
Towards Secure Communication

for Highly Scalable Mobile Applications

in Cloud Computing Systems

Piotr K. Tysowski and M. Anwarul Hasan
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

pktysowski@uwaterloo.ca and ahasan@uwaterloo.ca

Abstract

Cloud computing is a distributed computing model in which clients pay for computing and
data storage resources of a third-party cloud provider. Cloud applications can scale up or down
almost instantly to meet real-time computational demands. Despite the economic advantages
of a pay-on-demand business model, security remains a paramount concern. Cloud applications
by nature must store and retain access to a potentially large volume of data. Yet, the consensus
among IT organizations is that the cloud provider generally cannot be implicitly trusted, and
thus this data should ideally be transmitted and stored in encrypted form. Major challenges
exist concerning the aspects of the generation, distribution, and usage of encryption keys in
cloud systems, such as the safe location of keys, and the presence of users that tend to con-
nect to contemporary cloud applications using resource-constrained mobile devices in extremely
large numbers simultaneously; these characteristics lead to difficulties in achieving efficient and
highly scalable key management. In this work, at first, leading models for key distribution are
applied to a cloud computing system. The underlying schemes include identity-based encryp-
tion, multi-level key management, and data re-encryption. Each model varies in how user keys
are stored, exchanged, re-generated, and used; each is analyzed and compared in terms of stor-
age and communication requirements, assessing the impact on tight resource constraints in a
mobile device environment; these constraints include costly wireless data usage, limited mobile
processing power, and limited battery life. The analysis is applicable in light of current trends
towards mobile devices communicating with interactive cloud applications. Next, a model for
key distribution based on the principle of dynamic data re-encryption is modified and applied
to a cloud computing system in a unique way. The proposed cloud-based re-encryption model is
secure, efficient, and scalable in a cloud computing context, as keys are managed by the client for
trust reasons, processor-intensive data re-encryption is handled by the cloud provider, and key
redistribution is minimized to conserve communication on mobile devices. A versioning history
mechanism effectively manages keys for a continuously changing user population. Finally, an
implementation on commercial mobile and cloud platforms is used to validate the performance
of the models.

1 Introduction

Cloud computing is an evolutionary new model for distributed computing consisting of centralized
data centres that provide resources for massively scalable units of computing. These computational
facilities are delivered as a service to users over an insecure medium such as the Internet, and may
be bridged to wireless packet data networks. A client of a cloud provider can address changes in

1

demand for its processing needs by replicating applications in the cloud to many runtime instances,
and running them on cloud servers in concurrent fashion. Unanticipated burst demands such as
flash traffic on a web server may be met automatically without noticeable delay. The client does not
need to incur a high capital expense up front in anticipation of future application usage patterns
that may be difficult to predict accurately, and could otherwise lead to outages if left unaddressed;
excess capacity and idle cycles are avoided. The easy scalability of cloud applications, in light of
access to nearly unlimited computing resources, results in equal opportunity of benefits to firms
large and small.

Yet, despite all its economic benefits, the cloud computing model poses very significant risks to
its users. Because user data is stored and executed within the domain of the cloud, and there is little
or no visibility into how the cloud is implemented and internally managed by the cloud provider,
there is significant concern over the security and privacy of transactions and data permanently
stored in the cloud. Security tends to be enforced by the provider, not the client. Dominant
opinion is that data ought to be kept confidential not only from other users sharing the cloud,
but also from the cloud provider itself, as much as possible. Indeed, a survey of Chief Information
Officers and IT executives by IDC rated security as the chief concern in the use of cloud computing
services [1]; the concern is that the client requests storage of application logic and data in the cloud
without assurance of exactly where it is stored, whether it is replicated or cached, how long it is
kept for, and who exactly has access to it.

Despite its need for protection, cloud data must remain highly accessible. Large multi-user
cloud applications such as e-collaboration networks must be efficiently accessed by a heterogeneous
mix of computing devices, while the cost of communication must be minimized for mobile device
users. After all, such costs are borne by the client. The goal of security researchers is to develop
techniques to ensure communication security in cloud computing systems at reasonable cost. Only
by overcoming these challenges, will enterprise companies invest in and migrate to the cloud to
reap its economic benefits. The topic of this work is the adaptation of leading key management
schemes, that were originally designed for a traditional client-server context, in a novel way that
addresses the communication security challenges of the cloud environment. The intent is to find
viable ways to protect the security of the communication between the cloud and its users, as well
as to protect the privacy of the stored cloud data, in an efficient and highly scalable way.

In this work, a system model comprising a mobile-based cloud application is first presented. A
threat model points out possible attacks that must be prevented in order to possess a secure cloud
framework. Related work in cloud communication security follows. Three leading key management
models for a cloud computing system are proposed, with differing design philosophies reflected
in the choices; the underlying techniques are based on existing proposals but have been adapted
here to a mobile-based cloud computing system, with appropriate modifications to key storage
locations and distribution strategies, and to workflows. These schemes include key management
through a centralized cloud service, through a trusted client-side authority, and through the use
of automatic data re-encryption performed outside the cloud. Finally, a novel scheme is presented
where the latter model is further modified so that the re-encryption workload is processed by the
cloud provider as an untrusted entity. Implementation results on popular smartphone and cloud
platforms are provided that validate the assumptions made. Finally, concluding remarks on the
efficiency and scalability of the proposed schemes are made.

Contributions of this work include the framing of the problem of achieving very high scalability
in a mobile-based cloud application and the adaptation of leading key management techniques
from older and unrelated systems to a contemporary cloud computing application that serves a
mobile user population and brings its own unique challenges, as well as a comparative analysis
of the impact of the schemes in terms of efficiency, scalability, and trust. Additionally, a novel

2

solution is proposed, which entails a key management scheme based on re-encryption that effectively
utilizes the cloud for cryptographic computation while supporting a frequently-changing mobile user
population that does not need to trust the cloud provider; novel aspects such as a versioning array,
key material sharing tactics by users, and intelligent timing of re-encryptions, make it possible. A
cloud-based prototype has also been built to provide real world data and demonstrate the viability
of the approach. This work is the only one that the authors are aware of that provides a secure
communication solution for a forward-looking cloud system accessed by potentially millions of
resource-constrained device users.

2 System model

A contemporary system model is adopted here. The system under study is a public cloud provider,
such as the Amazon Elastic Compute Cloud (EC2) or Google App Engine (GAE), operating a
centralized data centre that is accessed by a large mobile user population over an unprotected
public Internet network infrastructure bridged to a wireless network. A user may access the cloud
application from a mobile device such as a tablet, smartphone, or even a wireless sensor. A
highly scalable multi-user cloud application is envisioned; it may service a large user population
for the purpose of e-collaboration, a social network, or customer relationship management. It is
continuously accessed by a multitude of heterogeneous mobile device users. Other possibilities for
cloud access include an in-vehicle telematics solution delivering real-time traffic information from
a central database over a dedicated 802.11p network, and an environmental sensor reporting to an
analytics back-end over a ZigBee wireless link. Each mobile device user typically opens a direct
TCP/IP connection to a cloud application portal. The distinction between a mobile user and a
fixed one is important from the standpoint of the cloud provider for various reasons: in the wireless
case, communication sessions with users must be minimized to avoid unnecessary energy drain
and to avoid incurring high wireless data usage costs; expensive client-side calculations cannot be
expected; and, the availability of mobile devices may be limited due to connectivity loss.

Users may upload and download content to and from the cloud by having the cloud-hosted
front end access a data partition provisioned by a cloud’s blade server. Each data partition is made
accessible to a set of authorized mobile users. The client organization is responsible for granting
access rights. The cloud provider is not fully trusted, and although it may assist in enforcing those
rights for users, it cannot gain access to the data itself. This notion is in keeping with Gartner’s
notion of cloud computing security implying a shared environment in which data is segregated and
encrypted [2]. In some variations of the encryption models presented, mention is made of a private
cloud, where the efficiencies of cloud computing are realized on an infrastructure that is internal
to the organization. This option is applicable to an enterprise with an existing investment in a
distributed system that wishes to retain greater control over its proprietary data, although it is
generally less economical, overall. In a private cloud, a client may access the server over a protected
intranet, behind an external firewall, or as a Virtual Private Network (VPN) accessed via a secure
tunnel.

Robustness of the cloud provider is not a significant concern in this study, as a cloud by design
is typically engineered as a distributed system with data replication, reliable servers, multiple
endpoints, and other safeguards that virtually guarantee its continuous operation. Any role the
cloud provider plays in executing a security scheme is assumed to impart the same level of confidence
as its other services and does not really constitute a single point of failure. The assumptions driving
the view of a highly scalable mobile cloud application are further elaborated below:

1. User mobility. It is evident that user-driven cloud computing applications are being primarily

3

accessed by mobile device users. There has been a clear trend towards adoption of smartphone
devices; approximately 54.7 million smartphones were sold in the first quarter alone of 2010,
up 56.7% from the same quarter a year ago [3]. Correspondingly, the market for cloud-
based mobile applications is expected to grow at an annual average rate of 88% from 2009
to 2014. The market was just over $400 million in 2009, according to Juniper, but by 2014
it is expected to reach $9.5 billion. Driving this growth will be technologies such as the new
HTML 5 web standard, increased mobile broadband coverage, and the need for always-on
collaborative services for the enterprise [4].

2. Massive scalability A multi-user cloud application may potentially provide service to many
thousands or even millions of mobile users, and all sessions must be individually protected.
In an extreme example, the social network Facebook, which has characteristics of a private
cloud, has over 500 million active users, 40% of whom connect from mobile devices, and half
of whom log into the system in any given day and spend more than 55 minutes on the site, on
average [5]. The scalability and efficiency of key distribution is critical to the feasibility of a
secure cloud system of such scale. Although a cloud may theoretically have the computational
resources to scale its cryptographic functions, such task allocation overhead has finite limits;
it is at the expense of the provider’s clients that require resources to run their own business
logic.

