Congestion-aware Path Selection for Tor

Tao Wang, Kevin Bauer, Clara Forero, and lan Goldberg
Cheriton School of Computer Science
University of Waterloo
{t55wang,k4bauer,ciforero,iang}@cs.uwaterloo.ca

ABSTRACT

Tor, an anonymity network formed by volunteer nodes, uses
the estimated bandwidth of the nodes as a central feature
of its path selection algorithm. The current load on nodes
is not considered in this algorithm, however, and we ob-
serve that some nodes persist in being under-utilized or
congested. This can degrade the network’s performance,
discourage Tor adoption, and consequently reduce the size
of Tor’s anonymity set. In an effort to reduce congestion
and improve load balancing, we propose a congestion-aware
path selection algorithm. Using latency as an indicator of
congestion, clients use opportunistic and lightweight active
measurements to evaluate the congestion state of nodes, and
reject nodes that appear congested. Through experiments
conducted on the live Tor network, we verify our hypothesis
that clients can infer congestion using latency and show that
congestion-aware path selection can improve performance.

1. INTRODUCTION

Tor is an anonymity network that preserves clients’ online
privacy. Today, it serves hundreds of thousands of clients on
a daily basis [16]. Despite its popularity, Tor suffers from
a variety of performance problems that result in high and
variable delays for clients [9]. These delays are a strong
disincentive to use Tor, reducing the size of the network’s
user base and ultimately harming Tor users’ anonymity [7].
One reason why Tor is slow is due to the challenges of bal-
ancing its dynamic traffic load over the network’s available
bandwidth. In this work, we propose a new approach to load
balancing that can reduce congestion, improve performance,
and consequently encourage wider Tor adoption.

Path selection in Tor. The current path selection al-
gorithm selects nodes based on the bandwidth of the nodes
(adjusted by the current distribution of bandwidth in the
network among entry guards, exits and other nodes), giving
a higher probability of being chosen to nodes with higher
bandwidth. It also takes into account a number of con-
straints designed to promote network diversity; the same
node cannot be used more than once on the same circuit,
every node in the circuit must belong to a different /16 sub-
net, exit policies and node flags, etc. However, peer-to-peer
file sharing users, while discouraged from using Tor, may
still do so and consume a significant portion of the available
bandwidth [18]. Even though the number of such users is
likely small, when these bulk downloaders use nodes with
insufficient bandwidth, they may affect the performance of

*Last updated on December 7, 2011.

other clients using the nodes by introducing high delays due
to congestion.

Latency as a congestion signal. Congestion occurs at
the node level either when a node reaches its bandwidth rate
limit configured in Tor, or when a node’s connection to the
Internet is congested. When a node is congested, outgoing
cells must wait in the node’s output queue. We find that
this node latency is sometimes significantly larger than the
link latency, which is dominated by the propagation delay
between two nodes. Delays that do not originate from prop-
agation effects have been found to be quite common [5]; they
have also been found to be large [22]. From measurements
and analysis of the live Tor network, we find that Tor’s to-
ken bucket rate limiting implementation often contributes to
congestion delays of up to one second per node. These de-
lays are detrimental to interactive web browsing users, who
are the most common type of Tor user [18].

Figure 1 demonstrates a scenario under which latency can
be used as an indicator of congestion. This figure shows the
round-trip times of two different Tor nodes, PPrivCom007
and eficommander. We measured these round-trip times us-
ing a one-hop circuit from the client to each node. Their
mean round-trip times are comparable (about 0.53s), but
the distribution of the measured round-trip times to PPriv-
Com007 had higher variance: one-quarter of the measure-
ments exceeded 0.6 s. PPrivCom007’s long tail suggests that
cells had to wait a long time at the node before being pro-
cessed; this indicates congestion. In contrast, the cells sent
to the node eficommander almost never had to wait, even
though getting there took more time (for us). Traffic going
through PPrivCom007 could be redirected to eficommander;
this will improve the experience of those using PPrivCom007
while not harming those using eficommander.
Congestion-aware path selection. To reduce congestion
and improve Tor’s load balancing, we introduce node latency
as a new metric to be used when selecting nodes to form a
circuit. Our approach uses a combination of lightweight ac-
tive and opportunistic methods to obtain this information.
Clients measure the overall latency of their circuits and use
an inference technique to extract the component latencies
due to congestion for each individual node along the circuit.
Live experiments indicate that a typical client’s circuit la-
tency can be reduced by up to 40% if congestion information
is taken into account during path selection. We also argue
that the security and anonymity implications of our scheme
are minimal.

Contributions. This paper contributes the following:

] —

0.7
06 4 ! Round trip time of eficommander
05 — ——Round trip time of PPrivCom007

i

0.4 L
|
|
l

CDF

!
03 +
1
0.2 +
i

0.1
1
0 b .
0 025 05 075 1 125 15 175 2 225 25

Time (s)

Figure 1: Round trip time of two different Tor nodes
measured on 30 March 2011. 1,000 measurements
were taken for each node.

1. We identify latency as a measure of node congestion
and characterize how congestion varies across different
types of nodes. We describe ways to observe and iso-
late this node congestion from other sources of delay
(such as propagation delay) with lightweight tests.

2. We design and evaluate a latency inference technique

that attributes congestion-related latencies to constituent

nodes along a measured circuit.

3. We extend Tor’s path selection algorithm to avoid con-
gested relays when building circuits. Our approach has
low overhead, can be incrementally deployed, needs
no additional infrastructure, and our live evaluation
shows that it improves performance.

Outline. We present our findings in the following sec-
tions. In Section 2 we describe Tor’s design at a high level.
Section 3 presents related work. Section 4 describes our
design goals. Section 5 details our methods for measuring
node latencies. We describe our congestion-informed path
selection algorithm in Section 6. In Section 7, we present
experimental results and discuss open issues and extensions
in Section 8. Section 9 includes avenues for future work and
conclusions are presented in Section 10.

2. TOR BACKGROUND

Tor is the third-generation onion routing design provid-
ing source and destination anonymity for TCP traffic. A
client wanting to connect to an Internet destination through
Tor first contacts a directory server to obtain the list of Tor
nodes. Next, the client constructs a circuit of three Tor
routers (or nodes) and forwards traffic through the circuit
to a desired destination using a layered encryption scheme
based on onion routing [13]. To balance the traffic load
across the routers’ bandwidth, clients select routers in pro-
portion to their bandwidth capacities. To mitigate the pre-
decessor attack [29], the first router on the circuit (called an
“entry guard”) is selected among nodes with high stability
and bandwidth. Clients choose precisely three entry guards
to use for all circuits and new entry guards are selected every
30 days. The last router (called an “exit router”) is chosen
to allow delivery of the client’s traffic to the destination. All
data is transmitted through Tor in fixed-size 512-byte units
called cells. More details about Tor’s design can be found
in its design document [8] and its protocol specification [6].

3. RELATED WORK

Tor requires a good path selection algorithm to effectively
distribute its traffic load across its nodes. Different criteria
have been proposed as possible factors in the path selection
algorithm, such as autonomous system awareness [11]7 ap-
plication awareness [24], or game-theoretic criteria for max-
imal utility [30]. In this paper, we describe a modification
to Tor’s existing path selection algorithm to incorporate la-
tency, which reduces congestion and improves load balanc-
ing.

Snader and Borisov [25,26] propose opportunistic band-
width measurement schemes to improve Tor’s current band-
width-weighted selection algorithm. Opportunistic measure-
ment schemes have the advantage of adding little or no over-
head to the network. Our algorithm is also opportunistic.
However, their work focuses on measuring bandwidth while
we focus on latency.

