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Abstract. The retrieval of information from a remote database server
typically demands providing the server with some search terms to as-
sist with the retrieval task. However, keeping the search terms private
without undermining the server’s ability to retrieve the information is
desirable for many privacy-preserving systems. Private information re-
trieval (PIR) provides a cryptographic means for retrieving data from a
database without the database or database administrator learning any
information about which particular item was retrieved.
A study of the computational practicality of PIR by Sion and Carbunar
in 2007 concluded that no existing construction is as efficient as the triv-

ial PIR scheme — the server transferring its entire database to the client.
While often cited as evidence that PIR is impractical, that paper did not
examine multi-server information-theoretic PIR schemes, which are or-
ders of magnitude more computationally efficient; further, a single-server
lattice-based scheme by Aguilar-Melchor and Gaborit has recently been
introduced, which is also much more computationally efficient than the
schemes examined by Sion and Carbunar. In this paper, we report on a
performance analysis of the above single-server lattice-based PIR scheme
as well as two multi-server information-theoretic PIR schemes by Chor
et al. and by Goldberg. Using analytical and experimental techniques,
we find the end-to-end response times of these schemes to be one to three

orders of magnitude (10–1000 times) smaller than the trivial scheme for
realistic computation power and network bandwidth. Our results extend
and clarify the conclusions of Sion and Carbunar for multi-server PIR
schemes and single-server PIR schemes that do not rely heavily on num-
ber theory.

1 Introduction

The retrieval of information from a remote database server typically demands
providing the server with clues in the form of data indices, search keywords, or
structured queries to assist with the retrieval task. However, keeping retrieval
clues private without undermining the server’s ability to retrieve the desired

⋆ This is an extended version of our Financial Cryptography 2011 paper [36].
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information is a requirement that is common for user-centric privacy-preserving
systems. Private information retrieval (PIR) provides a means of retrieval that
guarantees access privacy, by preventing the database administrator from being
able to learn any information about which particular item was retrieved. In
other words, PIR hides the clues in the user’s query, without inhibiting retrieval
functions.

Today’s most developed and deployed privacy-preserving techniques, such
as onion routers and mix networks, are limited to anonymizing the identity of
users. PIR, on the other hand, by protecting the contents of queries, can protect
important application domains like patent databases, pharmaceutical databases,
online censuses, real-time stock quotes, location-based services, online behavioral
analysis for ad networks, and Internet domain registration [4, 20, 26, 38].

Chor et al., in defining the notion of PIR, proved that the trivial PIR scheme

of transferring the entire database to the user and having him retrieve the
desired item locally has optimal communication complexity for information-
theoretic privacy protection with a single server. [13, 14] However, more efficient
information-theoretic solutions with sub-linear communication complexity were
shown to exist if multiple, non-colluding servers hold copies of the database. They
proposed a number of such multi-server information-theoretic PIR schemes [13,
14], including a simple ℓ-server scheme transferringO(

√
n) bits, a 2-server scheme

requiringO(n1/3) bits transfer, a general ℓ-server scheme with O(n1/ℓ) bits trans-
fer and a (1

3
log2 n+ 1)-server scheme transferring 1

3
(1+o(1))·log2

2
n·log2 log2(2n)

bits, where n is the size of the database in bits and ℓ ≥ 2 is the number of
servers. Subsequent work has mostly focused on improving PIR’s communica-
tion complexity bounds [13, 14], while some others [4, 8, 19, 22] have addressed
such problems as using amortization and preprocessing to reduce server-side
computational overheads and improving query robustness, amongst others.

Chor and Gilboa [11] were the first to relax the absolute privacy offered
by multi-server information-theoretic PIR by using cryptographic primitives.
They proposed a family of 2-server computationally private PIR schemes by
making intractability assumptions on the existence of pseudorandom generators
or one-way functions. Schemes in this family have a worst-case communication
complexity of O(nǫ), for every ǫ > 0. In the same year (1997), Kushilevitz
and Ostrovsky [28] proposed the first single-server PIR scheme with a similar
communication complexity by assuming quadratic residuosity decisions modulo
a composite of unknown factorization are hard. Thus, the best protection of-
fered by any non-trivial single-server PIR scheme is computational privacy, but
database holders do not need to replicate their data to external servers. Sev-
eral other single-server PIR schemes followed, each making some intractability
assumption based on the cryptographic primitive used. These include schemes
based on group-homomorphic encryption [43], length-flexible additive homomor-
phic public-key cryptosystems [29], Φ-Hiding Assumption (ΦHA) trapdoor pred-
icates (the hardness of deciding if a small prime is a factor of the totient of a
composite integer of unknown factorization) [10], and more recently, a lattice-
based scheme by Aguilar-Melchor and Gaborit [2].
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In 2007, Sion and Carbunar [40] considered the practicality of single-server
computational PIR schemes and concluded that PIR would likely remain several
orders of magnitude slower than an entire database transfer — the trivial PIR
scheme — for past, current, and future commodity general-purpose hardware
and networks. They based their result on the cheaper cost of transferring one
bit of data compared to the cost of PIR-processing that bit using modular mul-
tiplication on such hardware. The PIR scheme of Kushilevitz and Ostrovsky,
which was used in their comparison, requires one modular multiplication per
database bit. They projected future increases in computing performance and
network bandwidth using Moore’s Law [31] and Nielsen’s Law [34] respectively,
and argued that improvements in computing performance would not result in
significant improvements in the processing speed of PIR because of the need
to use larger key sizes to maintain security. The significance of this work lies
in establishing that any computational PIR scheme that requires one or more
modular multiplications per database bit cannot be as efficient as the trivial PIR
scheme.