3. Fine-grained access control Members of the same group, such as a work project team or
a social community of common interests, will typically require access to a common data
partition resident in the cloud storage system. It is desirable for data permanently stored
inside the cloud to be segmented into data partitions; the objective is to subdivide and isolate
all cloud data and enforce appropriate access rights on each portion. Each data partition may
be separately protected by its own partition-specific group key; or, an authorized user in the
group may protect records within the partition with the user’s own secret key. A single
user may also be authorized to access multiple data partitions within the cloud. Hence, it
is insufficient for a user to be provisioned with a single password to control all of the user’s
data; it may be required at the data partition or even record level. In a large-scale enterprise
system, users may be created or removed in significant numbers daily, as permissions are
naturally granted and revoked.

2.1 Threat model

It is important to consider the unique security risks present in a cloud environment in order to
be able to find adequate security solutions. Clients need assurance of the existence of sufficiently
robust security and privacy features in a cloud system before committing to it tasks that add
core value to an organization and cannot be placed at risk. Numerous threat scenarios have been
identified [6, 2], including: the possible unauthorized access of confidential client data stored in
the cloud; the lack of privacy of deployed application logic, either in static or runtime form; and
the interference or side-channel attack of the customer’s application by another party’s malicious
application running concurrently on the same cloud server.

Communication security for cloud systems, of particular interest in this work, ensures that
unauthorized persons cannot read or manipulate data that is in transit to or stored in the cloud. A
related concern is that data may be automatically replicated for reliability or retrieval performance
reasons, and remain in storage in the cloud indefinitely, thus requiring strong encryption not only
when it is in-flight but also when it is at-rest. Additionally, user identity management and authen-
tication are considered crucial to realizing safe computing in the cloud. Because IT organizations

4

are reluctant to devolve responsibility of security to a cloud computing provider, the provision of
an effective security framework within the cloud is essential.

The parties contributing to an attack may include an eavesdropper located along the open
Internet path to the cloud, a user whose access has been revoked yet retains key material, a user
belonging to the client organization but of insufficient clearance to access all of the data belonging
to the client, and the administrator of the cloud system with unrestricted access to cloud resources.
The focus here is on communication security rather than the integrity of stored cloud data, which
may require the addition of digital signature record-keeping. Forward secrecy is always desirable,
in that a user whose access is revoked will be unable to access information encrypted using the
key material still in the user’s possession. For some applications, backward secrecy may also prove
useful, where a party joining the authorized user set does not immediately obtain access to resources
that were encrypted for the benefit of the preceding membership; it may be useful in limiting legal
liability for known information, for instance.

2.2 Resource constraints

The challenge with mobile devices is that they possess scarce resources such as limited battery life
that is shortened by wireless data transfers and long processing tasks. The Apple iPhone 3GS, for
example, includes an internal battery with a capacity of only 1219 mAh. This requires the mini-
mization of the amount of communication exchange in key distribution, usage, and redistribution
based on membership change. Uploads conducted on 3G wireless networks consume considerable
energy due to a typical wireless radio remaining in a high-power active state after transfer (to
maximize responsiveness and minimize the signalling costs of additional transmissions) [7, 8]. In
addition, the CPU of a smartphone is considerably slower than that of a server; the same iPhone
possesses an ARM processor clocked at only 600 MHz. The system model is thus asymmetric; the
cloud server has much greater computational ability than a mobile client to process a security pro-
tocol. For instance, an SSL handshake on a notebook (with a Pentium M 1.86 GB CPU) was found
to take only 31% of the time that a smartphone (with a 624 MHz PXA270 CPU) took to finish
it [9]. The amount of computation associated with cryptographic functions must be minimized to
improve responsiveness of the user interface and to limit battery drain.

Despite the asymmetry, cryptographic operations will incur a significant computational penalty
on a server that had no security to begin with. In one test, Microsoft measured the performance
implications of client authentication on ProLiant web servers [10]. The throughput was approx-
imately 10 times worse when using basic SSL authentication than anonymous requests without
authentication; the response time was approximately 4 times worse. Any cryptographic protocol
must therefore be sufficiently lightweight in nature, and key updates must be relatively small and
infrequent; otherwise, a cloud provider may be ill-equipped to handle this traffic. In February 2008,
Amazon’s S3 service experienced an outage that affected the availability of thousands of popular
sites, including that of Twitter, due to the provider’s inability to handle an unexpected surge in
processing authentication requests; these cryptographic operations were found to consume more
resources than all other request types [11]. The advantage of a cloud system is that, if designed
properly, it can take advantage of its inherent scaling property to carry out cryptographic work; for
instance, thousands of Amazon EC2 instances can be commissioned within a matter of minutes. A
mobile device user does not enjoy the same capability.

5

3 Related work

There is a clear need for a scalable and efficient key management solution for cloud computing
systems, but so far it has not been fully addressed in commercial cloud systems. The Organization
for the Advancement of Structured Information Standards (OASIS) has proposed the Key Manage-
ment Interoperability Protocol (KMIP) for unified cloud management [12]. It addresses the issue of
interoperability of key management services, and defines a single low-level standardization protocol
for communication between enterprise key management systems and enterprise applications; how-
ever, it fails to account for the unique scalability potential in cloud systems and the performance
problems that can result. There is agreement over the need for a scalable key management model
applicable to today’s cloud systems [13].

Other aspects of communication security are already addressed, but in a fragmented and in-
sufficient manner. OpenID is an open-source Single Sign-On (SSO) solution that permits a single
login to access different sites and resources. A client can choose from any trusted OpenID provider,
and has the freedom to change the provider at any time. A fundamental and limiting characteristic
is that effectively the same password is used to access multiple sites, with no fine-grained access
control. With user federation, authentication in clouds may be accomplished through the use of the
Security Assertion Markup Language (SAML), permitting each organization to manage authenti-
cation for its own users, as well as between other sites using trust relationships. Although it has
SSO capability, it does not address scalable key management within a single cloud provider.

A traditional approach to communication security has been centralized key management, which
requires public-key certificates to be generated by the authority and deployed to all users before
communication can occur. In a highly scalable system, the authorization server may become over-
loaded as a result of this responsibility. Security enforcement based on monitoring of user behaviour
can mitigate these performance concerns, at the cost of some amount of security. For instance, in
TrustCube, a star-shaped, or centralized, authentication system provides implicit authentication by
monitoring user behaviour, and falls back to another authentication method such as OpenID if a
user violates policy norms [14]. The persistent problem with these centralized solutions is that the
cloud provider must be entrusted with all aspects of this system, including aggregated data on user
contexts and activities, thus relaxing the trust model to a great extent. In Certificateless Public
Key Cryptography (CLPKC) [15], the Key Generation Centre (KGC) residing in the cloud does
not have access to users’ private keys, but the KGC would need to ensure that the partial private
keys would be delivered securely to the right users using some secure, or out-of-band, transport.

One variant of centralized key management is baseline broadcast encryption, in which the key
manager generates symmetric keys for multiple users. Each time that new encrypted data becomes
available, it may be broadcasted in encrypted form to all interested users, with each message being
encrypted with a different key corresponding to the recipient. If the membership changes, then new
keys must be broadcast to all users, which is an unrealistic proposition in a highly scalable system.
Also, the broadcast itself is an expensive use of bandwidth.

Even if a centralized scheme based on some form of group keying is hypothetically found to
offer efficient key delivery, and provides for trusted key escrow, the high turnover of cloud user
membership will likely pose a great challenge; expensive re-keying operations are normally required
whenever group membership changes, and all users are necessarily involved in the operation. For
instance, a stateful scheme such as Logical Key Hierarchy [16] may be employed, in which a directed
acyclic graph of encryption keys is constructed, and each user is associated with a leaf node.
Whenever a user joins or leaves, rekeying messages are transmitted along the path from the root
node to the user’s leaf node location. The processing time per request scales linearly with the
logarithm of group size, and the signing of rekey messages increases server processing time by an

6

order of magnitude, which is significant overhead.
Another approach is distributed key management, which may be effectively accomplished using

the concept of partial keys. Based on an identity-based encryption scheme, it was suggested that
distributed public key generators (PKG’s) could function as decryption servers in the context of
threshold decryption [17]; essentially, each PKG would hold a share of a master key. This would
require each PKG to be involved in communication security at all times, because the key share
would need to be re-distributed for each new ciphertext; this is inefficient in a cloud scenario.
It has also been proposed that a private key received from a PKG, rather than the master key,
can be distributed among several users in portions, such that a sufficient number of portions are
required to decrypt a message, thus removing the requirement for central key storage and constant
involvement from the PKG’s [18]. Any authorized member of a group can request sufficient portions
of the private key associated with a single identity, reconstruct the entire private key, and distribute
it within its domain. The problem remains that a single member is still responsible for assembling
a key from multiple decryption servers and distributing it, which entails expensive communication.
Another issue is that of key revocation. A mediator is required to complete the key for each
decryption; this would present a bottleneck in a cloud system.

As demonstrated in this work, data re-encryption is a viable mechanism for controlling access
to data stored in the cloud. Re-encryption has previously been applied to an encrypted file storage
system, where a content owner encrypts blocks of content with unique, symmetric content keys
that are then encrypted using an asymmetric master key to form a “lockbox” [19]. Users download
the encrypted content from the block store, then communicate with an access control server that
decrypts the lockboxes protecting the content. Critically, the content owner decides which users
should have access to the content and gives the appropriate delegation rights to the access control
server, which could presumably be located in the cloud. To accomplish this, the content owner
retains a master key that is used to compute a re-encryption key; this re-encryption key is used by
the access control server to re-encrypt the lockbox to that of the intended reader’s public key. One
concern with this approach is that the content owner manages access control for all other users,
which is a great burden on communication if the owner is a mobile device user. In addition, it
requires dynamic re-encryption of the same data whenever multiple users want to access it. In
one of the novel models to be presented in this work, one-time re-encryption only occurs whenever
membership changes, presumably a less frequent occurrence than that of data access. Also, access
rights need not be enforced by individual users, and it is not possible for a single user to divulge
the keys of all other users to the cloud provider, as they are not known.

