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Abstract. This article presents a novel optimal pairing over supersingular genus-2 binary
hyperelliptic curves. Starting from Vercauteren’s work on optimal pairings, we describe how
to exploit the action of the 23m-th power Verschiebung in order to further reduce the loop
length of Miller’s algorithm compared to the genus-2 ηT approach.
As a proof of concept, we detail an optimized software implementation and an FPGA
accelerator for computing the proposed optimal Eta pairing on a genus-2 hyperelliptic curve
over F2367 , which satisfies the recommended security level of 128 bits. These designs achieve
favourable performance in comparison with the best known implementations of 128-bit-
security Type-1 pairings from the literature.

Keywords: Optimal Eta pairing, supersingular genus-2 curve, software implementation, FPGA
implementation.

1 Introduction

The Weil and Tate pairings were independently introduced in cryptography by Frey & Rück [19]
and Menezes, Okamoto & Vanstone [36] as tools to attack the discrete-logarithm problem on
some classes of elliptic curves defined over finite fields. The discovery of constructive properties
by Joux [30], Mitsunari, Sakai & Kasahara [39], and Sakai, Oghishi & Kasahara [43] initiated
the proposal of an ever-increasing number of protocols based on bilinear pairings: identity-based
encryption [9], short signature [11], and efficient broadcast encryption [10], to mention but a few.
However, such protocols rely critically on efficient implementations of pairing primitives at high
security levels on a wide range of targets.

Miller described the first iterative algorithm to compute the Weil and Tate pairings back
in 1986 [37, 38]. The Tate pairing seems to be more suited to efficient implementations (see for
instance [26,32]), and has therefore attracted a lot of interest from the research community. A large
number of articles, culminating in the ηT pairing algorithm [4], focused on shortening the loop of
Miller’s algorithm in the case of supersingular abelian varieties. The Ate pairing, introduced by
Hess et al. [29] for elliptic curves and by Granger et al. [25] in the hyperelliptic case, generalizes the
ηT approach to ordinary curves. Eventually, several variants of the Ate pairing aiming at reducing
the loop length of Miller’s algorithm have been proposed in 2008 [28,33,44].

In this work, we target the AES-128 security level. When dealing with ordinary elliptic curves
defined over a prime finite field Fp, the family of curves introduced by Barreto & Naehrig (BN) [5]
is a nearly optimal choice for the 128-bit security level. Their embedding degree k = 12 perfectly
balances the security between the `-torsion and the group of `-th roots of unity, where ` is a prime
number dividing the cardinal of the curve #E(Fp). The latest software implementation results on
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these curves by Aranha et al. report computation times below one millisecond on a single core of
an Intel Core i7 processor [1].

Supersingular curves over F2m and F3m are better suited to hardware implementation, and offer
more efficient point doubling and tripling formulae than BN-curves. Moreover, supersingularity
allows the use of a distortion map and thus provides Type-1 (or symmetric) pairings [20], which
cannot be obtained with ordinary curves. However, the embedding degree of a supersingular elliptic
curve is always less than or equal to 6 [36]. As a consequence, the security on the curve is too high
with respect to the security of the group of `-th roots of unity, and one has to consider curves
defined over very large finite fields. Therefore, most of the hardware accelerators are struggling
to achieve the AES-128 level of security (see for instance [8] for a comprehensive bibliography).
Software implementations at this security level have for instance been reported in [3,7]. However,
the computation of a pairing is at least 6 times faster on a BN curve [6].

To mitigate the effect of the bounded embedded degree, Estibals has proposed to consider
supersingular elliptic curves over field extensions of moderately-composite degree [16]. Curves are
then vulnerable to Weil descent attacks [23], but a careful analysis has allowed him to main-
tain the security above the 128-bit threshold. As a proof of concept, he has designed a compact
Field-Programmable Gate Array (FPGA) accelerator for computing the Tate pairing on a super-
singular elliptic curve defined over F35·97 . Even though he targeted his architecture to low-resource
hardware, his timings are very close to those of software implementations of BN curves.

Yet another way to reduce the size of the base field of the Tate pairing in the supersingular
case is to consider a genus-2 binary hyperelliptic curve with embedding degree k = 12 [21], which
is the solution investigated in this work. We indeed show that, thanks to a novel pairing algorithm,
these curves can be actually made very effective in the context of software implementations and
hardware accelerators for embedded systems.

This paper is organized as follows: after a general reminder on the hyperelliptic Tate pairing
(Section 2) and on the Eta pairing on in the case of those particular curves (Section 3), we
describe a novel optimal Eta pairing algorithm that further reduces the loop length of Miller’s
algorithm compared to the ηT approach [4] (Section 4). We then present an optimized software
implementation (Section 5) and a low-area FPGA accelerator (Section 6) for the proposed pairing
algorithm. We discuss our results and conclude in Section 7.

2 Background Material and Notations

In this section, we briefly recall a few definitions and results about hyperelliptic curves, and more
precisely the Tate pairing on such curves. For more details, we refer the interested reader to [14,25].

2.1 Reminder on Hyperelliptic Curves

Let C be an imaginary nonsingular hyperelliptic curve of genus g defined over the finite field Fq,
where q = pm and p is a prime, and whose affine part is given by the equation

y2 + h(x)y = f(x),

where f , h ∈ Fq[x], deg f = 2g + 1, and deg h ≤ g.
For any algebraic extension Fqd of Fq, we define the set of Fqd -rational points of C as C(Fqd) =

{(x, y) ∈ Fqd×Fqd | y2 +h(x)y = f(x)}∪{P∞}, where P∞ is the point at infinity of the curve. For

simplicity’s sake, we also write C = C(Fq). Additionally, denoting by φq the q-th power Frobenius
morphism φq : C → C, (x, y) 7→ (xq, yq), and P∞ 7→ P∞, note that a point P ∈ C is Fqd -rational
if and only if φdq(P ) = P .