A persistent distributed reputation system of nodes used
in path selection is proposed by Bauer et al. [2] as a de-
fense against nodes which misreport their bandwidth (as
self-reported bandwidth was exclusively used at the time).
Their reputation system does not include latency; we pro-
pose that latency is a good indicator for improperly mea-
sured or reported bandwidth. Due to poor load balanc-
ing, users may choose nodes which cannot handle the traffic,
causing congestion.

Using latency as a path selection criterion has been inves-
tigated by Sherr et al. [23]. In their paper, a case is made for
link-based path selection, which uses link-based properties
(e.g., latency, jitter, loss). Panchenko and Renner [20] pro-
pose using round trip time as a link-based measure to choose
paths. They give a technique to obtain round trip time and
roughly analyze the increase in performance by using this
criterion. In this paper, however, we look into consider-
ing latency as a mode-based property instead of a link-based
property. Link-based latency includes propagation delay, so
only using link-based latency as a measure may bias path
selection against circuits with nodes that are geographically
far apart or on diverse networks.

Latency in Tor has also been considered from other per-
spectives. Hopper et al. [15] looked into how network latency
can be used to deanonymize clients. Evans et al. [12] inves-
tigate using long paths to congest routers, thus revealing the
identities of those connected to the router due to the change
in round trip time. Since our congestion-informed path se-
lection approach allows clients to detect congested routers,
our proposal may be a defense against such attacks; we do
not, however, focus on defense mechanisms in this paper,
but rather on improving Tor’s performance.

Lastly, in contrast to proposals that seek to reduce conges-
tion by redesigning Tor’s congestion control mechanisms [1,22],
our work is focused solely on identifying and avoiding con-
gested routers.

4. DESIGN

We designed our scheme based on the need for practical,
yet lightweight latency measurements. Our design decisions
and reasoning are given in this section.

4.1 Centralized or Decentralized

Tor’s centralized bandwidth authorities currently use ac-
tive measurements [21] to reach a consensus on routers’
bandwidth. However, centralized schemes may be open to

attacks that try to “game the system,” where a malicious
node performs better if it knows it is being measured. This
causes the node’s resources to be overestimated and too
many clients will connect to it, which may eventually cause
congestion or strengthen attacks. Furthermore, centralized
schemes cannot provide clients with real-time data on the
network, as this requires a large communication overhead.

To maintain low measurement overhead and mitigate an
adversary’s ability to influence the measurement process, we
propose an opportunistic, decentralized scheme. Each client
maintains their own list of congested nodes, which they use
to inform their path selection.

A decentralized scheme requires the clients to perform the
measurements and only use their information for themselves.
Distributed schemes were proposed several times to solve
different issues, such as to eliminate the need for a global
witness in mix networks [10] or Tor’s previous reliance on
self-reported bandwidth [2]. The central directory does not
need to (and in fact should not) act on the information the
clients gather for themselves. Gaming is less likely since the
measurements are based on real experience of the clients.
Another advantage is that clients can obtain data whenever
they need it without having to ask the directory authorities.
A potential downside is that clients cannot do nearly the
same amount of measurements we would expect a centralized
measurement scheme to perform.

4.2 Bandwidth or Latency

As previously mentioned, Tor uses a bandwidth-weighted
path selection algorithm informed by active bandwidth mea-
surements of Tor nodes conducted by Tor’s bandwidth au-
thorities.

Latency has also been studied as a metric for path selec-
tion. Sherr et al. [23] propose a link-based path selection al-
gorithm to make use of latency and similar link-based prop-
erties. We hypothesize that latency can also be a good indi-
cator of congestion, as values above the expected distance-
based latency demonstrate that a packet has waited for some
time in a queue. Currently, Tor takes into account the cir-
cuit build time adaptively and disregards circuits that take
too long to build [4]. This approach, however, cannot iden-
tify circuits that may become congested after they are con-
structed, and the client will not learn to avoid attempting
to build circuits over nodes that are consistently congested.
We present an improved method to use latency for circuit
construction.

4.3 Circuit or Node Tests

Measurements can be performed on nodes or circuits. In
either case, the ultimate goal is to obtain latency measure-
ments on each individual node of the Tor network.

Directly testing nodes provides more accurate measure-
ments. However, if one-hop circuits are built to measure
the latency of nodes, the node can easily guess that they
are being tested, which may lead to biased results. Another
way is to build three-hop circuits, but to only measure the
round trip time to the first hop and ignore the other two
hops. However, measurements done this way will create a
large burden on Tor nodes; the details are discussed in Sec-
tion 5.2. Since we also want a decentralized scheme where
all clients perform testing, we must be careful not to cre-
ate a large burden on the Tor network, so we discard the
possibility of measuring nodes directly.

Measurements on circuits have a strong advantage: they
can be done opportunistically—which is to say, the client
only tests the circuits built automatically by the original
Tor path selection algorithm. This minimizes communica-
tion overhead, as we describe in Section 5.2. Furthermore,
the client can quickly avoid circuits that are temporarily
congested. Because of the inherent practical advantages of
measuring circuits over measuring nodes, we will focus on
measuring circuits in this paper. Some inference must be
done to attribute latency correctly to each node, as we de-
scribe in Section 5.4.

S. LATENCY

In this section, we describe our latency model, our ap-
proach to measuring latency, and a technique for identifying
congestion-related delays and attributing those delays to in-
dividual nodes along a measured circuit.

5.1 Latency Model

We first define a latency model for nodes. Our latency
measurements on the Tor network suggest that latency mea-
surements on a node can be cleanly divided into a mon-
congested component and congestion time. When a node
is not congested, the latency can be attributed to propaga-
tion delays, which are nearly constant. Non-congested mea-
surements can therefore be defined as measurements that
are very close to the minimum of all measurements on the
same node. For many nodes, this accounts for most of the
data. When a node is congested, an amount of congestion
time is added to the round trip time before it can reach the
client. This amount of time is frequently much larger than
the non-congested measurements.

We define the following terms with respect to a node:

tmin the minimum round trip time

te the congestion time
t the round trip time
04 a smoothing constant

tmin 1S the minimum round trip time for all measurements
of round trip time of a node. It is a constant, assuming all
measurements are done from the same client; the chief com-
ponent of ¢, is the propagation delay. We define the con-
gestion time t. = t —tymin. By removing t,,:n from the round
trip time, we isolate the congestion time. 7 is a small con-
stant added to the measurements to allow for quick reactions
to transient congestion, as detailed further in Section 5.4.
Thus, the actual congestion time is tc =t — tmin + -

This latency model assumes that nodes are individually
measured using one-hop circuits. However, for the various
reasons discussed in Section 4, we perform only circuit-level
measurements from which we deduce each constituent node’s
t. value, as described in the remainder of this section.

5.2 Measuring the Latency

We next discuss how circuit-level latency is measured by
the client. This measurement should fulfill the following
criteria:

1. It should be lightweight. There should be little burden
on the network even if all of Tor’s estimated 300,000
clients use this scheme simultaneously.

2. It should be indistinguishable from non-measurement
traffic. Otherwise, it may be possible for malicious
routers to influence the measurements.

3. It should exclude the destination server’s latency. We

want the measurement to consider only the delays within

the Tor network, as delays at the destination server
may be experienced regardless of whether Tor is used.

Due to the first criterion, we discard the possibility of mea-
suring the latency of nodes directly from the client, although
it would be convenient. This is because a new connection
between a client and a node requires some bootstrapping,
including a new execution of the TLS protocol, which we
found can take up to one second. This could create an im-
mense burden on some nodes, especially ones that do not
wish to or cannot offer too much of their resources.

