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Abstract. This paper investigates a new approach to analyze symmetric ciphers by guessing
intermediate states and dividing algorithms to consecutive sub-ciphers. It is suitable for ciphers
with simple key schedules and block sizes smaller than key lengths. A thorough theoretical
analysis of this multidimensional method is given, and new attacks on the block cipher family
KATAN are proposed by applying this method, which can attack 175-round KATAN32, 130-
round KATAN48 and 112-round KATAN64 faster than exhaustive key search.
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1 Introduction

Lightweight devices such as RFID chips and wireless sensor networks have become popular these days,
because such tiny devices bring more convenience to people’s daily lives and are able to solve a large
number of traditional problems at very low costs. Security and privacy protections for such devices are
therefore highly demanded. However, original designs of cryptographic algorithms and protocols, such
as TLS/SSL, can hardly be used under such circumstances due to limited computational and storage
capacities.

Recently, many new cryptographic designs for lightweight devices have been carried out. For exam-
ple, the KATAN/KTANTAN families of block ciphers [1] and the authenticated encryption algorithm
Hummingbird-2 [2] are devised specifically for constrained environments. The block cipher PRINT-
cipher [3] is designed to be compact enough for integrated circuit printing. A 64-bit version block
cipher, LED [4], is proposed based on the structure of AES, which has similar security evaluation but
smaller implementation footprints. Security evaluation of these lightweight algorithms becomes a very
important work for researchers.

Meet-in-the-middle (MITM, hereafter) attack was first introduced by Diffie and Hellman in [5]
for cryptanalysis of DES, and is a generic method to analyze high-level structures of cryptographic
algorithms. Its fundamental idea is that if the target algorithm can be decomposed into two consecutive
parts and the computation of each part only involves portions of master keys, then we can investigate
the security level of each part separately and finally check the consistence of the results from both sides.
Since evaluating two smaller segments usually requires much less work, the overall time complexity to
analyze the complete algorithm could decrease dramatically.

Inspired by the recent development of MITM techniques for cryptanalysis, such as biclique at-
tacks [6, 7] which create the first single-key attacks on full AES and IDEA, and splice-and-cut attacks
for computing pre-images of MD5 [8], SHA-0 and SHA-1 [9], we investigated a new method in depth,
i.e. ciphers are first divided into consecutive sub-ciphers by guessing certain intermediate states, then
MITM attacks are applied to these sub-ciphers separately, and results are finally brought together to
eliminate wrong keys. We applied this multidimensional approach to the block cipher family KATAN,
and found the best cryptanalysis results so far. The papers [10, 11] have the basic idea about MITM
attacks using one guess, but those attacks only succeed in improving memory and data complexities,
but not time complexity, of the previous work [12]. In addition, our multidimensional MITM attack
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can be seen as a generalized framework for the attacks in [10, 11]. Here we also note that there is a
independent work [13] with similar ideas, but its authors focus on optimizing time-memory trade-offs
for composite problems, and their analysis is only applied to the cases in which all sub-ciphers have
independent keys.

The comparisons of our new cryptanalysis results on KATAN with existing ones are summarized
in Table 1. The notation KP in the table stands for known plaintexts.

Table 1. Comparisons of Previous and New Cryptanalysis Results on Reduced-round KATAN.

Cipher Number of Rounds Time Complexity Memory Complexity Data Complexity Reference

115 279 Not Given 232 KP [14]
KATAN32

175 279.30 279.58 3 KP Sec. 3.3

100 278 278 128 KP [15]
KATAN48

130 279.45 279.00 2 KP Sec. 3.4

94 277.68 277.68 116 KP [15]
KATAN64

112 279.45 279.00 2 KP Sec. 3.4

2 Multidimensional Meet-in-the-Middle Attack

This section will first briefly introduce original MITM attacks, and then discuss how to extend them
to multidimensional cases.

2.1 Meet-in-the-Middle Attack

We take Double-DES (2DES) to explain the idea of MITM attacks. Use c = DESk(p) to denote one
DES encryption, where k is the 56-bit master key, and p and c are the plaintext and ciphertext. 2DES
uses two different keys k1 and k2, and its encryption is computed as

c = 2DES(k1,k2)(p) = DESk2
(DESk1

(p)) .

The total number of key bits is equal to 2 · 56 = 112, so the time complexity of exhaustive key search
for 2DES is 2112. Using the MITM method, we can first compute v = DESk1

(p) for all possible k1’s,
and store all v’s into a set S with corresponding k1’s. The time complexity of this step is dominated by
256. Secondly, from the ciphertext side, we can compute v′ = DES−1k2

(c) for each possible k2, and then
check whether v′ is in the set S. If we find a match, then the corresponding key pair (k1, k2) is possibly
the right one. In this way, we only need to calculate DES for 2 · 256 = 257 times, which is much less
than the expected 2112. This is the reason why we should use Triple-DES, rather than Double-DES,
to obtain a reasonably large security margin.