We then denote by JacC the Jacobian of C, which is an abelian variety of dimension g defined
over Fq, and whose elements are represented by the divisor class group of degree-0 divisors Pic0C =
Div0

C /PrincC . In other words, two degree-0 divisors D and D′ belong to the same equivalence
class D ∈ JacC if and only if there exists a non-zero rational function z ∈ Fq(C)∗ such that
D′ = D + div(z). Naturally extending the Frobenius map to divisors as φq :

∑
P∈C nP (P ) 7→∑

P∈C nP (φq(P )), we say that D is Fqd -rational if and only if φdq(D) = D.
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It can also be shown that any divisor class D ∈ JacC(Fqd) can be uniquely represented by

an Fqd -rational reduced divisor ρ(D) =
∑r
i=1(Pi) − r(P∞), with r ≤ g, Pi 6= P∞, and Pi 6= −Pj

for i 6= j, where the negative of a point P = (x, y) is given via the hyperelliptic involution by
−P = (x,−y − h(x)). In the following, we also denote by ε(D) =

∑r
i=1(Pi) the effective part of

ρ(D).

Using the Mumford representation, any non-zero Fqd -rational reduced divisor D = ρ(D) (and
therefore any non-zero element of the Jacobian JacC(Fqd)) can be associated with a unique pair of
polynomials [u(x), v(x)], with u, v ∈ Fqd [x] and such that u is monic, deg(v) < deg(u) = r ≤ g, and
u | v2 + vh− f . Furthermore, given two reduced divisors D1 and D2 in Mumford representation,
Cantor’s algorithm [12] can be used to compute the Mumford representation of ρ(D1 + D2), the
reduced divisor corresponding to their sum on the Jacobian.

2.2 Hyperelliptic Tate Pairing

Let ` be a prime dividing # JacC(Fq) and coprime to q. Let also k be the corresponding embedding
degree, i.e., the smallest integer such that ` | qk − 1. We denote by JacC(Fqk)[`] the Fqk -rational
`-torsion subgroup of JacC . The Tate pairing on C is then the well-defined, non-degenerate, and
bilinear map

〈., .〉` : JacC(Fqk)[`]× JacC(Fqk)/` JacC(Fqk)→ F∗qk/(F
∗
qk)`,

defined as 〈D1, D2〉` ≡ f`,D1
(D2), where D1 and D2 represent the divisor classes D1 and D2,

respectively, and such that they have disjoint supports: supp(D1) ∩ supp(D2) = ∅. Moreover, for
any integer n and any Fqk -rational divisor D, the notation fn,D denotes the Miller function in
Fqk(C)∗ which is defined (up to a non-zero constant multiple) by its divisor such that div(fn,D) =

nD − [n]D, where [n]D = ρ(nD). In the case of the Tate pairing, since D1 ∈ JacC [`], we have
[`]D1 = 0 and div(f`,D1) = `D1.

So as to obtain a unique value for the Tate pairing, we also define the reduced Tate pairing

as e : (D1, D2) 7→ 〈D1, D2〉(q
k−1)/`

` ∈ µ`, with µ` ⊆ F∗qk the subgroup of `-th roots of unity. Note

that for any L such that ` | L | qk − 1, we also have e(D1, D2) = 〈D1, D2〉(q
k−1)/L

L .

Ensuring that there is no element of order `2 in JacC(Fqk), we can also show that there is a
natural isomorphism between the quotient JacC(Fqk)/` JacC(Fqk) and JacC(Fqk)[`]. We can then
identify these two groups, and define the Tate pairing on the domain JacC(Fqk)[`]× JacC(Fqk)[`].

The actual computation of the (reduced) Tate pairing is achieved thanks to Miller’s algo-
rithm [37,38], which is based on the observation that, for any integer n, n′, and for any Fqk -rational
divisor D, one can take the function fn+n′,D = fn,D ·fn′,D ·g[n]D,[n′]D, where g[n]D,[n′]D ∈ Fqk(C)∗

is such that div(g[n]D,[n′]D) = [n]D + [n′]D − [n+ n′]D. Note that the function g[n]D,[n′]D can be
explicitly obtained from the computation of [n+n′]D = ρ([n]D+[n′]D) by Cantor’s algorithm. See
for instance [25, Algorithm 2] for more details. Therefore, computing f`,D1(D2) is tantamount to
computing [`]D1 on JacC(Fqk) by means of any suitable scalar multiplication algorithm (e.g., ad-
dition chain or double-and-add) while keeping track of the g[n]D1,[n′]D1

functions given by Cantor’s
algorithm and evaluating them at the divisor D2. Miller’s algorithm, based on the double-and-
add approach, thus has a complexity of blog2(`)c+ wg(`)− 1 iterations (i.e., evaluations of such
g[n]D1,[n′]D1

functions), where wg(`) denotes the Hamming weight of `.

Finally, let u∞ be an Fq-rational uniformizer at P∞ (i.e., ordP∞(u∞) = 1). For any function

z ∈ Fq(C)∗, we denote by lc∞(z) = (u
− ordP∞ (z)
∞ ·z)(P∞) the leading coefficient of z expressed as a

Laurent series in u∞. Restricting the domain of the Tate pairing toD1 ∈ JacC(Fq)[`], one can easily
check that lc∞(f`,D1) ∈ F∗q withD1 = ρ(D1). We can then apply [25, Lemma 1] to show that we can

simply compute the Tate pairing as 〈D1, D2〉` = f`,D1
(ε(D2)), as long as supp(D1)∩supp(ε(D2)) =

∅. This last condition is ensured by taking D2 ∈ JacC(Fqk)[`] \ JacC(Fq)[`].
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3 Eta Pairing on Supersingular Genus-2 Binary Curves

3.1 Curve Definition and Basic Properties

In this work, we consider the family of supersingular genus-2 hyperelliptic curves defined over F2

by the following equation:
Cd : y2 + y = x5 + x3 + d,

where d ∈ F2. Because of their supersingularity, which provides them with a very efficient arith-
metic, along with their embedding degree of 12, which is the highest among all supersingular
genus-2 curves, these curves are a target of choice for implementing pairing-based cryptography.
They have therefore already been studied in this context in several articles [4, 13,21,34,42].