Measurements of a circuit can be done in two ways: we can

actively probe the circuit, or we can perform measurements
opportunistically so as not to create a burden on Tor.
Active probing. One way to actively probe a circuit is to
send a BEGIN cell telling the exit node to open a connection
to TCP port 25 (SMTP) on some end server. The princi-
ple is to violate the exit policy of the exit node; port 25
is by default banned to prevent anonymous spamming. An
error message is sent back by the exit node without contact-
ing any end server. This ensures that the round trip time
measured is indeed the round trip time of the circuit, with-
out extra end-server latency. Another method to measure
the round trip time is to tell the exit node to connect to
localhost, which the exit node will refuse to. This scheme
was used by Panchenko, Richter, and Rache [20]. These two
methods share the same principle: by forcing the exit node
to return an error message, we get the round trip time to
the last node. However, a potential disadvantage of this ap-
proach is that the exit node can identify the measurement
probes and attempt to influence the results. In our experi-
ments, we use a technique that is conceptually similar: we
use circuit build cells to measure the circuit latency. To
extend the circuit to the final exit router, the client sends
a circuit EXTEND cell through the entry guard and the mid-
dle router. The middle router sends a CREATE cell to the
exit router, which after performing public-key cryptography
replies with a CREATED cell back through the circuit to the
client. The time spent performing public-key cryptography
can be considered a small constant, which will later be fac-
tored out of the latency measurement.
Opportunistic probing. If only active probing is used,
our scheme might add too much measurement traffic into the
Tor network, particularly if all clients were to perform such
measurements frequently. Thus, we also use an opportunis-
tic approach that leverages Tor’s end-to-end control cells as
the measurement apparatus. The stream-level and circuit-
level SENDME cells are sent end-to-end in response to every
50 and 100 DATA cells, respectively. In addition, BEGIN and
CONNECTED cells are sent whenever a new exit TCP stream
is established, which for web browsing clients can happen
several times per web page visited. As long as the client is
using the circuit, we can obtain a number of measurements
without any additional burden on the Tor network.

Note that if we want the exit node to immediately send
a message back without spending time contacting a server,
then the measurement is slightly skewed towards the first
two nodes. To be precise, the message has to travel through
each link among the client and the nodes twice, and it has
to wait in the queue (if any) of the first two nodes twice,
but it only needs to wait in the queue of the exit node once
(see Figure 2).

tCI \ th t 3
/ — AN A —
. /AN VN VAN VR ///?"\}\
Client | (Guard)] {(Mid) | L [Exit)
\\\i‘::::/// A \\\\;:if;/ \\:::f/
t"l €
Figure 2: A breakdown of congestion in testing.

The test packet (colorless triangle) is sent to the
exit node and a response packet (colored triangle)
is returned without going through any destination
server.

Overhead. The opportunistic measurements have no over-
head, as they leverage existing end-to-end control cells. How-
ever, it might be desirable to augment the opportunistic
measurements with additional active measurements, at some
communication cost. We can obtain one congestion time en-
try for each member of a circuit by sending just one packet
(512 bytes). Suppose the client actively probes each circuit
they build 5 times over 10 minutes. This will add an aver-
age of 5 B/s of traffic to each node. If 300,000 users use this
scheme together, they will add a total of 4.5 MB/s of traffic
to Tor. This is currently around 0.5% of the total bandwidth
offered by all Tor nodes, so our scheme will only add a small
load to the Tor network. As will be seen in Section 6, a small
number of measurements can be effective in detecting and
avoiding congested circuits; the other measurements needed
can be done opportunistically.

5.3 Isolating Circuit Congestion

When we obtain a measurement on the circuit, we want
to highlight the congestion times t.,, tc,, te; for each node
along the circuit. But first, it is necessary to separate the
circuit’s propagation delay from the delay due to congestion.
We next describe this process.

For one round trip of the entire circuit, the time 7" can be
dissected this way:

Tc - 2tcl + 2tcz + tcg

where Tpin is an estimate of the circuit’s end-to-end propa-
gation delay and T is the circuit’s delay due to congestion (v
is a small constant described in Section 5.4). The difference
between Tynin and T is that T, should be constant for the
same circuit, while T, varies depending on the extent of the
circuit’s congestion. In addition, 7. only includes the last
node once as in our tests, as our probes do not exit through
the final node. In our tests, we find that the congestion term
Te is sometimes zero, but it is often non-zero.

For each measurement of T' in this circuit, we save it in
a list {71, T3, ...,Tx}, and after all measurements of the cir-
cuit are done, we take the lowest measurement, and let this
be Tyin. Note that the number of measurements taken per
circuit should be large to ensure that Ty, converges to the
circuit’s actual end-to-end propagation delay.! Through ex-

LT .in can also be intelligently estimated using other meth-
ods. For instance, the King method [14] can be used to
approximate the pairwise network latency between any two
Tor nodes without probing either of the routers directly, so
an approximation of T,:, can be acquired with no additional
burden on Tor or the possibility of congestion.

perimental analysis, we find that Ti,i» can be correctly de-
termined within an error of 0.05s with 80% probability by
using only five measurements—in the case that Tinip is not
correctly identified, the circuit being considered is likely to
be heavily congested.

The i*" measurement of congestion time (0 < i < k) is
given by:

Tci = T’L - Tmin +7

In Figure 2, we summarize how a single end-to-end circuit
round trip time measurement is conducted and where the
congestion occurs.

5.4 Attributing Circuit Congestion to Nodes

Now that we have isolated the delay due to congestion

from the circuit’s total delay, we need to attribute the con-
gestion delay to the circuit’s constituent nodes. The sim-
plest solution is to take the congestion time of a circuit,
divide this by the number of nodes in the circuit, and record
this as an entry to the congestion time of each node equally.
While simple, this is unfair to especially fast or slow nodes,
as these nodes will have entries that are averaged out by
other nodes. A fairer solution would be to assign a conges-
tion time value to each node in proportion to its previously
estimated congestion time.
Our approach. Each client maintains a congestion list of
all known relays paired with a number L of congestion times
for each relay. This list is updated as new measurements
are taken. When we refer to the observed congestion time
of a node, we refer to the mean of all L. measurements of
congestion times of the same node.

‘We now define how this list is updated with new measure-
ments. Consider a three-hop circuit. Suppose the observed
congestion times of nodes in this circuit r1, r2, 73 are respec-
tively tc,,tcy,tcs. The entry guard is r1, the middle router
is 2, and the exit router is r3. Next, suppose the round trip
time taken for some cell to return across this circuit is T
then the total circuit’s congestion time is T, = T — Tin + 7.
For r1 and r2, we assign the following congestion time:

..
te, ’I‘c . %
: ey + ey + tey

Here i = 1 for node r1 and i = 2 for node r2. For r3, we
assign the following congestion time:

tes

L
2 ey + 2tey + teg

Note that these formulas can be fully extended to a case with
more hops, wherein only the exit node will have a multiplier
of 1 and other nodes will have a multiplier of 2. In case there
are no observed congestion times for the node yet (as the
node has not been measured before), we take te; = to, = teg
for the first set of measurements for the new node, even if
other nodes in the same circuit have been measured before.
Details. A technical issue emerges when a node becomes
congested after a long period of being non-congested. In this
scenario, the observed congestion time would be very close
to zero and the algorithm would not respond fast enough to
assign a high congestion time to this node. This is where
the term + comes into play. By ensuring that the minimum
observed congestion time is at least -y, we can guarantee
that even nodes without a history of congestion will not

be immune to blame when congestion occurs in a circuit
with such a node. We empirically find v = 0.02s to be a
good value; this is not large enough to cover the differential
between congested and non-congested nodes, yet it ensures
that convergence will not take too long.

