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Abstract. In this work, we propose a new platform to enable service providers,
such as web site operators, on the Internet to block past abusive users of
anonymizing networks (for example, Tor) from further misbehaviour, without
compromising their privacy, and while preserving the privacy of all of the
non-abusive users. Our system provides a privacy-preserving analog of IP
address banning, and is modeled after the well-known Nymble system [29,47,48].
However, while we solve the same problem as the original Nymble scheme, we
eliminate the troubling situation in which users must trust their anonymity in
the hands of a small number of trusted third parties. Unlike other approaches
that have been considered in the literature [10,44,45,46], we avoid the use of
trusted hardware devices or unrealistic assumptions about offline credential
issuing authorities who are responsible for ensuring that no user is able to obtain
multiple credentials. Thus, our scheme combines the strong privacy guarantees
of [10,44,45,46] with a simple infrastructure as in [29,47,48].

To prevent malicious third parties from trivially colluding to reveal the
identities of anonymous users we make use of a number of standard zero-
knowledge proofs, and to maintain efficiency we introduce a new cryptographic
technique which we call verifier efficient restricted blind signatures, or VERBS.
Our approach allows users to perform all privacy-sensitive computations locally,
and then prove in zero-knowledge that the computations were performed
correctly in order to obtain efficiently verifiable signatures on the output — all
without revealing neither the result of the computation, nor any potentially
identifying information, to the signature issuing authority. Signature verification
in our proposed VERBS scheme is 1–2 orders of magnitude more efficient than
verification in any known restricted blind signature scheme.

Key words: Privacy, privacy enhancing technologies, anonymity, authentica-
tion, anonymous blacklisting, privacy-enhanced revocation, anonymous creden-
tials, zero-knowledge proofs, restricted blind signatures.



1 Introduction

Anonymity networks provide users with a means to communicate privately over the Inter-
net. The Tor network [22] is the largest deployed anonymity network; it aims to defend
users against traffic analysis attacks by encrypting users’ communications and routing them
through a worldwide distributed network of volunteer-run relays [43]. As of October 2009,
there were 1,532 running Tor relays, operating in 57 different countries, with an estimated
90,000 to 130,000 users (depending mostly on the time of day), connecting from 126 countries,
at any given time [32,34].

The ability to communicate without fear of network surveillance makes it possible for
many users to express ideas or share knowledge that they might otherwise not be willing to
reveal for fear of persecution, punishment or simply embarrassment (for a prime example,
see the submissions instructions page at Wikileaks1 [49]). On the other hand, some users use
the veil of anonymity as a license to perform mischievous deeds such as trolling forums or
cyber-vandalism. For this reason, some popular websites (for example, Wikipedia [50] and
Slashdot [19,23]) proactively ban any user connecting from a known anonymous communica-
tions network from contributing content, thus limiting freedom of expression.2

The privacy offered by Tor is directly related to the size of its anonymity set; i.e., the
number of users on the network. The fewer Tor users there are, the easier it is to figure out
which one of them initiated a particular connection. As a result, if users are discouraged
from using the system, the privacy of those who do continue to use it suffers in consequence.
Similarly, the anonymity afforded to each user is related to the number of volunteers running
Tor nodes. One side effect of Tor exit nodes being banned from popular web services is that
the operators of these relays get banned from these services as well, because their connections
come from the same IP address as their Tor relay. This state of affairs provides a fairly strong
incentive for many would-be operators not to volunteer to run relays.

Therefore, a real need exists for systems that allow anonymous users to contribute content
online, while preserving the ability of service providers to selectively (and subjectively) ban
individual users without compromising their anonymity. Not only would such a system benefit
the estimated hundreds of thousands of existing Tor users, but it might also be a boon to
wider acceptance of Tor [31]. Indeed, the need for an anonymous blacklisting mechanism has
been acknowledged by several key people involved with The Tor Project [20,21,31]. Thus, it is
reasonable to expect that the operators of Tor might be willing to provide the infrastructure
necessary to realize such a system, a situation that would greatly reduce the burden on service
providers and lead to greater adoption.

Several schemes (e.g., [10,11,28,29,44,45,46,47,48]) have been proposed with the goal of al-
lowing anonymous blacklisting of Tor users. The original systems (e.g., [28,29,47,48]) attempt
to recreate the common practice of IP address banning, without actually revealing a user’s
IP address; however, these systems suffer from some troubling security issues stemming from
the use of trusted third parties (TTPs) who can easily collude to violate a user’s anonymity.
The most well-known of these is Nymble [29,48], which is the system after which we model
our own. We discuss some other related approaches in §2.

1 http://www.wikileaks.org/
2 Some IRC networks also block access to anonymous users (for example, see
https://wiki.torproject.org/noreply/TheOnionRouter/BlockingIrc).
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Since its introduction, the authors of Nymble have proposed two other, more elaborate,
approaches which eliminate the threat of deanonymization [44,45,46]. However, these sys-
tems suffer from problems with efficiency and require the support of sophisticated off-line
infrastructure to issue credentials. This work aims to demonstrate how to combine the strong
privacy guarantees of [44,45,46] with simple infrastructure as in [28,29,47,48].

1.1 An Overview of Nymble

Suppose a user Alice wishes to connect anonymously to a Service Provider (SP), such as
a website, while the SP will allow connections only if it can ban a misbehaving user by IP
address. To facilitate this, the Nymble system introduces two TTPs, the Pseudonym Manager
(PM) and the Nymble Manager (NM). Before connecting to the SP, Alice connects directly to
the PM, thus proving she has control over the specified IP address. The PM then issues Alice a
pseudonym called a Nym, which is deterministically generated from her IP in such a way that
the NM is able to verify that the pseudonym was in fact issued to Alice by the PM, but learns
no information about Alice’s IP. Alice then connects to the NM over an anonymous channel
and presents her Nym along with the name of the SP to which she wishes to connect. Using
the pair (Nym, SP ), the NM computes and issues to Alice a set of nymbles — one for each
time period left in the current linkability window. Within a linkability window, each successive
nymble is generated from the previous one using a one way function (a hash function) and
two secrets; one secret is known only to the NM, while the other is shared by the NM and
the SP. In order to connect to the SP, Alice presents the nymble which corresponds to the
current time period. The shared secret allows the SP to verify the validity of Alice’s nymble
but not learn her IP address, nor compute or identify any of her other nymbles. Therefore,
Alice’s connections within a time period are linkable (since they are all associated with the
same nymble), while her accesses across different time periods are not. The SP records the
nymble used during a session; if it is later found that Alice misbehaved, the SP can complain
to the NM by presenting it with a copy of the recorded nymble. The NM then issues the SP
a linking token, which is essentially a trapdoor that allows the SP to compute all of Alice’s
subsequent nymbles starting from the time period in which the complaint was made (up
until the end of the linkability window). The use of linkability windows offers dynamism and
forgiveness to the system; it ensures that user misbehaviour is eventually forgiven, which is
important since IP addresses frequently change hands. The one-way nature of hash functions
guarantees that the trapdoor provides no way for the SP to compute previous nymbles; thus,
backwards anonymity is preserved, while further connections from a misbehaving user can
be detected and blocked.