For m a positive integer coprime to 6, the cardinality of the Jacobian of Cd over F2m , denoted
by L, is given by

L = # JacCd
(F2m) = 22m + δ2(3m+1)/2 + 2m + δ2(m+1)/2 + 1,

where the value of δ is

δ =

{
(−1)d when m ≡ 1, 7, 17, or 23 (mod 24), and
−(−1)d when m ≡ 5, 11, 13, or 19 (mod 24).

The embedding degree of Cd is k = 12, and # JacCd
(F2m) | 212m− 1. The Tate pairing and its

variants will then map into the degree-12 extension F212m , which we represent as the tower field
F212m

∼= F2m [τ, sτ,0] where τ ∈ F26 is such that τ6 + τ5 + τ3 + τ2 + 1 = 0, and sτ,0 ∈ F212 is such
that s2τ,0 + sτ,0 + τ5 + τ3 = 0.

3.2 Distortion Maps

Since Cd is supersingular, it has non-trivial distortion maps [22, 45] embedding JacCd
(F2m) into

distinct subgroups of JacCd
(F212m). Such a distortion map will then allow us to construct Type-1

pairings [20], such as the modified Tate pairing described in the next section. An exhaustive study
of the distortion maps of JacCd

is given by Galbraith et al. in [22], of which we now recall the key
results.

From [22, Sec. 8], the automorphisms of Cd are of the form

σω : (x, y) 7→ (x+ ω, y + sω,2x
2 + sω,1x+ sω,0),

where ω is a root of the polynomial x16 + x8 + x2 + x, sω,2 = ω8 + ω4 + ω, sω,1 = ω4 + ω2, and
sω,0 is a root of y2 + y + ω5 + ω3.

Considering τ as above, we also define θ = τ4 + τ2 + τ and ξ = τ4 + τ2. One easily checks
that τ , θ, and ξ are all roots of x16 + x8 + x2 + x. Let us now take sτ,0 as above, along with
sθ,0 = sτ,0 + τ5 + τ2 + τ + 1 and sξ,0 = τ4 + τ2. Verifying that s2ω,0 + sω,0 + ω5 + ω3 = 0 holds for
all ω ∈ {τ, θ, ξ}, we can now define the three corresponding automorphisms of Cd, namely στ , σθ,
and σξ, along with their natural extension to its Jacobian JacCd

.
From [22, Prop. 8.1], all possible distortion maps can be found in Z[φ2m , στ , σθ], where φ2m

is the 2m-th power Frobenius map. Furthermore, Q[φ2m , στ , σθ] is a 16-dimensional vector space
with the direct sum decomposition

Q[φ2m , στ , σθ] = Q(φ2m)⊕ στQ(φ2m)⊕ σθQ(φ2m)⊕ σξQ(φ2m).

In other words, the four endomorphisms of JacCd
1, στ , σθ, and σξ are linearly independent

over Q(φ2m), and any distortion map can be expressed as a Q(φ2m)-linear combination of these
endomorphisms.

Finally, a tedious computation—which, fortunately, can easily be checked using any computer
algebra system—gives the three following equalities over End(JacCd

):

φ2mστφ
−1
2m = [2m]στφ

−2
2m + [ε22m]σθφ

−4
2m ,

φ2mσθφ
−1
2m = [−23m]σθφ

−6
2m , and

φ2mσξφ
−1
2m = [24m]σξφ

−8
2m + [ε25m]φ−102m ,

where ε = (−1)e and e = 0 when m ≡ 1 or 11 (mod 12), and 1 otherwise.
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3.3 Modified Tate Pairing on Cd

Let ` be a large (odd) prime dividing L = # JacCd
(F2m). After ensuring that there are no points

of order `2 in JacCd
(F212m), we can restrict the domain of the Tate pairing to JacCd

(F2m)[`] ×
JacCd

(F212m)[`], as detailed in Section 2.2. Using a non-trivial distortion map ψ which maps
JacCd

(F2m)[`] to a subgroup ψ(JacCd
(F2m)[`]) ⊂ JacCd

(F212m)[`] such that JacCd
(F2m)[`]∩ψ(JacCd

(F2m)[`]) =
{0}, we can then define the reduced modified Tate pairing as the non-degenerate, bilinear map

ê : JacCd
(F2m)[`] × JacCd

(F2m)[`] −→ µ` ⊆ F∗212m
( D1 , D2 ) 7−→ 〈D1, ψ(D2)〉(2

12m−1)/`
`

= 〈D1, ψ(D2)〉(2
12m−1)/L

L ,

where 〈D1, ψ(D2)〉L = fL,D1
(ε(ψ(D2))), the divisor classes D1 and D2 being represented by the

F2m -rational reduced divisors D1 = ρ(D1) and D2 = ρ(D2). As long as D1 and D2 are not both
trivial, the distortion map ψ ensures that the affine supports of D1 and ψ(D2) are disjoint.

At this stage, we have to point out that, in this case, the g[n]D1,[n′]D1
functions required

by Miller’s algorithm in the computation of the Tate pairing can be simplified. Indeed, from
Cantor’s algorithm, most of these functions involve vertical lines, which all pass through multiples
of the F2m-rational reduced divisor D1, meaning that their equations will also be F2m -rational.
Furthermore, noticing that the x-coordinate of ψ(P ) is always in F26m when P is F2m - or F22m-
rational, we can conclude that the evaluation of those vertical lines at ε(ψ(D2)) for any F2m-rational
reduced divisor D2 will also be in F∗26m and therefore annihilated by the final exponentiation to
the (212m − 1)/L-th power. We can then safely ignore the computation of those vertical lines.

3.4 Choosing an Efficient Pairing

Action of the Frobenius φ2m Following the papers on hyperelliptic Ate and optimal Ate
pairings [25, 44], a natural choice is to study the action of φ2m , the 2m-th power Frobenius map,
over JacCd

[`] in order to reduce the number of iterations in Miller’s algorithm.
To that intent, let us first consider a non-zero element D1 ∈ JacCd

(F2m)[`]. Since the four
endomorphisms 1, στ , σθ, and σξ are Q(φ2m)-linearly independent as per [22, Prop. 8.1], this is
also the case for the four elements D1, Dτ = στ (D1), Dθ = σθ(D1), and Dξ = σξ(D1), which
then form a basis B = (D1, Dτ , Dθ, Dξ) of the `-torsion JacCd

[`].
From the three equalities presented in Section 3.2, and noting that φ2m(D1) = D1 since D1 is

F2m -rational, one then obtains the following matrix describing the action of φ2m on the basis B of
the `-torsion:

φ2m ≡


1 0 0 ε25m

0 2m 0 0
0 ε22m −23m 0
0 0 0 24m

 (mod `).