When a new observed congestion time has been assigned
to a node, the node’s mean observed congestion time should
be updated. A simple solution would be to record the aver-
age, and the number of data points we had recorded, in order
to get an overall average. However, we find that each data
entry should not have permanent effect on the node’s aver-
age, because the conditions of the nodes sometimes change,
which affects their congestion status, and the observed con-
gestion time should be updated without being significantly
affected by the original congestion time (wherein the node
was in a different situation). Therefore, we maintain a list of
congestion time measurements for each node, L; when this
amount of data has been recorded, we push out old data
whenever new data comes in. If L is chosen to be large,
then the client’s preference for a node will not change as
quickly, and vice versa. We find that L = 20 offers a good
balance—a mistaken or temporary situation will not affect
the average much, while . = 20 still allows convergence
within a reasonable amount of measurements.
Advantages. This method has an advantage over the naive
method. Assuming that each node has a constant congestion
time, if all observed congestion times are already accurate,
no further observations will change any of the predictions;
i.e. there is a point of convergence (see Appendix A for more
on the convergence of our method). This method is also
fair, in the sense that if certain nodes are already known to
cause congestion, then high congestion time values taken for
circuits containing these nodes will be properly attributed
to these nodes (and not to other low-congestion nodes in the
same circuit).

6. MAIN ALGORITHM

Congestion can be either short term (e.g., a file sharer de-
cides to use a certain node for their activities), or long term
(e.g., a node’s bandwidth is consistently overestimated or its
flags and exit policy are too attractive). For short-term con-
gestion, we want to provide an instant response to switch to
other circuits. For long-term congestion, we propose a path
selection algorithm that takes congestion time into account.

6.1 Instant Response

We provide two ways in which clients can perform instant
on-the-spot responses to high congestion times in a circuit.
Choosing the best pre-built circuits. Tor automati-
cally attempts to maintain several pre-built circuits so that
circuit construction time will not affect the user’s experi-
ence. Two circuits are built for each port being used in the
past hour (a circuit can count for multiple ports). Only one
of those circuits is chosen as the next circuit when the user’s
circuit times out or breaks. A reasonable scheme, therefore,
is to test all of those circuits before choosing which to use.
As stated above, those tests can be done quickly and with
minimal overhead. We can also increase the number of pre-
built circuits to allow the clients to choose the best among
more circuits, increasing the strength of our scheme. We
suggest that five active probing measurements per pre-built
circuit is sufficient to choose the best, as we observe in our
experiments (in Section 7) that congestion along a circuit

typically manifests itself within a small number of measure-
ments.

Switching to another circuit. While using the circuit, a
client may continue to measure the circuit and obtain con-
gestion times. This can be done with no overhead to the
Tor network by opportunistically leveraging Tor’s stream-
level and circuit-level SENDME cells, or the stream BEGIN and
CONNECTED cell pairs (as described in Section 5.2). This gives
us the round trip time 7', from which we can follow the pro-
cedure given in Section 5.3 to isolate the nodes’ congestion
time. If the observed congestion time is “large”, the client
should stop using this circuit and choose another circuit in-
stead. Here, “large” can be defined several ways—it can be
adaptive so that the client drops circuits at a predefined fre-
quency. It can also be defined as a constant congestion time
threshold (e.g., one second), so that clients will not choose
to use circuits with a high congestion value.

Both instant response schemes offers a more flexible re-
sponse to congestion than the original path selection algo-
rithm, as they incorporate real-time congestion information
into the selection decision. We note that clients may retain
their guard nodes for a long time (currently 30 days). It
might be tempting to drop a chronically congested guard
node and choose another one. However, doing so introduces
a trivial attack on guards and is not recommended.

6.2 Path Selection

In addition to an instant response, we also want a long-
term response where clients can selectively avoid certain
nodes if they often receive poor service from them. This
can be helpful when there are nodes with poorly estimated
bandwidth, when bulk downloaders customize their clients
to use only specific relays, and when there are other unex-
pected load balancing issues that have not been resolved.
Our congestion-aware path selection works as follows.
Congestion list. Each client will keep a list of all routers,
each of which will be recorded with a list of their measured
congestion times. The list of measured values is of size L;
when new data comes in, old data is pushed out. We first
note that the size of the list is not too large. If L = 20 entries
of observed congestion times are recorded at 2 bytes (which
can be per 1 ms up to 65535 ms) each, each router will
take up 40 bytes, and so 2,000 routers will be 80 kilobytes—
this is manageable even if there are 20,000 routers. This
is also an advantage of our node-based approach over link-
based selection; we can record observed congestion-related
latencies for nodes in O(n) space, while it would take O(n?)
space to do so on pair-wise links, for n nodes.?

Router selection. Our scheme is designed to be built
atop the current path selection algorithm in this way: when
we wish to extend a circuit by one node, we pick a few
routers from the list according to the original scheme (e.g.,
10 nodes), and then choose one of them in negative corre-
lation to their observed congestion times. Observed conges-
tion times are obtained by recording both the active and
opportunistic measurements done for the instant response
schemes. For example, suppose that node r’s observed con-
gestion time is t.,.. We define a base constant a > 0, and

2However, we note that it might be possible to extend the
virtual coordinate system approach proposed by Sherr et
al. [23] to capture congestion-related latencies in addition to
propagation delay between nodes in O(n) space.

use it to obtain the probability of selecting the node r for a
circuit:
1
o+ te,

P(C;) x

where C). is the event of node r being chosen. « is a constant
that prevents very low congestion nodes from dominating
the path selection algorithm.

The effect of this scheme on the user’s experience and

the Tor network itself depends in part on the choice of the
constant . A smaller « will impact the load balancing more
as nodes with less observed congestion become more likely to
be chosen. We suggest choosing « to be approximately the
mean congestion time of all observed nodes (we found this
generally to be between 0.25s and 0.5s), so that the least
congested nodes will receive about twice as many clients
as they did before. This should be sufficient to ameliorate
long-term congestion, because the non-congested nodes (for
which t. is close to zero) will receive up to twice as much
traffic as they once did until they have no extra bandwidth
to spare.
Advantages. Our approach is simple and efficient. The
computation required to support latency measurement and
path selection is very simple: it is nothing more than a few
arithmetic operations on small numbers. Furthermore, this
scheme requires no further infrastructure to support, and
it is incrementally deployable in the sense that any client
who chooses to use this scheme can immediately do so. In
fact, even if only a portion of clients use this scheme, the
performance of the remaining clients might also improve, as
our proposal aims to reduce the overall congestion in the
network.

7. EXPERIMENTS

We designed a number of experiments that aim to validate
our assertions about latency and congestion in Tor. For all
experiments, we use the Tor controller protocol [27] to con-
nect to Tor. We use the final pair of circuit construction cells
to measure the round trip time of a circuit (as described in
Section 5.2). In the remainder of this section, we show that
congestion is a property of Tor nodes, present experiments
and results that quantify the persistence of the circuit-level
latency estimates, explore the relationship between a node’s
consensus bandwidth and its observed congestion, and detail
the performance improvements offered by congestion-aware
router selection.

7.1 Node Congestion

We first seek to demonstrate that congestion is a property
of Tor routers. For 72 hours in August 2011, we collected
round-trip time data for all Tor routers that can be used on a
circuit by measuring the time to construct one-hop circuits.
For each node, we subtracted the node’s minimum measure-
ment (e.g., the propagation delay) to isolate the congestion
delays t.. For each measured node, on receipt of the cell
building response cell, we immediately send another circuit
building request cell, for a total of five times per node.

