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Abstract. Tor is the most widely used privacy enhancing technology for
achieving online anonymity and resisting censorship. While conventional
wisdom dictates that the level of anonymity offered by Tor increases as
its user base grows, the most significant obstacle to Tor adoption contin-
ues to be its slow performance. We seek to enhance Tor’s performance
by offering techniques to control congestion and improve flow control,
thereby reducing unnecessary delays.

To reduce congestion, we first evaluate small fixed-size circuit win-
dows and a dynamic circuit window that adaptively resizes in response to
perceived congestion. While these solutions improve web page response
times and require modification only to exit routers, they generally offer
poor flow control and slower downloads relative to Tor’s current design.
To improve flow control while reducing congestion, we implement N23,
an ATM-style per-link algorithm that allows Tor routers to explicitly cap
their queue lengths and signal congestion via back-pressure. Our results
show that N23 offers better congestion and flow control, resulting in im-
proved web page response times and faster page loads compared to Tor’s
current design and the other window-based approaches. We also argue
that our proposals do not enable any new attacks on Tor users’ privacy.

1 Introduction

Tor [9] is a distributed circuit-switching overlay network consisting of over two-
thousand volunteer-run 7Tor routers operating around the world. Tor clients
achieve anonymity by source-routing their traffic through three Tor routers using
onion routing [13].

Context. Conventional wisdom dictates that the level of anonymity provided by
Tor increases as its user base grows [7]. Another important, but often overlooked,
benefit of a larger user base is that it reduces suspicion placed on users simply
because they use Tor. Today, there are an estimated 150 to 250 thousand daily
Tor users [18]. However, this estimate has not increased significantly since 2008.
One of the most significant road blocks to Tor adoption is its excessively high
and variable delays, which inhibit interactive applications such as web browsing.



Many prior studies have diagnosed a variety of causes of this high latency
(see Dingledine and Murdoch [10] for a concise summary). Most of these studies
have noted that the queuing delays often dominate the network latencies of rout-
ing packets through the three routers. These high queuing delays are, in part,
caused by bandwidth bottlenecks that exist along a client’s chosen circuit. As
high-bandwidth routers forward traffic to lower-bandwidth downstream routers,
the high-bandwidth router may be able to read data faster than it can write
it. Because Tor currently has no explicit signaling mechanism to notify senders
of this congestion, packets must be queued along the circuit, introducing po-
tentially long and unnecessary delays for clients. While recent proposals seek
to re-engineer Tor’s transport design in part to improve its ability to handle
congestion [I6l24)31], these proposals face significant deployment challenges.
Improving Congestion and Flow Control. To reduce the delays intro-
duced by uncontrolled congestion in Tor, we design, implement, and evaluate two
classes of congestion and flow control. First, we leverage Tor’s existing end-to-end
window-based flow control framework and evaluate the performance benefits of
using small fixed-size circuit windows, reducing the amount of data in flight that
may contribute to congestion. We also design and implement a dynamic window
resizing algorithm that uses increases in end-to-end circuit round-trip time as
an implicit signal of incipient congestion. Similar solutions are being considered
for adoption in Tor to help relieve congestion [5], and we offer a critical analysis
to help inform the discussion. Window-based solutions are appealing, since they
require modifications only to exit routers.

Second, we offer a fresh approach to congestion and flow control inspired by
standard techniques from Asynchronous Transfer Mode (ATM) networks. We
implement a per-link credit-based flow control algorithm called N23 [I7] that
allows Tor routers to explicitly bound their queues and signal congestion via
back-pressure, reducing unnecessary delays and memory consumption. While
N23 offers these benefits over the window-based approaches, its road to deploy-
ment may be slower, as it may require all routers along a circuit to upgrade.
Evaluation. We conduct an holistic experimental performance evaluation of
the proposed algorithms using the ModelNet network emulation platform [30]
with realistic traffic models. We show that the window-based approaches offer up
to 65% faster web page response times relative to Tor’s current design. However,
they offer poor flow control, causing bandwidth under-utilization and ultimately
resulting in poor download time. In contrast, our N23 experiments show that
delay-sensitive web clients experience up to 65% faster web page responses and
a 32% decrease in web page load times compared to Tor’s current design.