A related work proposes the merging of attribute-based encryption with proxy re-encryption in
a cloud computing application, allowing fine-grained access control of resources while attempting to
offload re-encryption activity to the cloud provider [20]. This scheme has important differences to
the cloud-based re-encryption scheme that will be proposed, however; these differences prove disad-
vantageous in a mobile-based environment. The data owner (originator) is involved in generating a
key for each new user that joins or leaves the system, rather than offloading this task to a trusted
key authority under the client’s control. This is not only a prohibitive cost for a mobile user, but
also impractical due to the user’s mobility and hence occasional unavailability. Another difference
is that a secret key must be regenerated and re-distributed for each user, in lazy fashion, when-
ever user revocation occurs, rather than allowing users to upgrade a common partition key based
on public parameters which would reduce communication and be more efficient. Also, the data
re-encryption activity is aggregated in lazy fashion, whereas in this proposal, re-encryption occurs
dynamically on an as-needed basis, greatly reducing server workload for data primarily accessed by
approximately the same set of users over time. Finally, there is no facility for exchanging key mate-
rial in peer-to-peer fashion, which would be useful among mobile users utilizing cheap local wireless

7

links such as Bluetooth. Similar observations are made with respect to another related approach
that combines Hierarchical Identity-Based Encryption (HIBE) and Ciphertext-Policy Attribute-
Based Encryption (CP-ABE), which uses hierarchical domain masters to distribute user keys and
the cloud provider to re-encrypt data on user revocation depending on the attribute keys held by
the revoked user [21]; this is done at the cost of increased storage requirements for key material held
by users and a greater amount of processing when generating ciphertext, which are problematic
for mobile device users. Another method of trusted data sharing over untrusted cloud providers
has been proposed that uses a progressive elliptic curve encryption scheme [22]. However, it relies
upon a writer uploading encrypted data to the cloud, then distributing credentials to the cloud to
perform re-encryption, and also to the reader on each data access attempt; this is clearly impracti-
cal when applied to resource-constrained devices and networks. The solution in the proposed work
avoids the inefficiency of peer-to-peer key distribution in this manner.

Encrypted file storage systems exist, such as SiRiUS [23] and Plutus [24], but their designs are
rooted in a traditional client-server setting. They typically offload all cryptographic operations,
including key generation, to clients, rather than the server; this characteristic is the opposite of
what is desired in a cloud-based system accessed by resource-constrained mobile users. Constant
availability of data owners is required to re-generate and distribute encryption and signature keys,
but mobile users suffer from transient connectivity and thus this cannot be assured.

4 Scalable key management

The overall goal of this work is to explore, adapt, and evaluate system security engineering tech-
niques to achieve a high level of communication security for cloud computing systems. In particular,
the emphasis will be on the scenario of a mass multi-user services application running in the cloud
and interacting with a high population of active mobile device users. Three leading key manage-
ment models are presented with differing design philosophies reflected in the choices; the underlying
techniques are based on existing proposals but have been adapted here to a cloud computing system,
with appropriate modification, with actors and roles assigned as appropriate, and new improve-
ments proposed as noted. In the first scheme, encryption keys are stored by the cloud provider,
the fundamental and relaxed assumption being that it is trusted. In the second scheme, this as-
sumption does not hold, and the keys are managed by a small set of authority entities belonging
to the client. In the third scheme, a trusted manager re-encrypts data for recipients as a means of
controlling access. The analysis of these schemes will aid in determining a direction for improved
security methods. Table 1 summarizes the notation used throughout.

4.1 Centralized key management

In the first model, a central authority manages a single key store and acts as a central hub of
communication with users that require keys. This central authority may be deployed as an au-
thentication centre inside the cloud. To simplify the general problem of certificate management,
Identity-Based Encryption (IBE) was invented [17]. The public key used in this scheme is an index
value that can uniquely identify a shared data segment. Querying a certificate authority for it (as
with RSA) is not required, thus reducing communication. This centralized scheme is illustrated
in Figure 1. The central authority for key management functions is the cloud provider, which
manages an access control list (ACL) specifying which users have access to the data stored inside
the cloud. A user must request permission from the cloud provider to access any data resources,
and the cloud provider fulfills the role of the authenticator. Data that is permanently stored in
the cloud may be optionally encrypted at rest, and the user is responsible for obtaining the key to

8

Table 1: Legend for notation used in algorithmic descriptions of models.
Symbol Description

P Cloud data partition

IDP Public identifier of data partition P

UP User group with authorized access to P

UPX
Sub group of UP containing user X in hierarchical access
control

M Manager or trusted proxy

A,B,C Users Alice, Bob, Charlie

m Plaintext

CX Ciphertext encrypted using key X

σX Signature of user X

h(x, y) Secure one-way hash function with input parameters x, y

r Random integer

PKM Public master key belonging to the cloud provider

SKM Private master key belonging to the cloud provider

PKX Public key of entity X

SKX Private key of entity X

PSKX Partial private key of entity X
ˆSKPA

First-level (incomplete) secret key of subgroup UPA

SKPA
Second-level (complete) secret key of subgroup UPA

S(K) Binary length of key material K

unlock it. Irrespectively, data is mandatorily encrypted while in transit from and to the cloud over
the unsecured network. Furthermore, the data residing on the server is divided into data partitions
that are each encrypted with a different key. Multiple users may share the same key to gain access
to the same data partition. A controller that runs as a cloud application services all user requests,
and utilizes the ACL to grant access to individual data partitions. The controller reads from a key
database that is stored directly within the cloud. For instance, consider the IBE scheme based on
BDH (Bilinear Diffie-Hellman) [17]. User Alice, designated as A, has been pre-authenticated by
the cloud provider. A wishes to share encrypted data that is permanently stored inside the cloud,
within a data partition P , with other members of the authorized user set UP1 , including Bob, or
B.

4.1.1 Key generation

The cloud provider, as a trusted third-party, assumes the role of a public key generator (PKG),
which specifies groups G and F of prime order q generated by g ∈ G∗, the bilinear pairing ê :
G×G→ F, and ideal random hash functions H1 and H2:

H1 : 0, 1∗ → G∗, H2 : F→ 0, 1l

where l is the length of the plaintext. Recall the bilinearity property, where ∀P,Q ∈ G, and
∀a, b ∈ Z∗q , e(aP, bQ) = e(P,Q)ab. The provider chooses a random asymmetric master secret
key SKM ∈ Z∗q , belonging to the provider itself and always kept secret, and then calculates the

9

C

Data
partition

P2

Data
partition

P3

User
A

User
B

User
1'

User
n'

User
1"

User
n"... ...

Data
partition

P1

Controller

Cloud

Key DB

User
C User

2
User

2

User group UP1 User group UP2 User group UP3
PKM , SKP

IDP ID2 ID3

PKM , SKM
PKP

CP

Figure 1: Centralized key management model.

corresponding public master key PKM , which is shared with all users:

PKM = SKM · g

The PKG is now ready to distribute PKM , as well as key-related parameters, to the authorized
user set. The set of parameters includes descriptions of G,F, H1, H2, and PKM (such as the binary
length S(K) of the key material).

4.1.2 Encryption

In the set-up phase, A, the requestor, obtains PKM and key parameters from the cloud provider’s
key centre; this is a one-time task. For this particular data encryption operation, A also requests,
directly from the cloud, the global identifier IDP corresponding to the data partition intended to
be shared. A proceeds to encrypt a message m ∈ {0, 1}l as CP using PKM in combination with
IDP . A chooses a random value r ∈ Z∗q in the encryption.

U = rg

V = H2(ê(QID, PKM)r)⊕m
where QID = H1(IDP)

A uploads ciphertext CP = (U, V) to the cloud provider. No additional communication with B or
the cloud is necessary at this point to carry out the encryption. The encrypted message CP can be
uploaded and stored securely in the cloud.

10

4.1.3 Decryption

The ultimate recipient of the message, user B, authenticates with the cloud provider and requests
the private key SKP from the cloud’s key centre. This preliminary key setup activity must be done
only once for each data partition to which B requires read and write access.

SKP = SKM ·QID

where QID = H1(IDP)

B then downloads the message from the data partition in the cloud and decrypts it using SKP .

M = V ⊕H2(ê(SKP , U))

4.1.4 Analysis

The application of IBE presented here varies from the original concept of point-to-point commu-
nication. The PKG generates a secret key for each data partition, rather than each user, so that
any number of users may share the same key and access a common partition; this is in contrast to
a single originator and consumer sending data in one-way fashion. The cloud provider is entrusted
with key escrow : it manages the secure storage and distribution of the master public and private
key pair. During the initial provisioning, the private keys may be distributed to all eligible partition
users based on an ACL as each user performs authorization and initiates a key request; SSL may
be used for this purpose.