Figure 3(a) shows the distribution of congestion delays
for entry guards, exits, guard/exits, and middle-only nodes.
The median congestion delay is minimal (3-5ms) across all
node types; however, the tails of the distributions tell a dif-
ferent story. For the most congested ten percent of the mea-
surements, nodes marked as both guard and exit experi-

1.00
|

0.50

C
9
5
2
@
©
(0]
=
T &
g o
g8 2
g e - =+ Guard and Exit
& 8 | - - Guardonly
qEJ oS Exit only
ot —— Al Nodes
E o Middle only
o <9-
o T T T T T T 1
0.001 0.005 0.050 0.500

Congestion delay (s)

Congestion delay (s)

Congestion delay (s)

o

o

e

o

o 1 1 1T 1T T 1
0 10 20 30 40 50 60 70

Measurement duration (hours)

<

N |- Guard/Exit - & Guard only - —- Exit only

?_’. Lo - s “ a4 s 4
pE TIRETS NI L IR ce

2 Pk e LR o B]
0 10 20 30 40 50 60 70

Measurement duration (hours)

(a) CCDFs of congestion delay for nodes with different (b) Congestion delays over time for all routers mea-

flags (log-log scale)

sured (top) and the variability for three high-bandwidth
routers (bottom)

Figure 3: Analysis of congestion delays

o
™ | & 50 KB/s rate limiting
- o No rate limiting
» 9 |
T
[
(o]
3 o |
©
=)
s 9
L -
c
9 o
‘g - T Y R
(@]
5 v |
O o
C) ommmmmrmrs s D
o

[T

T T T 1
0 50 100 150 200 250

Measurement number

Figure 4: Congestion delays due to token exhaus-
tion during a controlled experiment on the live Tor
network

ence congestion delays greater than 866 ms, and guard-only
nodes have at least 836 ms of congestion delay. Exit-only and
middle-only nodes tend to be the least congested. Guard
nodes may be the most congested because the stability and
bandwidth criteria for the guard flag is too high. Relax-
ing the requirements for the guard flag would enable some
middle-only nodes to become guards, reducing congestion
among guards. overall congestion.

Figure 3(b) shows congestion delays over the duration of
our measurements for all routers (top) and for three repre-

sentative high-bandwidth (10 MiB/s) routers (bottom). We
note that these delays tend to be low. However, there exists
noticeable variability regardless of a node’s flags or band-
width, and many of the delays are close to one second (Fig-
ure 3(a) also illustrates these one second delays where the
CCDF lines become vertical). These one second delays are
the result of Tor’s token bucket rate limiting with a once-
per-second token refilling policy. Increasing the frequency
with which the tokens are refilled may reduce or eliminate
these one second delays. This design change is currently be-
ing discussed [28]. Note that our measurements are able to
remotely identify these one second delays because there is no
explicit pause between receipt of a circuit building response
and the transmission of the subsequent measurement cell.
These delays indicate that nodes are being asked to forward
more traffic than they can handle, resulting in congestion.
Thus, we conclude that congestion is a property of the Tor
router itself, motivating the need for clients to consider con-
gestion when selecting nodes for a circuit.

To verify that these one second delays are in fact the result
of Tor’s token bucket rate limiting mechanism and not some
other unknown phenomenon, we conducted a simple exper-
iment with a high-bandwidth (1 Gb/s) Tor router deployed
on the live network. This experiment consists of two phases.
First, we configured the router to use no explicit rate limit-
ing. In such a configuration, the node does not exhaust its
supply of tokens and, thus, it does not need to explicitly wait
for its tokens to be refilled. Next, we configured the router
to an average incoming and outgoing bandwidth 50KB/s
using Tor’s BandwidthRate option. We also configured the
maximum token bucket size to be the same value using the
BandwidthBurst option. For each phase of the experiment,
we measured congestion delay using the procedure described
previously.

Figure 4 shows the congestion delays for the live Tor router
with rate limiting is enabled (red triangles) and disabled

06

05 . *
*
* . e
R ¢ ..
- 04 T -
“:’ *e * .
*
% 03 *
& .
c * + *
S . . .
02 * . ¢
*
%t +*
0.1 S - ad
+3 . ““ . * . R .
. » *
o, 49 o % te *
10 100 1000 10000 100000

Bandwidth (kB/s)

Figure 5: The congestion time of 294 nodes plotted
against the bandwidth.

(black circles). We see that when rate limiting is enabled,
the router quickly exhausts its allotted tokens and must wait
for very close to one second before the tokens are replen-
ished. When rate limiting is disabled, we observe no such
delays. Thus, we conclude that delays that approach one
second are the direct result of token exhaustion and Tor’s
per-second token refilling policy.

7.2 Latency Persistence

We are next interested in determining whether measure-
ments of congestion persist over a long period of time, or if
congestion tends to be short-lived and transient. A lack of
persistence would suggest that congestion comes in bursts,
and that an instant response (like choosing another circuit)
would help resolve this issue.

A circuit over the same three routers was built 10,000
times, at 10 second intervals, for one day. For this circuit,
we found that Ty,in, the minimum round trip time, was 0.96 s
and the mean congestion time, T¢, was 0.41s. The mean dif-
ference between any two randomly chosen latency measure-
ments was 0.56s. Compared to this, the mean difference
between any two adjacent round trip time measurements
was only 0.21s. The probability that the difference between
one data entry and the next one being less than 0.05s was
54.2%. This suggests that circuit congestion is persistent
in the short term and that switching to another circuit will
help if a few measurements indicate that it is congested.

7.3 Congestion and Bandwidth

To investigate the possible relationship between a node’s
bandwidth and its congestion, we obtained the bandwidth
consensus of all nodes in the Tor network on June 11, 2011
and looked at the top 87.5% of the list, which are candi-
dates for the middle node. The mean bandwidth was around
750kB/s while the median was 150kB/s. This consensus
did not contain nodes below 20kB/s. This suggests that the
bandwidth limit for most nodes can easily be reached by
only a few users on a fast connection.

The latency of 294 randomly chosen nodes was tested,
each 30 times over 2.5s intervals. Each node’s congestion
time t. was obtained from those 30 tests. Figure 5 shows a
scatter plot for congestion time versus the log of the consen-

1.0

0.8

Cumulative fraction
04 0.6

0.2

—— Congestion—awareness
- - Tor's default path selection

0.0

T T
0.0 0.5 1.0 1.5 2.0 25
Congestion time (s)

Figure 6: The client’s congestion time when us-
ing Tor’s current path selection algorithm compared
with our congestion-aware path selection.

sus bandwidth. As can be seen from the plot, there is very
little correlation between the two.®> The correlation coeffi-
cient (Pearson’s r) between the log of the bandwidth and the
congestion time was -0.00842 for this particular experiment.
This suggests that simply looking at the bandwidth is not
sufficient to resolve load balancing issues, thus motivating
our congestion-aware path selection scheme.

This experiment implies that it is not only the faster or the
slower nodes that are congested. In the same experiment, we
also noted whether or not a given node that was being tested
was a guard, exit, a guard and an exit, or none of the above.
We found that if a node was neither a guard nor an exit,
its congestion time was significantly lower, while guards had
the most congestion time for our experiment. This suggests
that the long-term path selection algorithm may help.

7.4 Improvements of Our Scheme

We next present experiments that seek to quantify clients’
latency improvements when using our scheme. Experiments
are performed on both the instant response and long-term
path selection components.

In these experiments, an unmodified Tor client used the
current path selection algorithm in Tor. At the same time,
a modified client uses the instant response components of
our scheme (from Section 6.1) to determine which circuit it
should use. The original client builds 225 circuits and mea-
sures each one precisely 30 times to obtain round trip times.
The modified client determines which circuits it should use
based on the same data.