From this matrix, one can remark that it is not completely diagonal. In particular, the
eigenspace of eigenvalue 2m, which would allow one to construct the optimal Ate pairing de-
scribed by Vercauteren in [44, Sec. IV-G], is not directly attainable using the distortion map στ .
This is not a problem in general, but since we want to construct a Type-1 pairing, we cannot avoid
the use of distortion maps.

Diagonalizing the matrix shows that a way to map JacCd
(F2m)[`] to this eigenspace would be to

use the distortion map ψ = (23m+φ2m)στ , as one can rapidly check that φ2m(ψ(D1)) = [2m]ψ(D1).
However, contrary to the distortion maps στ , σθ, and σξ which are simple automorphisms of Cd, ψ
only acts on its Jacobian. As this might have a negative impact on the performance of the pairing
computation, we decide not to follow this option in this paper, even though we plan to investigate
it in the near future.

Sticking now to the diagonal parts of the matrix, one might alternatively consider using the
distortion map σθ, as it maps the F2m -rational `-torsion to the eigenspace of eigenvalue −23m.
However, since ` | L | 26m + 1, the lattice in which to look for an optimal pairing over this
eigenspace is only of dimension 2, which is no better that the Eta pairing that we propose in
Section 3.4.
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Action of the Verschiebung φ̂2m An alternative to relying on the action of the Frobenius
map φ2m would be to use its dual φ̂2m , the 2m-th power Verschiebung. However, the curve Cd is
not superspecial, which means that φ̂2m , albeit purely inseparable, is not a map of Cd but only
of JacCd

: the conditions of [25, Lemma 5] are not met, and we are therefore unable to construct
a non-degenerate pairing from such a map.

Action of the Verschiebung φ̂23m Nevertheless, as already noted by Barreto et al. in [4], the

23m-th power Verschiebung φ̂23m can be used instead of φ̂2m . We detail this construction in the
following paragraphs.

First, let P = (xP , yP ) be a point of Cd distinct from P∞, and D = (P ) − (P∞) be the
corresponding degenerate divisor. Its Mumford representation is then D = [x+ xP , yP ]. Doubling
and reducing D three times via Cantor’s algorithm, we obtain [8]D = ρ(8D) = [x+x64P + 1, x128P +
y64P + 1]. Note that the divisor [8]D is also degenerate, as [8]D = ([8]P )− (P∞), and corresponds
to the point [8]P = (x64P + 1, x128P + y64P + 1) ∈ Cd.

Octupling therefore acts not only on JacCd
but also on the curve Cd itself, and is actually an

automorphism of Cd defined over F2 as [8] = σ1φ
2
8 with σ1 : (x, y) 7→ (x + 1, x2 + y + 1) and φ8

the 8th power Frobenius map (x, y) 7→ (x8, y8).

Iterating this octupling m times, we obtain the F2-rational automorphism [23m] on Cd defined
as [23m] = γφ223m , with γ = σm1 : (x, y) 7→ (x + 1, x2 + y + ν) and ν = (m + 1)/2 mod 2. Note
that γ, φ23m , and [23m] can be naturally extended to JacCd

, where the latter corresponds to the
multiplication by 23m.

Furthermore, since φ23m is a degree-23m isogeny of JacCd
, we know that φ̂23mφ23m = [23m].

Since [23m] = γφ223m , we then have φ̂23m = γφ23m and can thus verify that φ̂23m is also a degree-23m

purely inseparable automorphism of the curve Cd. We are therefore in the conditions of [25, Lemma

5], from which we get that, for any reduced divisor D, φ̂23m(D) is also reduced and we have the
equality of Miller functions (up to a non-zero constant multiple)

fn,φ̂23m (D) ◦ φ̂23m = f2
3m

n,D . (1)

Let us now consider the action of φ̂23m over the basis B of JacCd
[`]. Noting that φ423m is the

identity over the ` torsion since JacCd
[`] ⊆ JacCd

(F212m), we obtain the diagonal matrix

φ̂23m = [23m]φ−123m ≡ [23m]φ323m ≡


23m 0 0 0

0 1 0 0
0 0 1 0
0 0 0 23m

 (mod `).

From this matrix, it appears that JacCd
(F2m)[`] is in the eigenspace of eigenvalue 23m, while

ψ(JacCd
(F2m)[`]) is in the eigenspace of eigenvalue 1, where the distortion map ψ is either στ or σθ.

In other words, for any F2m -rational `-torsion element D, φ̂23m(D) = [23m]D and φ̂23m(ψ(D)) =
ψ(D).

3.5 Eta Pairing on Cd

We now follow the construction of Barreto et al. [4] in order to obtain the ηT pairing with T = 23m.
Remarking indeed that ` | L | N for N = 212m − 1 = T 4 − 1, and taking M = N/L, we can write

ê(D1, D2)M = fL,D1
(ε(ψ(D2)))M(212m−1)/L = fN,D1

(ε(ψ(D2)))(2
12m−1)/L.

As ` | N , we can then take the Miller function

fN,D1 = fN+1,D1 = fT 4,D1
=

3∏
i=0

fT
3−i

T,[T i]D1
=

3∏
i=0

f2
(3−i)·3m

23m,[2i·3m]D1
.
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Furthermore, since D1 and D2 are F2m-rational reduced divisors, we also have that [2i·3m]D1 =

φ̂i23m(D1) and ε(ψ(D2)) = φ̂i23m(ε(ψ(D2))) for all i. Iterating (1) then yields

f23m,[2i·3m]D1
(ε(ψ(D2))) =

(
f23m,φ̂i

23m
(D1)
◦ φ̂i23m

)
(ε(ψ(D2)))

= f23m,D1
(ε(ψ(D2)))2

i·3m
.