However, it is not clear whether the conclusions of Sion and Carbunar [40]
also apply to multi-server PIR schemes as well as single-server PIR schemes that
do not rely heavily on number theory (i.e., modular multiplications). This is an
important clarification to make because PIR-processing with most multi-server
PIR schemes and some single-server PIR schemes [2, 45] costs much less than
one modular multiplication per database bit. Besides, the projections from [40]
assume that all PIR schemes make intractability assumptions that would ne-
cessitate the use of larger keys to guarantee security and privacy when today’s
hardware and networks improve. However, multi-server PIR schemes offering
information-theoretic privacy will continue to guarantee security and privacy
without requiring key size changes irrespective of these improvements.

In this paper, we revisit the computational practicality of PIR in general by
extending and clarifying the results in [40]. First, we provide a detailed perfor-
mance analysis of a recent single-server PIR scheme by Aguilar-Melchor and Ga-
borit [1–3], which has attempted to reduce the cost of processing each database
bit by using cheaper operations than modular multiplications. Unlike previous
schemes that rely heavily on number theory, this particular scheme is based on
linear algebra, and in particular, lattices. The authors introduced and based the
security of the scheme on the differential hidden lattice problem, which they
show is related to NP-complete coding theory problems [47]. They proposed and
implemented the protocols, but their analysis was limited to server-side com-
putations by the PIR server [1] on a small experimental database consisting of
twelve 3 MB files. It is unclear how well the scheme compares against the trivial
PIR scheme for realistic database sizes. Using the PIR scheme of Kushilevitz and
Ostrovsky and updated parameters from [40], we first reestablished the result
by Sion and Carbunar that this scheme is an order of magnitude more costly
than the trivial PIR scheme. We also provide a new result that shows that the
single-server PIR scheme in [2] offers an order of magnitude smaller response
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time compared to the trivial scheme, thus extending the conclusions of Sion and
Carbunar about computational PIR schemes.

Second, we explore the case of multi-server information-theoretic PIR, which
is yet to be considered by any previous study. Considering multi-server PIR is
important because such schemes do not require costly modular arithmetic, and
hence will benefit immensely from advances in computing and network trends.
We derive upper-bound expressions for query round-trip response times for two
multi-server information-theoretic PIR schemes by Chor et al. [13] and by Gold-
berg [22], which is novel to this paper. Through analytical and experimental tech-
niques we find that the end-to-end response times of multi-server PIR schemes
to be two to three orders of magnitude (100–1000 times) smaller than the trivial
scheme for realistic computation powers and network bandwidths.

1.1 Preliminaries

We begin by outlining a few building blocks, some of which are based on [40].
These include the hardware, network bandwidth between the user and the server,
and execution time estimates for modular multiplication.
Hardware description. All but one of our experiments were performed on
current server hardware with two quad-core 2.50 GHz Intel Xeon E5420 CPUs,
32 GB of 667 MHz DDR2 memory, 6144 KB cache per core, an Adaptec 51645
RAID controller with 16 1.5TB SATA disks, and running Ubuntu Linux 9.10.
The memory bandwidth is 21.344 GB/s and the disk bandwidth is at least
300 MB/s. We note that these machine characteristics are not unusual for
database server hardware; this machine cost less than $8,000. We ran the GPU
implementation of the scheme in [2] on a machine with a Tesla C1060 GPU,
8 GB RAM, 116 MB/s disk bandwidth, and running Ubuntu Linux 9.10.
Network. Three types of network setups were considered: average home-user
last-mile connection [24], Ethernet LAN, and commercial high-end inter-site con-
nections [25, 42, 44]. Table 1 shows various network connection speeds (Mbps)
since 1995, when PIR was introduced. The values up until 2006 are reused
from [40], while we provided the subsequent values based on the capacity of
today’s network bandwidths.1

Modular multiplication. The work in [40] uses Dhrystone MIPS ratings for
Pentium 4 CPUs in order to estimate tmul, the time it takes to compute a
modular multiplication — the building block for the PIR scheme of Kushilevitz
and Ostrovsky [28]. Such CPUs have long been retired by Intel and are no
longer representative of today’s multi-core CPUs. In addition, the Dhrystone
benchmark, which found widespread usage at the time it was introduced in

1 The company Ookla Net Metrics launched Speedtest.net in 2007 and the
Pingtest.net tool in 2009. Recently, it has made Internet bandwidth data
based on tests from various locations around the world available to researchers
for free download (http://www.netindex.com). The dataset covers 2008 to the
present (Source: http://www.itworld.com/networking/108922/internet-speedtest-
results-going-public).
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Table 1. Bandwidth estimates (in Mbps) for 1995 to 2010. We adapted values up to
2007 from [40] and those after 2007 are based on the Internet speed data for Canada
and US from [37].

