate "SQL' OR b ="'LEX

indices, it will subsequently perform PIR queries on each ofThe client can compute the result for (i) using either one
those indices, using the private value associated with eachr two indices, whereas it requires two indices to compute
attribute from the constraint list. Finally, the client cbimes  the result for (ii). To compute the result for (i) with a sieg|
the partial results obtained from the queries with set operindex, the client requests an index faror b because both
ations (union, intersection), and performs local filtermy  of the conditions in the WHERE clause can only be true
the combined result, using private constant values for any one of them is true. If it requests an index far it will
remaining conditions in the constraint list to compute thefirst perform keyword-based PIR using the litetaBQL’
final query result. The client thus needs query-optimizatio gver this index, and then filter the result obtained with the
capabilities in addition to the regular query optimization second conditiolh = ' LEX' . To compute either (i) or (ii)
performed by the server. This is an open area of work closelwith two indices, the client requests indices for batandb,
related to database optimization. and then performs two keyword-based PIR searches using
the string literals’ SQL’ and’ LEX over the respective
VI. DiscussioN indices. Finally, the client computes the intersection hef t

In this section, we discuss important architectural compo{UPI€s in the two PIR results to obtain the result for (i), or

nents and design decisions related to the algorithm pregent !t COMputes the union to obtain the result for (ii).
in Section V. We note that a worst case query scenario having several

private conditions combined with an OR operator will have

A. Parsing SQL queries storage and computational costs linear in the number of
) ) unique attribute names used with the private conditions. In

The algorithm parses an input query — the WHERE certain circumstances, it may be possible to eliminate the

SELECT statements, such as GROUP BY and ORDER BYihe database rather than maintaining a materialized copy in

can either be processed as part of a subquery or applied @, index.

the result obtained with PIR. Specific implementations can Currently, logical NOT conditions cannot be processed
adopt the mature parsers developed with open source aRgth pIR. We are unable to find any practical PIR scenario
commercial databases. to justify its use. For example, performing PIR queries on a
The expression tree provides an easy way to construct theatent database will generally not require a NOT operator.
desensitized query and the constraint list. The parsing proye prescribe client-side processing for NOTS, after tha dat
cess builds an expression tree representation for the WHERfquired for evaluating the condition are retrieved witRPI
clause conditions. The internal nodes of this expresse® tr  Thjs expression tree is traversed twice. The first traversal
typically contain arithmetic, relational, and logical oa®rs, |ists the desensitized query’'s WHERE conditions, which
while the leaf nodes consist of attribute names and corsstantjncludes all joins and all non-private conditions. The log-
Any WHERE clause predicate expression can be a joinjca| AND operator combines the joins and the non-private
a non-pl‘ivate Condition or a pl‘ivate Condition. The Iatterconditions_ The b00|ean true Va|ue can serve as a p|ace_
contains a sensitive constant value, whereas the former tWep|der for every private condition. For example, the actual
do not. Our parser allows the user to tag sensitive constantyHERE clause for the subquery in Listing 4 can\ldERE
with the symbol “#” to differentiate them from public (tl.reg id = t2.reg_id) AND true AND true,
constants. For example, the sensitive const@®090511'  which can be subsequently optimized. The second traversal

is tagged in this querySELECT » FROM tabl e WHERE  |ists the private conditions, which are used to build the

clause condition is related to another condition with the

logical AND. Logical OR conditions are not considered asB- Indexing subquery results

expression delimiters, but disjunct multiple subexp@ssi For many general purposes, it may be impractical to

in the same condition. Typically, relational databasewedn execute the desensitized query and generate an index on the

the WHERE clause conditions in the input query to anquery result for every request. The use of an index cache

equivalent set of conditions in the conjunctive normal form addresses some of the cost, because the database can use

to facilitate query optimization. the same cached index to serve multiple PIR queries (with
For an example of AND and OR, consider the twothe same private attributes, though not necessarily the sam

SELECT queries below, which differ only in their WHERE private constants) from multiple users. This mitigates the

clause conditions. computational costs for generating indices. An exceptoon f



the use of a cache is when the shape of the input query iirst retrieve the data from the server with PIR, and then
unpredictable, especially in an environment where thesuseiperform a more sophisticated filtering on the result, using
makead hocqueries. In this case, a separate index must béhe wildcard expression.
generated for each unique query. An IN condition has the general formnaolumn IN
(literaly literals, ...). If the attribute column has unique
values, then the tuple associated with each literal can be