Blocking is achieved by adding the remaining nymbles for the linkability window into
a blacklist, which is then signed by the NM. When Alice wishes to connect to the SP, she
can verify the validity of the blacklist, and determine whether or not she is banned, before
revealing her nymble to the SP. This prevents the SP from linking her current connection
attempt to another connection for which she was banned. When the linkability window ends,
all current bans become invalid and the NM computes a new secret value upon which the
nymbles for the upcoming linkability window will be computed.
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1.2 The Not-So-Nymble Side of Nymble

Nymble provides an efficient framework for banning users of an anonymizing network; how-
ever, the simplicity and efficiency come at a cost. Recall that the PM knows the pair
(IP,Nym) while the NM knows the pair (Nym, SP ). Therefore, if the NM and PM col-
lude, it is trivial for them to determine which SP the user associated with a given IP address
is accessing. Further, because it is trivial for an NM to retroactively compute a user’s nymbles,
a colluding NM and SP can easily break backwards anonymity and link a user’s connections.
If all three parties collude (i.e., the PM, NM, and SP), they can trivially link all actions of
a given user back to that user’s IP, thus completely breaking anonymity.

The authors of Nymble suggest distributing the computation performed by the PM,
thereby eliminating the possibility of collusion as long as an honest majority exists. Dis-
tributing the responsibility of the NM may be possible, but is not a trivial task. Nymbles
must be generated deterministically, so that a user can be added to the blacklist, and intro-
ducing additional NMs greatly increases the amount of communication required both when
obtaining nymbles, and when banning a user.

1.3 Our Contributions

We present a new Nymble-like system, unimaginatively called Nymbler, that minimizes the
capabilities of the PM, NM, and SP when colluding. This is accomplished through the use of
anonymous credentials and a new verifier-efficient restricted blind signature scheme that we
use to permit users to construct their own nymbles. Thus, our scheme eliminates the need to
trust third parties with anonymity while maintaining the essential properties of Nymble.

Outline The remainder of this paper is outlined as follows: Previous work related to re-
stricted blind signature schemes and blacklisting anonymous users are presented in §2, fol-
lowed by an overview of the approach taken in this work in §3. We describe in detail our
approach to verifier-efficient restricted blind signatures in §4 while our Nymbler scheme and
the protocols involved are described in §5. In §6 we suggest appropriate values for security
parameters and analyze the performance of our system with these choices. We conclude in §7
and outline some potential areas for future work. An analysis of recent Wikipedia blacklisting
statistics and a set of tables summarizing our notation and the various system parameters
are included in the appendices.

2 Related Work

2.1 Restricted Blind Signature Schemes

In his seminal work [17], Chaum introduced the notion of a blind signature scheme; the idea
was later elaborated in [18], where the first construction (based on RSA signatures) was given.
Chaum’s scheme allows a user to obtain a cryptographic signature on a message without
revealing any information about the message to the signer. Later, Brands ([5,7,6] and [8,
Chap. 4]) proposed restricted blind signatures in which a user obtains a blind signature on
a message, while the signer gets to see certain parts of the structure of the message before
signing. If this structure does not conform to certain rules, the signer can refuse to provide
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a signature; thus, the choice of message to be signed can be restricted by the signer. If the
structure is modified in any way, the signature becomes invalid. However, unlike Chaum’s
blind signature scheme, where verification costs just one modular exponentiation (where the
exponent can be chosen to be as small as 3), verifying Brands’ restricted blind signatures has
a computational cost dominated by a multi-exponentiation where each exponent is essentially
random (modulo a large prime) and depends on the message to be signed. In particular, they
cannot be fixed to a small value, such as 3, as in Chaum’s scheme.

Camenisch and Lysyanskaya [13,14,15] presented a versatile signature scheme (CL-signatures)
that allows a re-randomizable restricted blind signature to be issued. The well-known CL-
credential [3,13,14] scheme is based on CL-signatures. In their scheme, the cost of verifying a
signature is effectively one exponentiation and one multi-exponentiation, with each exponent
approximately equal in size to the message to be signed.

Recently, Groth and Sahai [26] presented a zero-knowledge proof system based on bilinear
pairings. Belenkiy et al. [2] proposed a restricted blind signature scheme called P-signatures
and noninteractive anonymous credential system based on the Groth-Sahai framework. The
cost of verification in their scheme is about one elliptic curve exponentiation and three pairing
operations.

Our approach uses RSA-based signatures similar to Chaum’s, combined with zero-knowledge
proofs that allow the user to prove certain properties about the message before it is signed.
The key advantage of our approach over other restricted blind signature schemes is its ex-
tremely low cost verification algorithm (i.e., almost as efficient as Chaum’s non-restricted
blind signatures with exponent 3). In particular, verifying a signature in our scheme costs
just four modular multiplications, which is 1–2 orders of magnitude faster than any previously
proposed restricted blind signature scheme.3

2.2 Systems for Anonymous Blacklisting

Unlinkable Serial Transactions [41,42] was one of the first systems to allow anonymous black-
listing. The scheme prevents an SP from tracking the behaviour of its users, while protecting
it from abuse due to simultaneous active sessions by a single user. Users are issued blind
tokens from the SP and, in normal operation, these tokens are renewed at the end of a user’s
transaction. If a user is judged to have misbehaved, the SP can block future connections from
that user by refusing to issue further tokens. However, the scheme provides no way for the
SP to ban a user if misbehaviour is detected after the end of the session in which it occurred.

The Nym system [28] was a first attempt at solving the problem of allowing anonymous
edits on Wikipedia; it represents one of the first attempts at bringing accountability to users
of anonymity networks. Unlike later approaches, Nym only provides pseudonymity, and thus
is not an ideal solution. Later schemes — most notably Nymble — improve upon Nym to
provide full anonymity.

Blacklistable Anonymous Credentials (BLAC) [44,45], proposed by several of the authors
of Nymble, provides an anonymous credential system that does not make use of any TTP who
can revoke the anonymity of all users. Instead, the system allows an SP to add a credential

3 In §6.2, we present experimental results indicating that the cost of verifying a signature in our scheme is almost
forty times faster than computing a single modular exponentiation — an operation that is less expensive than the
verification of any of the restricted blind signatures discussed above.
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to its blacklist if the owner of that credential is judged to have misbehaved. However, BLAC
suffers from two major drawbacks. The first of these is the loss of efficiency when compared
to a system like Nymble; if the blacklist grows large, say one thousand users, then several
hundred kilobytes of communication and several seconds of computation are required (per
access) to prove that a user is not on the blacklist [48]. For large services with many users, such
as Wikipedia, the performance of this approach is unacceptable. The second downside is that
the credentials are not tied to an IP address. Instead, the system assumes that some offline
credential issuing authority will ensure that no user obtains more than a single credential.

The Enhanced Privacy ID (EPID) [10,11] system is similar in spirit to BLAC, but allows a
trusted hardware device that is programmed with a private key to anonymously authenticate
with an SP, and allows revocation of the key should the device become compromised. EPID
is slightly more efficient than BLAC, but requires clients to have specialized hardware and is
still prohibitively expensive, as the computational overhead scales linearly in the size of the
blacklist.

Privacy-Enhanced Revocation with Efficient Authentication (PEREA) [46] is another
system proposed by the same authors as BLAC. It improves upon BLAC and EPID by pro-
viding similar functionality but utilizing a cryptographic accumulator to offer computational
requirements at the SP that do not depend on the size of the blacklist. To make this possible
the system makes use of an authentication window, which is similar in concept to that of a
linkability window, except that it specifies the maximum number of subsequent connections
a user may make before it becomes impossible to block them due to behaviour during a pre-
vious session, instead of the maximum time duration that can elapse. However, although the
cost of verification at the SP is constant regardless of the size of the blacklist, it is still several
orders of magnitude slower than Nymble, taking about 0.16 seconds per authentication when
the authentication window is 30 [46]. Moreover, as with BLAC and EPID, the credentials
used in PEREA are not tied to an IP address and are issued by an offline credential authority
that ensures no user can obtain more than one credential. In the next section we touch on
the technical reasons why BLAC and PEREA cannot be adapted to use IP addresses as a
unique resource.

3 Our Approach

This section provides a high-level overview of our scheme. Further details about how this
approach is realized are presented in §4 and §5.