Network types 1995 1997 1998 1999 2001 2005 2006 2007 2008 2009 2010

End-user(B) .028 .056 .768 1 4 6 6 6 8 9
Ethernet LAN(B2) 10 100 1000 10000 10000 10000 10000 10000 10000
Commercial(B3) .256 .768 1 10 100 1000 1500 1500 1500 1500 1500

1984, is now outdated. According to Dhrystone benchmark author Reinhold
P. Weicker, it can no longer be relied upon as a representative benchmark for
modern CPUs and workloads [46].

Instead, we measure the time directly. Using the key size schedule from
RSA Labs [27], NIST [32], and NESSIE [33], the current recommended key
size for the security of the Kushilevitz and Ostrovsky scheme is 1536 bits. We
experimentally measured the value of tmul on the server hardware described
above. After repeated runs of the measurement code and averaging, we obtained
tmul = 3.08± 0.08 µs.
Projections. Moore’s Law [31] has an annual growth rate of 60%, which sur-
passes the 50% growth rate of Nielsen’s Law [34]. While the faster growth rate of
computing capabilities does not necessarily favour computational single-server
PIR schemes, it does favour multi-server information-theoretic PIR schemes.
Therefore, advances in computing and network trends will not outdate our re-
sult regarding the practicality of multi-server PIR schemes.

2 Related Work

A PIR scheme protects the access privacy of users to databases by providing a
means to query the database without revealing any information about the item
that was retrieved. Every PIR scheme consists of three basic algorithms: query
generation, response encoding, and response decoding. Given an n-bit database
X , organized into r b-bit blocks, a user intending to hide his access pattern
to database block Xi uses the query generation algorithm to encode the input
index i before sending it to the database. The database then uses the response
encoding algorithm to combine each database entry Xj, j ∈ {1, ..., r} with the
query and returns an encoded response to the user. Finally, the user decodes the
response using the response decoding algorithm. In the multi-server information-
theoretic setting, we assume two or more non-colluding database replicas and the
user must concurrently interact with all replicas in a manner similar to the above.
Note that this describes the basic “block-retrieval” PIR scheme; other work has
extended PIR to allow more expressive queries, including by keywords [12] and
by SQL [35]. As block-retrieval PIR underlies the latter schemes as well, our
analysis extends to those improved schemes.

A PIR scheme is correct if it always returns the correct block Xi, private
if it leaks no information to the database about i and Xi, and non-trivial if
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its communication complexity is sublinear in n [16]. In a trivial PIR scheme,
the database sends all r blocks to the user, who can then retrieve the block of
interest at index i (i.e., Xi). Hence, the trivial PIR scheme is private in the
information-theoretic sense, but carries a very poor communication complexity,
particularly for large databases used in the real world.

Standard PIR schemes preserve access privacy for user queries, but it is
possible for a query to retrieve more data items than the user actually needs. An
extension, known as Symmetric PIR [30] constrains the number of data items
that may be retrieved per query, thereby preserving database privacy as well.
We note that such a restriction is not possible with the the trivial PIR scheme.

The literature has mainly focused on improving the communication complex-
ity of PIR schemes because communication between the user and the server(s)
is considered to be the most expensive resource [7]. Despite achieving this goal,
other barriers continue to limit realistic deployment of PIR schemes; the most
limiting of these barriers is the computational requirement of PIR schemes. The
performance measure of a scheme in terms of its computational complexity has
only received attention much more recently. The first of these is the work by
Beimel et al. [6, 7] which shows that standard PIR schemes cannot avoid a com-
putation cost that is linear in the database size because each query for block Xi

must necessarily process all database blocks Xj, j ∈ {1, ..., r}. They introduced
a model of PIR with preprocessing which requires each database to precompute
and store some extra bits of information, which is polynomial in the number of
bits n of the database, before a PIR scheme is run the first time. Subsequently,
the databases can respond to users’ queries in a less computationally expensive
manner using the extra bits. Asonov et al. [4, 5] and Smith et al. [41] similarly
explore preprocessing for reducing server-side computation. However, the spe-
cialized hardware requirement at the server makes this solution less desirable.

In 2006, panelists from SECURECOMM [16] came together to discuss how
to achieve practical private information retrieval. The discussion covers several
aspects of transitioning cryptographic primitives from theory to practice and the
need for practical PIR implementations and benchmarks on real data. The pan-
elists were optimistic about future PIR deployments and pointed to the need for
finding PIR schemes that require cheaper operations or utilize secure hardware
at the server side.

The paper by Sion and Carbunar [40] compares the bandwidth cost of trivial
PIR to the computation and bandwidth cost of a single-server computational
PIR scheme [28], which they considered to be the most efficient at that time.
The motivation of [40] was to stimulate practical PIR schemes; nevertheless, the
result has been cited in the literature to promote the general idea that non-
trivial PIR is always more costly than trivial download. A few attempts have
been made [2, 3, 45] to argue otherwise by introducing more efficient compu-
tational PIR schemes that may be practical to deploy. Our work extends the
work from [40] in important ways. First, their analysis was based on a number-
theoretic computational PIR scheme [28], whereas we considered different va-
rieties of computational PIR schemes: a number-theoretic scheme [28] and a
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lattice-based linear algebra scheme [2]. A consideration of the state of the art
PIR schemes on the basis of their underlying mathematical assumptions is im-
portant because computational performance is currently the most mitigating
factor to the practicality of PIR schemes. Secondly, we extend the analysis of
practicality to multi-server PIR schemes which has never been considered by any
previous measurement study. Multi-server PIR schemes are especially important
because they can offer a stronger privacy guarantee for non-colluding servers, un-
like computational PIR schemes that require large keys to protect against future
powerful adversaries. Besides, multi-server PIR schemes give better performance
and are directly deployable in domains where the databases are naturally dis-
tributed, such as Internet domain name registration [35]. Even in domains where
the database is not distributed, deployment is possible using servers containing
random data [19], which eliminates the need for an organization to replicate its
data to foreign servers.