Suppose a cipher c = E(k, p) can be decomposed into two consecutive sub-ciphers Ef (kf , ·) and
Eb(kb, ·), i.e. c = Eb(kb, Ef (kf , p)), where kf and kb are the sub-keys used in Ef and Eb, as shown in
Fig. 1. Here f and b are the abbreviations for forward and backward.

Ef (kf , p) E−1
b (kb, c)

p v v′ c

Fig. 1. An illustration of meet-in-the-middle attacks.

The steps of MITM attacks can be written as follows.
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– MITM phase:
1. Compute every possible v = Ef (kf , p) by iterating possible kf . Collect v’s into a set S.
2. For each possible kb, compute v′ = E−1b (kb, c). Check whether v′ ∈ S. If so, output the

corresponding key pair (kf , kb) as a possible correct key.
– Brute-force testing phase: If the MITM phase outputs more than one pair of (kf , kb), then we need

to use additional plaintext-ciphertext pairs to perform complete encryptions to test them and find
the correct pair.

Let us use | · | to represent the bit-length of a variable, and n to denote the block size of a cipher,
e.g., n = |p| = |c|. For simplicity, we assume bit-lengths of intermediate states are smaller than block
sizes, e.g., |v| ≤ n, in the following content. The time complexity for Step 1 of the MITM phase is 2|kf |,
and for Step 2 it is 2|kb|. During the MITM phase, wrong keys have the probability of 1/2|v| to obtain
a false positive, so if kf and kb do not have common key bits, the number of wrong keys passing the
MITM phase will be 2|kf |+|kb|/2|v| = 2|kf |+|kb|−|v|. Let kc consist of all the key bits contained in both
kf and kb, the number of remaining keys will be 2|kf |+|kb|−|kc|−|v|. We further assume k is the master
key which consists of all the key bits of kf and kb, and |v| is equal to the block size n, then we have

2|kf |+|kb|−|kc|−|v| = 2|k|−|v| = 2|k|−n.

This can be easily understood from the information theory’s point of view: Since we have information
of an n-bit plaintext-ciphertext pair (p, c), we can only reduce the key space to 1/2n of the original.
This is also the reason why if |v| > n we cannot filter out more wrong keys1. After this MITM phase,
we can simply deploy brute-force testing to remove rest wrong keys.

The time complexity of the first attempt of brute-force testing will be equal to 2|k|−n. The proba-
bility of wrong keys passing the testing is 1/2n on average, so 2|k|−2n keys will pass the first testing.
If 2|k|−2n is still larger than 1, we can use another pair of (p, c) to perform additional testing to
further reduce the key space. The overall time complexity of the brute-force testing phase will be
2|k|−n + 2|k|−2n + 2|k|−3n + · · · , and this phase needs d(|k| − n)/ne pairs of plaintexts and ciphertexts.
To sum up, the total time complexity is

2|kf | + 2|kb| + 2|k|−n + 2|k|−2n + 2|k|−3n + · · · ≈ 2|kf | + 2|kb| + 2|k|−n ,

and the total data complexity is d(|k| − n)/ne+ 1 = d|k|/ne. Similar analysis can be found in [16].
When a matching key pair (kf , kb) is found, it can be tested instantly, so we do not need to save it

in memory and wait for other candidate keys. Therefore, the major memory consumption of this attack
comes from constructing the set S. There are many kinds of data structures to produce S, such as hash
tables. Actually, constructions and look-up algorithms of S also have influence on the overall attack
time. The look-up time is generally omitted since it is usually much less than a complete encryption.
We suggest to use tables whose indices are (parts of) matching values, e.g., v in the above example,
and let each entry in the tables point to a linked list of corresponding sub-keys. Despite of different
constructions of S, memory complexities should be 2|kf | at least.

2.2 Multidimensional Meet-in-the-Middle Approach

When designing block ciphers for environment-constrained devices, we usually prefer to adopt small
block sizes for efficient performance. However, due to security requirements, master keys cannot be
too short. This usually leads us to cipher designs with key sizes larger than block sizes. Although this
is perfectly valid, it makes us possible to guess certain short intermediate states of ciphers and divide
them into small sub-ciphers for easier analysis.

Suppose we first guess an intermediate state g, and perform two MITM attacks on the sub-ciphers
divided by g, as shown in Fig. 2. In the simplest case, assuming the sub-keys kf1 , kb1 , kf2 and kb2 do
not have common key bits, the steps of the attack can be described as follows.

1 Nevertheless, if |v| < n we will get a larger resultant key space.
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Ef1(kf1 , p) E−1
b1

(kb1 , g)

p v1 v′1 g

Ef2(kf2 , g) E−1
b2

(kb2 , c)

v2 v′2 c

Fig. 2. Meet-in-the-middle attacks with one guess.

1. Compute v1 = Ef1(kf1 , p) for each possible kf1 , and put all kf1 ’s into a table T1 indexed by v1,
each entry of which is a set of certain kf1 ’s.