As a first step, we replace the pseudonymous Nym with an anonymous credential; thus,
the PM is replaced by an entity which we call the Credential Manager (CM). The CM learns
Alice’s IP address and issues a credential stating this fact, but the CM is unable to recognize
this credential at a later time. This modification prevents the CM and NM from colluding to
learn which SP a particular user is accessing.

We emphasize that our use of anonymous credentials — and the role of the CM in general
— is fundamentally different from in BLAC and PEREA. For example, the CM is not required
to keep track of the unique resources for which a credential has been issued4; instead, the CM
encodes each user’s unique resource directly in the credential that it issues. This prevents the

4 Of course, we need to assume that a malicious CM will keep track of the IP addresses.
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enrolment issues addressed in [44], wherein a user’s credential is misplaced or compromised,
from causing problems in our approach. In such a case, the CM simply issues the user with
a new credential encoding the same unique resource, and all of their previous bans remain in
effect. It is this property that allows us to continue to use IP addresses as the unique resource
(as in Nymble). Note that in BLAC and PEREA this choice of unique resource is unrealistic,
since in those schemes an SP would have no way to distinguish two credentials encoding the
same IP address from ones encoding different IP addresses.

Using her credential, our scheme allows Alice to construct her own set of nymbles in such
a way that the NM is convinced of their validity without ever actually seeing them. The NM
then issues Alice with verifier-efficient restricted blind signatures (VERBS) on her nymbles
so that the SP can also be convinced of their validity. Note that from a security point of view
there is no reason why the NM, and not the SP, must be responsible for verifying the integrity
of Alice’s nymbles; indeed, the SP could verify Alice’s proofs directly and thus eliminate the
role of the NM at this stage. Such an approach would be very similar to that taken by BLAC
and PEREA. Our motivation for using the NM at this stage in the protocol is simply to
offload work from the SP to the NM.

In the case that Alice misbehaves and the SP wishes to ban her, the SP can present a
nymble to the NM, who then performs a non-trivial amount of computation — i.e., solving
a discrete log — to recover sufficient information to calculate Alice’s remaining nymbles.
This is accomplished through the use of a trapdoor discrete log group, where parameters are
selected so that performing discrete logs is possible using the NM’s private key but even so is
sufficiently expensive that wholesale deanonymization is impractical. In Appendix A we give
a concrete example using recent usage and banning statistics from Wikipedia. We emphasize
that although the NM can compute subsequent nymbles from a starting point, even with
the ability to solve discrete logs the NM cannot go backwards. Thus, breaking backwards
anonymity in our system is much more difficult than in Nymble.

4 Verifier-Efficient Restricted Blind Signatures

In this section we introduce verifier-efficient restricted blind signatures (VERBS), a restricted
blind signature scheme with an efficient verification protocol. Our scheme makes use of com-
mitments, which can be Feldman commitments [24] (the commitment to x is CF(x) = sx for a
known group element s) or Pedersen commitments [38] (the commitment to x is CP(x) = sxrγ

for known group elements s, r where logs r is unknown, and γ is random).

We use several standard zero-knowledge proofs from the literature; in particular, we use
the standard proof of knowledge of a committed value (i.e., a discrete logarithm) [40], proof
that a commitment opens to a product of committed values (mult. proof) [16], and proof of
knowledge of a committed value that lies in a particular range (range proof) [4]. We note
that no proof is necessary for addition or scalar multiplication of committed values, as those
operations are easily accomplished by multiplication or exponentiation of the commitments,
respectively.

We also utilize a proof of nested commitments (a “nest proof”); that is, given A,B, prove
that you know x such that A is a commitment to a commitment to x and B is a commitment
to the same x. That is (for simplicity, we only show the Feldman case; the Pedersen case is
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similar), that you know x and G such that G = gx, A = sG, and B = tx. (All operations are
in appropriate groups, and g, s, t are generators of those groups.)

This proof works the same way as the ordinary proof of equality of discrete logarithms:
the prover chooses v and outputs gv and tv; the verifier (or a hash function if the Fiat-
Shamir [25] method is used) chooses a challenge c; the prover outputs r = v− cx; the verifier
accepts if Gcgr = gv and Bctr = tv. The twist in our scenario is that G is not available to
the verifier; only its commitment (A = sG) is. We solve this problem by having the prover
output sg

v
instead of gv, and having the prover compute sG

c
(the commitment to Gc) and

prove in zero-knowledge that it was done correctly (see below). Then the verifier checks that
(sG

c
)g
r

= sg
v

(along with the unchanged Bctr = tv). In the event that g and t have different
orders (which will be true in general, and in our case), the above range proof is also utilized
to show that 0 ≤ x < ord(t).

For the proof of an exponentiation of a committed value, we use a simplified version of
the algorithm from [16]. In that paper, the exponent was also hidden from the verifier. In
our situation, the exponent c is known, which makes matters considerably easier. The prover
just performs any addition-and-multiplication-based exponentiation routine, and proves that
each step was done correctly.

We next describe the four algorithms that make up VERBS. The full details are presented
in Appendix B. We will state the algorithms in their noninteractive zero-knowledge form (such
as by using Fiat-Shamir [25]); the adaptation of VERBS-Blind and VERBS-Sign to interactive
zero-knowledge is straightforward. (The other two algorithms do not change.)

All computations are performed modulo an RSA number, ρ, whose factorization is known
only to the signer. The VERBS-Blind algorithm is executed by the client. The algorithm
takes as input a (public) group element g, a (public) commitment C(x) (either Feldman or
Pedersen) to a secret value x, and x itself (plus γ in the case of a Pedersen commitment).
The role of this algorithm, much like its Chaumian counterpart, is to produce the blinded
message S = f(ν) · α3 mod ρ, where ν = gx and the random blinding factor α are hidden
from the signer, and f(z) = z2 +1 is a one-way function. (It is one-way since the factorization
of the modulus ρ is unknown to the client.) It also produces Π, a zero-knowledge proof that
the computation of S was performed correctly.

The VERBS-Sign protocol is run by the NM. It takes the tuple (S, p, q, ξ,Π) as input.
S ∈ Z∗ρ is a (public) blinding of the message to be signed. p and q are the (private) factors of
ρ. ξ ∈ Z∗ρ is a context element that encodes meta-information about the signature (see §5.1).
Π is a zero-knowledge proof that S was correctly formed. It outputs the blinded signature

σ′ = (ξ · S)
1
3 mod ρ if all proofs in Π are valid; otherwise, it outputs ⊥. Note that σ′ is

essentially just a Chaum blind signature — its computation requires knowledge of p and q.

The VERBS-Unblind protocol is run by the client. The algorithm takes the tuple (σ′, α)
as input. σ′ is a blind signature and α is the blinding factor used to blind the signature. It
outputs σ = σ′ · α−1 mod ρ, the unblinded signature.

The VERBS-Verify algorithm is run by the SP. It takes the tuple (ν, σ, ξ) as input; ν is
the message that was signed, σ is the (unblinded) signature, and ξ is the context element. It

outputs true iff σ3 mod ρ
?
= ξ · (ν2 + 1) mod ρ. Note that the cost of VERBS-Verify is just

four modular multiplications.
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5 An Improved Nymble

We next present our new anonymous blacklisting scheme modeled after Nymble. Our scheme
aims to meet the same goals as Nymble, while making deanonymization of a user infeasible,
regardless of which subset of third parties might collude against her. Before describing the
approach in any detail, we briefly describe the third parties involved and explain their roles.
Note that the SP must trust third parties to properly carry out their respective responsibil-
ities; however, unlike in the original Nymble, the user need not trust them not to collude in
order for her anonymity to be maintained.