Williams and Sion [48] describe how to realize single-server PIR using an effi-
cient oblivious RAM protocol and a secure coprocessor. They achieved improve-
ments in the communication and computational complexity bounds of hardware-
assisted PIR to O(log2 n) per query, given that a small amount of temporary
client storage, on the order of Θ(

√
n), is available.

Aguilar-Melchor and Gaborit [2, 1] explore linear algebra techniques using
lattices to propose an efficient single-server PIR scheme. The security of the
scheme is based on the hardness of the differential hidden lattice problem — a
problem related to NP-complete coding theory problems [47]. Aguilar-Melchor et
al. [1] subsequently used commodity Graphics Processing Units (GPUs), which
are highly parallelizable, to achieve a database processing rate of 2 Gb/s, which
is about ten times faster than running the same PIR scheme on CPUs. That work
makes two main contributions. First, it shows that its scheme exhibits one order
of magnitude speedup by using GPUs instead of CPUs to do the bulk of the
computation, and claims that other schemes will see the same speedup. Second,
it shows that in GPU-based scenarios, linear algebra based single-server PIR
schemes can be more efficient than trivial download for most realistic bandwidth
situations; this attempts to dispel the conclusions by Sion and Carbunar [40] with
respect to the practicality of single-server PIR schemes. However, the evaluation
from Aguilar-Melchor et al. [1] consider a small experimental database consisting
of twelve 3 MB files and they did not measure the total roundtrip response
time for queries; they considered the server-side cost but ignored client-side
query generation and response decoding costs, as well as the query and response
transfer cost. It is important to consider the total cost because their scheme is not
as efficient in terms of communication complexity as other existing schemes, and
roundtrip response time depends on both the communication and computational
complexities of a scheme. In addition, the measurements for the single-server
PIR schemes [18, 29] used for their comparison was based on estimates derived
from openssl speed rsa, which is quite unlike our approach where the comparison
is based on analytical expressions for query response times and experimental
observations. Besides, they only considered single-server PIR schemes, whereas
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we also consider multi-server PIR schemes and the state-of-the-art single-server
PIR schemes.

While the authors achieved a server-side processing rate of 2 Gb/s, there
was no indication of what roundtrip query response time to expect. In addition,
we would want to take measurements on our experimental hardware for fair
comparison with the trivial PIR solution and multi-server PIR schemes. We
note that the 2 Gb/s processing rate was obtained using commodity GPUs, and
not on traditional CPUs. They show experimentally that their implementation
has a better server-side processing throughput on GPUs than on CPUs (single-
processor, dual-core and quad-core processors) by a factor of ten. In comparison
to other single-server PIR schemes [18, 29], this scheme gives a much better
server-side processing rate both on CPUs and GPUs.

Trostle and Parrish [45] proposed a single-server computational PIR scheme
where server-side operations are simple modular additions. The scheme is based
on a trapdoor group, which allows an entity with knowledge of the trapdoor to
compute an inversion problem efficiently (e.g., computing discrete logarithms).
Without the knowledge, it is computationally hard to solve the problem. While
the scheme gave better performance than similar single-server PIR schemes [18,
29], it is not quite as efficient as the scheme of Aguilar-Melchor and Gaborit [2,
1].

In the context of keyword search using PIR, Yoshida et al. [49] considered
the practicality of a scheme proposed by Boneh et al. [9]. This public key en-
cryption based keyword search protocol is essentially single-server PIR. Their
investigations found the scheme to be costlier than the trivial PIR solution.

3 Efficient Single-server PIR (LPIR-A)

We experimentally evaluated an implementation of the single-server PIR scheme
by Aguilar-Melchor et al. [1]. This is the most efficient known single-server PIR
scheme, and has available source code both for CPUs and GPUs. We present a
note of caution, however, that although this PIR scheme resists known lattice-
based attacks, it is still relatively new, and its security is not as well understood
as those of the PIR schemes that rely heavily on number theory.

3.1 Experiment

We obtained the source code [23] for this scheme, removed interactivity, changed
the default parameters to one that guarantees security in a practical setting
(complexity of over 2100 operations) [2], and added instrumentation to the CPU
and GPU code variants. The data set for our experiment consists of various
databases of sizes between 1 GB and 28 GB, each containing random data. Bugs
in the implementation [23] prevented us from testing larger databases for the
selected security parameters. We did not fix the bug because doing so would
require rewriting a significant portion of the code. Besides, 28 GB and smaller
databases are sufficient for doing a fair comparison with the trivial PIR scheme.
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Fig. 1. Logarithmic scale plots for query generation (G), query upload(U), response
encoding (E), response download (R), and response decoding (D) times for the Aguilar-
Melchor et al. single-server PIR scheme [1] and the trivial PIR scheme in different
bandwidth scenarios.

We ran the experiment on the server hardware described in Section 1.1. We ran
queries to retrieve between 5 and 10 random blocks for each database size, and
computed the average response time and standard deviation for each database
size.