2 Tor Background

The Tor network is a decentralized circuit-switching overlay consisting of volun-
teer-run Tor routers hosted around the world. Tor offers anonymity to clients by
employing a layered encryption scheme [13] with three Tor routers. All data is
sent in fixed-sized 512-byte units called cells. In general, the client selects routers
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Fig. 1: A Tor router’s queuing architecture

to use on a circuit taking into account their bandwidth capacities, in order to
balance the traffic load over the available router bandwidth. The first router on a
circuit (called an entry guard) is chosen carefully to reduce the threat of profiling
and the predecessor attack [33]. Upon receiving a cell, the router removes its layer
of encryption and forwards the cell to the next router on the circuit. Once the
final (exit) router in the circuit removes its layer of encryption, the client’s traffic
is forwarded to the destination. A prior study found that the majority of Tor
traffic by connection is interactive HTTP [19], and most of this traffic volume
flows from the destination to the client. More details about Tor can be found in
its design document [9] and its evolving protocol specification [8].

3 Tor’s Approach to Congestion and Flow Control

Since the Tor network consists of volunteer-run routers from across the world,
these routers have varying and often limited amounts of bandwidth available to
relay Tor traffic. Consequently, as clients choose their circuits, some routers have
large amounts of bandwidth to offer, while others may be bandwidth bottlenecks.
In order for Tor to offer the highest degree of performance possible, it is necessary
to have effective mechanisms in place to ensure steady flow control, while also
detecting and controlling congestion. In this section, we discuss the many features
that directly or indirectly impact congestion and flow control in Tor.

3.1 Congestion and Flow Control Mechanisms

Pairwise TCP. All packets sent between Tor routers are guaranteed to be
delivered reliably and in-order by using TCP transport. As a result of using TCP,
communications between routers can be protected with TLS link encryption.
However, several circuits may be multiplexed over the same TCP connections,
which could result in an unfair application of TCP’s congestion control [24].



Tiered Output Buffers. Each Tor router’s internal queuing architecture is
illustrated in Figure[[l When a Tor router receives a cell on one of its TCP con-
nections, the cell is first copied from the connection’s receive kernel buffer into
an application-layer input buffer to be decrypted. Next, the cell is pushed onto a
FIFO circuit queue for the cell’s respective circuit. For each outgoing TCP con-
nection, a FIFO output buffer is maintained. The output buffer has a fixed size
of 32 KiB, while the circuit queue has no explicit bound, but the circuit window
size restricts how many cells may be in flight (described below). Since multiple
circuits are often multiplexed over the same TCP connection, when there is space
available in the outgoing connection’s respective output buffer, the router must
choose which circuits’ cells to copy onto the output buffer. Initially, cells were
chosen by round-robin selection across circuits. Recently, circuit prioritization
has been proposed to give burstier circuits that likely correspond to interactive
traffic priority over long-lived, bulk circuits [29].
Circuit and Stream Windows. Tor uses two layers of end-to-end window-
based flow control between the exit router and the client to ensure steady flow
control. First, a circuit window restricts how many cells may be in flight per
circuit. By default, Tor uses a fixed 500KiB (1000 cell) circuit window. For
every 50 KiB (100 cells) received, an acknowledgment cell called a SENDME is sent,
informing the sender that they may forward another 100 cells to the receiver]
Within each circuit window there is a stream
window of 250KiB (500 cells) to provide flow
control (or fairness) within a circuit. The re-
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file thr(?ugh a circuit conswtln'g of 10 MlB /s entry Fig. 2: The exit router’s cir-
and exit routers and a 128 KiB/s middle router. :

. . cuit queue delays for a
Since the exit router can read data from the des- .

o . o . 300 KiB download
tination server faster than it can write it to its
outgoing connection with the middle router, and the reliable TCP semantics
preclude routers from dropping cells to signal congestion, the exit router must
buffer up to one full circuit window (500KiB) worth of cells. Furthermore, as
shown in Figure [ these cells often sit idly for several seconds while the buffer
is slowly emptied as SENDME cells are received. Since cells may travel down a
circuit in large groups of up to 500 KiB followed by periods of silence while the
exit router waits for SENDME replies, Tor’s window-based flow control does not
always keep a steady flow of cells in flight.

! Due to a bug, clients running Tor 0.0.0-0.2.1.19 erroneously reply with circuit-
level SENDME cells after receiving 101 cells (rather than 100 cells).