  

 

 
 

User 

Credential 

Manager 

(CM) 

Nymble 

Manager 

(NM) 

Service 

Provider 

(SP) 

 

Credential Issuing 

Blacklisting  

Nymble Acquisition Nymble Showing 

Blackl ist  

Fig. 1. The architecture of the Nymbler scheme, including the interactions occurring between
the various parties involved.

The third parties are called the Credential Manager (CM) and the Nymble Manager (NM).
The CM is responsible for issuing an anonymous credential to the user which encodes two
pieces of information: an obfuscated version of the user’s IP address,5 and an expiration
time. For added security, the CM may be distributed as outlined below. At any time before
this expiration, the user can present her credential to the NM to receive a set of mutually
unlinkable authentication tokens called nymbles, which can be used to anonymously access
the services offered by a Service Provider (SP). The NM never sees the nymbles that it

5 There are many valid arguments both for and against the practice of IP blocking. We will not discuss those here;
the purpose of this work is to enable service providers to continue the common practice despite the fact that
certain users may connect through anonymity networks. We do, however, note in §7, that the approach discussed
in this paper could be adapted to block users based on some other unique resource (for example, driver’s license,
ePassport, etc.).

9



issues, but it does supply the user with a verifier-efficient restricted blind signature on each
of them, which allows the user to efficiently convince the SP of their legitimacy. When the
user connects to the SP over an anonymous channel she must present a valid nymble. The SP
records the nymble that was used during each session. In the event of user misbehaviour, it
presents a nymble to the NM, who then computes all subsequent nymbles for that user (and
hence prevents her from connecting to the SP for the remainder of the linkability window).

5.1 System Parameters

In this subsection we introduce the system parameters used in our protocols. In §6.1 we discuss
technical considerations in the selection of these parameters and suggest some reasonable
values. Table 2 and Table 3, located in the appendices, contain a comprehensive list of our
notation and system parameters, respectively, for ease of reference.

The system has a publicly known modulus n, where n is the product of two unknown (to
anyone) large safe primes, and N = 2n+1 is prime. Such a modulus can be generated using a
distributed protocol as described in [1,36], or with one-time trust in an entity which generates
it, such as used in the erstwhile RSA Factoring Challenge [30]. Under the assumption that
n is hard to factor, squaring modulo n is a one-way function. Thus, squaring modulo n is a
one-way function that admits efficient zero-knowledge proofs of knowledge of preimages [16].
We fix a, b ∈ QRN , the set of quadratic residues modulo N , so that loga b mod N is unknown.
Choosing (a, b) = (4, 9) is fine.

Since IP addresses tend to change frequently, the system-wide parameter ∆t specifies the
maximum time period for which an issued credential is valid. That is, after a time period
of ∆t has elapsed, the user must reauthenticate with the CM to obtain a fresh credential
encoding her current IP address, herein denoted IP.

As in the original Nymble, our scheme uses the concept of linkability windows. This
prevents a malicious NM and SP from computing a trapdoor for a user that can be used to
link that user’s actions indefinitely. The duration W of each linkability window is a parameter
that can vary from SP to SP based on their own policies; reasonable values for this parameter
might be, for example, twenty-four hours or one week. Each linkability window is indexed by
a value d, which is used in the computation of nymbles during that time period. For example,
d might be equal to the current year concatenated with the current day of the year, or the
current year concatenated with the current week of the year (if twenty-four hour or one-week
linkability windows are used, respectively). The method used to determine d for a given date
and time should be public and easily computable by any user. Each linkability window d is
further subdivided into Γ uniform-sized time periods, denoted τd,1, τd,2, . . . , τd,Γ . A reasonable
duration for these time periods might be fifteen minutes (in which case W = Γ · 15 minutes).
Their duration determines how often a user is able to unlinkably access the service, as exactly
one unique and unlinkable nymble is issued per IP address per time period in each linkability
window.

Each SP possesses a linking list L of the future nymbles associated with users who have
misbehaved; these nymbles will not be accepted. The SP also possesses a blacklist B, which
contains one canonical nymble for each user in the linking list (i.e., that user’s nymble for the
last time period of the linkability window), and is signed by the NM and published by the
SP. Before attempting to connect to the SP a user will download a copy of this blacklist and
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confirm that she is not presently banned. (This is important since otherwise, if a user does
not realize she is presently on the blacklist, the SP could link the user’s actions without her
knowledge.) When receiving a request for a connection from a Nymble user, the SP consults
the linking list to determine if the user is blacklisted. The techniques of [48] can be used to
ensure that the user receives an up-to-date blacklist.

In our description of the protocols we assume that the credentials are Camenisch-Lysyanskaya
(CL) credentials [3,13,14], although our approach could be easily adapted to other credential
systems. The CM’s public key is, therefore, the tuple (S,Z,R1, R2,m), where m = mpmq is
an `m-bit product of two large safe primes of equal size, 〈S〉 = QRm (i.e., S is a randomly
chosen generator of the group QRm) and Z,R1, R2 ∈R QRm are randomly chosen quadratic
residues modulo m. Here `m is a security parameter; in [3] the authors recommend `m = 2048.
The CM’s private key is the tuple (mp,mq, sk), i.e., the factorization of m and a secret Mes-
sage Authentication Code (MAC) key. For a distributed CM, each CM node would have an
independent key pair.

The NM has public key ρ = pq, where ρ is an `ρ-bit product of `B-smooth primes p
and q (that is, p − 1 and q − 1 are products of `B-bit primes), such that R = 4ρ + 1 is a
prime.6 It is required that ρ > n, but being just barely larger is sufficient. We note that a
different ρ can be used in conjunction with each SP and linkability window, but for brevity,
we will use a single ρ value in our descriptions. Here `B is chosen so that computing discrete
logarithms modulo ρ in subgroups of order ≈ 2`B is costly but feasible. In other words, given
knowledge of the factorization of p − 1 and q − 1, computing discrete logs modulo p and q
(and hence, modulo ρ) is feasible (but costly) using a technique like the parallel rho method
of van Oorschot and Wiener [37]. g is a generator of QRρ, and r and s are generators of the
order-ρ subgroup of Z∗R such that logr s is unknown. The NM’s private key is then (p, q) and
the factorization of φ(ρ) (into `B-bit primes), so Z∗ρ is a trapdoor discrete logarithm group
with the NM’s private key as its trapdoor.

Each SP is tied to a value h, which changes once per linkability window. Here h ∈ Z∗n and

it is required that h has large order in Z∗n. More precisely, we require that ord(h) ≥ (p−1)(q−1)
4

.
This requirement is guaranteed to hold if gcd(h, n) = gcd(h2 − 1, n) = 1, which can easily
be confirmed by any user. In practice, we also need to be sure that the relative discrete
logarithm between the h values of different SPs, or the same SP at different linkability
windows, is unknown. For this reason, we let h be the result of a strong cryptographic hash
function applied to a concatenation of d and the SP’s name (where d is the index of the
linkability window for which nymbles derived from h will be valid). In the unlikely event that
the result of the hash does not satisfy the order requirement, the hash is applied iteratively
until an appropriate value for h is produced.

Every pair (SP, τd,j) is associated with a context element denoted by ξSPd,j ∈ Z∗ρ. As the
notation suggests, this context element encodes the SP, linkability window, and time period
for which a particular nymble is valid; without it, the SP has no way to distinguish, for
example, nymbles issued for a time period that has already passed or those intended for a
different SP altogether. The values for ξSPd,j can be precomputed and must be known by both
the NM and the SP, as they are required in the VERBS-Sign and VERBS-Verify protocols.