This scheme is relatively straightforward in that key management is managed as a cloud service,
and all communication occurs directly between the user and cloud provider. It does not require any
additional network components or roles to exist within the system. An advantage of IBE is that
only the cloud provider generates a key for each data partition, and that key can be locally derived
on each device with a commonly understood index. An expensive pre-distribution of authenticated
keys is unnecessary, unlike with a public-key infrastructure utilizing RSA. Additionally, the cloud
provider does not need to store a list correlating key pairs to data partitions. However, this scheme
suffers from a major deficit: the cloud provider must be trusted entirely. Because the cloud’s key
centre generates all private keys, it has the ability to decrypt all data and communication in its
domain. In addition, this model assumes that the cloud provider can be trusted to permit access
only to authorized users so that they may retrieve their private keys; this wide-ranging premise of
trust is not widely accepted in the IT circle, and is only appropriate for less sensitive data. Even if
the cloud is so trusted, the cloud-based authenticator remains a critical point of failure if attacked.
If its keys are stolen, then all communication is compromised. If it suffers from a denial-of-service
attack, it cannot distribute private keys. It is also subject to discovery through law enforcement
means or a court order, whether agreed to or even known to the client or not, leading to the
possibility of abuse. A similar problem occurs when a third-party service is responsible for key
escrow, such as a contracted security provider. Even if the key storage is external to the cloud, it
represents a single point of vulnerability. Communication and authentication functions could be
disrupted through power failure or a denial-of-service attack.

The cloud is responsible for key generation, authentication, and key requests. If a user’s private
key is compromised or the user’s access to the cloud is revoked, the centralized PKG must re-
generate and re-distribute new encryption keys to all valid users in the domain. It must have
sufficient computational resources and bandwidth capacity to handle these tasks for its entire user
population. Although clouds are designed to scale accordingly, authentication is a considerably
more computationally intensive task than hosting typical web server functions. Bandwidth capacity

11

is also an important consideration. The primary bandwidth cost in the centralized scenario occurs
with respect to key generation due to changes in membership. It is desirable for a new user to be
granted permission to access an existing secure resource. Likewise, if a user leaves the membership
of a group, then that user’s access rights must be revoked. Forward and backward secrecy must
somehow be preserved. Fundamentally, if public key encryption is employed, then the public master
key must be re-generated by the cloud provider and re-distributed to all users, at great expense.

Note that the public identifiers of all data partitions must be computable, in order to utilize
IBE. In addition, if the same data is to be decrypted by multiple users, then they must each be able
to obtain the same private key based on the same public identifier. If it is not possible to readily
identify the user or data partition to be used as the basis for generating an encryption key, then a
fallback to a more traditional public key cryptography scheme such as RSA would be required; the
public keys of participants would be provisioned by the cloud provider acting as a key authority,
further adding to the communication cost.

Overall, the first problem mentioned is the most vital one: most IT organizations would be
unwilling to implicitly trust the cloud provider with key escrow and hence unrestricted access to all
data. Even if the cloud provider was to be considered trustworthy beyond doubt, the keys could be
stored in a disadvantageous jurisdiction or potentially be subject to attack by an insidious employee
or malicious other client executing applications side-by-side in the cloud.

4.2 Multi-level key management

In order to reduce the authentication traffic load on the cloud server, the key store may be relo-
cated from the cloud provider’s domain to the client’s. To this end, a multi-level key distribution
mechanism may be utilized. The entire user population no longer relies on obtaining keys directly
from the cloud provider. Users are segmented into populations called groups, each of which has
read and write access to a different data partition. Data partitions within the cloud are encrypted
so as not to reveal information to the cloud provider. A trusted intermediary called a manager
or authority is responsible for user authentication within each group; the manager, rather than
the cloud provider, is entrusted with key escrow. In terms of the network model, the manager is
situated outside the domain of the cloud provider, but runs on a secure server. A single manager
is responsible for a group of users of any size, and is responsible for all aspects of its security: it
generates and holds all private keys, allowing read and write access to the data partition; it uses
the ACL to verify group membership; and, it is responsible for authenticating the users belonging
to its group, thus allowing them entry. A diagram of the multi-level key management scheme is
provided in Figure 2.

Managers are disassociated from the cloud; they each oversee an assigned user group with
access rights to a specific data partition in the cloud. Once users discover their secret keys, they
communicate directly with the cloud controller to carry out operations. A scheme called Dual-
Level Key Management (DLKM) is useful as the basis for this model [25] [26]. It was originally
intended for grid computing, a pre-cursor to cloud computing. The scheme has been adapted here
for cloud use so that key parameters, used to generate secret keys, are stored in a directory in the
cloud for readier dissemination. Also, versioning ensures that users are able to download the latest
parameters and re-generate their keys only when required.

12

C

Manager 1

Manager 2

Manager 3

Data
partition

2

Data
partition

3

User
A

User
B

User
1

User
n

User
1

User
n...

Data
partition

1

Controller

Cloud

Group UP

Key
parameter
database

SKA

cP

(r, PUP
(x))

M

P

User
C

SKB

SKC

Figure 2: Multi-level key management model.

4.2.1 Key generation

Suppose that a group of users UP are managed by a manager M . The manager constructs an ACP
(Access Control Polynomial) A(x) in finite field Fp[x]:

A(x) =
∏
i∈UP

(x− h(SKi, r))

where SKi are the secret keys assigned to each member in UP , h(x, y) is a public one-way secure
hash function that is a random oracle, such as SHA-2, and r is a random integer from Fp. Note
that when x is substituted with h(SKi, r) from a valid user possessing SKi in UP , then A(x) is
0; otherwise, it is a polynomial that evaluates to a random and useless value. During the set-up
phase, the manager must distribute secret keys to all current authorized users; namely, SKi for
i ∈ Up. The manager then selects a random group key SKP for UP , and computes polynomial
P (x):

P (x) = A(x) + SKP

Suppose that in group UP , there exist users Alice and Bob, or A and B, holding secret keys SKA

and SKB. A and B are both managed by the same manager. The polynomial will thus equate to:

PUP
(x) = (x− h(SKA, r))(x− h(SKB, r)) + SKP

The manager uploads the tuple (r, PUP
(x)), representing the key parameters, to the cloud provider;

the provider assigns it to data partition P , and stores the tuple in a public directory accessible to
all users. This key database can also be stored in a private cloud, behind the organization’s firewall,

13

or on a server that is considered trusted. Knowledge of these key parameters alone is insufficient to
derive keys for decryption. The manager also distributes the secret keys SKi to all users in UP , to
allow access to the data partition. That is, upon user authentication, the manager will issue SKA

to A and SKB to B. For this to occur, each user must first authenticate with the manager, which
confirms the user’s identity based on the ACL. In contrast to the previous centralized key scenario,
where the cloud provider maintains all keys and authorizes access to data stored in the cloud, the
manager now fulfills this function.

4.2.2 Encryption

User A accesses the data partition P in the cloud and reads the tuple stored for it. A finds that
access to P is governed by the random access value r, so she generates the partition access key by
computing the hash of her own secret key SKA and substituting it into the public polynomial:

SKP = PUP
(h(SKA, r))

A encrypts message M as ciphertext CP using the symmetric partition group key SKP . She then
authenticates with the cloud and stores CP in partition P .

4.2.3 Decryption

B derives the partition key using the same approach as A:

SKP = PUP
(h(SKB, r))

As B now possesses the key to unlock cloud data, he can issue a request for it. B authenticates
with the cloud, downloads CP , and then decrypts it using SKP .

4.2.4 Key re-generation

Suppose that a third user, Charlie, or C, joins group UP . After allowing this change in membership,
the manager creates a new, modified ACP A′(x):

A′(x) = A(x) · (x− h(SKC , r))

P ′UP
(x) = A′(x) + SKP

The new tuple (r, P ′UP
(x)), updated to include newcomer C, is sent to the cloud provider to replace

its current one. Note that the existing users A and B need not obtain a copy of the latest tuple,
as they are already in possession of SKP . Whenever a new user is added, this partition group
key does not change. However, when a user’s access is revoked, then a new group key must be
generated. Suppose that C leaves the group UP . The manager selects a new random group key
SK ′P and a new random r′ value and recomputes the polynomial as follows:

P ′′UP
(x) = A′(x) + SK ′P

The manager then multicasts (r′, P ′′UP
(x)) or stores the tuple in the cloud, as before. C, who has

left, will be unable to extract SK ′P from P ′(x). The manager has the final determination as to
which users have access to the partition.

Because the group key has been modified upon access revocation, from SKP to SK ′P , the
existing data stored in the cloud partition and encrypted with the first iteration of the group key
will only be accessible by users who retain that key. For all current authorized users to gain access
to data encrypted using the new key SK ′P , the cloud data would need to undergo re-encryption,
which is not addressed in the DLKM protocol. Ideally, the data should not be decrypted at any
stage to permit the provider access to it.

14

4.2.5 Analysis

The primary advantage of the multi-level approach is that trusted managers that are outside of the
cloud domain manage the keys, and not the cloud provider. Additionally, each manager handles
the authentication of only a limited set of users that interact with its own data partition. Thus, this
system greatly reduces the amount of communication with the cloud required for the authentication
function, and the resultant expense for the client. The manager may be realized as an authenticator
behind a company’s firewall, in a private cloud environment, or as a trusted off-site party such as
a contracted encryption services firm. Another benefit is that the usage of symmetric keys allows
users to more quickly perform encryption operations on cloud data.

The protocol efficiently handles changes in user membership. Key re-generation occurs only
when a user’s access rights are revoked, and when a breach of trust is found to occur; for instance,
if a user shares a secret key with another user. It is not necessary for the manager to incur the
communication cost of redistributing the key parameters in point-to-point fashion with all users;
this can be accomplished by updating the key parameters stored in the cloud, as described. Also,
it should be observed that a group key must be generated for a single partition and its associated
user membership only; a system-wide update does not occur.