Token Bucket Rate Limiting. In order to allow routers to set limits on the
amount of bandwidth they wish to devote to transiting Tor traffic, Tor offers
token bucket rate limiting. Briefly, a router starts with a fixed amount of tokens,
and decrements their token count as cells are sent or received. When the router’s
token count reaches zero, the router must wait to send or receive until the tokens
are refilled. To reduce Tor’s CPU utilization, tokens are refilled only once per
second. It has been previously observed that refilling the tokens so infrequently
contributes in part to Tor’s overall delays [4].

3.2 Alternate Proposals to Reduce Congestion

There have been several recent proposals aimed specifically at reducing Tor’s
congestion. First, Tor has incorporated adaptive circuit-building timeouts that
measure the time it takes to build a circuit, and eliminate circuits that take an
excessively long time to construct [3]. The intuition is that circuits that build
slowly are highly congested, and would in turn offer the user poor performance.
While this approach likely improves the users’ quality of service in some cases, it
does not help to relieve congestion that may occur at one or more of the routers
on a circuit after the circuit has been constructed.

In addition, user-level rate limiting has been proposed to throttle over-active
or bulk downloading users. Here, the idea is to reduce the overall bandwidth con-
sumption by bulk downloaders by using per-connection token bucket rate limit-
ing at the entry guard. Early experiments indicate an improvement in download
time for small file downloaders (the majority of Tor users), while harming bulk
downloaders [6].

4 TImproving Tor’s Congestion and Flow Control

Our primary goal is to improve Tor’s performance, specifically by better un-
derstanding and improving Tor’s congestion and flow control. We consider two
broad classes of solutions. First, we wish to understand how much improvement
is possible simply by adjusting Tor’s existing end-to-end window-based flow con-
trol mechanisms to reduce the amount of data in flight, and thereby mitigate
congestion. We also evaluate an end-to-end congestion control technique that
enables exit Tor routers to infer incipient congestion by regarding increases in
end-to-end round-trip time as a congestion signal. Second, we consider a fresh
approach to congestion and flow control in Tor, eliminating Tor’s end-to-end
window-based flow control entirely, and replacing it with ATM-style, per-link
flow control that caps routers’ queue lengths and applies back-pressure to up-
stream routers to signal congestion.

4.1 Improving Tor’s Existing End-to-End Flow Control

We first consider whether adjusting Tor’s current window-based flow control can
offer significant performance improvements. Keeping Tor’s window-based mech-
anisms is appealing, as solutions based on Tor’s existing flow control framework



may be deployed immediately, requiring modifications only to the exit routers,
not clients or non-exit routers.

Small Fixed-size Circuit Windows. The smallest circuit window size pos-
sible without requiring both senders and receivers to upgrade is 50 KiB (100
cells, or one circuit-level SENDME interval). We evaluate how fixed 50 KiB circuit
windows impact clients’ performance

Dynamic Circuit Windows. We next consider an algorithm that initially
starts with a small, fixed circuit-window and dynamically increases the window
size (e.g., amount of unacknowledged data allowed to be in flight) in response to
positive end-to-end latency feedback. Inspired by latency-informed congestion
control techniques for IP networks [2I32], we propose an algorithm that uses
increases in perceived end-to-end circuit round-trip time (RTT) as a signal of
incipient congestion.

The algorithm works as follows. Initially, each circuit’s window size starts
at 100 cells. First, the sender calculates the circuit’s end-to-end RTT using the
circuit-level SENDME cells, maintaining the minimum RTT (rtt,,,) and maximum
RTT (rttmae) observed for each circuit. We note that rtt,,;, is an approximation
of the base RTT, where there is little or no congestion on the circuit. Next,
since RTT feedback is available for every 100 cellsE the circuit window size
is adjusted quickly using an additive increase, multiplicative decrease (AIMD)
window scaling mechanism based on whether the current RTT measurement
(rtt) is less than the threshold T, defined in Equation [Il This threshold defines
the circuit’s tolerance to perceived congestion.