Putting it all together, we finally obtain

ê(D1, D2)M = f23m,D1
(ε(ψ(D2)))4·2

3·3m·(212m−1)/L,

and, as ` - 4 · 23·3m,

f23m,D1
(ε(ψ(D2)))(2

12m−1)/L = ê(D1, D2)M ·(4·2
3·3m)−1 mod L.

From the bilinearity and the non-degeneracy of the Tate pairing, we can then conclude that the
ηT pairing defined as follows is also bilinear and non-degenerate [4]:

ηT : JacCd
(F2m)[`] × JacCd

(F2m)[`] −→ µ` ⊆ F∗212m
( D1 , D2 ) 7−→ f23m,D1

(ε(ψ(D2)))(2
12m−1)/L.

4 Optimal Eta Pairing on Cd

4.1 Construction and Definition

In order to further decrease the loop length in Miller’s algorithm, we adapt in this work the optimal
pairing technique as introduced by Vercauteren [44] to the case of the action of the 23m-th power

Verschiebung φ̂23m and the Eta pairing detailed in the previous section.
To that intent, let us consider the 2-dimensional lattice spanned by the rows of the matrix

L =

(
L 0
−23m 1

)
.

Note that since ` | L | 26m + 1, we know that 26m ≡ −1 (mod `), meaning that there is no need
to look for 23m-ary expansions of multiples of L having more than two digits.

A shortest vector of L is [c0, c1] = [δ2(m−1)/2 + 1, 2m+ δ2(m−1)/2], which corresponds to taking
the multiple N ′ = c123m + c0 = M ′L with M ′ = 22m − δ2(3m−1)/2 − δ2(m−1)/2 + 1.

We then have the M ′-th power of the reduced modified Tate pairing

ê(D1, D2)M
′

= fN ′,D1
(ε(ψ(D2)))(2

12m−1)/L,

for which we can take the Miller function

fN ′,D1
= fc123m,D1

· fc0,D1
· g[c0]D1,[c123m]D1

= f c123m,D1
· fc1,[23m]D1

· fc0,D1
· g[c0]D1,[c123m]D1

.

Remarking that c123m ≡ −c0 (mod `), g[c0]D1,[c123m]D1
actually corresponds to the vertical lines

passing through [c0]D1 and [−c0]D1, which can simply be ignored. Furthermore, exploiting the

action of the Verschiebung φ̂23m , we can rewrite fc1,[23m]D1
(ε(ψ(D2))) as f2

3m

c1,D1
(ε(ψ(D2))). Finally,

also note that f23m,D1
(ε(ψ(D2)))c1·(2

12m−1)/L is actually a power of the Eta pairing ηT (D1, D2)
defined in the previous section.

Consequently, let η[c0,c1] : JacCd
(F2m)[`] × JacCd

(F2m)[`] → µ` be the optimal Eta pairing
defined as

η[c0,c1] : (D1, D2) 7−→
(
f2

3m

c1,D1
· fc0,D1

)
(ε(ψ(D2)))(2

12m−1)/L.

From the previous considerations, we thus have that

ê(D1, D2)M
′

= η[c0,c1](D1, D2) · ηT (D1, D2)c1 ,
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whence η[c0,c1](D1, D2) = ê(D1, D2)W with

W = M ′ − c1M · (4 · 23·3m)−1 mod L
= 22m + δ2(3m−1)/2 + 2m + δ2(m−1)/2 + 1.

Finally, as ` -W , we show that the optimal Eta pairing η[c0,c1] is also bilinear and non-degenerate.

Note that the ηT pairing introduced in [4] with T = −δ2(3m+1)/2−1 corresponds to the lattice
vector [−δ2(3m+1)/2 − 1,−1] ∈ L.

4.2 Computing η[c0,c1]

The computation of the optimal Eta pairing η[c0,c1] defined in the previous section relies on the

evaluation of the two Miller functions fc0,D1
and fc1,D1

at ε(ψ(D2)). With [c0, c1] = [δ2(m−1)/2 +
1, 2m + δ2(m−1)/2], we can take the following functions{

fc0,D1
= fδ2(m−1)/2,D1

· g[δ2(m−1)/2]D1,D1
and

fc1,D1
= f2m,D1

· fδ2(m−1)/2,D1
· g[2m]D1,[δ2(m−1)/2]D1

.

Since we are ignoring the vertical lines, we can further rewrite

fδ2(m−1)/2,D1
= f2(m−1)/2,[δ]D1

and

f2m,D1 = fδ2(m−1)/2·δ2(m+1)/2,D1
= fδ2

(m+1)/2

2(m−1)/2,[δ]D1
· f2(m+1)/2,[2(m−1)/2]D1

,

which finally gives{
fc0,D1

= f2(m−1)/2,[δ]D1
· g[δ2(m−1)/2]D1,D1

and

fc1,D1
= fδ2

(m+1)/2+1
2(m−1)/2,[δ]D1

· f2(m+1)/2,[2(m−1)/2]D1
· g[2m]D1,[δ2(m−1)/2]D1

.

The computation of η[c0,c1] therefore chiefly involves the evaluation of the two Miller functions
f2(m−1)/2,[δ]D1

and f2(m+1)/2,[2(m−1)/2]D1
of loop length (m− 1)/2 and (m+ 1)/2, respectively. This

represents a saving of 33% with respect to the ηT pairing presented in [4] whose Miller’s loop
length is (3m+ 1)/2.

Note that in order to exploit the octupling formula, we have to consider two cases, depending
on the value of m mod 6.

– When m ≡ 1 (mod 6), then (m− 1)/2 is a multiple of 3, and f2(m−1)/2,[δ]D1
can be computed

via (m− 1)/6 octuplings, whereas f2(m+1)/2,[2(m−1)/2]D1
can be computed by means of another

(m− 1)/6 octuplings and one extra doubling, as per Algorithm 1 in Appendix A.