In addition to the described protocol, it may still be desirable for the cloud to perform au-
thentication of each user prior to granting read or write access, irrespective of the validity of the
partition key held by the user. For instance, public key cryptography can be used to create cer-
tificates. The user generates a public and private key pair, and then creates a CSR (Certificate
Signing Request) that is then sent to the authority. The CSR consists of the user’s identity and
public key, and is signed by the private key. The manager functions as a classic trusted third-party
certificate authority in this case. The manager verifies the integrity of the CSR, and generates a
signed certificate for the user. Using this token, the user can then proceed to contact the cloud
provider to perform normal operations such as read and write requests on encrypted data. To do
so, each user receives a unique certificate token. The use of certificates is optional, however.

5 Manager-based re-encryption

A key management scheme is now described that is closely based on the original work suggested in
[19]; however, it has been mapped to a cloud computing system. Its primary involvement here is
to demonstrate a technique that will serve as a foundation and point of comparison for the novel
scheme proposed in the following Section 6. Some novel variations of the original scheme are still
suggested here, however. The scheme permits access to a common data partition in the cloud
among multiple users, ensures confidential data storage not privy even to the cloud provider, and
offers greater data access efficiency in a mobile-based cloud system at lower overall communication
and processing cost than traditional centralized solutions; all of these features are accomplished
through the process of data re-encryption.

A manager, or trusted proxy node, controls the access of its users to the cloud. This manager is
typically under the control of the client organization, and ensures that key management functions
need not be outsourced to an untrusted cloud provider. The manager may comprise a server
situated behind the firewall of the client organization that is securely accessed by a mobile user
population. At the same time, the cloud stores user data in encrypted form such that it is accessible
to all authorized users at any time; it does so by regularly performing one-way re-encryption of the
data in the cloud as it is being accessed, so that a reader in the authorized user group can decode
it using the reader’s own private key. Table 2 summarizes the notation used throughout.

15

Table 2: Legend for notation used in algorithmic descriptions of models.
Symbol Description

P Cloud data partition

UP User group with authorized access to P

M Manager or trusted proxy

A,B,C Users Alice, Bob, Charlie

m Plaintext

Cx Ciphertext encrypted using key x

PKXv Public key of entity X (with version v optionally specified)

SKXv Private key of entity X (with version v optionally specified)

RKX→Y Re-encryption key for converting from content unlocked by
SKX to that unlocked by SKY

5.1 System operation

5.1.1 Key generation and encryption

Consider a proxy re-encryption scheme [19], based on the BBS encryption method [27] and the El
Gamal crypto-system [28]. The proof of the underlying encryption technique is presented in [19],
and is assumed here. As shown in Figure 3, the manager generates public and private keys (PKX

and SKX) for each user X belonging to the system, and is responsible for maintaining an access
control list for enforcing the authorized user set. A data partition P in the cloud is accessible by a
user group UP and belongs to the entire set of partitions P. In this example, Manager M manages
the access of user group UP to data partition P . Note that a single user may belong to multiple
groups.

Let G1, G2 be groups of prime order q with a bilinear map such that: e : G1 ×G1 → G2. The
system parameters are the random generator g ∈ G1 and Z = e(g, g) ∈ G2. A secret key SKX

is randomly selected for each user X ∈ UP . Let: SKX = x ∈ Z∗q . A public key PKX is also
chosen for user X as follows: PKX = gx. Similarly, the manager M also creates a private key
SKP = p ∈ Z∗q and public key PKP = gp for Data Partition P in the cloud that it manages. The
public partition key may reside in a directory inside the cloud that is accessible by all users in the
system, or be distributed to all users in UP by the manager; it is considered public information.
The manager, however, retains the private decryption key SKP required to read the cloud data;
the cloud provider and other users cannot decode the data even if they download it directly from
the cloud, with or without authentication. A unique property of this model is that all read requests
initiated by users are normally serviced through the manager.

User A, Alice, encrypts a message m using the public key PKP of the data partition where it
is to be stored, and uploads the cipher-text Cp to the cloud, so that it is stored in encrypted form
in partition P . The cloud provider will be unable to extract the original content m.

m ∈ G2, random r ∈ Z∗q
Cp = (Zr ·m, gpr)

16

Manager M

User
A

User
B

User
C... ...

Data
partition

P

Controller

Cloud

cP

Public key
directory

cP

cB cC

PKA, SKA PKB, SKB PKC, SKC

PKp

SKP, PKx, SKx

User group UP

Figure 3: Model of key management using manager-based re-encryption.

5.1.2 Re-encryption

Suppose that a user B, Bob, belonging to the same group, makes a request to the cloud provider
for the same message m stored earlier by Alice. The cloud provider does not send it to B directly;
instead, it sends it to M , which decides whether that data should be accessible by B based on its
Access Control List (ACL). If so, then the manager creates a re-encryption key RKP→B using the
private key of the partition. The manager then fetches the encrypted message Cp from the cloud,
and computes a re-encryption key using B’s private key SKB. Note that SKB is equal to b ∈ Z∗q ,
chosen randomly by M . In general, the re-encryption key computed for user X in UP is:

RKP→X = g
SKX
SKP

= gx·p
−1(mod q)

For user B, as in this example, the re-encryption key computed is RKP→B = g
b
p . Using this

key, M re-encrypts the ciphertext Cp as Cb and sends it to B directly.

From Cp = (Zr ·m, gpr),

Compute: e(gpr, RKP→B) = e(gpr, g
b
p)

= Zbr

Publish: Cb = (Zr ·m,Zbr)

17

5.1.3 Decryption

The recipient B can then decode the ciphertext Cb using his own private key SKB: m = Zr·m
(Zbr)

1
b

.

If the original user Alice wished to decrypt the message, then a similar process would unfold; the
manager would create a re-encryption key RKP→A and Alice would decrypt her ciphertext Ca

using her private key SKA. Thus, the manager can allow any user within the group to access the
encrypted data stored within the cloud. Here, first-level encryption is demonstrated [19], where the
content published by the manager may be decrypted only by the holder of SKB; the content may
not be re-encrypted a second time and read by a third party such as user C in UP . If C requires
access, then the use of RKP→C to carry out a re-encryption of Cp to Cc is required.

5.1.4 Data flow

To summarize, the flow of ciphertext in the system between two users is as follows:

A Cp−→
P Cp−→

M Cb−→ B

The cryptographic operations explained in this section are shown visually in Table 3.

Table 3: Summary of operations in manager-based re-encryption.
Alice (A) Cloud (P) Manager (M) Bob (B)

1 Computes PKp =
gp and SKp = p,
and shares PKp with
cloud. Similarly, com-
putes SKB = b and
sends it to B.

2 Obtains PKp from
cloud, picks random r,
encrypts m as Cp =
(Zr·m, gpr), and sends
it to the cloud.

3 Stores Cp, and sends a
copy of it to M on re-
quest.

4 Computes RKP→B =

g
b
p . Re-encrypts Cp as
Cb = (Zr ·m,Zbr).

5 Downloads Cb and de-
codes m = Zr·m

(Zbr)
1
b

us-

ing SKB .

5.1.5 Key re-generation

If a new user Charlie, or C, joins the group, then he registers with the manager which grants
authorization, and is given a decryption key SKC . C will be able to receive and decrypt only the
content that the manager is willing to re-encrypt for him, as ciphertext Cc. If Charlie leaves the
group, then the manager removes him from its access list; it will no longer re-encrypt data for C
on a retrieval attempt.

18

5.2 Analysis

A chief advantage of this model lies in its elimination of expensive key re-generation and re-
distribution for all users whenever group membership changes. It preserves data confidentiality
for the client; data in the cloud remains encrypted and unreadable in its original form by the cloud
provider at all times. For a new user that joins the group, the manager can choose to decrypt data
stored only after a certain time, hence providing backward secrecy. For a user that leaves the group,
and whose access is revoked, none of the stored data can be decoded independently by that user,
hence providing forward secrecy.

A disadvantage of this approach is that for each retrieval attempt of a new data block or record,
the manager must perform re-encryption using an asymmetric key. A bilinear pairing operation
based on a Weil and Tate pairing is several times more costly than a scalar multiplication [29].
Although it is an expensive operation, it can be accomplished in the private portion of a hybrid
cloud if the manager is a component of it, thus taking advantage of its scalability. A mechanism
for using the public portion of a cloud for this purpose will be described later.

It is useful to observe that a significant advantage of re-encryption over public-key encryption
is that for extremely sensitive data, if Alice were to encrypt it using her own locally-generated
key rather than the public data partition key, and upload it to the cloud, she could then have the
manager re-encrypt the data simply by supplying appropriate re-encryption keys for the intended
recipients. The manager would not need to know Alice’s own encryption key, and Alice would not
need to incur the cost of the re-encryption herself.

Some opportunities arise for increasing performance. The manager may cache the most recently
re-encrypted content for each user so that multiple accesses of the same data by the same user may
be serviced more quickly. A replacement strategy such as least-recently-used may be in place; if the
same user requests the same records repeatedly, then re-encryption would not need to be re-done
on a cache hit. In all cases, the recipient completes only a single decryption operation, which is
suitable for a resource-constrained user.

Additionally, the manager can take on additional responsibilities if allowed by the system model.
If there is a secure link between the users and their manager (through a VPN connection for
instance, or if all user entities are connected on an intra-net behind a secure firewall), then users
may communicate freely with the manager without the need for additional data encryption in
transit in the final leg. In this case, the authority can manage all of the encryption and decryption
needs of its members, thereby unloading that processing burden from lightweight mobile device
users.

Because the manager stores all decryption keys, it must be fully trusted; hence, it is a point
of vulnerability. However, a private cloud would typically possess the same safeguards as that of
a public cloud. Collusion between the manager and users is not deemed to be a concern, as the
manager and all its authorized users are expected to belong to the same client organization and
share equal access to the data partition.