T =(1—-a)Xrttyn + o X rttyes (1)

Choosing a small a value ensures that the threshold is close to the base RT'T, and
any increases beyond the threshold implies the presence of congestion along the
circuit f| For each RTT measurement (e.g., each received circuit-level SENDME),
the circuit window size (in cells) is adjusted according to Equation 2

old_window + 100 if rtt <T

new_window(rtt) = 2
(rtt) {Loldwindow/QJ otherwise @)
Finally, we explicitly cap the minimum and maximum circuit window sizes at

100 and 1000 cells, respectivelyﬁ

4.2 ATM-style Congestion and Flow Control for Tor

Because Tor’s flow control works at the circuit’s edges—the client and the exit
router—we seek to improve performance by implementing per-link flow con-

2 Due to the aforementioned bug, in practice, the window size should be 101 cells.

3 Similar to the 50 KiB windows, SENDME cells may be available after 101 cells.

4 For our experiments, we use o = 0.25.

® Note that a selfish Tor client could attempt to increase their circuit window by pre-
emptively acknowledging data segments before they are actually received. Prior work
in mitigating similar behavior in selfish TCP receivers may be applied here [25127].



Downstream OR Upstream OR

N2+N3 N2+N3
-« Datacel Circuit queue -« Datacel Circuit queue
» cells_forwarded+=1 » Update credit_balance
Flow control ?

%N2==
7 cell

Fig. 3: Credit-based flow control in Tor (N23 scheme)

trol to ensure a steady flow of cells while reducing congestion at the interme-
diate routers. Implementing per-link flow control in Tor resembles the problem
of link-by-link flow control (LLFC) in ATM networks. While the goals of Tor
and ATM are certainly different, there are many similarities. Both networks are
connection-oriented, in the sense that before applications can send or receive
data, virtual circuits are constructed across multiple routers or switches, and
both have fixed-sized cells. Furthermore, it has been shown that ATM’s credit-
based flow control approaches, such as the N23 scheme, eliminate cell loss due to
buffer overflows [15], a feature that makes such approaches similar to Tor, where
no packets may be dropped to signal congestion.

Figure Bl depicts the N23 scheme that we integrated into Tor, and it works as
follows. First, when a circuit is built, each router along the circuit is assigned an
initial credit balance of N2+ N3 cells, where N2 and N3 are system parameters.
When a router forwards a cell, it decrements its credit balance by one for that
cell’s circuit. Each router stops forwarding cells if its credit balance reaches zero.
Thus, routers’ circuit queues are bounded by N2 4 N3 cells, and congestion is
indicated to upstream routers through this back-pressure. Next, for every N2
cells that a router forwards, it sends a flow control cell to the upstream router
that contains credit information reflecting the amount of circuit queue space
available. On receiving a flow control cell, the upstream router updates its credit
balance for the circuit and is allowed to forward more cells if the credit balance
is greater than zero.

The algorithm as described assumes a static N3. We also developed an adap-
tive algorithm that adjusts the N3 value when there is downstream congestion,
which is detected by monitoring the delay that cells experience in the connec-
tion’s output buffer. When the congestion subsides, N3 can increase again. The
value of N3 is updated periodically and is bounded by a minimum and a maxi-
mum value (100 and 500 cells, respectively).

The N23 algorithm has two important advantages over Tor’s current flow
control. First, the size of the circuit queue is explicitly capped, and guaranteed
to be no more than N2 + N3 cells. This also ensures steady flow control, as
routers always have cells available to forward. The current flow control algorithm
in Tor allows the circuit queue of a circuit’s intermediate routers to grow up to
one circuit window in size, which not only wastes memory, but also results in
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Fig. 4: A simple topology with a middle router bandwidth bottleneck

unnecessary delays due to congestion. In contrast, for typical parameter values
(N3 =500 and N2 = 10), N23 ensures a strict circuit queue bound of 510 cells,
while these queues currently can grow up to 1000 cells in length.

The second advantage is that the adaptive N3 aspect of N23 reacts to conges-
tion within a single link RTT. If congestion occurs at any router in the circuit,
the preceding router will run out of credit and must stop forwarding cells until
it receives a flow control cell.

5 Experiments and Results

In order to empirically demonstrate the efficacy of our proposed improvements,
we evaluate our congestion and flow control algorithms in isolation, using a
network emulation platform called ModelNet [30]. Briefly, ModelNet enables the
experimenter to specify realistic network topologies annotated with bandwidth,
delay, queue length, and other link characteristics, and run real code atop the
emulated network.