Choosing the best pre-built circuits. We first tested
how much of an improvement we would see if the client sim-
ply tested each circuit five times when building them pre-
emptively and chose the one with the lowest congestion. For
simplicity we assumed that the client always had three cir-
cuits to choose from. The original client tested each of its
circuits 30 times, and took the mean of the congestion times
as its experience with the circuit. The modified client chose

3Dhungel et al. observe a low correlation between consensus
bandwidth and overall router delay [5].

1.0

[ee]
c O I
Qo
S ©
<
[]
=
g < |
3 O
1S
jn }
O «
&
/ —— Congestion—awareness
o | - - Tor's default path selection
© [T T T T 1
0.0 0.5 1.0 1.5 2.0 25
Round trip time (s)
Figure 7: A client’s round trip times when us-

ing Tor’s current path selection algorithm compared
with our congestion-aware path selection.

the best among every three circuits to use by only looking
at the first five measurements; after choosing the best out of
three, all 30 measurements of that circuit are revealed to the
modified client and it is taken as its experience of the circuit.
Without the scheme, the mean circuit congestion time was
about 0.276s. With the scheme, it was about 0.119s. We
find that this large improvement was because most circuits
were non-congested, except a minority where the congestion
time was very high. Those circuits also clearly exhibited
congestion in the first five measurements. This experiment
demonstrates that just a few measurements are needed to
effectively identify congested circuits.

Switching to another circuit. We next tested how much
of an improvement we would get if the client switches to a
better circuit when the current one becomes too congested.
This time both the original client and the modified client can
see all measurements. The modified client dropped a circuit
if the last five measurements had a mean of more than 0.5 s of
congestion; 73 of the 225 circuits were eventually dropped.
This sufficed to improve the mean congestion experienced
from 0.276s to 0.137s.

Finally, we combined the two instant response schemes. 75
of the 225 circuits were chosen using the first scheme, and
later 11 of the 75 circuits chosen were eventually dropped
using the second scheme. We achieved a mean congestion
time of 0.077s, compared to the original 0.276s. The to-
tal round trip time was reduced from a mean of 0.737s to
0.448s. Figure 6 shows the distribution of congestion times
for the client when it used our improvements compared to
the original selection scheme, and Figure 7 shows the distri-
bution of round trip time for the same comparison.

One may worry that these schemes will add too much over-
head because they drop existing circuits and build new ones.
With the first scheme we are not dropping extra circuits; in-
stead of choosing one of the available circuits arbitrarily, we
measure the circuits a few times to choose the least con-
gested one. With the second scheme, in our experiment we

1.0

0.8

Cumulative fraction
0.4
|

0.0

[T T T
-25 -20 -15 -10 -05 0.0 05

Error (s)

Figure 8: Distribution of errors when learning indi-
vidual node congestion over a large number of trials

found that we would need to build about 26% more circuits,
which is a relatively modest increase.?

Long-term path selection. We evaluate the long-term
path selection algorithm as follows. We ran a client that
builds many circuits over the entire Tor network using the
original path selection scheme. In total 13,458 circuits were
built, for which the round-trip time was obtained 5 times
each. One-third of the circuit build times were used as test-
ing data; the rest were used in training the client to learn
the estimated congestion times for each relay. By using the
long-term path selection scheme, we observed a decrease in
the mean congestion time for this experiment from 0.41s
to 0.37s over the testing data. The improvement is not as
large as in the instant response schemes, because the long-
term path selection scheme tackles more persistent factors
which adversely affect node performance rather than short-
term bursts of congestion.

The long-term path selection scheme offers an improve-
ment nonetheless because it is capable of deducing the con-
gestion time of individual nodes while only measuring the
congestion times of random circuits, allowing it to choose
uncongested nodes. We performed a total of 379 trials where
we compared deduced congestion (by building three-hop cir-
cuits) to directly measured congestion (by building one-hop
circuits). Figure 8 shows the distribution of errors. We
found that nearly 90% of the errors were within -0.5s to 0.5,
and 65% of the errors were within -0.1s to 0.1s. The scheme
very rarely overestimated node congestion, but sometimes
underestimated it, as shown by the large number of nega-
tive errors. The mean error was therefore -0.2s. This may
be because high congestion is somewhat random in nature,
so the scheme is less accurate in predicting the extent of a
node’s congestion while only given a previous record.

We next investigate whether or not our scheme is capable
of deducing the congestion time of individual nodes while
only measuring the congestion times of random circuits over
300 nodes. This would imply that our long-term path se-

4Circuit building cells are much rarer than data transfer
cells; further, the Tor Project is working to decrease the com-
putation required for circuit building by a factor of 4 [17].

lection scheme is able to identify and choose uncongested
nodes.
A single trial consists of the following steps:

1. Build a circuit of three random routers among the 300
nodes.

2. Measure the circuit’s round-trip time five times.

3. Obtain the circuit congestion by subtracting each value
of circuit round-trip time by the minimum of the five
values.

4. Update the recorded congestion of the nodes in the
congestion list.

5. Test each node individually five times to get the node
congestion directly.

6. Take the error of each node as the difference between
the mean estimated congestion time and the directly
measured node congestion.

We performed a total of 379 trials; Figure 8 shows the dis-
tribution of errors. We found that nearly 90% of the errors
were within -0.5s to 0.5, and 65% of the errors were within
-0.1s to 0.1s. We found that the scheme very rarely assigns
high congestion values to nodes which are consistently non-
congested. This is essential to the accuracy of the scheme.
However, there were quite a number of large negative errors.
This was where the directly measured congestion value for
the node was very high, but the deduced congestion value
(using our scheme) for the node was not nearly high enough.
The mean error was therefore -0.2s. This may be because
high congestion is random in nature, so the scheme is less
accurate in predicting the exact value of congestion for a
congested node. Nevertheless, it would assign a high con-
gestion value to nodes which have a history of creating high
congestion values.

8. DISCUSSION

We next discuss a variety of open issues related to our
proposed congestion-aware path selection.

8.1 Client Differentiation

While Tor is not geared towards serving clients using Bit-
Torrent, a large proportion of Tor’s traffic is consumed by a
small number of these clients [18]. These clients can eas-
ily congest most of the nodes in the Tor network, caus-
ing congestion problems for everyone using these nodes. A
fundamental issue is that the path selection algorithm has
to assume that all users are approximately the same; how-
ever, the large difference between a bulk downloaders and a
web-browsing client means that this assumption will cause
congestion when the file-sharing clients are assigned to low-
bandwidth nodes. This difference has been a motivation for
work to improve Tor’s ability to handle congestion [1].

Our scheme helps ameliorate the problem of congestion
introduced by bulk downloaders in two ways. First, bulk
downloaders will not switch circuits because their streams
are in active use, but web-browsing clients can do so. This
allows web-browsing clients to make an instant response and
switch to another circuit if their current one is too congested.
Suppose Alice, a web-browsing client, wants to switch from
a congested circuit to a circuit with non-congested nodes.

10

The switch is unlikely to harm the users of another circuit
as Alice only demands a small amount of bandwidth, while
Alice herself benefits from having a better circuit. Second,
clients will test each circuit they build before deciding which
one to use. If certain circuits contain nodes that are already
congested by bulk downloaders, then other clients will avoid
them. We note that web-browsing clients generally should
not mind using circuits with lower bandwidth, so long as
they receive enough bandwidth to transport their relatively
light traffic.

8.2 Anonymity

The list of latencies stored on a user’s computer may com-
promise anonymity if divulged. If the list of latencies for
all users is known to an attacker, he can perform an at-
tack by only controlling the exit node, and using the lists
to probabilistically guess who is connecting by checking the
frequency of connections; this will give him some amount
of information. Our scheme, however, gives no reason to
directly divulge the list of latencies at any point.