Practical implementations could use any commercial orretrieved with a point query on the same index over the
open-source database server to execute the desensitizaglumn attribute. Some PIR implementations, such as [20],
query. The client does not need to install database clientan simultaneously retrieve multiple blocks for a set @b
programs to query the database server in the privacyvalues in a single query. Otherwise, a combination of range
friendly manner we describe; however, the client will needand point queries will be required. The client optimizer can
an installation of the private SQL client that implements th be built to intelligently combine literal values to redudet
client-side logic of the algorithm. Similarly, a programath overall number of PIR queries.
implements the server-side logic of the algorithm must be Client-side support for database function evaluation is
installed at the server. required when private constants are used as function param-
. . . eters in a WHERE clause expression. Such functions can be
D. Processing specific conditions evaluated before the data required are retrieved with RIR, o

We provide an overview on how to deal with private afterwards. The latter follows for functions that take ptev
constants in specific conditions of the WHERE clause constantsand attribute names as parameters.
In particular, we consider simple conditions, as well as \We note that special WHERE clause conditions, such
specialized conditions such as BETWEEN, LIKE, and IN. is 1§ NULL and IS NOT NULL, do not require any

A simple WHERE clause condition consists of the generaprivate constants. It would suffice to include them in the
form column relop literal or literal relop column, where  desensitized query in many situations. Alternatively,ythe
relopis a relational operator, such as <>, <,>,<=,and  could be processed locally, especially fad hoc queries,
>=. If the column is used to index a query result, then the if they are considered to reveal sensitive information abou
literal will be used as input to the keyword-based PIR. Thethe tuples of interest.
operator =" indicates a point query. If the key attribute  Finally, an implementation may decide to localize the
column is unique, then a single result is expected; eithefprocessing of all the above conditions, as well as other
a hash or aB* tree index is appropriate. On the other conditions of the WHERE clause. The approach to adopt
hand, aB* tree is preferred for non-unique key values, depends on the amount of optimization the client is capa-

since there may be multiple tuples in the query result. Theyle of performing and the requirements of the application
other operators, which imply range queries, requibe domain.

tree indices. Théiteral or its next or previous neighbours
from the domain of values for the data type, in sorted or VI||. | MPLEMENTATION AND MICROBENCHMARKS
lexicographical order, provide one of the values for theyean
search. The other value is determined from the smallest d?‘
largest value in the domain for the data type. The input We developed a prototype implementation of our algo-
values for range search for the conditibB. created >  rithm to hide the sensitive portions of SQL queries using
20090101, for example, ar¢ 20090102, 99991231). generally available open source C++ libraries and database
A BETWEEN condition has the general formwlumn  We developed a command-line tool to act as the client,
BETWEEN literal; AND literaly, which is equivalent and a server-side database adapter to provide the func-

C. Database servers

Implementation

to the conditioncolumn >= literal; AND column <=  tions of a PIR server. For the PIR functions, we used the
literaly. This condition is processed as a range query orPercy++ PIR Library [20], [21], which offers three varietie
the two literal values. of privacy protection: computational, information thetice

A LIKE condition has the formcolumn LIKE literal, and hybrid (a combination of both). We extended Percy++
whereliteral is a search condition that involves one or moreto support keyword-based PIR. For generating hash table
wildcards, such as % and. The__ allows for the matching indices for point queries, we used the C Minimal Perfect
of a single character, while the % allows for matching ssing Hash (CMPH) Library [7], [8], version 0.9. We used the
of any length, including zero-length strings. Prefix-basedAPI for CMPH to generate minimum perfect hash functions
conditions, such adomai n LI KE ‘ sone% , and suffix- for large data sets from query results; these perfect hash
based ones, such aomai n LI KE * %mai n. com can functions require small amounts of disk storage per key. For
easily be processed with/A* tree index over the attribute, building B tree indices for range queries on large data sets,
or the reverse of the attribute, respectively. Other vasian we used the Transparent Parallel /O Environment (TPIE)
are more easily processed in the client; the client would.ibrary [16], [44]. Finally, we base the implementation
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on the MySQL [42] relational database, version 5.1.37-and 16 KB = 4), wheresize(os_block) = 4096 bytes.
lubuntu5.1. The actual fill factor (again, the default for the TPIE Librar
. is 0.6 for internalB™ tree nodes. We report the disk sizes for