Our evaluation focuses on performance metrics that are particularly impor-
tant to the end-user’s quality of service. First, we measure time-to-first-byte,
which is how long the user must wait from the time they issue a request for
data until they receive the first byte. The time-to-first-byte is two end-to-end
circuit RTTs: one RTT to connect to the destination web server, and a second
RTT to issue a request for data (e.g., HTTP GET) and receive the first byte of
data in response@ Second, we measure overall download time (including time-
to-first-byte). For all experiments, we use the latest development branch of the
Tor source code (version 0.2.3.0-alpha-dev)

5.1 Small-scale Analysis

Setup. We emulate the topology depicted in Figure @] on ModelNet where two
Tor clients compete for service on the same set of routers with a bandwidth bot-
tleneck at the middle router[§ One client downloads 300 KiB files, which roughly
correspond to the size of an average web page [23]. The second client, a bulk

% Note that there is a proposal being considered to eliminate one of these RT'Ts [12].

" In our evaluation, we refer to unmodified Tor version 0.2.3.0-alpha-dev as stock
Tor, 50 KiB (100 cell) fixed windows as 50 KiB window, the dynamic window scaling
algorithm as dynamic window, and the N23 algorithm as N23.

8 Note that a 128 KiB/s router corresponds to the 65th percentile of routers ranked
by observed bandwidth, as reported by the directory authorities. Thus, it is likely
to be chosen fairly often by clients.
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Fig. 6: Bulk client’s circuit queues at the exit router over the course of a download

downloader, fetches 5 MiB files. Both clients pause for a random amount of time
between one and three seconds, and repeat their downloads. Each experiment
concludes after the web client completes 200 downloads.
End-to-end Window-based Solutions. We first present the results for the
window-based flow control solutions. Figure shows that the time-to-first-
byte for a typical web client using stock Tor is 4.5 seconds at the median, which
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Fig.7: Performance comparisons for window approaches in a non-bottleneck
topology

is unacceptably high for delay-sensitive, interactive web users who must incur
this delay for each web request. In addition, stock Tor’s circuit queues fluctuate
in length, growing up to 250 cells long, and remaining long for many seconds,
indicating queuing delays, as shown in Figure Reducing the circuit window
size to 50KiB (e.g., one circuit SENDME interval) offers a median time-to-first-byte
of less than 1.5 seconds, and dynamic windows offer latencies of two seconds at
the median. In Figure we see that the web client’s overall download time is
influenced significantly by the high time-to-first-byte, and is roughly 40% faster
with 50 KiB and dynamic windows relative to stock Tor. Also, the circuit queues
are smaller with the 50 KiB and dynamic windows (see Figures and [6(c)).

The bulk client experiences significantly less time-to-first-byte delays (in Fig-
ure than the web client using stock Tor. This highlights an inherent unfair-
ness during congestion: web clients’ traffic is queued behind the bulk traffic and,
consequently, delay-sensitive clients must wait longer than delay-insensitive bulk
downloaders to receive their first byte of data. Using a small or dynamic window
reduces this unfairness, since the bound on the number of unacknowledged cells
allowed to be in flight is lower.

However, Figure indicates that the bulk client’s download actually takes
significantly longer to complete with 50 KiB windows relative to stock Tor. Thus,
50 KiB windows enhance performance for web clients at the cost of slower down-
loads for bulk clients. The bulk clients experience slower downloads because they
keep less data in flight and, consequently, must incur additional round-trip time
delays to complete the download. Dynamic windows offer a middle-ground solu-
tion, as they ameliorate this limitation by offering an improvement in download
time for web clients while penalizing bulk clients less than small windows, but
bulk clients are still penalized relative to stock Tor’s performance.

We next consider the same topology shown in Figured] except we replace the
bottleneck middle router with a 10 MiB/s router. In such a topology, congestion
is minimal, as evidenced by a median time-to-first-byte of 0.75 s for both the web

10
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and bulk clients (regardless of the window size). However, because the 50 KiB
and dynamic windows generally keep less data in flight, these solutions offer
slower downloads relative to stock Tor, as shown in Figures and

Despite the improvements in time-to-first-byte in the presence of bandwidth
bottlenecks, we find that smaller circuit windows tend to under-utilize the avail-
able bandwidth and the dynamic window scaling algorithm is unable to adjust
the window size fast enough, as it receives congestion feedback infrequently (only
every 100 cells). Furthermore, small windows offer even worse flow control than
Tor’s current design, since only one window worth of cells is allowed to be in
flight, and the exit router must wait for one full circuit RTT until more data
can be read and sent down the circuit.