We note that an entry guard can deduce the users’ prefer-
ences for entry guards and middle nodes, but it is unable to
tell which exit nodes they prefer, while the exit node is un-
able to tell which clients prefer them. To obtain the client’s
preference for exit node, the attacker requires a circuit in
which the entry guard and exit node are colluding. Such a
case already results in anonymity being compromised with-
out our scheme. Our scheme does, however, cause a more
lasting effect for such an attack.

8.3 Security of Our Scheme

We next consider the security of the scheme. We con-
sider a particular attack called the smearing attack. The
attacker first uses all of his available bandwidth to create
malicious nodes. These malicious nodes attempt to give
the appearance of congestion by artificially delaying cells.
If a client measures a circuit containing some innocuous
nodes and these malicious nodes, the innocuous nodes will
be “smeared” with high observed congestion times. After a
certain amount of time, these malicious nodes will be ob-
served to have a very high congestion as well, so the smear-
ing becomes less effective. Once a malicious node becomes
rarely selected, it is taken down, and a new one is created
in order to maintain the attack. This attack is continued
until all innocuous nodes can no longer be smeared further
(this is bounded by the amount of bandwidth available to
the attacker). After all nodes are maximally smeared, the
attacker can stop the attack and enjoy a larger control of
the network for a while, as his nodes will now seem more
attractive.

Note that nodes in Tor are less likely to be chosen if they
do not have the “stable” and “fast” flags. The stable flag
is a barrier for malicious nodes, as it requires the node to
demonstrate high stability before they can be effective. In
particular, Tor by default does not choose nodes without the
“stable” flag for entry guards. We neglect this barrier in the
following analysis, giving more power to the attacker.

A parameter of the attack is C, which indicates for how
long each malicious node will attempt to smear other nodes
before being replaced. If C = 5, for example, the attacker
will attempt to keep each malicious node up for as long as it
takes to smear other nodes five times for each client measur-
ing the nodes, then take it down and replace it with another

< _
o
<
o
£ 3
[0}
c
[}
=
N
=
<
IS
o
o ~—
§ o
- - Smearing attack
o | —— Line of slope 1 (baseline)
o

\ \ \
0.1 0.2 0.3 0.4

Original control of the network

0.0

Figure 9: An estimation of how much control an at-
tacker could gain if they used their nodes to smear
other clients. The numbers given are a measurement
of the fraction of the network the attacker controls.
The diamond points show how much control the at-
tacker can gain. The line is drawn as a baseline
comparison when no attack is performed. We chose
tmaz = 5000 ms, t. = 500 ms, L = 20, C' = 30.

node. We take t. as the mean performance of the nodes (in-
cluding the malicious node) and tmqee as the maximum time
the client performing the latency measurement will wait for
before timing out. The estimation is done by running a sim-
ulation with the simplifying assumption that all nodes can
be selected in all positions. We did not experiment with this
attack on the live Tor network.

Figure 9 shows how much bandwidth the malicious nodes
must be given at any point in time in order to affect the
measurements of the congestion time of the non-malicious
nodes. As can be seen, an attacker can indeed smear other
nodes and gain an advantage by coming up with fresh, non-
smeared nodes. We note that the instant response given
in Section 6.1 (switching circuits immediately) provided by
the congestion measurements makes it harder for smear-
ing attacks to be performed, as a smeared circuit will be
dropped quickly. We also note that the advantage gained
is temporary—when the adversary stops performing the at-
tack and uses all their bandwidth to acquire control of the
network, clients will start measuring the other nodes’ non-
smeared congestion times as well, so their observed conges-
tion times will slowly return to their non-smeared levels.

9. FUTURE WORK

In this section, we identify a variety of avenues for future
work.
Centralized testing. In this paper, we investigated a
scheme under which clients build their paths using their own
active and opportunistic measurements of latency. This has
several advantages over a centralized scheme: latency mea-
surements are readily available to clients during their normal
usage, and this allows clients to respond quickly to tempo-
rary bursts in latency (e.g., a file sharer decides to download
a large file through Tor for 15 minutes). We also recognize

11

that centralized testing has several advantages—if all clients
use the same latency measurements done by a centralized
tester, then there will be no loss of anonymity even if an at-
tacker can guess their congestion list. Furthermore, a much
smaller number of measurements needs to be done. As fu-
ture work, we wish to investigate whether we can improve
our scheme by adding or replacing certain components with
centralized testing.

Defenses and attacks. Because our scheme allows clients
to choose non-congested circuits, these clients may be inher-
ently protected from congestion attacks [12,19] that attempt
to identify a client by clogging their circuit. However, other
attacks, such as those that rely on accurate network latency
estimates [15], might become easier if congestion is reduced.
Ultimately, our congestion-aware path selection algorithm’s
primary objectives are to reduce congestion, improve load
balancing, and improve clients’ quality of service, not nec-
essarily to provide any defense mechanisms. A complete
investigation of the effects of decreased congestion on prior
attacks is future work.

Large-scale evaluation. Our experiments show that a
single client can expect to experience improved performance
when using our proposed congestion-aware path selection.
We suspect that clients who use Tor’s standard path selec-
tion algorithm might also experience improved performance
due to an overall reduction in network congestion. However,
it is possible that our proposed instant response methods
that aim to help clients avoid congested circuits in real time
may produce short-term oscillation where clients initially
switch to non-congested nodes, but after a large number of
clients switch to the same set of non-congested nodes, these
nodes may become congested. As future work, we plan to
investigate the potential performance benefits and other ef-
fects when this path selection technique is deployed at scale
through whole-network experiments in a testbed [3].

10. CONCLUSION

Many different metrics for path selection in Tor have been
proposed, some of which consider the use of latency. How-
ever, previous work treats latency as a property of a link
and focuses on the delays that occur primarily due to prop-
agation. We assume a different approach: we identify the
importance of latency as an indicator of a node’s conges-
tion. To reduce congestion, improve load balancing and,
ultimately, improve clients’ quality of service, we propose
an improved path selection algorithm based on inferred con-
gestion information that biases path selection toward non-
congested nodes.

We expect our proposal to improve the experience of any
client who uses this scheme, in addition to those who do
not as long as the number of clients who use the scheme
is substantial; in addition, this scheme requires no further
infrastructure, a very small overhead, and can be incremen-
tally deployed as only clients need to participate.

Acknowledgements. This work was funded in part by
NSERC, MITACS, and The Tor Project. We also thank
Jean-Charles Grégoire, Angele Hamel, Ryan Henry, Femi
Olumofin, and Rob Smits for their valuable suggestions.

11. REFERENCES
[1] ALSABAH, M., BAUER, K., GOLDBERG, 1.,
GRUNWALD, D.; McCoy, D., SAVAGE, S., AND

[11]

[12]

VOELKER, G. M. DefenestraTor: Throwing out
windows in Tor. In PETS (2011).

BAUER, K., McCoy, D., GRUNWALD, D., KOHNO,
T., AND SICKER, D. Low-resource routing attacks
against Tor. In WPES (2007).

BAUER, K., SHERR, M., McCoy, D., AND
GRUNWALD, D. ExperimenTor: A Testbed for Safe
and Realistic Tor Experimentation. In USENIX
Workshop on Cyber Security Experimentation and
Test (August 2011).

CHEN, F., AND PERRY, M. Improving Tor path
selection. https://gitweb.torproject.org/torspec.
git/blob_plain/HEAD:
/proposals/151-path-selection-improvements.txt,
July 2008.