5.3 Possible and novel variants

5.3.1 User-managed keys

In order to reduce the cost of re-encryption for all requests, the protocol may be modified so that
rather than using the partition key PKP for encryption, user A would use her own public key PKA,
and upload ciphertext Ca to the cloud. Upon data retrieval, the manager would be required to
decrypt Ca using its own retained copy of SKA, then perform the re-encryption for another user,
such as B, using RKA→B:

19

RKA→B = g
SKB
SKA = g

b
a

This technique would allow Alice to retrieve data directly from the cloud that she could then
decrypt without the aid of the manager. This has good practical application; in many conceivable
use cases, it would be expected that the same user that uploaded data would be the one that would
most frequently access it. The trade-off is that in case A was to leave the group, the manager would
need to invalidate all data uploaded by A; one option would be for the cloud provider to re-encrypt
it to the partition key, and then control all access to it from that point going forward, as described
earlier. Even so, no key re-distribution would need to occur.

5.3.2 Partial ciphertext fetch by user

If the manager introduces too much latency in the system due to its workload, it is possible to
substantially reduce its communication and processing burden by transferring some of it to the
users. The manager’s critical role in the described protocol is to perform the re-encryption task.
However, the Zr ·m subcomponent of the encrypted ciphertext Cp stored in the cloud is not directly
involved in this operation; it may be downloaded from the cloud by the recipient B directly. B
will then await the second component Zbr from M . In this way, M avoids the overhead of fetching
Cp in its entirety from the cloud. An undesirable side effect is that if B leaves the group, he can
continue to download and access encrypted data in the cloud. This is solved in the next model,
where the cloud data undergoes a transformation preventing this.

6 Cloud-based re-encryption

A potential problem with the manager-based encryption scheme is that the manager is allocated
all re-encryption tasks, and its ability to scale may be limited. An alternative and novel model is
now presented, where the cloud provider is delegated the responsibility of re-encryption, in order to
leverage its advantages in computational capacity. The manager still exists in this scenario, playing
the role of key coordinator; however, it is no longer a bottleneck for re-encryption operations in the
system. All data encryption operations are handled by the cloud provider, which is highly scalable.

6.1 System operation

6.1.1 Key generation and encryption

Refer to Figure 4. As before, in the setup phase, the manager M generates version 0 of a public
and private key pair, PKP0 and SKP0 for the data partition P , in a similar manner as described in
Section 5, using the BBS scheme; it then distributes a copy of PKP0 to all current authorized users
in the user group UP , including A and B. Alternatively, PKP0 may be stored in the public key
directory accessible to all users. The secret partition key is never shared with the cloud provider.
M directly distributes SKP0 to all of its current users who are entrusted with the safekeeping of it.

Once again, Alice, or user A, wishes to store encrypted data in the cloud. A encrypts a
message m with PKP0 . A then uploads the ciphertext Cp0 , and any optionally associated policy
settings, to the cloud provider: Cp0 = (Zr ·m, gp0r). The data is stored in P , in encrypted form.

6.1.2 Decryption

Bob, user B, is another user in the same group as A, and requests the data Cp0 that A has
uploaded to partition P . Since B has a copy of the secret partition key SKP0 , he can decrypt

20

Manager M

User
A

User
B

User
C... ...

Data partition 1

Controller

Cloud

cP0
cP1

cP1

Key hash
directory

h1,h2

h1 h2

PKP0

User group UP

SKP0
SKP1

SKP1

cP0
cP1

cP2

h1
SKP0 → SKP1 → SKP2

h2

SKP0
, SKP1

, SKP2

SKp1

PKP1
PKP2

Key generation:

Figure 4: Model of key management using cloud-based re-encryption.

the data: m = Zr·m

(Zp0r)
1
p0

. Both A and B receive SKP0 during the set-up phase from the cloud

provider. A may also provide it directly to B in peer-to-peer fashion, over a secured Bluetooth
channel, for instance. A local link such as this would not incur the same high transmission cost as
a 3G wireless channel. All users in UP may retrieve the message uploaded by A to the cloud, by
directly obtaining Cp0 from the cloud provider, and using the same shared decryption key SKP0 .
Thus, in this model, second-level encryption is demonstrated [19]; as applied here, the ciphertext
published by the cloud may be decrypted by a recipient who holds the original secret partition key;
additionally, a re-encryption round on the ciphertext is possible by the cloud provider, a delegate,
which will transform it into a first-level ciphertext so that it may be decrypted only by the holder
of a newer partition key.

6.1.3 Re-encryption

If a new user Charlie, or C, joins the group and the manager authorizes him, then the present
partition key PKP0 is invalidated; it becomes obsolete, and a new version of the key must be
generated. M first authorizes C, approving membership. The manager then creates a new random
salt, with value h1, and adds it to the key SKP0 ; it then hashes the result through a secure hash
such as SHA-2, to generate the new (version 1) key SKP1 . In general:

SKPv = pv = f(SKPv−1 , hv)

21

for version v = 1, . . . , n, random hv ∈ Z and secure hash function f . The public key PKPv is
then derived from the secret key SKPv , as before: PKPv = gpv . The hash value used to generate
the new key is then shared with all current authorized users in the group. The entire hash chain
H = {hx|x ∈ N, x ≤ y}, where y is the current version number corresponding to the most recently
created key, can be stored in the cloud and shared with authorized users in UP ; the random hash
input values themselves are insufficient for the cloud provider to determine the key. The newly
joined user C will be unable to decrypt the message already stored by A as it was encrypted with
an older key, with a value less than y.

The accessibility of the ciphertext by C may be dependent on the default policy, or an optional
custom policy originally attached to the data by A. By default, it may require that the data CP0

presently stored in the cloud partition be re-encrypted with the new partition key. If the policy
rule requires permission from A to accomplish this, then C will be unable to decode the data until
it is given. The re-encryption need not necessarily occur at the time of C’s admission into the
group; it may be triggered at the time of his data access attempt. It may also be requested by the
manager or any other authorized user at any time, i.e. when that data is next accessed. If the data
is re-encrypted by the cloud provider using h1 to form ciphertext CP1 , then it can be decoded by
C using the new key SKP1 , where y = 1.

To re-encrypt the message, the cloud provider requires knowledge of the re-encryption key that
is based on the latest version of the private partition key. This re-encryption key is generated and
provided by the manager as soon as the key is updated. The re-encryption key RKP0→P1 is a
transformation from SKP0 to SKP1 :

SKP1 = p1 = f(SKP0 , h1) = f(p0, h1)

RKP0→P1 = g

SKP1
SKP0 = g

p1
p0

During re-encryption, ciphertext CP0 is transformed into CP1 :

From CP0 = (Zr ·m, gp0r),

Compute: e(gp0r, RKP0→P1) = e(gp0r, g
p1
p0)

= Zp1r

Publish: CP1 = (Zr ·m,Zp1r)

C can now proceed to download and decrypt the message as: m = Zr·m

(Zp1r)
1
p1

.

The cloud provider stores a history of the key versions, including the version number of each
key, the public partition key itself, the corresponding re-encryption key required to re-encrypt the
original uploaded ciphertext to the corresponding new version, and the hash value used to create
the re-encryption key, as illustrated in the following versioning array:

0 PKP0 − −
1 PKP1 RKP0→P1 = g

p1
p0 h1

2 PKP2 RKP0→P2 = g
p2
p0 h2

...
...

...
...

y PKPy RKP0→Py = g
py
p0 hy


Note once again that the cloud provider can never decrypt and view the original contents of the

message, as the original key SKP0 in the chain is unknown. Each new re-encryption corresponds to

22

a new and higher version number. Each new key is traceable to a version number, so that any user
may determine whether the key required to decrypt the ciphertext is in possession. If not, when
the client requests the ciphertext from the cloud provider, he can request that it be re-encrypted
to the same version of the key that is in the user’s possession, assuming that the key corresponding
to the ciphertext is more recent. If it is not, then the user can re-assemble the correct private key
using the hash value chain history H that can be downloaded at any time from the cloud. The
user must then perform only a single decryption; multiple decryptions are not required.

At the latest, the stored data needs to be re-encrypted when access to it is attempted; the
effect of this is that re-encryption will only occur on the most frequently-accessed data. Whenever
a fetch request for cloud data is made, the cloud provider first checks whether the message version
matches the version of its most recent key in possession, and performs re-encryption if it does not.

If C leaves the group, then the manager will increment the key version, re-generate the partition
key, and inform the server that re-encryption is required. C will not be issued any further key
updates; he will no longer be authorized to access the key hashes stored within the key hash
directory on the cloud, or request them from the manager.

6.1.4 Data flow

To summarize, the flow of ciphertext in the system between two users is as follows, with the manager
not playing the role of an intermediary any more in the communication:

A Cp−→
P Cp−→

B

The cryptographic operations described in this section are summarized in Table 4.

6.2 Analysis

The cloud-based re-encryption model off-loads the processor-intensive task of re-encryption to the
cloud provider. It is consistent with the underlying assumption behind a cloud computing system:
that it can scale to a much greater degree than its client can in terms of computational ability.
Crucially, unlike in the previous scheme, the manager is not involved in each data fetch operation;
it is only occasionally involved in creating new keys when new users join. Another advantage is that
the re-encryption task may be executed only when necessary; it is only required at most once for
each data record whenever group membership changes. The re-encryption tasks may be batched
and executed during off-peak hours, or may be done only when a new fetch of the record is made,
at the latest. This model permits more direct access with the cloud while allowing all security
requirements to continue to be satisfied. Any authorized user can write and read encrypted data
directly to and from the cloud without involvement of the manager or any other proxy, resulting
in fast access on a regular basis. Data confidentiality is preserved in this model even when changes
to group membership occur. Since a new user is only given the latest iteration of a key and cannot
decrypt messages encrypted earlier with older keys, backward secrecy is preserved (however, if this
security feature is deemed unimportant, then re-encryption is not necessary in the case where user
membership decreases). The reciprocal is that a user that leaves the group is no longer issued key
updates. Since re-encryption occurs prior to a new data fetch request, the user is no longer able to
decrypt data; forward secrecy is preserved. As user memberships typically increase, not decrease,
this will be the normal course of events.