B. Experimental setup indices built for our experiment on the queries with complex

We began evaluating our prototype implementation usingonditions (see Table ).
a set of six whois-style queries from Reardon et al. [35], We ran the all experiments on a server with two quad-core
which is the most appropriate existing microbenchmark for2.50 GHz Intel Xeon E5420 CPUs, 8 GB RAM, and running
our approach. We explored tests using industry-standartdbuntu Linux 9.10. We used the information-theoretic PIR
database benchmarks, such as the Transaction Process#gpport of Percy++, with two database replicas. The server
Performance Council (TPC) [43] benchmarks, and openalso runs a local installation of a MySQL database.
source benchmarking kits such as Open Source Development .
Labs Database Test Suite (OSDL DTS) [46], but none ofC- Result overview
the tests from these benchmarks is suitable for evaluating The results from the benchmark tests indicate that while
our prototype, as their test databases cannot be readd fitt our current prototype incurs some storage and computdtiona
into a scenario that would make applying PIR meaningful.costs over non-private queries, the costs seem entirely ac-
For example, a database schema that is based on completiogptable for the added privacy benefit (see Table | later
online orders will only serve very limited purpose to ourgoa in this section and Table Il in Section VIII). In addition
of protecting the privacy of sensitive information within a to being able to deal with complex queries and leverage
query. database optimization opportunities, our prototype perfo

We ran the microbenchmark tests using two whois-stylemuch better than the TransPIR prototype from Reardon et
data sets, similar to those generated for the evaluatioal. [35] — between 7 and 480 times faster for equiva-
of TransPIR [35]. The smaller data set consists 16f lent data sets. The most indicative factor of performance
domain name registration tuples, ah@5 x 10° registrar and  improvements with our prototype is the reduction in the
registrant contact information tuples. The second data setumber of PIR queries in most cases. Other factors that
similarly consists oft x 106 and3 x 10° tuples respectively. may affect the validity of the result, such as variations in
We describe the evaluation queries and the two databasmplementation libraries, are assumed to have negligible
relations in Appendices B and C. We choose the predicatempact on performance. Our work is based on the same
parameters for the benchmark queries to ensure query seleiR library as that of [35]. Our comparison is based on
tivity values (ratio of the number of matching tuples to thethe measurements we took by compiling and running the
total number of tuples) similar to those used in the originalcode for TransPIR on the same experimental hardware
benchmarking of TransPIR [35]. The respective values foplatform as our prototype. We also used the same underlying
benchmark queries Q1 through Q6 for the small data sePIR library as TransPIR. We initially attempted to run the
are 1.00 x 1076, 2.00 x 107°, 4.20 x 1075, 5.90 x 10~°,  microbenchmarking tests for the larger data with TransPIR
1.33 x 1075, and 3.87 x 10~2. For the large data set they on the development hardware platform for our prototype, but
are2.50 x 1077, 2.00 x 107?, 4.20 x 1075, 5.90 x 10~°,  was limited by this commodity hardware because TransPIR
2.50 x 1077, and4.20 x 10~°. requires a 64-bit processor and a minimum of 6 GB RAM

The measurements for all test queries are based on the index or preprocess the larger data set. The development
default behaviour of the TPIE Library with respect to hardware had a 32-bit processor and only 3 GB RAM.
determining the branching factorfor B tree indices. The ) )
following expression shows the computation of branchingD: Microbenchmark experiment

factor with this default configuration: We executed the six whois-style benchmark queries over
. ) ) . the data sets and obtained measurements for the time to exe-
v % size(os_block) — size(BID) — size(size_t) . .
A= : - cute the private query, the number of PIR queries performed,
size(Key) + size(BID)

the number of tuples in the query results, the time to execute
Where~, os_block, BID, size_t, and Key are respec- the subquery and generate the cached index, and the total
tively the data logical blocking factor, operating systemdata transfer between the client and the two PIR servers.
block, block ID, C++size_t data type, and the keyize(x) Table | shows the results of the experiment. The cost of
is the size ofz in bytes. Specifically for our experimental indexing (QI) can be amortized over multiple queries. The
setup for the large data set, the branching factor for irsdiceindexing measurements for BTREE (and HASH) consist of
over integer keys is 2730, and it is 409 for indices overthe time spent retrieving data from the database (subquery
character keys. For the small data set, these values are rexecution), writing the data (subquery result) to a file and
spectively 1634 and 215. Our implementation stores integebuilding an index from this file. Since TransPIR is not
keys in 8 bytes, and character keys in 72 bytes. The branclintegrated with any relational database, it does not incur
ing factor values are based on a block size of 32 KB=(8),  the same database retrieval and file writing costs. However,
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Table | . .