While we elucidate the drawbacks of Tor’s current window-based congestion

and flow control, we argue that in order to achieve an improvement in both time-
to-first-byte and download speed, it is necessary to re-design Tor’s fundamental
congestion and flow control mechanisms. We next offer an evaluation of a per-link
approach implemented in Tor.
Per-link Congestion and Flow Control. We implemented N23 first with
fixed values of N2 and N3 (static N23) and then with N3 values that react to net-
work feedback (adaptive N3). We disabled Tor’s window-based flow control, so
that exit routers ignored SENDMEs they received from clients. We discuss the re-
sults of adaptive N3 with our large-scale experiments. In this section, we present
the results of static N23 for both the bottleneck and non-bottleneck topologies
discussed earlier.

For the non-bottleneck circuit experiments, we see in Figure that N23
provides a substantial improvement in download time for the 5 MiB downloads
compared to stock Tor only for higher values of N3 — 500 cells, comparable to
stock Tor’s stream window size. The graph shows that there is a 25% decrease
in delay for 50% of the bulk downloads when N23 is used. Since the maximum

9 We also consider the effect of manipulating Tor’s circuit windows in combination
with circuit-level prioritization. These results are available in Appendix [Al

11



throughput is bounded by W/RTT, where W is the link’s TCP window size and
RTT is the round-trip time, and since N23’s per-link RTT is significantly smaller
than a stock Tor’s complete circuit RTT, throughput is increased when N23 is
used. This improvement suggests that in non-bottleneck scenarios, bulk traffic
data cells are unnecessarily slowed down by Tor’s flow control at the edges of
the circuit. For bursty web traffic, both Tor’s current flow control and N23 have
similar performance for both fixed and adaptive N3, as shown in Figure
Also, the time-to-first-byte is the same for the web and bulk experiment, with a
median of 0.75 seconds.

Second, for bottleneck scenarios, our results
show that smaller values of N3 improve both
the download time and time-to-first-byte for the
bursty web traffic as shown in Figures [10(a)|
and For example, the web browsing client
experiences a 20% decrease in download time for
80% of the requests when N23 is used. Also, the
web client’s time-to-first-byte is only two seconds
for 90% of the requests, whereas for stock Tor’s
client, 80% of web requests take more than four
seconds to receive the first byte. Figure [@ shows
that the circuit queue length is upper bounded
by N2+ N3 = 90 cells.
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Fig.9: Circuit queue length
with bottleneck: N3 = 70, N2
To understand how N23 performs with differ- = 20

ent N2 values, we repeated the bottleneck exper-

iments while varying that parameter. Although a higher value for N2 has the
undesirable effect of enlarging the circuit buffer, it can be seen in Figures[10(a)|
and that when V3 is fixed at 100 cells, increasing N2 to 20 cells slightly
improves both download time and time-to-first-byte. It can be observed from Fig-
ure that time-to-first-byte is significantly improved by keeping a smaller
N3 =70 and a larger N2 = 20. Decreasing N3 to 70 cells makes up for the in-
crease in the N2 zone of the buffer, which means we gain the benefits of less flow
control overhead, and the benefits of a small buffer of N2+ N3 = 90 cells. While
performance is improved for the web client, the bulk client’s time-to-first-byte
is not affected greatly, as seen in Figure but its downloads generally take
longer to complete, as we see in Figure In addition, adaptive N3 offers
improved time-to-first-byte and download times for the web client, while slowing
downloads for the bulk client. By N23 restricting the amount of data in flight,
the bandwidth consumed by bulk clients is reduced, improving time-to-first-byte
and download time for delay-sensitive web clients.

Finally, the bandwidth cost associated with the N23 scheme is relatively low.
For instance, with N2 = 10, a flow control cell must be sent by each router on
the circuit for every 10 data cells forwarded, which requires a 10% bandwidth
overhead per router. For N2 = 20, a flow control cell is sent for every 20 data
cells, which is only a 5% overhead per router. While this cost is higher than Tor’s