3.2 Result

Figure 1 shows the log-log plots of our results with breakdowns of the time
for query generation and upload, response encoding and download, response
decoding, as well as the trivial download time for the different sizes of databases
we tested. Plots (a), (b), (c), and (d) respectively reflect bandwidth values typical
of an Internet connection in the US and Canada, a 100 Mbps fast Ethernet, a
1 Gbps gigabit Ethernet, and a 100 Mbps fast Ethernet on the GPU hardware.

In plot (a), for example, the largest portion of the overall time is that of query
upload; this is due to the comparatively low 2 Mbps upload bandwidth typical
of a home Internet connection [37]. On the other hand, the time to download
the query result (at 9 Mbps) is much smaller. In general, the response time is
proportional to n and the slope of the line is 1, as the computation costs, in
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particular server-side response encoding, dominate. When the database exceeds
the available RAM size, further slowdowns are seen in the results.

The slope of the trivial PIR line is always 1, since the time is simply that
of transferring the entire database. For small databases, the trivial PIR scheme
is faster, but depending on the bandwidth, there is a crossover point at which
sending less data plus computing on every bit of the database becomes faster
than sending the entire database. For the average home connection, for example,
we found this to occur at a very small database size (approximately 32 MB).
For the 1 Gbps connection, the network is so fast that the entire database can
be transferred in less time than it takes for the client to even generate its query,
except for databases of 6 GB and larger. Even then, trivial transfer was much
faster than the overall cost of this PIR scheme for such fast networks.

We note that plot (a) is the most representative of today’s consumer band-
width situation. Based on the recently available Internet speed database [37], the
average bandwidth for the Internet user is improving rather slowly, with average
download rates of 6, 7.79, and 9.23 Mbps for Canada and the US for 2008, 2009,
and January 1 to May 30 of 2010. The average upload rates for the respective
periods are 1.07, 1.69, and 1.94 Mbps. We note that Nielsen’s Law specifically
addresses the type of users described as normal “high-end” who can afford to pay
a premium for high-bandwidth network connections [34]. We contrast these users
from “low-end” users [34] that the above bandwidth averages from the Internet
speed data [37] include. Hence, the majority of Internet users are low-end users,
and their bandwidth is much more limited than that predicted by Nielsen’s Law.

In the plots and in the analysis above, we show changing bandwidths and
assume that computing power stays the same. However, if we assume that pro-
cessors improve at a faster rate than Internet bandwidth for high-end users due
to Moore’s Law and Nielsen’s Law, then the crossover point will move down and
the PIR scheme will become faster at smaller database sizes. From plot (d), the
GPU run gives a better response time, in comparison to plot (b), for memory-
bound databases (about 6 GB or less). For disk-bound databases, the response
time degenerates due to the lower disk bandwidth of the GPU machine. We ran
the same code on the CPU of the GPU hardware; using the GPU, we found
about five times speedup in the server-side processing rate for memory-bound
databases and no noticeable speedup for disk-bound databases. Our observed
speedup is half the speedup reported in [1], but we used much larger databases.

4 Multi-server PIR

In this section, we provide detailed performance analyses of two multi-server
information-theoretic PIR schemes, from Chor et al. [13] and from Goldberg [22].
We begin with an overview of these schemes and later show how they compare
with the single-server scheme by Aguilar-Melchor et al. [1], and the trivial PIR
scheme. The reason for choosing [13] is its simplicity, being the first PIR proto-
col invented. The reason for choosing [22] is its comprehensiveness and source
code availability which allows for easy experimental analysis. The implementa-
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tion of [22], known as Percy++ [21], is an open-source project on SourceForge.
We also reproduce and reuse the results by Sion et al. [40] for the purpose of
comparison with the two multi-server PIR schemes. Their result features the
single-server PIR scheme by Kushilevitz and Ostrovsky [28], which they argued
to be the most efficient of existing single-server PIR schemes.

In order to maintain the user’s privacy, it must be the case that not all
(in the case of the Chor et al. protocol) or at most a configurable threshold
number (in the case of the Goldberg protocol) of the database servers collude to
unmask the user’s query. This is sometimes brought forward as a problematic
requirement of these schemes. We note that, as discussed elsewhere [35], there
are reasonable scenarios — such as distributed databases like DNS or whois
databases, where the copies of the database may be held by competing parties
— in which the non-collusion requirement is acceptable. Further, other privacy-
enhancing technologies, such as anonymous remailers [15] and Tor [17], also make
the assumption that not all of the servers involved are colluding against the user.

4.1 First Scheme (MPIR-C)

We first describe the simple O(
√
n) protocol by Chor et al. The database D is

treated as an r× b matrix of bits, where the kth row of D is the kth block of the
database. Each of ℓ servers stores a copy of D. The client, interested in block i
of the database, picks ℓ random bitstrings ρ1, . . . , ρℓ, each of length r, such that
ρ1⊕· · ·⊕ρℓ = ei, where ei is the string of length r which is 0 everywhere except
at position i, where it is 1. The client sends ρj to server j for each j. Server j
computes Rj = ρj ·D, which is the XOR of those blocks k in the database for
which the kth bit of ρj is 1, and sends Rj back to the client. The client computes
R1⊕· · ·⊕Rℓ = (ρ1 ⊕ · · · ⊕ ρℓ) ·D = ei ·D, which is the ith block of the database.