EXPERIMENTAL RESULTS FOR BENCHMARK TESTS ON THE smaLL pata  (BTREE) prototype; it aCh'?VGS be‘_tter performqnce fOI_’ the
SET COMPARED WIIH THOSE OFREARDON ET AL. [35]. BTREE = large set. The query of Q1 is a point query having a single
RESULT FOR OURB™T TREE PROTOTYPEHASH = RESULT FOR OUR condition on the domain name attribute.

HASH TABLE PROTOTYPE AND TransPIR = RESULT FROM i . .
TRANSPIR [35]; Time = TIME TO EVALUATE PRIVATE QUERY, PIRS = Query Q2 is a point query on thexpi ry_date at-

NUMBER OF PIR OPERATIONS PERFORMEDPTuples= COUNT OF Rows  tribute, with the query result expected to have multiple

IN QUERY RESULT, QI = TIMING FOR SUBQUERY EXECUTION AND tuples. Again, our BTREE prototype outperforms TransPIR
CACHED INDEX GENERATION, Xfer = TOTAL DATA TRANSFER BETWEEN

THE CLIENT AND THE TWO PIR SERVERS by a significant margin for both data sets; the improvement
Small database with .75 M contact records, 1 M registration is most noticeable for the large data set. The number of PIR
records, and 16 KB blocks queries required to evaluate Q2 with BTREE is 5% of the
Query || Approach Time (s) PIRs _Tuples QI (s) Xfer (KB) number required by TransPIR. A similar trend is repeated
Q1 ETASE'E % a 11 ‘; 2‘55‘2 for Q3, Q4 and Q6. Note that the HASH prototype could
TransPIR 7 2 1 120 128 hot be used for Q2 because hash indices accept unique key
Q2 BTREE 3 3 20 7 192  attributes only; it can only return a single tuple in its quer
TransPIR 76 23 20 120 1472 result.
Q3 || BTREE 3 3 42 7 . .
TransPIR 149 45 2 120 2gs0 Query Q3 is a range query on tlexpiry_date at-
Q4 BTREE K] 3 59 8 256 tribute. Our BTREE prototype respectively was approxi-
TransPIR 217 62 59 120 3,968 mately 50 and 411 times faster than TransPIR for the small
Q5 .EFEEEIR 150 43 11 igo 2?52 and large data sets. Of note is the large number of PIR
Q6 BTREE 5 3 29 13 192 Queries that TransPIR needs to evaluate the query; for the
TransPIR 558 111 42 £ 7,104 large data set, our BTREE prototype requires only 2% of that
) o number. We observed a similar trend for Q4, where BTREE
Large database with 3 M contact records, 4 M registration .
records, and 32 KB blocks was 17 and 480 times faster for the small and large sets
Query [[ Approach Time (s) PIRs _Tuples QI (s)  Xfer (KB) respectively. This query features two conditions in the SQL
Q1 HASH 2 1 1 16 128 WHERE clause. The combined measured time for BTREE
BTREE 4 3 1 38 384 __the time taken to both build an index to support the query
TransPIR 25 2 1 1,017 256 : o .
a2 STREE 5 a 80 37 5157 and to run the query itself — is still 10 and 67 times faster
TransPIR 999 83 80 1,017 10,624than the time it takes TransPIR to execute the query alone.
Q3 _E;TREEIR 2025 1‘;1 161868 130217 2'?11588 Query Q5 is a point query with a single join. For the
rans y y y . . .
oz BTREE 5 5 536 57 &0 large data set, it took BTREE only _about 14% of the time |_t
TransPIR 2,885 240 236 1,017 30,720took TransPIR. We observed the time our BTREE spent in
Q5 BTREE 5 3 1 67 384 executing the subquery to dominate; only a small fraction
TransPIR st 3 1 1017 384 of the time is spent building th&+ tree index.
Q6f BTREE 5 4 168 66 512 2
TransPIR 3087 253 127 L 32384 Our BTREE prototype similarly performs faster for Q6,

with an order of magnitude similar to Q2, Q3, and Q4.