The use of hashes as public key material makes it unnecessary to distribute a new version of
the partition key to all users when it becomes re-generated by the manager. The history of re-
encryption keys can be stored with the encrypted data and made available to all users by the cloud

23

Table 4: Summary of operations in cloud-based re-encryption.
Alice (A) Cloud (P) Manager (M) Bob (B) Charlie (C)

1 Obtains
PKP0

= gp0

from the cloud
provider, picks
random r,
encrypts m
as Cp0 =
(Zr · m, gp0r),
and sends it to
the cloud.

2 Stores Cp0
and

its associated ver-
sion 0.

3 Downloads
Cp0

. Receives
SKP0

= p0 from
M and uses
it to decode
m = Zr·m

(Zp0r)
1
p0

.

4 Authorizes
new member
C. Computes

RKP0→P1 = g
p1
p0

and sends it to P .
Sends SKP1 =
f(p0, h1) = p1 to
C.

5 Re-encrypts
Cp0

as Cp1
=

(Zr · m,Zp1r)
using RKP0→P1 ,
and updates
version to 1.

6 Downloads Cp1

and decodes
m = Zr·m

(Zp1r)
1
p1

using SKP1
.

24

provider; it can be downloaded along with the ciphertext. An existing user will be able to generate
the partition key by knowing the hash value history; the cost of re-distribution of keys on every
change in membership is avoided. Storage requirements for each user are modest; it is unnecessary
to store the original key and the entire history of hash values. On a key re-generation, each user
can use his hash values to arrive at the latest key, and discard all remnants of its history. Thus,
only one secret key must be locally stored for each data partition that the user interacts with.

Note that the original re-encryption protocol based on BBS [27] allowed the same encrypted
content to be re-encrypted multiple times by the cloud provider; the cost of this in the proposed
protocol is that it would allow transitivity of delegations. In other words, it would allow the cloud
provider to derive its own re-encryption key RK ′Px→Px+2

based on public key PKx to PKx+2 as
follows:

RK ′PKx→PKx+2
= RK ′PKx→PKx+1

×RK ′PKx+1→PKx+2
=
px+2

px

This flexibility would allow the cloud provider to only retain the most recent re-encryption from
the newest available key, and to keep re-encrypting it multiple times as the key evolved through
a process of delegation. In this case, CPx+1 would be re-encrypted directly to CPx+2 , rather than
from the original CPx . However, it would allow a newly joined user to collude with the holder
of SKx+1 and the provider by sharing its private key SKx+2; the cloud provider could deduce
RK ′PKx+1→PKx+2

, as shown, and re-encrypt data for the new user that was not actually intended
to be accessed by him. In contrast, the re-encryption protocol based on bilinear maps, as described
here, is not transitive, and thus such delegation to new users is not allowed without arbitration
from the manager. The protocol is collusion-safe, as discussed in [19]; a user that knows SKp1 = p1

cannot collude with the cloud provider, which knows RKPKp0→PKp1
= g

p1
p0 , and recover SKp0 = p0.

This protection is at the expense of having to retain the original ciphertext Cp0 in the cloud for use
in all future re-encryptions, and incur a storage cost. The provider may still cache the ciphertext
resulting from the most recent re-encryption, however, for immediate access to it.

The main drawback with this approach is the re-encryption task required whenever group
membership changes, which may be a relatively expensive operation. Unlike the previous model,
it is performed within the cloud, however, which has the ability to instantly scale to meet the
processing demand. However, there still exists the risk of the key being illegitimately shared by
a misbehaving (yet authorized) user with that of an unauthorized user. All users are inherently
entrusted with the secret partition key, unlike in the previous manager-based re-encryption scheme.
The cloud provider can perform user authentication against its ACL as a fallback mechanism,
however.

6.3 Possible variants

It is possible to restrict the scope of trust of the manager for highly sensitive user data. In a variant
of this model, as opposed to employing a manager-generated initial partition key, A herself may
generate the key pair PKP0 and SKP0 . These keys may then be used for the first encryption of
a data record that is uploaded to the cloud. The advantage of this approach is that A can then
completely control access to that data record. The manager will never be able to read the data, and
thus does not have to be trusted to the same degree as in the standard case described above. The
manager will only generate and issue new re-encryption keys to all authorized users for subsequent
versions; the manager will never obtain a copy of the first-version key so that it can reconstruct the
key history and be in a position to decrypt all data in the partition uploaded by A. The granularity
of access control may be controlled by the user; A may generate a secret key pair for each new

25

data record created, or the same key pair for all records. The cost of this approach is that A must
share her keys with all users who require read access to the data. In a mobile scenario, this may
be accomplished by A pairing with another user via Bluetooth in peer-to-peer fashion to avoid the
cost of wireless 3G transfer, as only a small one-time transfer of key material is needed.

7 Evaluation and implementation of models

7.1 Qualitative cost comparison

The processing and storage costs of the transactions in the centralized and multi-level key manage-
ment models are shown in table 5. The computational complexity of each model is summarized.
Note that a bilinear pairing operation (BP) based on a Weil and Tate pairing is several times more
costly than a scalar multiplication (M) [29]. In the case of encryption and decryption, assume
that the user’s existing key is still valid from the previous session. The cost of key generation and
re-generation, due to user revocation, is reflected from the viewpoint of the server or key generation
facility (either in the cloud provider or an external manager node), as well as the user.

The scalability of the these two mechanisms is limited due to the key re-generation and re-
distribution that must occur for the entire user population whenever new users join or existing
ones leave. The centralized scheme requires full trust in the cloud provider to securely manage
keys for all users, which is unrealistic. In terms of the cost of computation, the multi-level scheme
generates symmetric keys that are less costly to use than the asymmetric keys in the centralized
scheme. The key generation entails more operations in the multi-level scheme to re-generate the
Access Control Polynomial, but only on user revocation, not on the addition of a user to the
membership.

In contrast, the processing and storage costs of the transactions in the two proposed re-
encryption models are shown in Table 6. The main advantage of these models is that constant
key re-generation need not occur between the cloud (or a proxy) and the user set. Considering
that the user base will largely comprise mobile device users, the conservation of wireless commu-
nication exchanges is significant and valuable. The trade-off is in the automatic and continuous
re-encryption necessary as user memberships naturally evolve. In the cloud-based re-encryption
model, the partition key is generated by the manager, but the re-encryption itself is carried out
by the cloud provider; importantly, fetching data from the cloud does not involve the manager as
an intermediary in each data fetch session. The proxy re-encryption model requires the manager
to perform re-encryption on each client request, however, and so it is not as scalable in a cloud
context; it still has reasonable potential if the manager is situated inside of a private cloud.

7.2 Implementation results

In order to understand the execution cost of the protocol on real hardware, the cloud-based re-
encryption algorithm described here was implemented in Java using jPBC (Java Pairing-Based
Cryptography Library) [30], a porting of the PBC (Pairing-Based Cryptography Library) in C
[31]. The encryption, re-encryption, and de-cryption tasks, as described earlier, were timed on
different platforms; portability was provided by Java. The desktop platform consisted of an Apple
iMac with a quad-core 64-bit 3.4 GHz Intel Core i7 processor and 16 GB of RAM, running Mac
OS X 10.6.7. The smartphone platform consisted of a Google Nexus One phone with a single-core
1 GHz Qualcomm QSD 8250 Snapdragon ARM processor and 512 MB of memory, running Android
OS 2.3.4. The cloud platform consisted of a single Google App Engine (GAE) web application
instance. The reference for billing is a front-end instance comprising a 1.2 GHz Intel x86 processor

26

Table 5: Storage and communication costs of centralized and multi-level communication models.
All cryptographic operations are over multiplicative group G. The operations include: Hashing
(H), Exponentiation (E), Bilinear pairing (BP), and Multiplication (M).

Computational complexity

Description Centralized model Multi-level model

Key generation (server) M H +M
Key generation (user) - H +M

Encryption BP + E +H H
Decryption BP +H H

Key re-generation (server) M · Up (H +M) · Up

Key re-generation (user) - H +M

Computational costs

Description Centralized model Multi-level model

Key generation 1 for each user in the system 1 for each user in subgroup
(generated by cloud) (generated by manager)

Re-encryption (none) (none)

Access model

Description Centralized model Multi-level model

Data fetch Direct-from-cloud Direct-from-cloud

Storage costs

Description Centralized model Multi-level model

Key storage 1 for each user in the system 1 for each user in subgroup
(stored in cloud) (stored in each manager)

27

Table 6: Storage and communication costs of re-encryption models. The cryptographic operations
include: Hashing (H), Exponentiation (E), Bilinear pairing (BP), and Multiplication (M).

Computational complexity

Description Proxy re-encryption Cloud re-encryption

Key generation (manager) BP + E BP + E
Key generation (user) - -

Encryption (user) 2 · E +M 2 · E +M
Decryption (user) E +M E +M

Key re-generation (manager) - H + E
Key re-generation (user) - -

Re-encryption (server) - BP
Re-encryption (manager) BP + E E

Computational costs

Description Proxy re-encryption Cloud re-encryption

Key generation (none) (none)
Re-encryption 1 per join/leave 1 per join/leave

(operation done by proxy) (operation done by cloud)

Access model

Description Proxy re-encryption Cloud re-encryption

Data fetch Via proxy Direct-from-cloud

Storage costs

Description Proxy re-encryption Cloud re-encryption

Key storage All stored in manager All stored in manager

28

with 128 MB RAM, at 10 cents per hour; the actual number of CPU cycles used is internal to
the App Engine and not exposed. A “Type A” pairing was utilized in the algorithm; for direct
comparison, the field size was reduced to 32 bits to avoid stack overflows during curve generation,
owing to the limited heap available on the phone. The average timing results are shown in Table 7.
The re-encryption was much more feasible on a cloud instance or a fast desktop computer; in the
latter case, it was 38 times faster than on the smartphone. Note that each operation was performed
on a 48-bit message block. Although the re-encryption task may be performed on a scalable server,
the advantage of off-loading it to the cloud is that it can scale almost without bound. Additionally,
GAE provides back-end instances with up to 4.8 GHz CPU and 1 GB memory.