Sion and Carbunar [40] used a closed-form expression for the computation
and communication cost of the PIR scheme in [28]. While we derive similar
expressions for the multi-server schemes we studied, we note that such expres-
sions will only approximate the cost because most modern x86 CPUs support
hardware-level parallelism such as superscalar operations; single-cycle opera-
tions, such as XORs, are parallelized even within a single core. Hence, such
closed-form expressions can be used to determine an upper bound on what re-
sponse time to expect. We will later determine the exact response time for this
PIR scheme through experiments.

For optimal performance, we set r = b =
√
n. Hence, the upper bound for the

client and server execution times for this protocol can respectively be computed

as 2(ℓ − 1)
√
n

m t⊕ + 2ℓ
√
ntt and n

m · (t⊕ + 2tac) + n · tov, where t⊕ and tt are
respectively the execution times for one XOR operation and the transfer time
for one bit of data between the client and the server; m is the machine word-size
(e.g., 64 bits), n is the database size (in bits), ℓ is the number of servers, tov
represents the amortized server overhead per bit of the database — this overhead
is dominated by the cost of accessing the contents of the database from memory
or disk, but also includes things like the time to execute looping instructions as
a minor component — and tac denotes the time for one memory access. Note
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that the server execution time is the worst-case time because it assumes all the
blocks in the database are XORed, whereas we only need to XOR blocks where
the ith bit of ρj is 1. The expression charges all of the data transfer to the client,
since it needs to be serialized there, whereas the server processing is performed
in parallel among the ℓ servers.

An upper bound on the query round-trip execution time for this multi-server
PIR scheme is then

TMPIR−C < (2(ℓ− 1)
√
n/m+ n/m) · t⊕ + 2ℓ

√
n · tt + 2n/m · tac + n · tov

The most dominant term is n ·
(

1

m t⊕ + 2

m tac + tov
)

, which will suffice for the
entire expression when the value of n is large. Nevertheless, it is better to use
the entire equation to determine the upper bound on execution time for more
objective comparison purposes.

The work in [40] denoted tt =
1

B , given that B is the bandwidth (in bps) of
the network connection between the client and the server. t⊕ will be one cycle.
(We indeed measured it to be 0.40±0.01 ns, which is exactly as expected on our
2.50 GHz processor.) Similarly, we measured tac to be 1 cycle (0.4000±.0003 ns).
Using unrolling to minimize the overhead of loop instructions, tov will be dom-
inated by the memory bandwidth if the database fits into memory, or by disk
bandwidth otherwise. An upper bound for tov on our test machine is therefore
0.006 ns for in-memory databases and 0.417 ns for disk-bound databases, based
on the numbers in Section 1.1.

4.2 Second Scheme (MPIR-G)

We similarly derive an upper bound expression for the execution time for Gold-
berg’s multi-server PIR scheme, which is similar, but more complex than the
Chor et al. scheme. The similarity lies in its use of simple XOR operations to
accomplish most of its server-side computations. However, it uses Shamir se-
cret sharing [39] to split the user’s query vector ei into ℓ shares which are then
transmitted to the servers. The server database D is treated as an r × b matrix
of w-bit words (i.e., elements of GF (2w)), where again r is the number of blocks
and b is the number of w-bit words per block. In addition, the elements of ei,
ρj , and Rj are elements of GF (2w), instead of single bits. These changes are
necessary because the protocol addresses query robustness for byzantine servers
that may respond incorrectly or not respond at all. For simplicity, in this paper
we will only consider honest servers, which respond correctly. For head-to-head
comparison with the Chor et al. protocol, we set the privacy level t (the number
of servers which can collude without revealing the client’s query) to ℓ − 1. As
before, we choose r = b, but now r = b =

√

n/w. We also choose w = 8 to
simplify the cost of computations; in GF (28), additions are XOR operations on
bytes and multiplications are lookup operations into a 64 KB table. These are
the choices made by the open-source implementation of this protocol [21].

A client encodes a query for database block i by first uniformly choosing
ℓ random distinct non-zero indices α1, . . . , αℓ from GF (28). Next, the client
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chooses r polynomials of degree t, one for each block in D. The coefficients of
the non-constant terms for polynomial fk are random elements of GF (28), while
those for the constant terms should be 1 if i = k and 0 otherwise. Afterwards,
the client hands out to each server j a vector ρj formed from evaluating all r
polynomials at αj ; that is, ρj = [f1(αj), . . . , fr(αj)]. (Note that each fk(αj) is
an element of GF (28) — a single byte.) In a manner similar to the Chor et al.
scheme, each server computes a response vector Rj = ρj ·D, where each of the b
elements of vector Rj is also a single byte. The servers send Rj to the client and
the client computes the query result using Lagrange interpolation, which also
amounts to simple arithmetic in GF (28). Using the protocol description in [22]
and the source code [21], we counted each type of operation to derive upper
bounds for the respective client and server execution times as ℓ(ℓ−1)

√

n/8(t⊕+

tac) + 2ℓ
√
8ntt + 3ℓ(ℓ + 1)(t⊕ + tac), and (n/8)(t⊕ + 3tac) + n · tov, where the

terms are as above. Again, note that we charge all of the communication to the
client. The upper bound expression for the protocol’s round-trip response time
is then

TMPIR−G <
(

(
√

n/8 + 3)ℓ2 − (
√

n/8− 3)ℓ+ n/8
)

(t⊕ + 3tac)

+2ℓ
√
8n · tt + n · tov

Here, the dominant term is n ·
(

1

8
(t⊕ + 3tac) + tov

)

.