– When m ≡ 5 (mod 6), (m − 1)/2 is not a multiple of 3, but (m + 1)/2 is. We then compute
η2[c0,c1] = η[2c0,2c1] instead, with the Miller functions{

f2c0,D1 = f2(m+1)/2,[δ]D1
· f2,D1 · g[δ2(m+1)/2]D1,[2]D1

and

f2c1,D1 = fδ2
(m+1)/2+1

2(m+1)/2,[δ]D1
· f2(m+1)/2,[2(m+1)/2]D1

· g[2m+1]D1,[δ2(m+1)/2]D1
.

The two f2(m+1)/2,D functions are then evaluated using (m + 1)/6 octuplings each, whereas
f2,D1

only require one doubling, as per Algorithm 2 in Appendix A.

Finally, one should note that, in our case, since the curve Cd is supersingular, the final expo-
nentiation step is much simpler than for ordinary curves such as BN curves. Indeed, the exponent
is

(212m − 1)/L = (26m − 1)(22m + 1)(22m − δ2(3m+1)/2 + 2m − δ2(m+1)/2 + 1),

whose regular form can be exploited to devise an efficient ad-hoc exponentiation algorithm, of
negligible complexity when compared to Miller’s loop.
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4.3 Evaluation of the Complexity

From the above description of the optimal Eta pairing η[c0,c1], we can see that most of its compu-
tational cost lies in the iterated octuplings of D1 and the evaluation of the corresponding Miller
functions of the form f8,[±8i]D1

at the effective divisor ε(ψ(D2)). Here, we denote by [±8i]D1 a
reduced divisor representing one of the iterated octuples of D1 or of [δ]D1 as required in the
evaluation of η[c0,c1].

In that sense, since D1 is defined over F2m , then [±8i]D1 is also F2m -rational. Moreover, as
octupling directly acts on the curve Cd, if D1 is degenerate (i.e., of the form D1 = (P )− (P∞)),
then so is [±8i]D1. Finally, note that if D2 is degenerate, then so is ψ(D2), meaning that ε(ψ(D2))
is of degree 1 and has only one point in its support.

Considering the Miller function for octupling, we rewrite f8,D = f24,D · f2,[4]D. Each iteration
of Miller’s algorithm is then just a matter of evaluating f4,[±8i]D1

and f2,[±4·8i]D1
at ε(ψ(D2)),

squaring the former, and accumulating both into the running product via two successive multipli-
cations over F212m . The respective costs of these operations are given in terms of basic operations
over the base field F2m in Table 1.

Note that in order to obtain these costs, we have constructed F212m as the tower field F2m [i, τ, sτ,0],
where i ∈ F22 is such that i2 + i + 1 = 0, τ ∈ F26 is such that τ3 + iw2 + iw + i = 0 (one can
then check that we still have τ6 + τ5 + τ3 + τ2 + 1 = 0), and sτ,0 is defined as before. Using
Karatsuba for the two quadratic extensions and Toom–Cook for the cubic one, we obtain the
expected complexity of 45 multiplications over F2m for computing one product over F212m [32].

Where relevant, several costs are given in Table 1, depending on whether D1 and D2 are
general (Gen.) or degenerate (Deg.) divisors. Making this disctinction is particularly relevant, as
some protocols might be able to constrain the domain of their pairing computations in order to
benefit from a possible speedup of 2 when one argument is degenerate, or even 4 in the case of
two. For instance, Chatterjee et al. [13] have proposed a variant of the BLS signature scheme [11]
in which one argument of each pairing function is a degenerate divisor.

Table 1. Costs of various operations involved in the computation of the optimal Eta pairing in terms of
basic operations (multiplication, addition, squaring, and inversion) over the base field F2m .

Operation D1 D2
Operations over F2m

Mult. Add. Sq. Inv.

Addition over F212m — — 0 12 0 0

Squaring over F212m — — 0 21 12 0

Multiplication over F212m — — 45 199 0 0

[±8i]D1 7→ [±8i+1]D1
Deg. — 0 2 13 0
Gen. — 0 5 24 0

Deg. Deg. 3 11 1 0
f4,[±8i]D1

(ε(ψ(D2))) Gen. Deg. 19 40 2 0
Gen. Gen. 83 247 17 0

Deg. Deg. 2 9 1 0
f2,[±4·8i]D1

(ε(ψ(D2))) Gen. Deg. 16 34 2 0
Gen. Gen. 81 236 17 0

Final exp. over F2367 — — 303 1 386 2 234 1

Optimal Eta pairing Deg. Deg. 7 894 40 356 11 571 1

η[c0,c1](D1, D2) Gen. Deg. 15 293 64 644 15 472 1
over C0(F2367) Gen. Gen. 31 644 118 382 19 161 1

In the two following sections, as a proof of concept, we detail the software and hardware
implementation results of the proposed optimal Eta pairing η[c0,c1]. The selected curve is C0 (i.e.,
d = 0) over the field F2367 . One can check that # JacC0(F2367) = 13 · 7170258097 · `, where ` is a
698-bit prime, whereas the finite field F212·367 ensures a security of 128 bits for the computation of
discrete logarithms via the function field sieve. The costs of the optimal Eta pairing on C0(F2367)
are also given in Table 1.
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For comparison purposes, one might compare this with the costs for the ηT pairing over Cd pre-
sented in [13] and [34]. In the former, Chatterjee et al. report a cost of 15 111 F2m-multiplications
for an ηT pairing on two degenerate divisors over C0(F2459). Since the number of these mul-
tiplications scales linearly with the size of the field, their approach would entail roughly 12 000
multiplications over our curve. In [34], Lee and Lee require 11 488 multiplications for an ηT pairing
on two general divisors over Cd(F279), which would scale to approximately 53 000 multiplications
on our curve C0(F2367). When compared to the figures in Table 1, these costs reflect the 33%
improvement achieved thanks to our proposed optimal Eta approach.