DHUNGEL, P., STEINER, M., RimAc, 1., HiLT, V.,
AND Ross, K. W. Waiting for anonymity:
Understanding delays in the Tor overlay. In
Peer-to-Peer Computing (2010), IEEE, pp. 1-4.
DINGLEDINE, R., AND MATHEWSON, N. Tor Protocol
Specification. https://gitweb.torproject.org/tor.
git/blob_plain/HEAD:/doc/spec/tor-spec.txt.
Accessed August 2011.

DINGLEDINE, R., AND MATHEWSON, N. Anonymity
loves company: Usability and the network effect. In
WEIS (June 2006).

DINGLEDINE, R.;, MATHEWSON, N.; AND SYVERSON,
P. Tor: The second-generation onion router. In
USENIX Security (2004).

DINGLEDINE, R., AND MURDOCH, S. Performance
improvements on Tor or, why Tor is slow and what
we're going to do about it. http://www.torproject.
org/press/presskit/2009-03-11-performance.pdf,
March 2009.

DINGLEDINE, R., AND SYVERSON, P. Reliable MIX
Cascade Networks through Reputation. In Proceedings
of Financial Cryptography (FC ’02) (March 2002),
M. Blaze, Ed., Springer-Verlag, LNCS 2357.

EDMAN, M., AND SYVERSON, P. F. AS-awareness in
Tor path selection. In Proceedings of CCS (2009),
pp. 380-389.

Evans, N., DINGLEDINE, R., AND GROTHOFF, C. A
practical congestion attack on Tor using long paths.
In Proceedings of the 18th USENIX Security
Symposium (August 2009).

GOLDSCHLAG, D. M., REED, M. G., AND SYVERSON,
P. F. Hiding routing information. In Proceedings of
Information Hiding: First International Workshop
(May 1996), Springer-Verlag, LNCS 1174.

GuMMADI, K. P., SAROIU, S., AND GRIBBLE, S. D.
King: Estimating latency between arbitrary Internet
end hosts. SIGCOMM Comput. Commun. Rev. 32, 3
(2002).

HopPER, N., VASSERMAN, E. Y., AND CHAN-TIN, E.
How much anonymity does network latency leak? In
CCS (2007).

LoEsiNG, K. Measuring the Tor network: Evaluation
of client requests to the directories. Tor Project
Technical Report (2009).

MATHEWSON, N. New paper by Goldberg, Stebila,
and Ostaoglu with proposed circuit handshake.

12

27]

(28]

https://lists.torproject.org/pipermail/
tor-dev/2011-May/002641.html. Accessed June 2011.
McCoy, D., BAugRr, K., GRUNWALD, D., KOHNO,
T., AND SICKER, D. Shining light in dark places:
Understanding the Tor network. In PETS (2008).
MURDOCH, S. J., AND DANEzIS, G. Low-cost traffic
analysis of Tor. In Proceedings of IEEE Symposium on
Security and Privacy (2005).

PANCHENKO, A., AND RENNER, J. Path selection
metrics for performance-improved onion routing. In
Proceedings of the 2009 Ninth Annual International
Symposium on Applications and the Internet
(Washington, DC, USA, 2009), IEEE Computer
Society, pp. 114-120.

PERRY, M. Torflow: Tor network analysis. HotPETS,
20009.

REARDON, J., AND GOLDBERG, I. Improving Tor
using a TCP-over-DTLS tunnel. In USENIX Security
(2009).

SHERR, M., BLAZE, M., AND L0oO, B. T. Scalable
link-based relay selection for anonymous routing. In
PETS (2009).

SHERR, M., MAo, A., MArczAk, W. R., ZHOU, W.,
Loo, B. T., aND BLAZE, M. A3: An Extensible
Platform for Application-Aware Anonymity. In 17th
Annual Network and Distributed System Security
Symposium (NDSS) (February 2010).

SNADER, R., AND Borisov, N. A tune-up for Tor:
Improving security and performance in the Tor
network. In NDSS (2008).

SNADER, R., AND BoRrisov, N. Eigenspeed: Secure
peer-to-peer bandwidth evaluation. In Proceedings of
the 8th International Workshop on Peer-to-Peer
Systems (IPTPS) (2009).

THE ToR PROJECT. Tor control protocol.
https://gitweb.torproject.org/torspec.git/
blob/HEAD:/control-spec.txt.

TSCHORSCH, F., AND SCHEUERMANN, B. Proposal
182: Credit bucket. https://gitweb.torproject.
org/torspec.git/blob_plain/HEAD:
/proposals/182-creditbucket.txt. Accessed August
2011.

WRrRIGHT, M. K., ADLER, M., LEVINE, B. N., AND
SHIELDS, C. The predecessor attack: An analysis of a
threat to anonymous communications systems. ACM
Trans. Inf. Syst. Secur. 7, 4 (2004), 489-522.

ZHANG, N., Yu, W., Fu, X., AND Das, S. K. gPath:
A game-theoretic path selection algorithm to protect
Tor’s anonymity. In GameSec (Berlin, Heidelberg,
2010), Springer-Verlag, pp. 58-T71.

APPENDIX

A.

CONVERGENCE

Measurements of latency done under our scheme are ex-
pected to converge in some sense. To illustrate certain prop-
erties of our scheme, suppose that each node in the network
behaves entirely consistently in terms of their observed con-
gestion time—each measurement of the node will tell us the
one exact congestion time of the node without error. First
of all, it can be seen that if our scheme has already ob-
tained the correct congestion time of every node, then new

measurements will change nothing. This is a simple but im-
portant property which the naive scheme (always assuming
each node is responsible for exactly % of the congestion of
the circuit, where N is the number of hops) does not have.

Furthermore, it can be easily seen that there is no stable
assignment of values except that which assigns to each node
its true congestion time. Consider the congestion time of
nodes as unknowns to be solved in a set of equations. Testing
the round trip time of any three nodes allows us to obtain
a linear equation on the three unknowns representing the
congestion time of the three nodes. Since any three nodes
can be chosen, there are enough linear equations to solve for
all congestion times, and so there is no other solution.

Now that we can see there is no stable assignment except
that which is desired, it is necessary to see that convergence
will eventually be reached. One way to see this is to observe
the change in the total difference:

13

A = Z |tr,observed - tT,TEall

It can be seen that if any three nodes are measured, their
total will converge towards the true total, and since no other
nodes besides those three are affected, this necessarily means
that A will become smaller (or does not change) with each
new measurement. A will not converge to a constant greater
than zero, as there is always some test that can reveal false
values; thus, eventually A will converge to zero.

It is also of concern how quickly convergence may be
reached. One way to increase convergence time is to de-
crease L, the size of the list of recorded congestion times
kept for each node. We note that, without the assumption
that nodes behave consistently, it may not always be optimal
to decrease L. One may choose to keep a longer congestion
list so that temporary situations can be forgiven.

	1 Introduction
	2 Tor Background
	3 Related Work
	4 Design
	4.1 Centralized or Decentralized
	4.2 Bandwidth or Latency
	4.3 Circuit or Node Tests

	5 Latency
	5.1 Latency Model
	5.2 Measuring the Latency
	5.3 Isolating Circuit Congestion
	5.4 Attributing Circuit Congestion to Nodes

	6 Main algorithm
	6.1 Instant Response
	6.2 Path Selection

	7 Experiments
	7.1 Node Congestion
	7.2 Latency Persistence
	7.3 Congestion and Bandwidth
	7.4 Improvements of Our Scheme

	8 Discussion
	8.1 Client Differentiation
	8.2 Anonymity
	8.3 Security of Our Scheme

	9 Future Work
	10 Conclusion
	11 References
	A Convergence