6 We use 4ρ+ 1 because it is easy to see that p and q must be congruent to 2 mod 3, and so 2ρ+ 1 must be divisible
by 3.
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The client must also know ξSPd,j in order to verify its own nymbles. A reasonable value for ξSPd,j
might be as simple as a hash of the SP’s name, d, and j.7

5.2 Outline of the Scheme

In order for a user Alice to obtain service from an SP, she proceeds as follows:

1. Alice connects directly (i.e., not over an anonymizing network) to the CM to prove pos-
session of IP; the CM issues Alice a credential.

2. Alice connects anonymously (e.g. over the Tor network) to the NM. She proves to the NM
that she possesses a valid credential from the CM and presents the NM with the public
value h corresponding to the website to which she wishes to connect.

3. Alice computes a set of nymbles, with each nymble computation incorporating h and IP

and a particular time period τd,j. She proves to the NM (in zero-knowledge) that this was
done correctly to obtain a VERBS on each nymble.

4. Alice connects anonymously to the SP. She checks the blacklist to ensure she is not
presently banned, and then presents the SP with a nymble together with a VERBS from
the NM for that nymble.

5. The SP consults the linking list to ensure Alice is not banned, and then verifies that the
VERBS is valid and that the context element ξSPd,j corresponds to the current time period
and linkability window. Once satisfied, it stores the nymble in a log file and grants access
to Alice.

6. If Alice misbehaves during her session with the SP, the SP reports her misbehaviour to
the NM by presenting it with the nymble used by Alice during that session.

7. The NM uses this nymble to compute Alice’s subsequent nymbles for the remainder of the
linkability window. Each of these nymbles is added to the linking list, and the final nymble
is added to the blacklist. This allows the SP to detect any future connection attempts by
Alice (for the remainder the linkability window).

The following subsections present the details of each of the protocols involved.

5.3 Credential Issuing Protocol

When a user Alice wishes to gain anonymous access to an SP, she must first prove possession
of IP to obtain a valid signed CL-credential from the CM. The following protocol describes
this process.

1. Alice connects directly to the CM; this proves to the CM that Alice is in possession of IP.

2. The CM computes x = MACsk(IP) and texp = tcur + ∆t, where MACsk(·) denotes
a Message Authentication Code keyed by the CM’s private key sk8, tcur is the current
time, and texp is the expiration time of the credential to be issued. The tuple (x, texp) is
transmitted to Alice.

7 The security requirement is that the cube root modulo ρ of the ratio of any two of the ξ should be computable
only with negligible probability if the factorization of ρ is unknown.

8 A MAC of Alice’s IP address is used instead of her plaintext IP address to frustrate brute-force attacks performed
by a colluding NM and SP.
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3. The CM then issues Alice a CL-credential Cred(x, texp) = (A, e, v) encoding x and texp,
where e ∈R [2`e−1, 2`e−1 + 2`

′
e−1] is a randomly chosen prime, v ∈R Zφ(m), and A =(

Z
R1

x·R2
texp ·Sv

)1/e

mod m. Recall that R1, R2 and S and Z are part of the CM’s public

key. Here `e and `′e are security parameters; see §6.1 and [3] for more details.

5.4 Nymble Acquisition Protocol

Once a valid credential is obtained from the CM, the next step is for Alice to compute a set
of nymbles and receive VERBS on each of them from the NM. These nymbles are computed
using values associated with the SP to which she wishes to gain access, the time period and
linkability window in which they will be valid, and Alice’s IP address. Alice may choose to
request any number of nymbles, provided that this number does not cause her nymble set
to span multiple linkability windows and does not exceed a predefined limit K imposed by
the particular SP. Let k be the number of nymbles which Alice requests, and let j ≥ 1 be
the index of the time period τd,j within the current linkability window (d), for which the first
nymble will be valid.

1. Alice rerandomizes Cred(x, texp) as follows [3]:
(a) she chooses v′ ∈R {0, 1}`m+`∅ , where `∅ is a security parameter;
(b) she computes A′ = A · Sv′ mod m and v′′ = v − ev′ (in Z).
Her rerandomized credential is then Cred′(x, texp) = (A′, e, v′′) .

2. Alice computes the public value h using the name of the SP and the index d of the linkabil-
ity window during which she wishes to connect. That is, she computes h = hash(d||name),
where name is the canonical name associated with the SP. She also verifies that these
values satisfy the order requirements from §5.1, and iteratively reapplies the hash function
otherwise. She transmits (h, name, k, j) to the NM.

3. The NM verifies that k ≤ K and j + k ≤ Γ , and aborts otherwise.
4. Alice verifiably computes her unique seed value hj = hx2

j
as follows:

(a) she picks a random γ ∈ Zn, computes the Pedersen commitment (to hj) Yj = a

“
hx2

j
mod n

”
bγ mod

N , and transmits Yj to the NM;
(b) next she performs the statistical zero-knowledge proof of knowledge

PK


(e, v′′, x, texp, γ) :

Z ≡ R1
x ·R2

texp · Sv′′ · (A′)e mod m
∧ tcur ≤ texp

∧ Yj ≡ a

“
hx2

j
mod n

”
bγ mod N

∧ x ∈ ±{0, 1}`MAC

∧ texp ∈ ±{0, 1}`t
∧ e− 2`e−1 ∈ ±{0, 1}`′e+`∅+`H+2


.

In the case of a distributed CM, this proof is repeated once for each CM node, except
that the third statement is replaced by a single nest proof to the sum of the x values
received from each CM. The first statement in this proof of knowledge convinces the
NM that Alice does indeed possess a credential from the CM; the second statement
asserts that this credential is not yet expired; the third statement (a nest proof)
proves that Yj does indeed encode the secret x from the credential and the first time
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period for which the credential should be valid; the remaining three statements are
just length checks to show that the credential is validly formed. For full details on how
this statistical zero-knowledge proof is performed we refer the reader to §4 and to [3].

If the proof succeeds, the NM is convinced that Yj is a Pedersen commitment to hj =

hx2
j

mod n and encodes the same secret x as Alice’s credential; otherwise, the NM termi-
nates. Note that the NM has learned no nontrivial information regarding the values of x
and hj.

5. Alice computes her sequence of nymbles using hj as a seed value. This proceeds as follows:

(a) Alice computes the sequence (hj+i)
k−1
i=1 where hj+i =

(
hj+(i−1)

)2
mod n = hj

2i mod n.
Note that given any element of this sequence, it is easy to compute the next ele-
ment, but being able to compute the previous element is equivalent to factoring n [35,
Chap. 3]. She computes Pedersen commitments Yj+i = ahj+ibγj+i mod N (γj+i ∈R Zn)
to each hj+i and transmits them, along with zero-knowledge proofs of multiplication
to show that they were computed correctly, to the NM.

(b) The NM verifies each of the proofs, and terminates if any proof fails.
6. Alice computes (but does not send) her nymbles νj+i = ghj+i mod ρ, for 0 ≤ i < k. (Here,

the exponent is just taken as an integer in [1, n).) She computes (αj+i, Sj+i, Πj+i) =
VERBS-Blind(g, Yj+i, νj+i, γj+i), and sends each blinded value Sj+i and proof Πj+i to the
NM.

7. For 0 ≤ i < k, the NM computes (or looks up) its context element ξSPd,j+i, and computes
the blind signature σ′j+i = VERBS-Sign(Sj+i, p, q, ξ

SP
d,j+i, Πj+i) (Recall that p, q is part of

the NM’s secret key, and ρ = pq.)
8. Alice unblinds the blind signatures σ′j+i by computing

σj+i = VERBS-Unblind(σ′j+i, αj+i) for 0 ≤ i < k.
9. If all steps are completed successfully, the tuple (νj+i, σj+i) is a valid nymble for time

period j + i for linkability window d and the given SP. Alice can verify the validity of the
nymble by checking VERBS-Verify(νj+i, σj+i, ξ

SP
d,j+i) .