12



o o
Al P N -~ —— Stock Tor —_ ]
!.:_ -- N3=100,N2=10 < .- - o
@ ] - = = e
s S Vo 5 24 N3=100N2=20 | £
g Iy E —— N3=70,N2=20 )7, ’
o — " - . )
% © | | ;I /. % © | Adaptive N3, N2 20, " /
2 o ) 2 o .
a [ |’ a
2 < I} 2 <
% i | |,‘ Stock Tor % e
E o i - N3=100,N2=10 E o
O o 7 ~=-- N3=100, N2 =20 O o 7
—— N3=70,N2=20
o | -—- Adaptive N3, N2 = 20 o | -
© T T T T T T S T T
0 2 4 6 8 10 12 0 2 4
Time (seconds) Time (seconds)

(a) Web client’s time-to-first-byte ~ (b) Web client’s download time

e <
- - —— Stock Tor ==
- - N3=100,N2=10 F - - -
s ® s @ | .- Ns=100,N2=20 |- i
S o 2 © | —— N3=70,N2=20 i
3 3 ’
2 2 = Adaptive N3,N2=20 | /'
5 <@ | 7 9 | ! Iy
A © a © ]
o o
% < '% <
s © |Z —— Stock Tor s ©
E - - N3=100,N2=10 E
] g, -=-- N3=100, N2 =20 o g,
—— N3=70,N2=20
-—-  Adaptive N3, N2 = 20
(=] o
1=} T T T T T T S}
0 2 4 6 8 10
Time (seconds) Time (seconds)

(c¢) Bulk client’s time-to-first-byte ~ (d) Bulk client’s download time

Fig. 10: Performance comparisons for Tor and N23 in a bottleneck topology

window-based flow control (e.g., one stream-level SENDME for every 50 data cells
is only a 2% overhead per circuit), the cost of N23 is nonetheless modest.

5.2 Larger-scale Experiments

Setup. We next evaluate our proposed congestion and flow control algorithms
in a more realistic network topology. We deploy 20 Tor routers on a random
ModelNet topology whose bandwidths are assigned by sampling from the live Tor
network. Each link’s latency is set to 80 ms. Next, to generate a traffic workload,
we run 200 Tor clients. Of these, ten clients are bulk downloaders who fetch files
between 1-5 MiB, pausing for up to two seconds between fetches. The remaining
190 clients are web clients, who download files between 100-500KiB (typical
web page sizes), pausing for up to 30 seconds between fetches. This proportion
of bulk-to-non-bulk clients approximates the proportion observed on the live Tor
network [19]. Circuit-level prioritization is disabled for this experiment.

Results. For web clients, Figure shows that both the 50 KiB fixed and dy-
namic windows still offer improved time-to-first-byte. However, both algorithms
perform worse than stock Tor in terms of overall download time (Figure [11(b)).

13



1.0
1.0

0.8
0.8

0.6
0.6

Cumulative Distribution
Cumulative Distribution

—— Stock Tor —— Stock Tor
o4 -~ 50KiB Window S 4 / -~ 50KiB Window
+=-- Dynamic Window +=-- Dynamic Window
o | — — Adaptive N3, N2 = 20 o | — — Adaptive N3, N2 = 20
© T T T T T © T T T
0 1 2 3 4 5 0 5 10 15
Time (seconds) Time (seconds)

(a) Web client’s time-to-first-byte  (b) Web client’s download time

Fig. 11: Performance results for large-scale experiments

This is because smaller windows provide less throughput than larger windows
when there is no bottleneck. Thus, non-bottlenecked circuits are under-utilized.

N23 with the adaptive N3 algorithm, in contrast, has the ability to react
to congestion quickly by reducing routers’ queue lengths, causing back pressure
to build up. Consequently, Figures |[11(a)| and [11(b)| show that N23 offers an
improvement in both time-to-first-byte and overall download time. This experi-
ment again highlights the potential negative impact of 50 KiB and small dynamic
windows, since even in a larger network with a realistic traffic load, smaller win-
dows offer worse performance for typical delay-sensitive web requests relative to
Tor’s current window size. Thus, to achieve maximal improvements, we suggest
that Tor adopt N23 congestion and flow control.

6 Discussion

Having empirically evaluated our proposed congestion and flow control approaches,
we next discuss a variety of open issues.

6.1 Incremental Deployment

In order for our proposed congestion and flow control mechanisms to be practical
and easily deployable on the live Tor network, it is important that any modifica-
tions to Tor’s router infrastructure be incrementally deployable. Any solutions
based on Tor’s existing window-based flow control require upgrades only to the
exit routers; thus they can be slowly deployed as router operators upgrade. N23
may also be deployed incrementally, however, clients may not see substantial
performance benefits until a large fraction of the routers have upgraded.