TransPIR incurs a one-time preprocessing cost (QI) which N all of the benchmark queries, the proposed approach
prepares the database for subsequent query runs. CompariRgforms better than TransPIR because it leverages databas
this cost to its indexing counterpart with our BTREE and OPtimization opportunities, such as for the processing of
HASH prototypes shows that our methods are over an ordetubqueries. In contrast, TransPIR assumes a type of block-
of magnitude faster. serving database that cannot give any optimization oppor-
tunity. Therefore, in our system the client is relieved from
having to perform many traditional database functionshsuc
The empirical results for the benchmark tests reflect theas query processing, in addition to its regular PIR client
benefit of our approach. For all of the tests, we mostly baséunctions.
our comparison on the timing for query evaluation with PIR
(Time), and sometimes on the index generation timing (QI). VIIl. COMPLEX QUERY EVALUATION
The time to transfer data between the client and the servers In addition to the above microbenchmarks, we performed
is directly proportional to the amount of data (Xfer), but two other experiments to evaluate our prototype. The first
we will not use it for comparison purposes because the tesif these studies the behaviour of our prototype on complex
gueries were not run over a network. input queries, such as aggregate queries, BETWEEN and
Our hash index (HASH) prototype performs the best forLIKE queries, and queries with multiple WHERE clause
query Q1 on both data sets, followed by o™ tree conditions and joins. Each of these complex queries has
; , varying privacy requirements for its sensitive constavifs.
We reproduced TransPIR's measurements from [35] for query Q6 . . . .
because we could not get TransPIR to run Q6 due to programseffbe TN the first experiment on the same hardware configuration
‘—' under QI indicates measurements missing from [35] as the microbenchmark tests, and the second experiment

E. Discussion
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Listing 5 Experimental SQL queries indicating private con- gqatabase optimization. Both experiments were performed

stants or conditions with “#”. on the same commodity hardware configuration as the
CQ1 - Private point query on a range with sensitive domain namenicrobenchmark tests.

information.

SELECT donmmi n, nane, address, .

emai |, reg_date, expiry date A. Result overview

FROM regi stration, contact . .

WHERE (contact id = registrant) AND The results obtained from the experiments demonstrate
(reg_date > 20090501) AND the benefits of our approach for dealing with complex

(domai n = # sonedonai n.org’) queries. While the storage and computational costs (over

non-private querying) remain, the overall performance and
CQ2 — Private range query with sensitive registrar ID range. resource requirements are still reasonable for the added

SELECT donmi n, narne, privacy benefit. The prototype requires additional stofage
address, emai|, expiry_date two types of indices used for PIR operations. The first type
FROM regi stration, contact findex i ted f ticul h " e
WHERE (contact id = registrant) AND of index is generated for a particular shape of query, over on
(status IN (1,4,5,7,9)) AND or more lkey attributes or combinations of attributes. These
(registrar #BETWEEN 198542 AND 749999) AND types of indices need permanent storage in the same manner
(expiry_date BETWEEN 20090101 AND 20091031) as native indices for relational databases. The second type

. . . N . of index is used in aad hocenvironment, where the tuples
CQ3 — Private aggregate point query with sensitive registrar I, 5 sypquery result can be constrained in an unpredictable

value. . L
SELECT registrar, count(domain) manner, with one or more WHERE clause conditions and

FROM regi stration, contact joins. These latter indices must be generated as needed. In
WHERE (contact_id = registrar) AND most practical situations, it should be possible for inglitae
(registrar = #635393) be based on the former type, just like most software systems

GROUP BY registrar s . i
HAVI NG count (domain) > 0 rely on indices prebuilt by the database to efficiently run

ORDER BY registrar ASC their queries.

CQ4 — Non-private LIKE guery revealing only the prefix of a B. Experiments on queries with complex conditions
domain name.

SELECT domai n, name, address, We describe and present the results of experiments that

emai |, reg_date, expiry date examined the behaviour of our prototype when supplied
FROM regi stration, contact with SQL queries that are more complex than the above
WHERE (contact _id = registrant) AND microbenchmarks. We provide a number of synthetic query

(domai n LIKE 'some% ) AND

(domain = # somedomai n. com ) scenarios having different requirements for privacy, the

corresponding SQL queries with appropriate tagging for the
CQ5 — Private LIKE query with domain name prefix as wildcard. condition involving sensitive data, and the measuremés.