10. If j+k−1 6= Γ (i.e., τd,j+k−1 is not the last time period in the current linkability window),
then Alice also computes νΓ . This is the value that the NM will compute and place on
the blacklist if Alice is, or becomes, banned from the SP. Note that the NM need not see
or verify this value, nor provide a signature on it, since Alice will never be expected to
present it to the SP.

5.5 Nymble Showing Protocol

The nymble showing protocol is extremely simple; Alice presents her nymble to the SP, the
SP confirms that it is valid, that the associated context element ξSPd,i matches the current
time period and linkability window, and that the nymble does not appear on the linking list.
If each of these conditions is met, Alice is granted access.

1. Alice anonymously queries the NM for the current version number of the blacklist, and
computes the current linkability window and time period τd,i.

2. Alice then connects anonymously to the SP and requests a copy of the blacklist B. She
confirms its legitimacy and that it is up-to-date by verifying the version number and a
signature from the NM encoded in the blacklist. Once convinced of the freshness of the
blacklist, she verifies that she is not presently blacklisted. More specifically, she checks
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that νΓ 6∈ B. If she discovers that she is on the blacklist, she disconnects immediately.
In this case, the SP learns only that “some blacklisted user” attempted to connect. (Or,
perhaps, that some non-blacklisted user changed her mind before proceeding with the
remainder of the protocol — or downloaded the blacklist for some other unknown reason.
Since connections are assumed to be anonymous, the SP can only speculate as to the
cause of the event.)

3. If she is not on the blacklist, Alice transmits the tuple (νi, σi) to the SP.

4. The SP consults the linking list L and confirms that Alice is not on the blacklist by
checking that νi 6∈ L. If this check fails, the SP terminates and Alice is denied access.

5. The SP confirms that the given nymble is valid for the current time period i and linkability
window d by confirming that VERBS-Verify(νi, σi, ξ

SP
d,i ) is true. If so, Alice is granted access

for the remainder of the time period; otherwise, Alice is denied access.

6. The SP adds the tuple (νi, σi, i) to a log file, so that if it determines at a later time (in
the current linkability window) that Alice’s behaviour in τd,i constitutes misbehaviour, it
can present it to the NM to have Alice blacklisted.

5.6 Blacklisting Protocol

Suppose that Alice misbehaves in time period i∗ and her misbehaviour is discovered in time
period i′ of the same linkability window. In this case, the SP initiates the following protocol
with the NM to have Alice added to the blacklist.

1. The SP transmits the tuple (SP, νi∗ , σi∗ , i
∗, h,B,L) to the NM.

2. The NM verifies that h is valid for the SP and the current linkability window, that B
and L are up-to-date, and that VERBS-Verify(νi∗ , σi∗ , ξ

SP
d,i∗) is true. If so, the NM uses its

private knowledge (the factorization of ρ = pq and the factorization of φ(ρ) into `B-bit
primes) to solve the discrete logarithm of νi∗ = ghi∗ mod ρ with respect to g to recover
the exponent hi∗ ; otherwise, the NM terminates.

3. The NM then computes hi∗+1, . . . , hΓ using the recurrence equation hi+1 = h2
i mod n and

computes νi′ , . . . νΓ as νi = ghi mod ρ.

4. The NM computes the set L = {νi′ , νi′+1, . . . , νΓ} and then computes the new linking list
L′ = L ∪ L and the new blacklist B′ = B ∪ {νΓ}.

5. The NM increments the version number and signs the new blacklist and then returns both
the signed blacklist and the linking list to the SP.9

6 Implementation

We have implemented the key components of our system in order to measure its performance.
In the next subsection we discuss reasonable choices for various system parameters, while in
the following subsection we present performance benchmarks carried out using these values.

9 We adopt the same approach as the original Nymble system in order to ensure to the user that the blacklist they
view is up-to-date, however, we omit many of the details here for brevity. In a later version of Nymble the authors
propose the use of “daisies” to ensure blacklist freshness. This approach could easily be used in our scheme as well.
The interested reader should consult [29,47,48] for these details.
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6.1 Parameter Choices

First let us examine the relevant computations in more detail. In order to place a user on the
blacklist, the NM needs to compute a discrete log in a trapdoor group. We intentionally make
this non-trivial in order to deter bulk deanonymization (in the sense that the users would
become linkable, but not have their identities revealed); our target is about one minute of
computation (wall-clock time) per discrete log computation. We also seek to ensure that,
without the NM’s private key, factoring and computing discrete logs mod ρ are infeasible;
thus, we suggest setting `ρ = 1536. The CM’s public key n should be as large as possible,
while ensuring that n < ρ, so we pick `n = 1534.

The discrete log computation takes about c · `ρ/`B · 2`B/2 modular multiplications, which
are almost completely parallelizable, for some constant of proportionality c. If the NM has
a parallelism factor of P (i.e., P is the number of cores available to the NM), this will be

about `ρ
`B
· c·2`B/2

P ·M minutes to compute a discrete log, where M is the number of modular
multiplications that can be computed by one core in one minute. So we want to choose `B
such that

2`B/2

`B
≈ T ·M · P

`ρ · c
, (1)

where T is the desired wall-clock time (in minutes) to solve a discrete log. (In §6.2, we measure
c ≈ 0.57 and M to be about 23.1 million for `ρ = 1536.) Thus, for T = 1 and P = 32 we get
`B ≈ 50; for T = 1 and P = 64 we get `B ≈ 52.

On the other hand, it takes at least about 3
5
· 2`B modular multiplications to factor ρ,

taking advantage of its special form by using Pollard’s p−1 factoring algorithm [39]. However,
this algorithm is inherently sequential [9]; only a small speedup can be obtained, even with

a very large degree of parallelism.10 This means it will take about 3
5
· 2`B
M

minutes to factor ρ.
Assuming M = 23100000, then `B = 50 yields over 55 years to factor ρ, and `B = 52 yields
over 222 years to factor ρ. (Remember again that this is wall-clock time, not CPU time.)
Note also that a different ρ can be used for each SP and for each linkability window, thus
reducing the value of expending even that much effort.

The reason we seem to be making the unusual claim that 250 security is sufficient is
twofold: first, a minor point, these are counts of multiplications modulo an `ρ-bit modulus,
each of which takes about 212.8 cycles for our suggested `ρ = 1536; thus, we are really
proposing about 262 security here. More importantly, these are counts of sequential operations.
When one typically speaks of 280 security (of a block cipher, for example), one assumes that
the adversary can take advantage of large degrees of parallelism, which is not the case here.

Moreover, as noted in [33, §4], since the complexity of factoring increases with 2`B while the
complexity of computing discrete logs increases with 2`B/2, as cores get faster (M increases)
and more numerous (P increases), the time to factor ρ only goes up with respect to the time
to compute discrete logs. In particular, if M can be increased by a factor of f , then this leads
to a net security increase of a factor of f , whereas if P can be increased by a factor of g, this
leads to a net security increase of a factor of g2. These calculations suggest that the Nymbler
construction will get even more secure over time.

10 Of course, with arbitrarily large parallelism, other algorithms can factor ρ more quickly without taking advantage
of the special form of ρ; massively parallel trial division is an extreme example.
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Our implementation uses the Fiat-Shamir heuristic to make each of the zero-knowledge
proofs noninteractive, which results in one extremely expensive computation in the nest
proof (which is by far the most expensive part of the protocol). The cost of this computation
scales linearly with the bit length of the hash function used to compute the challenge. For
this reason, we introduce the parameter `c to specify the bit length of the challenge. In our
implementation we use `c = 30 — which is somewhat small, since a user is only expected to
do 2`c work to forge a nymble — but we note that `c can be safely reduced to, say, `c = 20,
without reducing security if the noninteractive protocol is replaced by an interactive one.
This would result in about a one-third reduction in the computation time for the NM to
verify the zero-knowledge proofs from a user.