Although these benchmark results are limited, to be fair, they were achieved using libraries
that are not highly mature and optimized for a mobile platform; increasing workload sizes to
expand the tests incurred the risk of out-of-memory conditions. However, they serve to validate
the comparative strengths of mobile devices and clouds that the re-encryption model leverages.

Table 7: Performance results obtained from the implementation.
Cryptographic task on 48-bit data block Desktop Smartphone Cloud

(iMac) (Android) (GAE)

Encryption time (ms), using P0 key 8.3 200.1 8.8

Decryption time (ms), using P0 key, 4.9 128.9 2.9
i.e. before re-encryption occurs

Re-encryption time (ms), from P0 to P1 keys 4.2 159.6 3.0

Decryption time (ms), using P1 key, 0.5 15.2 0.5
i.e. after re-encryption occurs

8 Summary

Various cryptographic protocols have been adapted to a cloud computing system model in order to
gauge their viability in improving communication security. Appropriate modifications have been
proposed to support both public and private clouds, and standard 3G wireless as well as peer-to-peer
links, in order to reduce the cost of communication for mobile users securely accessing and storing
data in a cloud. Compared to a fully centralized model based on straightforward RSA, the first
identity-based scheme reduces the cost of initial key distribution, but at the expense of requiring
complete trust in the cloud provider. The second multi-level key management scheme addresses
the trust issue by relocating key storage to a trusted manager entity; however, it fails to solve the
problem of re-encryption of data within the cloud to protect it as the user membership changes over
time. The third manager-based re-encryption scheme addresses the cost of re-keying operations in
a cloud-based key management protocol by having a trusted authority, independent of the cloud
provider, perform re-encryption before delivering a request to the client. The authority becomes the
gateway for data access to the cloud; in doing so, it does not necessitate any key updates over time.
It is particularly suitable for a private cloud environment, but entails a considerable computational
load. A novel protocol based on data re-encryption has been proposed to offer higher scalability
and to support an extremely large mobile device user population. This is achieved by leveraging the
cloud provider’s scalability to perform the required re-encryption tasks inside the cloud itself, rather
than inside the manager; at the same time, this must occur without granting the cloud provider
access to sufficient key material to decode the user data. The manager, as a trusted authority

29

is only responsible for key re-generation, but the evolving key material to construct iterations of
secret keys can be securely shared through the cloud provider itself, resulting in a more efficient
and scalable security protocol.

Although the focus of this protocol is on data confidentiality, data integrity may be provided
through the use of message authentication codes to achieve a holistic security solution. It is still
unclear, however, how hierarchical access can be efficiently achieved for users of different access
class privileges. Hierarchical access control for a re-encryption-based protocol must support mobile
users that require local storage and communication to be kept to a minimum; this is likely a
useful future research direction. Also, the question of how to perform useful operations directly on
the encrypted data stored within the cloud itself is an open research problem. Fully homomorphic
encryption schemes have been proposed but are still largely impractical [32]. However, the proposed
work is suitable for the common scenario of a massively scalable application such as a web server
delivering encrypted content to mobile users. Finally, it would be interesting to apply the techniques
to real-world applications to gauge the performance on varying workloads and user populations.

9 Acknowledgments

This work was supported in part by a National Sciences and Engineering Research Council (NSERC)
grant awarded to Dr. Hasan, and an NSERC Alexander Graham Bell Canada Graduate Scholarship
(Doctoral) awarded to Piotr Tysowski.

References

[1] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?” Computer, vol. 42, pp.
15–20, January 2009.

[2] J. Brodkin, “Gartner: Seven Cloud-Computing Security Risks,” Network World, July 2008.

[3] IDC, “Press Release: Worldwide Converged Mobile Device (Smartphone) Market Grows 56.7%
Year Over Year in First Quarter of 2010,” May 7 2010.

[4] Juniper Research, “Mobile Cloud Applications & Services: Monetising Enterprise & Consumer
Markets 2009-2014,” Juniper Research, Tech. Rep., 2010.

[5] Facebook, “Statistics,” 2010. [Online]. Available:
”http://www.facebook.com/press/info.php?statistics”

[6] S. Pearson, “Taking Account of Privacy when Designing Cloud Computing Services,” in
CLOUD ’09: Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing. Washington, DC, USA: IEEE Computer Society, 2009, pp. 44–52.

[7] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M. Belding, “Cool-Tether:
Energy Efficient On-the-fly WiFi Hot-spots using Mobile Phones,” in CoNEXT ’09: Proceed-
ings of the 5th international conference on Emerging networking experiments and technologies.
New York, USA: ACM, 2009, pp. 109–120.

[8] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in
mobile phones: a measurement study and implications for network applications,” in Proceed-
ings of the 9th ACM SIGCOMM conference on Internet measurement conference, ser. IMC
’09. New York, NY, USA: ACM, 2009, pp. 280–293.

30

[9] Y. Shin, M. Gupta, and S. Myers, “A Study of the Performance of SSL on PDAs,” in Proceed-
ings of IEEE INFOCOM Global Internet Symposium (GI), 2009, pp. 1–6.

[10] P. Dhawan, “Performance comparison: Security design choices,” Microsoft Developer Network,
Tech. Rep., October 2002.

[11] A. Stern, “Update From Amazon Regarding Friday’s S3 Downtime,” Febuary 16, 2008 2008.
[Online]. Available: http://www.centernetworks.com/amazon-s3-downtime-update

[12] OASIS, “Key Management Interoperability Protocol (KMIP): Addressing the Need for Stan-
dardization in Enterprise Key Management,” 2009.

[13] T. Mather, “Key Management in the Cloud,” January 2010. [Online]. Available:
https://365.rsaconference.com/blogs/tim-mather/2010/01/07/key-management-in-the-cloud

[14] R. Chow, M. Jakobsson, Y. Niu, E. Shi, J. Molina, R. Masuoka, and Z. Song, “Authentication
in the clouds: a framework and its application to mobile users,” in ACM Cloud Computing
Security Workshop (CCSW), October 8, 2010 2010.

[15] S. S. Al-Riyami and K. G. Paterson, “Certificateless public key cryptography,” Cryptology
ePrint Archive, Report 2003/126, 2003, http://eprint.iacr.org/.

[16] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,”
IEEE/ACM Trans. Netw., vol. 8, pp. 16–30, February 2000.

[17] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Advances in
Cryptology — CRYPTO 2001, ser. Lecture Notes in Computer Science, J. Kilian, Ed. Springer
Berlin / Heidelberg, 2001, vol. 2139, pp. 213–229.

[18] J. Baek and Y. Zheng, “Identity-Based Threshold Decryption,” in Public Key Cryptography
– PKC 2004, ser. Lecture Notes in Computer Science, F. Bao, R. Deng, and J. Zhou, Eds.
Springer Berlin / Heidelberg, 2004, vol. 2947, pp. 262–276.

[19] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption schemes
with applications to secure distributed storage,” ACM Trans. Inf. Syst. Secur., vol. 9, pp.
1–30, Feb. 2006.

[20] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data
access control in cloud computing,” in Proceedings of the 29th conference on Information
communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 534–542.

[21] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access
control in cloud storage services,” in Proceedings of the 17th ACM conference on Computer
and communications security, ser. CCS ’10. New York, NY, USA: ACM, 2010, pp. 735–737.

[22] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang, “Trusted data sharing over
untrusted cloud storage providers,” in Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, ser. CLOUDCOM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 97–103. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2010.36

[23] E. jin Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing remote untrusted
storage,” in in Proc. Network and Distributed Systems Security (NDSS) Symposium 2003,
2003, pp. 131–145.

31

[24] Kallahalla, M., et al, “Plutus: Scalable secure file sharing on untrusted storage,” in Proceed-
ings of the 2nd USENIX Conference on File and Storage Technologies. Berkeley, CA, USA:
USENIX Association, 2003, pp. 29–42.

[25] Y.-S. Dai, X. Zou, and Y. Pan, Trust and Security in Collaborative Computing. World
Scientific, 2007, vol. Volume 2 of Computer and Network Security.

[26] X. Zou, Y.-S. Dai, and X. Ran, “Dual-level key management for secure grid communication
in dynamic and hierarchical groups,” Future Gener. Comput. Syst., vol. 23, pp. 776–786, July
2007.

[27] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy cryptography,”
in In EUROCRYPT. Springer-Verlag, 1998, pp. 127–144.

[28] T. El Gamal, “A public key cryptosystem and a signature scheme based on discrete loga-
rithms,” in Proceedings of CRYPTO 84 on Advances in cryptology. New York, NY, USA:
Springer-Verlag New York, Inc., 1985, pp. 10–18.

[29] Kim, Y., et al, “Key establishment scheme for sensor networks with low communication cost,”
in Autonomic and Trusted Computing, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007, vol. 4610, pp. 441–448.

[30] [Online]. Available: http://libeccio.dia.unisa.it/projects/jpbc/

[31] [Online]. Available: http://crypto.stanford.edu/pbc/

[32] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford University,
2009, crypto.stanford.edu/craig.

32