SELECT donmin, name, address, mentioned above, our SQL parser uses the “#” character to
emai |, reg _date, expiry date tag private conditions; we include that tag in the SQL quserie
FROM regi stration, contact we present in Listing 5. We used the same database schema
WHERE (contact _id = registrant) AND (see Appendix C) as the microbenchmarks. The measure-

(domai n #LI KE ' sone% )

ments show execution duration for the original query withou
rivacy provision over the MySQL database, the same query
fter removal of conditions with sensitive information ove

he MySQL database, and several other measurements taken
from within our prototype using @ tree index. All of the
measurements are reported in Table II.

on the developmental hardware platform. For the test dat
query selectivity for complex queries CQL1 through CQ5 are,
3.70 x 107°, 5.05 x 1072, 2.11 x 107%, 1.30 x 1073, and

5.34x 1076 for the small data set. Similarly for the large data

set, the viilues are.70 x 10767’ 5.12x107%, 1.58 x 107, Private point query (CQ1)The task is to obtain a domain
9.52 x 107", and1.50 x 107°. name record from the whois server without revealing the
In addition to the above microbenchmarks, we performedsensitive domain name information.

two other experiments to evaluate our prototype. The first Private range query (CQ2)he ICANN Security and Sta-
of these studies the behaviour of our prototype on complexility Advisory Committee may be interested in performing
input queries, such as aggregate queries, BETWEEN anah investigation on some registrars, with IDs ranging from
LIKE queries, and queries with multiple WHERE clause 198542 to 749999. The task is to privately obtain some
conditions and joins. Each of these complex queries hadomain name information without revealing the range of IDs
varying privacy requirements for its sensitive constafitee  for the registrars. We show the query to obtain registration
second experiment tests whether our prototype leverageecords with status in the set (1, 4, 5, 7, 9), and expiration
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Table I
MEASUREMENTS TAKEN FROM EXECUTING FIVE COMPLEXSQL QUERIES WITH VARYING REQUIREMENTS FOR PRIVACYOQM = TIMING FOR
EXECUTING ORIGINAL SQL QUERY DIRECTLY AGAINST A MYSQL DATABASE, BTREE = OVERALL TIMING FOR MEETING PRIVACY REQUIREMENTS
WITH OUR BT TREE PROTOTYPEIQpP = SUBQUERY EXECUTION DURATION WITHINBTREE, ¢l = TIMING FOR GENERATING CACHED INDEX WITHIN
BTREE, Time = TIME TO EVALUATE PRIVATE QUERY WITHIN BTREE,PIRs = NUMBER OF PIR OPERATIONS PERFORMEDTuUples = NUMBER OF
RECORDS IN FINAL QUERY RESULTrTuples = NUMBER OF INDEXED RECORDS IN SUBQUERY RESULTXfer = TOTAL DATA TRANSFER BETWEEN THE
CLIENT AND THE TWO PIR SERVERS Size= TEMPORARY STORAGE SPACE FOR CACHED INDEX

Small database with .75 M contact records, 1 M registration ecords, and 16 KB blocks
Query || oQm (s) | BTREE ()= rQp(s)+ cl(s)+ Time(s)| PIRs Tuples rTuples  Xfer (KB) Size (MB)

CQ1 0 8 4 2 2 3 1 328,805 192 110.57
CQ2 0 2 0 0 2 17 686 13,594 1,088 4.57
CQs3 0 13 9 2 2 3 1 473,646 192 157.82
CQ4 0 0 0 0 0 2 1 768 128 0.32
CQ5 0 17 9 5 3 4 4 749,472 256 251.82

Large database with 3 M contact records, 4 M registration reords, and 32 KB blocks
Query || oQm(s) | BTREE ()= rQp(s)+ cl(s)+ Time(s)| PIRs Tuples rTuples  Xfer (KB)  Size (MB)

CQ1 2 31 19 10 2 3 1 1,753,144 384 579.63
CQ2 1 15 2 0 13 41 3,716 72,568 5,248 25.13
CQ3 0 80 74 3 3 3 1 631,806 384 209.38
CQ4 2 25 12 7 5 3 1 1,050,300 384 348.63
CQ5 2 69 42 24 3 3 6 4,000,000 256 1,324.13

dates between 20090101 and 20091031, without revealinG. Database optimization experiments
the registrar ID range. i
Private aggregate point query (CQ3Jhe task is to pri- We studied the overall response of our prototype to

vately compute the total number of registrations sponsoregﬁterm'ne the belneflts accrued from database ?pt'm'ﬁat'r?n'
by a particular registrar. The registrar ID is sensitive. The experimental MySQL database runs mostly with the