4.3 Response Time Measurement Experiment

We measure the round-trip response times for the multi-server PIR schemes in
this section. We first modified an implementation of MPIR-G (Percy++) [21] to
use wider data types to enable support for larger databases. We then measured
its performance over five different sets of databases, with databases in each set
containing random data and ranging in size from 1 GB to 256 GB.

Next, we fetched 5 to 10 blocks from the server. On the first query, the
database needs to be loaded into memory. The server software does this with
mmap(); the effect is that blocks are read from disk as needed. We expect that the
time to satisfy the first query will thus be noticeably longer than for subsequent
queries (at least for databases that fit into available memory), and indeed that
is what we observe. For databases larger than available memory, we should not
see as much of a difference between the first query and subsequent queries. We
show in Figure 2 plots of the average response time with standard deviations
for these two measurements (i.e., PIR response time for the first query, and for
the second and subsequent queries). From the plot, the speed of 1.36 seconds
per GB of data is consistent until the databases that are at least 16 GB in size
are queried. Between 18 GB and 30 GB, the time per GB grew steadily until
32 GB. The threshold crossed at that range of database sizes is that the database
size becomes larger than the available RAM (somewhat smaller than the total
RAM size of 32 GB). As can be seen from the plot, the measured values for
that range are especially noisy for the lower line. We designed our experiment to
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Fig. 2. Analytical and experimental measurements of the response time of Goldberg’s
multi-server PIR scheme [22] (computations only). The upper line is derived from
equation (2), but excluding time for communications. The middle line is the time for
the first query, which includes startup overhead and reading the database from disk.
The lower line is the time for subsequent queries, which only incur disk latencies once
the database exceeds the available RAM size.

take measurements for more databases with size in that range; we surmise that
the particulars of Linux’s page-replacement strategy contribute a large variance
when the database size is very near the available memory size. For even larger
databases, PIR query response times consistently averaged 3.1 seconds per GB
of data. This is because every query now bears the overhead of reading from
the disk. In realistic deployment scenarios where the database fits into available
memory, the overhead of disk reads is irrelevant to individual queries and is
easily apportioned as part of the server’s startup cost. Even when the database
cannot fit in available memory, the bottleneck of disk read overheads could be
somewhat mitigated by overlapping computation and disk reads; we did not
implement this optimization because the current performance was sufficient for
head-to-head comparison with the trivial solution. Note that in practice, the
disk read latency would equally come into play even for trivial PIR.

We made similar measurements for the Chor et al. [13] MPIR-C scheme using
an implemetation we developed. The implementation differed from [21] by doing
XORs in 64-bit words, instead of by bytes. We obtained a speed of 0.5 seconds
per GB (sometimes as fast as 0.26 seconds per GB) for small databases that fit
in available memory and 1.0 seconds per GB for larger databases.

5 Comparing Multi-server, Single-server and the Trivial
PIR Schemes

We next compare the round-trip response rates for each of the PIR schemes
already examined to the response rates of the trivial PIR scheme and the Kushile-
vitz and Ostrovsky [28] scheme. We note that for the non-trivial schemes, the
amount of data transmitted is tiny compared to the size of the database, so the
available bandwidth does not make much difference. To be as generous as possi-
ble to the trivial PIR scheme, we measure the non-trivial schemes with the home

14



 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Database size (GB)

cPIR

Trivial(B)

LPIR-A(B)

Trivial(B3)

MPIR-G(B)

MPIR-C(B)

Trivial(B2)

Fig. 3. Comparing the response times of PIR schemes by Kushilevitz and Ostrovsky
(cPIR) [28], Aguilar-Melchor [1] (LPIR-A), Chor et al. [13] (MPIR-C), and Gold-
berg [22] (MPIR-G), as well as the trivial PIR scheme over three current network
bandwidths data in Table 1, using different database sizes. The bandwidth used for
the non-trivial PIR schemes is B.

connection bandwidth B — 9 Mbps download and 2 Mbps upload. We provide
comparisons to the trivial PIR scheme with bandwidths of B, B2 — 10 Gbps
Ethernet, and B3 — 1.5 Gbps inter-site connections (see Table 1).

Figure 3 shows the log-log plot of the response times for the multi-server and
lattice-based PIR schemes against the earlier results from [40], which include
the trivial scheme and the Kushilevitz and Ostrovsky scheme [28]. As in [40], we
give maximal benefit to the scheme in [28] by ignoring all costs except those of
modular multiplication for that scheme, using the value for tmul given in Sec-
tion 1.1. We point out that the values for the trivial scheme and the Kushilevitz
and Ostrovsky scheme are computed lower bounds, while those for the LPIR-A,
MPIR-G, and MPIR-C schemes are experimentally measured. The number of
servers for the multi-server schemes is ℓ = 2.