5 Software Implementation

A software implementation was realized to illustrate the performance of the proposed pairing. The
C programming language was used in conjunction with compiler intrinsics for accessing vector in-
structions. The chosen compiler was GCC version 4.5.1 so the new instruction for carry-less mul-
tiplication [27] was properly supported. Compiler flags included optimization level -O3, together
with loop unrolling and platform-dependent tuning with -march=native. For evaluation, we con-
sidered as target platforms the Core 2 Duo 45 nm (Penryn microarchitecture) and Core i5 32 nm
(Nehalem microarchitecture), represented by an Intel Xeon X3320 2.5 GHz and a mobile Core i5
540 2.53 GHz, respectively. Field arithmetic was implemented following the vectorization-friendly
formulation presented in [2], with the exception of the Core i5 architecture, where multiplica-
tion in F2367 was implemented with the help of the native binary field multiplier inside a 6-way
Karatsuba formula [40]. Table 2 presents our timings in cycles for finite field arithmetic. Note
the significant performance improvement of 60% in multiplication when there is support for the
carry-less multiplier.

Table 2. Timings for our software implementations of finite field arithmetic in F2367 .

Platform
Operation cost (cycles)

Add. Sq. Mult. Inv.

Intel Core 2 Duo 7 44 511 19109

Intel Core i5 7 37 208 16547

Table 3 presents our timings in millions of cycles for the pairing computation at the 128-bit
security level. Timings from several related works are also collected for direct comparison with our
software implementation. Our implementation considers all the three possible choices of divisors:
general × general (GG), general × degenerate (GD) and degenerate × degenerate (DD). For a
fair comparison and completeness, the standard genus-1 ηT pairing was also implemented over
E(F21223) using the native multiplier in the Nehalem microarchitecture. Our implementation of
the proposed genus-2 Optimal Eta pairing presents itself as a very efficient candidate among
the Type-1 pairings defined on supersingular curves over small-characteristic fields. In particular,
the proposed pairing is more efficient than all other Type-1 pairings when at least one of the
arguments is a degenerate divisor. Considering the latest Nehalem microarchitecture as an example
of a future trend for 64-bit computing platforms, the proposed pairing computed with degenerate
divisors is also the closest in terms of performance to the current speed record for Type-3 pairing
computation [1].

6 FPGA Implementation

We detail here an FPGA accelerator for our optimal Eta pairing on the curve C0(F2367) when
both inputs are general divisors (GG). To our knowledge, this is the first proposed hardware
implementation of a genus-2 pairing at the 128-bit level of security.

In [8], Beuchat et al. have presented a coprocessor architecture for computing the final expo-
nentiation of the ηT pairing over supersingular curves in characteristics two and three. The core of
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Table 3. Software implementations of pairing at the 128-bit security level.

Implementation Curve Pairing
Intel Core 2 Intel Core Nehalem

(×106 cycles) (×106 cycles)

Beuchat et al. [7]
E(F21223 ) ηT

23.03 —

E(F3359 ) 15.13 —

Aranha et al. [3] E(F21223 ) ηT 18.76 —

Chatterjee et al. [13]
E(F21223 ) ηT

19.0 —

E(F3359 ) 15.8 —

C0(F2439 ) ηT (DD) 16.4 —

Naehrig et al. [41] E(Fp) Opt. Ate 4.38 —

Beuchat et al. [6] E(Fp) Opt. Ate 2.95 2.33

Aranha et al. [1] E(Fp) Opt. Ate 2.19 1.69

This work E(F21223) ηT — 6.86

This work C0(F2367)
Opt. Eta (DD) 4.87 2.44

Opt. Eta (GD) 9.21 4.47

Opt. Eta (GG) 18.36 8.57

their arithmetic and logic unit is a parallel–serial multiplier processing D coefficients of an operand
at each clock cycle, along with a unified operator supporting addition, Frobenius map, and n-fold
Frobenius map. Intermediate results are stored in a register file implemented by means of dual-
ported RAM (cf. Appendix B for the details of the architecture). As illustrated by Estibals [16],
this streamlined design also allows one to design a low-area yet efficient FPGA accelerator for the
Tate pairing over supersingular elliptic curves. For these reasons, we decided to adapt such a finite
field coprocessor for implementing our optimal Eta pairing. In the case of the finite field F2367 , we
selected the parameters D = 16 and n = 3 for this coprocessor. We captured our architectures in
the VHDL language and prototyped our design on Xilinx Virtex-II Pro, Virtex-4, and Spartan-3
FPGAs with average speedgrade (Table 4). Place-and-route results show for instance that our
pairing accelerator uses 4518 slices and 20 RAM blocks of a Virtex-4 device clocked at 220 MHz.

For comparison purposes, we also included recent hardware implementation results from the
literature in Table 4. It appears that our design is very compact and that its computation time
remains comparable to other 128-bit-security implementations. This is even more so when noting
that our performance estimates are given for the pairing of two general divisors, and that a speedup
of 2 or 4 might be expected from the use of one or two degenerate divisors, respectively.

ASIC implementations of pairings on BN curves with 128 bits of security have also been
proposed by Fan et al. [17] and Kammler et al. [31], and compute a pairing in 2.91 and 15.8 ms,
respectively. It is however difficult to make a fair comparison between our respective works since
the curves and the target technologies are not the same.

Table 4. FPGA implementations of pairings at medium- and high-security levels.

Implementation Curve
Sec.

FPGA
Area Freq. Time Area×time

(bits) (slices) (MHz) (µs) (slices.s)

Ronan et al. [42]
C0(F2103 ) 75 xc2vp100-6 30464 41 132 4.02

(DD)

Beuchat et al. [8]
E(F2691 ) 105 xc4vlx200-11 78874 130 19 1.48

E(F3313 ) 109 xc4vlx200-11 97105 159 17 1.64

Duquesne and
E(Fp254

) 126
ep2c35 14274† 91 1940 —

Guillermin [15] ep3s50 4233‡ 165 1070 —

Ghosh et al. [24] E(Fp256
) 128 xc4vlx200-12 52000 50 16400 852.8

Estibals [16] E(F35·97 ) 128
xc4vlx25-11 4755 192 2227 10.59

xc3s1000-5 4713 104 4113 19.38

Fan et al. [18] E(Fp256
) 128 xc6vlx240 4014∗ 210 1170 —

This work
C0(F2367)

128
xc2vp30-6 4646 176 4405 20.5

(GG)
xc4vlx25-11 4518 220 3518 15.9

xc3s1500-5 4713 114 6800 32.0

†Number of logic elements (LEs); this design also uses several embedded multipliers.
‡Number of ALMs; this design also uses several embedded DSP blocks.
∗Number of Virtex-6 slices; this design also uses 42 embedded DSP blocks.
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7 Conclusion and Perspectives

We presented a novel optimal Eta pairing algorithm on supersingular genus-2 binary hyperelliptic
curves. Starting from Vercauteren’s work on optimal pairings [44], we described how to exploit
the action of the 23m-th power Verschiebung in order to further reduce the loop length of Miller’s
algorithm with respect to the genus-2 ηT approach [4], thus resulting in a 33% improvement.