Non-private LIKE query (CQ4)The task is to efficiently default settings. The only change made was reducing the

retrieve a single domain name record from a whois servefi€fault number of user connections to free up memory for

with some amount of privacy. In other words, a user wants t@ther Processes running on the machine. In other words, we

reveal a prefix of the domain name to improve performanc gid not tune the database for optimal performance in the

while still preventing the adversary from learning the dxac COUrse of our previous experiments.
textual domain name. Since many long domain names have a Most databases cache query plans and small-sized query
common prefix, the user intends to leverage that knowledg&esults when a query is executed for the very first time.
to improve query performance. Subsequent executions of the same query will be more
Private LIKE query (CQ5)The task is to retrieve reg- responsive by reusing the cached plan and result. For this
istration records from a whois server without revealing the€Xperiment, we disabled cache usage by flushing the rela-
LIKE wildcard. tions in our database before running each query. Flushing
ResultsWe see from Table I that in most cases, the costelations in MySQL closes the open relations and flushes
to evaluate the subquery and create the index dominates tfige query cache. This ensures the database obtains a fresh
total time to privately evaluate the query (BTREE), while query plan and result set every time.
the time to evaluate the query on the already-built index We ran this experiment on the less powerful hardware
(Time) is minor. An exception is CQ2, which has a relatively platform we used to develop the prototypes, because the
small subquery result (rTuples), while having to do dozendime to build a fresh query plan does not take a significant
of (consequently smaller) PIR operations to return thodsan time for the more powerful hardware platform we used for
of results to the overall range query. Note that in all but CQ2running the previous tests.
the time to privately evaluate the query on the alreadytbuil Table Il presents the measurements taken for CQ1
index is at most a few seconds longer than performing thehrough CQ5 over the large data set under default database
query with no privacy at all; this underscores the advantagéehaviour, and the measurements taken when the relations
of using cached indices. of the database are flushed. The result obtained for these
We note from our results that it is much more costly toqueries validates the claim that our approach leverages
have the client simply download the cached indices. Wedatabase optimization to improve performance. The most
observe, for example, that it will take about 5 times as longjnteresting measurements taken in this experiment are the
for a user with 10 Mbps download bandwidth, to downloadsubquery execution durations (rQp). For CQ1, CQ3, and
the index for CQ5 on the large data set. Moreover, thisCQ5, the difference in measurements is obvious. However,
trivial download of data is impractical for devices with low the effect is not quite obvious for CQ2 and CQ4. For the
bandwidth and storage (e.g., mobile devices). latter pair, the fraction of the overall timing spent for PIR
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Table Il
EFFECTS OF DATABASE OPTIMIZATION ON QUERY RESPONSIVENES®VER THE LARGE DATA SET BTREE = OVERALL TIMING FOR MEETING
PRIVACY REQUIREMENTS WITH OURB™T TREE PROTOTYPEIQpP = SUBQUERY EXECUTION DURATION WITHINBTREE,cl = TIMING FOR
GENERATING CACHED INDEX WITHIN BTREE, Time = TIME TO EVALUATE PRIVATE QUERY WITHIN BTREE.

With optimization: default database settings Without optimization: query cache disabled
Query || BTREE (s)= rQp(s)+ cl(s)+ PIR(s) BTREE (s)= rQp(s)+ cl(s)+ PIR(s)
CQ1 104 50 52 2 122 69 50 3
CQ2 22 3 1 18 29 4 2 23
CQ3 375 347 22 5 454 434 15 6
CQ4 66 25 32 9 66 26 29 11
CQ5 214 90 118 6 436 310 120 6