Suggested values for parameters related to CL-credentials are taken directly from [3]. In
particular, reasonable choices are `m = 2048, `∅ = 80, `e = 596, `′e = 120, and `H = 256. We
also suggest using `MAC = 256 and `t = 24.

The various security parameters and their recommended values are listed in Table 3 in
Appendix D for easy reference.

6.2 Performance Evaluation

In this subsection we present measurements obtained with our C++ implementation of the
protocol. These include the average times taken to: 1) compute a nymble (and the associated
proof of correct computation) at the client; 2) verify the client’s proofs and issue a VERBS
at the NM; 3) verify the signature on a nymble at the SP; and, 4) solve an instance of the
discrete log problem at the NM. In order to compute M used in the previous subsection, and
for comparison with other restricted blind signature schemes, (e.g., [2,5,7,6,13,14,15,17]),
we also show the time required to compute modular multiplications and exponentiations,
respectively. Note that the bulk of the computation in our scheme is in the Nymble Acquisition
Protocol — particularly in computing and verifying the zero-knowledge proofs.

We emphasize that our implementation is incomplete and unoptimized; it is used simply
to demonstrate that both the time-sensitive and cost-intensive portions of our protocols
can be carried out in an acceptable amount of time. In particular, there is still significant
room for optimizations in our implementation of the VERBS-Blind algorithm and perhaps
elsewhere in the protocols. For example, in order for the user to prove correct exponentiation
of a committed value, our prototype implementation uses the naive “square-and-multiply”
algorithm, but more efficient algorithms can be plugged in very simply. Moreover, all of our
computations are single-threaded despite the highly parallelizable nature of the protocols.

Table 1. Timings for essential computations in Nymbler.
Operation Host Mean Time Trials Reps/trial

Compute k nymbles Client 360 ms + 397k ms (R = .9974) 10 1
Issue k blind signatures NM 300 ms + 252k ms (R = .9803) 10 1

Verify signature SP 11.2 µs ± 0.3 µs 10 100,000
Solve DL instancea NM 25 m 38 s ± 2 m 16 s 10 1

Modular exponentiationb — 403 µs ± 6 µs 10 100,000
Modular multiplicationc — 2.59 µs ± 0.02 µs 10 100,000

a This is the time to solve discrete logs with the parallel rho method on a single core and a 1536-bit 50-smooth
modulus; using 32 cores should reduce this time to about 48 s ± 5 s. Solving for c in §6.1, Equation 1 with this
value yields c ≈ 0.57.

b Computed using a 1536-bit base, 160-bit exponent and 1536-bit modulus.
c Computed using random 1536-bit multiplicands and 1536-bit modulus; this yields M ≈ 23, 100, 000 ± 100, 000

modular multiplications per minute.
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Finally, we note that the as-of-yet unimplemented components of the system are not expected
to significantly alter these measurements.

The performance benchmarks in Table 1 were obtained on a 2.83GHz Intel Core 2 Quad
Q9550 running Ubuntu 9.10 64-bit.

These measurements compare favourably with BLAC and PEREA. In BLAC, the time
required for a user to construct a proof that she is not banned, and for the SP to verify the
proof, scales linearly with the size of the blacklist. In [44] the authors give measurements
which indicate that the cost is about 1.8 ms and 1.6 ms per entry on the blacklist, at the user
and SP, respectively. Thus, when the blacklist reaches a size of 385 entries11, the cost per
authentication in BLAC is roughly equal to the cost of obtaining a nymble in our scheme.
(Half of the cost in our scheme is constant overhead which can be amortized over the cost of
acquiring several nymbles.) We also note that, in this case, the cost at the SP is about 142
times higher in BLAC. In PEREA (with an authentication window of 30), [46] reports that
an authentication takes about 160 ms at the SP (regardless of blacklist size) and up to 7 ms
per entry on the blacklist for the user.

7 Conclusion and Future Work

We have presented a new system, inspired by Nymble, for providing an anonymous imple-
mentation of IP blocking over an anonymity network. Our approach is based on anonymous
credentials, verifier-efficient restricted blind signatures, and a trapdoor discrete logarithm
group. Compared to the original Nymble, our scheme severely limits the ability of malicious
third parties to collude in order to break a user’s anonymity. Although our system is not as
efficient as the original Nymble, most of the added cost has been introduced in the Nymble
Acquisition Protocol; verifying a nymble’s authenticity at the SP is still very inexpensive.

One may pursue several directions to further improve our system.12 We conclude by
discussing several of these directions.

System-wide banning of cheaters. If the NM detects that a user has attempted to cheat in
the Nymble Acquisition Protocol, we would like to be able to temporarily ban this user from
any further use of Nymbler. One way that this could potentially be accomplished would be
to use another Nymbler-like system (i.e., a meta-Nymbler) to allow blacklisting of Nymbler
users from the system; however, this approach is actually overkill. Since this type of mis-
behaviour can always be detected during a session, a simpler technique, such as Unlinkable
Serial Transactions [41,42], would be sufficient.

Efficient blacklist sharing without weakening of privacy. In their proposal of the BLAC
scheme [44,45], Tsang et al. introduce the concept of blacklist sharing. The basic idea here is
to allow two or more SPs to share a common blacklist13 while still allowing concurrent and
unlinkable access to these sites by unbanned users. However, as noted in [44,45], the notion

11 As noted in Appendix A, the average size of the blacklist on Wikipedia is currently around 1200 entries — more
than a factor of four larger than this figure.

12 The interested reader should consult the extended version of this paper [27] for a more comprehensive list of future
research directions.

13 For example, Wikipedia and its sister sites Wikibooks (http://www.wikibooks.org/), Wiktionary (http://www.
wiktionary.org/), Wikiquote (http://www.wikiquote.org/), etc. may wish to share a common blacklist.
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of blacklist sharing introduces a number of potential attack vectors and any solution that
attempts to introduce this feature must be designed with extreme caution.

NAT-aware IP blocking. The general idea here is that large institutions, like universities,
tend to have large numbers of users sharing a single IP address. Such an institution might
be granted permission to run its own ‘internal’ CM and NM that issues different nymble
sets to different internal IP addresses. If a particular internal IP address is banned due to
misbehaviour, other computers within the institution would not be banned (indeed, they
would remain unlinkable), however if some threshold K of internal IP addresses behind the
same external IP address were banned, this would be detected and all subsequent connections
from that external IP address would then become banned. It might be possible to accomplish
this by incorporating ideas from K-time anonymous authentication schemes (see [12], for
example).

Allow banning of entire subnets. It would be useful to allow an SP to ban an entire subnet
instead of a single IP address (on a case-by-case basis). There does not appear to be any
straightforward way to accomplish this in the currently proposed scheme; however, it does
seem as though it would be quite a useful feature.

Increase flexibility of linkability windows. It would be useful to devise a mechanism whereby
users could be banned for differing lengths of time based on the severity of their misbehaviour.
This could be accomplished (in theory) by having the user compute (and obtain VERBS on)
her first and last nymble for the next K linkability windows, and requiring it to include a
randomized copy of this data in each nymble presented to the SP. However, more careful
analysis is required to determine the privacy impact of such a modification.

Utilize other types of unique resources. Although our scheme makes use of IP addresses as a
resource which uniquely identifies a user, it could easily be adapted to work with other types of
resources. Some obvious examples are government issued e-Passports, e-cash, computational
puzzles, and SMS messages.