In order to demonstrate the efficiency of our approach, we implemented the optimal Eta pairing
at the 128-bit security level in software and hardware. As far as Type-1 pairings are concerned,
our results show that genus-2 curves are a very effective alternative to supersingular elliptic curves
and can even compete with the Type-3 pairings provided by ordinary curves such as BN curves.

We have designed as well an FPGA coprocessor for computing the proposed pairing, which
also compares very well against other hardware pairing implementations. Additionally, this is the
first known hardware pairing implementation over a genus 2 hyperelliptic curve reaching 128 bits
of security.

Building upon this work, we now plan to study more precisely the action of other purely
inseparable maps on Cd along with the corresponding pairing algorithms, so as to identify which
one is the most efficient from an implementation point of view. Indeed, apart from the presented
optimal Eta pairing based on the action of φ̂23m , one can also construct optimal Ate pairings using
the action of φ23m , or that of φ2m under the distortion map σθ, the most promising candidate
being the optimal Ate pairing for the action of φ2m under the distortion map ψ = (23m +φ2m)στ .

Furthermore, Lubicz & Robert have recently presented a novel technique for computing the
Weil and Tate pairings over abelian varieties based on an efficient representation of their ele-
ments by means of theta functions [35]. We are planning to investigate the application of this
method to the case of our proposed genus-2 optimal Eta pairing, as both software and hardware
implementations might benefit from the faster arithmetic of theta functions.
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A Algorithms for Computing the Optimal Eta Pairing

We detail here the two algorithms used to compute the optimal Eta pairing described in Section 4.
The choice of the algorithm to use depends on the value of m mod 6.

Algorithm 1 Computation of the optimal Eta pairing when m ≡ 1 (mod 6).

Input: D1 and D2 ∈ JacCd(F2m)[`] represented by the reduced divisors D1 and D2.
Output: η[c0,c1](D1, D2) ∈ µ` ⊆ F∗

212m .
1. G1 ← 1 ; R1 ← [δ]D1 ; E2 ← ε(ψ(D2))
2. for i← 1 to (m− 1)/6 do
3. G1 ← G8

1 · f8,R1(E2)
4. R1 ← [8]R1

5. end for // G1 = f2(m−1)/2,[δ]D1
(E2) and R1 = [δ2(m−1)/2]D1.

6. G2 ← gδ1 ; R2 ← [δ]R1

7. for i← 1 to (m− 1)/6 do
8. G2 ← G8

2 · f8,R2(E2)
9. R2 ← [8]R2

10. end for // G2 = f2m−1,D1
(E2) and R2 = [2m−1]D1.

11. G2 ← G2
2 · f2,R2(E2) // G2 = f2m,D1(E2).

12. F0 ← G1 · gR1,D1(E2) // F0 = fc0,D1(E2).
13. F1 ← G1 ·G2 · g[2]R2,R1

(E2) // F1 = fc1,D1(E2).

14. return
(
F 23m

1 · F0

)(212m−1)/L

Algorithm 2 Computation of the optimal Eta pairing when m ≡ 5 (mod 6).

Input: D1 and D2 ∈ JacCd(F2m)[`] represented by the reduced divisors D1 and D2.
Output: η[2c0,2c1](D1, D2) = η[c0,c1](D1, D2)2 ∈ µ` ⊆ F∗

212m .
1. G1 ← 1 ; R1 ← [δ]D1 ; E2 ← ε(ψ(D2))
2. for i← 1 to (m+ 1)/6 do
3. G1 ← G8

1 · f8,R1(E2)
4. R1 ← [8]R1

5. end for // G1 = f2(m+1)/2,[δ]D1
(E2) and R1 = [δ2(m+1)/2]D1.

6. G2 ← gδ1 ; R2 ← [δ]R1

7. for i← 1 to (m+ 1)/6 do
8. G2 ← G8

2 · f8,R2(E2)
9. R2 ← [8]R2

10. end for // G2 = f2m+1,D1
(E2) and R2 = [2m+1]D1.

11. F0 ← G1 · f2,D1(E2) · gR1,[2]D1
(E2) // F0 = f2c0,D1(E2).

12. F1 ← G1 ·G2 · gR2,R1(E2) // F1 = f2c1,D1(E2).

13. return
(
F 23m

1 · F0

)(212m−1)/L

B Architecture of the hardware accelerator

We present in this section the design of the coprocessor by Beuchat et al. that we used for
the computation of our optimal Eta pairing [8]. In order to best fit the arithmetic of F2367 , we
parametrised their architecture as follows:

– The multiplier processes D = 16 coefficients and thus performs a multiplication over F2367 in
23 clock cycles.

– We chose to support the 3-fold Frobenius map (i.e. raising to the eighth power) in the unified
operator.
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– The register file can store up to 127 intermediate variables belonging to F2367 (46 kbit of
RAM), along with the constant 1.

(mod f )
×x

(mod f )
×x2

(mod f )
×x3

c31

0 1

0 1

0 1

(·)4

c21

c22
c23

(·)2

(mod f )
×x16

(mod f )
×x15

0 11 0

0 1
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0 1
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DPRAM
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c15

c16

c17

c24

c25
c26

c27

c28

c29 c30

(16 digits per clock cycle)

c18
c19

c20

$126

1

Frobenius/Frob.3
Add./acc.

Fig. 1. A finite field coprocessor for F2367 .