queries is nonnegligible: 79% and 17% respectively. Fom single index generic enough to serve the diversity of the
CQ1, CQ3, and CQ5, the portion of the time spent forconstraints in arad hocquery.
PIR is respectively 2%, 1%, and 1%. The results for CQ1, o
CQ3, and CQ5 clearly indicate the contributions of databas& Limitations
optimization to query responsiveness with our approach. Our approach can preserve the privacy of sensitive data
) ) ) within the WHERE and HAVING clauses of an SQL query,
D. Improving performance by revealing keyword prefixes. \yith the exception of complex LIKE query expressions,
The performance of a query may be improved by revealingiegated conditions with sensitive constants, and SELECT
a prefix or suffix of the sensitive keyword in the query. nested queries within a WHERE clause. The complex-
Revealing a substring of a keyword helps to constrain theéty of complex search strings for LIKE queries, such as
result set that will be indexed and retrieved with PIR. We(LIKE 'do%abs%.c%m’), is beyond the current capability
have demonstrated the feasibility of this technique withof keyword-based PIR. Similarly, negated WHERE clause
complex query CQ4 (Listing 5 and Table IlI). While this conditions, such as (NOT registrant = 45444), are infeasibl
technigue may be infeasible in some application domainsto compute with keyword-based PIR. Our solution to dealing
due to the sensitive nature of the keyword, it does improvewith these conditions in a privacy-friendly manner is to eom
performance in others. This technique does, of coursee tracoute them on the client, after the data for the computatien ha
off improved performance for some loss of privacy, though itbeen retrieved with PIR; converting NOT = queries into their
is in fact the user (who can best make this trade-off decjsionequivalent range queries is generally less efficient than ou
who can decide to what extent to use it. Making the besproposed client-based evaluation method. In addition, our
trade-off decision necessarily requires some knowledge gbrototype cannot process a nested query within a WHERE
the data distribution in terms of the number of tuples thereclause. We propose that the same processing described for
are for each value in the domain of values for a sensitivea general SQL query be recursively applied for nested
constant. These information can be included in the metadatgueries in the WHERE clause. The result obtained from a
a server sends to the client and the client can make this-tradeested query will become an input to the client optimizer,
off decision on behalf of the user based on the user’s presdor recursively computing the enclosing query for the next
preferences. We are actually considering this extension asund. There is need for further investigation of the apphoa
part of our future work. for nested queries returning large result sets and for gleepl
The processing of queries that allow users to reveal eithemested queries.
a prefix or suffix of their private constant will proceed as
follows on a prebuilt index. A user would first request the
root to a particular subtree in a prebuilB* tree index We have provided a privacy mechanism that leverages
(indexed either on the attribute or the reverse of the atigib private information retrieval to preserve the privacy ofi-se
as above), by supplying a substring for that root. The servesitive constants in an SQL query. We described techniques
would search for and return the requested root, without PIRto hide sensitive constants found in the WHERE clause
Subsequent PIR queries by the user will be based on thef an SQL query, and to retrieve data from hash table
subtree with the retrieved root, instead of the enfiretree.  and B* tree indices using a private information retrieval
In other words, revealing a substring of a user's privatescheme. We developed a prototype privacy mechanism for
keyword reveals the portion of the data that is of interesiur approach offering practical keyword-based PIR and
to the user. However, the level of privacy protection mayenabled a practical transition from bit- and block-based Pl
still be sufficient for many user and application purposes. to SQL-enabled PIR. We evaluated the feasibility of our
The only realistic situations where performance cannotpproach with experiments. The results of the experiments
be easily improved with this technique are when users musndicate our approach incurs reasonable performance and
makead hocqueries that are unknown to the server before astorage demands, considering the added advantage of being
system is deployed. In such situations, it is difficult to mak able to perform private SQL queries. We hope that our

IX. CONCLUSION AND FUTURE WORK
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work will provide valuable insight on how to preserve the [9] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using parse
privacy of sensitive information for many existing and figtu
database applications.

Future work can improve on some limitations of our g
prototype, such as the processing of nested queries and

enhancing the client to utilize statistical information e

data distribution to enhance privacy. The same techniqu@l]
proposed in this paper can be extended to preserve the

privacy of sensitive information for other query systems,
such as URL query, XQuery, SPARQL and LINQ. Private

information retrieval is only the first step for preserving a[12]

user’s query privacy. An extension to this work can explore
private information storage (PIS) [32], and how to use it

for augmenting the privacy of users in real-world scenarios[13]

An interesting focus would be to extend PIS to SQL in the

manner of this paper, in order to preserve the privacy o
sensitive data within SQL INSERT, UPDATE and DELETE

data manipulation statements.
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C. Database schema for microbenchmarks and experiments

CREATE TABLE contact (
contact _id int(11) NOT NULL,
name char (60) default NULL,
address char (80) default NULL,
emai | char(60) default NULL,
PRI MARY KEY (contact id));

CREATE TABLE registration (
reg_id int(11) NOT NULL,

domai n char (80) default NULL,
expiry_date int(8) default NULL,
reg_date int(8) default NULL,
registrant int(11) default NULL,
registrar int(11) default NULL,
status varchar (2) default NULL,
PRI MARY KEY (reg_id));

ADD FOREI GN KEY fk_registrant (registrant)
REFERENCES cont act (contact _i d);

ADD FOREI GN KEY fk_registrar (registrar)
REFERENCES cont act (contact _i d);
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