Decentralized CM. Eventually, we envision that the CM services may be offered by the Tor
directory servers, or the Tor entry nodes themselves, as they are already trusted with users’
IP addresses. If we use P-signatures [2] instead of CL-signatures in the credentials obtained
from the CM, each entry node can have its own public key, certified by the directory server,
and the NM will not be able to tell which entry node certified the user’s IP address. There
are nontrivial issues with this simple proposal, however.

Optimize and complete the implementation. Although we have already developed some key
pieces of our system, our present implementation only serves as a proof of concept. In order
for our system to be usable on the real deployed Tor network, this implementation would
have to be expanded into an industrial-grade software package. This would involve building
both the infrastructure necessary to support the service, as well as the server-side and client-
side tools needed to use it. In particular, it would be useful to develop both IRC and HTTP
proxy servers, as well as web browser and IRC client support modules (likely in the form of
plug-ins for existing clients).
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A Wikipedia Blacklist Statistics

This appendix contains some back-of-the-envelope calculations regarding edit and blocking
statistics from Wikipedia.

To the best of our knowledge, the last time that any of the statistics regarding the
number of edits by anonymous users were compiled was 09/2008i,ii, while complete statistics
of interest to us do not appear to have been compiled since 09/2007. Fairly detailed blocking
statistics from before this date are availableiii, but are of limited use to us as the site has
since experienced tremendous growth.

Therefore, we utilize data obtained from [i,ii] and the Wikipedia Block Logiv to compile
our own statistics:

09/2006: 8,101 total users were blocked (212 of which were anonymous users); 484,897
anonymous users made edits; and, 214,792 registered users made edits.

09/2007: 6,369 total users were blocked (465 of which were anonymous users); 617,951
anonymous users made edits; and, 249,672 registered users made edits.

09/2008: 6,798 total users were blocked (668 of which were anonymous users); 621,238
anonymous users made edits; and, 230,590 registered users made edits.

Unfortunately, the data for 2006–2008 does not provide a meaningful picture for the
current behaviour. For example, in 09/2009 there were 7,241 total users blocked (1,285 of
which were anonymous users); while, on the other hand, no statistics are available regarding
how the number of edits scaled comparatively.

Nonetheless, using figures from 09/2008 we can estimate the computational power required
to keep up with the rate at which users are blocked (under the assumption that all anonymous
users switch to using Nymbler).

We will assume that 467 seconds of CPU time is required to solve an instance of the
discrete log (this figure is taken directly from Table 1 in §6.2). There are 30 days, hence a
total of 2,592,000 seconds, in the month of September. Note that, of the 6,798 users that
were blocked in 09/2008, all but 688 were blocked by username, as opposed to by IP address.
Thus, we need only consider the 668 anonymous users, which yields a total CPU time of

668 · 467 seconds = 325316 seconds,

or just over 3.76 days. In other words, if a single core were allocated by the NM to handle
all Wikipedia blocks, it would have been idle approximately 87.4% of the time.

i http://en.wikipedia.org/wiki/Wikipedia:Editing_frequency/All_anons
ii http://en.wikipedia.org/wiki/Wikipedia:Editing_frequency/All_registered
iii http://en.wikipedia.org/wiki/User:Emijrp/Blocking
iv http://en.wikipedia.org/w/index.php?title=Special:BlockList

22

http://en.wikipedia.org/wiki/Wikipedia:Editing_frequency/All_anons
http://en.wikipedia.org/wiki/Wikipedia:Editing_frequency/All_registered
http://en.wikipedia.org/wiki/User:Emijrp/Blocking
http://en.wikipedia.org/w/index.php?title=Special:BlockList


B VERBS protocols

VERBS-Blind
Algorithm 1 VERBS-Blind(g, C(x), x[, γ]) [Run by Client]
Input: g, C(x), x[, γ] [g ∈ Z∗ρ; R = 4ρ+ 1 is prime]
Output: α, S, Π
1: Compute the Feldman commitment ν = gx; initialize Π to empty
2: Create a Pedersen commitment CP(ν) (mod R) to the Feldman commitment ν and append it, and its nest proof

that ν opens to the same x as C(x), to Π
3: Compute CP(ν2), and append it, with mult. proof, to Π
4: Compute CP(ν2 + 1)
5: Choose α ∈R Z∗ρ [Blinding factor]
6: Compute CP(α), and append it, with proof of knowledge of discrete logarithms, to Π
7: Compute CP(α2), and append it, with mult. proof, to Π
8: Compute CP(α3), and append it, with mult. proof, to Π
9: Compute CP((ν2 + 1)α3), and append it, with mult. proof, to Π

10: Compute S = (ν2 + 1)α3 mod ρ [Open commitment]
11: return (α, S,Π)

VERBS-Sign
Algorithm 2 VERBS-Sign(S, p, q, ξ,Π) [Run by NM]
Input: S, p, q, ξ, Π
Output: σ′ or ⊥
1: if (All proofs in Π are correct) then

2: return σ′ = (ξ · S)
1
3 mod ρ [uses knowledge of p, q]

3: else
4: return ⊥
5: end if

VERBS-Unblind
Algorithm 3 VERBS-Unblind(σ′, α) [Run by Client]
Input: σ′, α
Output: σ
1: return σ = σ′ · α−1 mod ρ

VERBS-Verify
Algorithm 4 VERBS-Verify(ν, σ, ξ) [Run by SP]
Input: ν, σ, ξ
Output: b ∈ {true, false}
1: return σ3 mod ρ

?
= ξ · (ν2 + 1) mod ρ
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C Notation

Table 2. Notation

Notation Meaning

n RSA modulus of unknown (safe prime) factorization

N 2n+ 1; a prime number

(a, b) quadratic residues modulo N , with logab mod N unknown

ν a nymble

m RSA modulus for CL-credentials; part of CM’s public key

(mp,mq) prime factors of m; part of CM’s private key

sk a MAC key; part of CM’s private key

(S, Z, R1, R2) quadratic residues modulo m; part of CM’s public key

(A, e, v) components of a user’s CL-credential

tcur the current time

texp the expiration time of a credential: tcur +∆t

∆t the length time for which a credential is valid

ρ an `B-smooth RSA modulus; the NM’s public key

(p, q) `B-smooth factors of ρ; factorization is NM’s private key

P 4ρ+ 1; a prime number

g generator of a large cyclic subgroup modulo ρ

d index of the current linkability window; a function of the date

h generator of a large cyclic subgroup modulo n; hash(d||SP )

Γ the number of time periods in a linkability window

k the number of nymbles a user wishes to acquire

W the duration of a linkability window

τd,i the ith time period of linkability window d

ξSPd,j context element for (SP, τd,j); an element of Z∗ρ
B the blacklist of an SP; a list of nymbles

L the linking list of an SP; a list of nymbles

(s, r) known group elements; logs r is unknown

γ random exponent for Pedersen commitments

CP(x) Pedersen commitment to x; CP(x) = sxrγ

CF(x) Feldman commitment to x; CF(x) = sx

C(x) commitment to x; may be either Feldman or Pedersen

D Security Parameters

Table 3. Security Parameters

Parameter Meaning Bit length

`ρ bit length of ρ 1536

`B bit length of the factors of φ(ρ) 50

`c bit length of the challenge in nest proofs 30

`n bit length of RSA modulus of unknown factorization (n) 1534

`m bit length of RSA modulus for CL-credentials (m) 2048

`MAC bit length of the output of the hash function used to encode IP addresses 256

`t bit length of texp 24

`e bit length of the prime exponent (e) value in CL-credentials 596

`′e bit length of the interval the e values are taken from 120

`∅ security parameter for statistical zero-knowledge in CL-signatures 80

`c bit length of the range of the hash function used for Fiat-Shamir heuristic in nest proofs 30

`H bit length of the domain of the hash function H used for the Fiat-Shamir heuristic 256
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