6.2 Anonymity Implications

A key question to answer is whether improving Tor’s performance and reduc-
ing congestion enables any attack that was not previously possible. It is well
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known that Tor is vulnerable to congestion attacks wherein an attacker con-
structs circuits through a number of different routers, floods them with traffic,
and observes if there is an increase in latency on a target circuit, which would
indicate a shared router on both paths [20]. More recent work has suggested
a solution that would mitigate bandwidth amplification variants of this attack,
but not the shared router inference part of the attack [II]. We believe that by
reducing congestion (and specifically, by bounding queue lengths), our proposed
techniques may increase the difficulty of mounting congestion attacks.

However, if only a fraction of the routers upgrade to our proposals and if
clients only choose routers that support the new flow control, then an adversary
may be able to narrow down the set of potential routers that a client is using.
Thus, it is important to deploy any new flow control technique after a large
fraction of the network has upgraded. Such an incremental deployment can be
controlled by setting a flag in the authoritative directory servers’ consensus doc-
ument, indicating that it is safe for clients to use the new flow control.

Another well-studied class of attack is end-to-end traffic correlation. Such
attacks endeavor to link a client with its destination when the entry and exit
points are compromised, and these attacks have been shown to be highly accu-
rate [TI2T22/26128]. Reducing latency might improve this attack; however, Tor
is already highly vulnerable, so there is little possibility for additional risk.

Finally, previous work has shown that round-trip time (RTT) can be used
as a side channel to infer a possible set of client locations [14]. By decreasing
the variance in latency, we might expose more accurate RTT measurements,
thus improving the effectiveness of this attack. However, reducing congestion
does not enable a new attack, but rather may potentially increase the effective-
ness of a known attack. To put this attack in perspective, Tor’s design has al-
ready made many performance/anonymity trade-offs, and thus, we believe that
our performance improvements outweigh any potential decrease in anonymity
brought about by reducing the variance in latency.

7 Conclusion

We seek to improve Tor’s performance by reducing unnecessary delays due to
poor flow control and excessive queuing at intermediate routers. To this end,
we have proposed two broad classes of congestion and flow control. First, we
tune Tor’s existing circuit windows to effectively reduce the amount of data
in flight. However, our experiments indicate that while window-based solutions
do reduce queuing delays, they tend to suffer from poor flow control, under-
utilizing the available bandwidth, and consequently, smaller windows provide
slower downloads than unmodified Tor.

To solve this problem, we offer a fresh approach to congestion and flow control
in Tor by designing, implementing, and experimentally evaluating a per-link
congestion and flow control algorithm from ATM networks. Our experiments
indicate that this approach offers the promise of reduced web page response
times and faster overall web page downloads.
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A Effects of Circuit Prioritization

To mitigate the unfairness that may exist when bursty web circuits compete with
bulk transfer circuits for router bandwidth, circuit-level prioritization has been
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Fig. 12: Performance comparisons for window-based congestion control in com-
bination with circuit scheduling prioritization

proposed [29] to enable routers to process bursty circuits ahead of bulk circuits.
Here, we combine small and dynamic circuit window with circuit scheduling pri-
oritization[t For the web client using stock Tor, the time-to-first-byte is reduced
from 4.5 seconds to 3 seconds, and the time-to-first-byte for 50 KiB and dynamic
windows are roughly the same. However, as shown in Figure|12(a)| roughly 25%
of requests experience no significant improvement when using small or dynamic
circuit windows. For these same requests, stock Tor’s large window allows more
data in flight without acknowledgment and, as shown in Figure induces
faster overall downloads. However, for the remaining 75%, small and dynamic
windows offer faster downloads. The bulk client’s time-to-first-byte and over-
all download times are not significantly altered by the circuit prioritization, as
shown in Figures [12(c)| and [12(d)] relative to non-prioritized circuit scheduling
(see Figures [5(c){and |5(d)). This is consistent with the claims made by Tang and

10 For this experiment, we set CircuitPriorityHalflifeMsec to 30 seconds, the cur-
rent value used on the live Tor network.
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Goldberg [29] that priority-based circuit scheduling does not significantly effect
bulk clients’ performance.

We found that circuit-level prioritization offered no noticeable change in per-
formance when using N23 flow control.
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