We can see from the plot that, as reported in [40], the trivial PIR scheme
vastly outperforms the computational PIR scheme of Kushilevitz and Ostrovsky,
even at the typical home bandwidth. However, at that bandwidth, the lattice-
based scheme of Aguilar-Melchor et al. is over 10 times faster than the trivial
scheme. Further, both multi-server schemes are faster than the trivial scheme,
even at the B3 (1.5 Gbps) speeds; the MPIR-G scheme is about 4 times faster for
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databases that fit in RAM, and the MPIR-C scheme is over 10 times faster. For
large databases, they are 1.7 and 5 times faster, respectively. Only atB2 Ethernet
speeds of 10 Gbps does the trivial scheme beat the multi-server schemes, and
even then, in-memory databases win for MPIR-C. The apparent advantage of
the trivial scheme even at these very high bandwidths may, even so, be illusory,
as we did not include the time to read the database from memory or disk in the
trivial scheme’s lower-bound cost, but we did for the LPIR and MPIR schemes.

One might try rescuing the trivial PIR scheme by observing that, having
downloaded the data once, the client can perform many queries on it at minimal
extra cost. This may indeed be true in some scenarios. However, if client storage
is limited (such as on smartphones), or if the data is updated frequently, or if
the database server wishes to more closely control the number of queries to the
database — a pay-per-download music store, for example — the trivial scheme
loses this advantage, and possibly even the ability to be used at all.

To better see at what bandwidth the trivial scheme begins to outperform the
others, we plot the response times vs. bandwidth for all five schemes in Figure 4.
We include one plot for a database of 16 GB, which fits in RAM, and one for
28 GB, which does not. We see that the trivial scheme only outperforms LPIR-A
at speeds above about 100 Mbps, and it outperforms the MPIR schemes only at
speeds above 4 Gbps for large databases and above 8 Gbps for small databases.
In addition, due to the faster growth rate of computing power as compared to
network bandwidth, multi-server PIR schemes will become even faster over time
relative to the trivial scheme, and that will increase the bandwidth crossover
points for all database sizes.

It follows that the multi-server schemes are definitely more practical than the
trivial scheme, and the lattice-based scheme is more practical than the trivial
scheme for most reasonable bandwidths, including for home and mobile devices.

5.1 Lessons Learned, Recommendations and Justification

This section reports some of the lessons learned from our analysis and experimen-
tation, gives some recommendations on how to mitigate practical issues about
deploying PIR schemes, and provide other justification for deploying PIR-based
systems.

– A closed-form analytic expression of the computation and communication
costs of PIR schemes and any algorithm for that matter cannot be used to
predict exact execution costs. Such expressions only give upper-bound exe-
cution cost on x86 CPUs without any support for hardware-level paralleliza-
tion. However, all modern x86 CPUs support some form of parallelization.
Hence, execution costs should be obtained by experimentally taking mea-
surements on the implementation of the algorithm on benchmark hardware.

– The category of users referred to by Nielsen’s Law of Internet bandwidth is
high-end. These users are more technologically savvy and could afford higher
Internet bandwidth compared to typical user; referred to as low-end users.
Low-end users are broader representation of Internet users. The measured
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Fig. 4. Plots of response time vs. bandwidth for the PIR schemes by Kushilevitz and
Ostrovsky (cPIR) [28], Aguilar-Melchor [1] (LPIR-A), Chor et al. [13] (MPIR-C) and
Goldberg [22] (MPIR-G), as well as the trivial PIR scheme for database sizes that fit
in RAM (16 GB) and that exceed RAM (28 GB).

bandwidth average for these users is a more appropriate bandwidth to use
for any study examining the practicality of some new technologies. One good
source for Internet bandwidth measurement data is [37].

– One of the main challenges in deploying multi-server PIR schemes is the
assumption that an organization deploying multi-server PIR must outsource
its database to one or more servers managed by some independent holders
who should not collude to break users’ query privacy. However, following the
random server model [19] for deploying existing multi-server PIR schemes
does not require an organization to replicate its data to holders who might
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otherwise not be trusted. In the random server model, a PIR client would
query some servers holding copies of a random string as well as the database
server and compute the query result from the responses from these servers.
Furthermore, some PIR schemes [22] provide constructions that resist a coali-
tion of servers, guaranteeing either computational or information-theoretic
privacy protection.

6 Conclusions

We reexamined the computational practicality of PIR following the earlier work
by Sion and Carbunar [40]. Some interpret [40] as saying that no PIR scheme can
be more efficient than the trivial PIR scheme of transmitting the entire database.
While this claim holds for the number-theoretic single-database PIR scheme
in [28] because of its reliance on expensive modular multiplications, it does not
hold for all PIR schemes. We performed an analysis of the recently proposed
lattice-based PIR scheme by Aguilar-Melchor and Gaborit [2] to determine its
comparative benefit over the trivial PIR scheme, and found this scheme to be
an order of magnitude more efficient than trivial PIR for situations that are
most representative of today’s average consumer Internet bandwidth. Next, we
considered two multi-server PIR schemes, using both analytical and experimental
techniques. We found multi-server PIR to be a further one to two orders of
magnitude more efficient. We conclude that many real-world situations that
require privacy protection can obtain some insight from our work in deciding
whether to use existing PIR schemes or the trivial download solution, based on
their computing and networking constraints.

Our work may be extended by considering cost-effective options for deploying
PIR to address real-world privacy problems. In addition, it would be interesting
to explore practical and technical means to mitigate some of the assumptions
for multi-server PIR schemes, such as preventing the collusion of the servers
answering the queries of users.
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