2. Compute v′2 = E−1b2
(kb2 , c) for each possible kb2 , and put all kb2 ’s to a table T ′2 (similar as T1)

indexed by v′2.
3. For each possible guess of g:

(a) Compute v′1 = E−1b1
(kb1 , g) for each possible kb1 , and maintain a table T ′1 of kb1 indexed by v′1.

(b) Compute v2 = Ef2(kf2 , g) for each possible kf2 , and maintain a table T2 of kf2 indexed by v2.
(c) Every matching pair (kf1 , kb1) for v1 = v′1, together with each matching pair (kf2 , kb2) for

v2 = v′2, forms a candidate key for the whole encryption. We use additional plaintext-ciphertext
pairs to perform brute-force testing on these candidate keys. If one key passes all tests, then
output it as the correct key.

The time complexity of this attack without the brute-force testing part is

2|kf1
| + 2|kb2

| + 2|g| · (2|kb1
| + 2|kf2

|). (1)

We only need to recompute E−1b1
and Ef2 for different g’s, but not Ef1 and E−1b2

. For each guessed

value of g, the MITM attack from g to c will reduce the size of the key space to 2|k|−|v2| and the second
attack for the interval p to g will further reduce it to 2|k|−|v1|−|v2|, so after the two MITM attacks the
total number of keys left is 2|g| · (2|k|−|v1|−|v2|) = 2|k|+|g|−|v1|−|v2|. Assuming |g| = |v1| = |v2| = n, we
will have 2|k|+|g|−|v1|−|v2| = 2|k|−n, which is consistent with the analysis for original MITM attacks in
the last subsection. The total time complexity of the brute-force step is still 2|k|−n + 2|k|−2n + · · · .

The memory complexity of the attack is 2|kf1
| + 2|kb1

| + 2|kf2
| + 2|kb2

|, since we need to store T1,
T ′1, T2 and T ′2 in memory. The data complexity of the attack is still d|k|/ne.

In general cases, the sub-keys, kf1 , kb1 , kf2 and kb2 , would involve many common key bits, so the
above attack cannot be applied directly. A straightforward way to solve this is to treat every sub-
key bit as an independent new variable. This technique has actually been used in other cryptanalysis
methods such as [15], and have improved cryptanalysis results on several block ciphers. But by carefully
investigating ciphers’ detailed design we may get better results. For example, we can perform linear
transformations before matching sub-keys, or study round functions to perform partial encryptions or
decryptions. We will show real attack examples on the block cipher family KATAN32/48/64 in the
next section.

Certainly, we can guess more intermediate states and segment ciphers into smaller pieces, in which
case we may be able to find better attacks. MITM attacks with multiple guesses are illustrated in
Fig. 3. For simplicity of description, hereafter we denote the MITM attacks with multiple guesses as
multidimensional MITM (MD-MITM) attacks, and especially the attacks with n sub-ciphers will be
nD-MITM. For example, the above attack with one guess is a 2D-MITM attack, and original MITM
attacks can be seen as 1D-MITM attacks.

The steps of an (i + 1)D-MITM attack can be briefly stated as follows.

1. Construct a table T1 of kf1 by computing v1 = Ef1(kf1 , p).
2. Construct a table T ′i+1 of kbi+1

by computing v′i+1 = E−1bi+1
(kbi+1

, c).
3. For each guess of g1:

(a) Construct a table T ′1 by computing v′1 = E−1b1
(kb1 , g1) which is to match with T1.

(b) Construct a table T2 by computing v2 = Ef2(kf2 , g1).
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p

Ef1

v1 v′1

E−1
b1

g1

Ef2

v2 v′2

E−1
b2

g2

Ef3

v3 v′i

E−1
bi

gi

Efi+1

vi+1 v′i+1

E−1
bi+1

c

Fig. 3. General process of multidimensional meet-in-the-middle attacks with multiple guesses.

(c) For each guess of g2:
i. Construct a table T ′2 by computing v′2 = E−1b2

(kb2 , g2) which is to match with T2.
ii. · · · (Perform recursive operations till gi.)
iii. For each guess of gi:

A. Construct a table T ′i by computing v′i = E−1bi
(kbi , gi) to match with Ti.

B. Compute vi+1 = Efi+1
(kfi+1

, gi), which can form a table Ti+1 to match with T ′i+1

C. Perform brute-force testing on each combination of matching sub-key pairs from (T1, T
′
1),

(T2, T
′
2), · · · , (Ti+1, T

′
i+1), and output the passing key as the correct one.

The time complexity of the phase of MITM attacks with multiple guesses is given as

2|kf1
| + 2|kbi+1

| + 2|g1| · (2|kb1
| + 2|kf2

| + 2|g2| · (2|kb2
| + 2|kf3

| + · · · ))
= 2|kf1

| + 2|kbi+1
| + 2n · (2|kb1

| + 2|kf2
|) + 22n · (2|kb2

| + 2|kf3
|) + · · · ,

(2)

if we assume |g1| = |g2| = · · · = n. Please note that the order of g1, g2, · · · , gi does not matter, and we
can first guess any ones of them, in which case we may find another order for a better attack.

We only use one known plaintext-ciphertext pair before brute-force testing in the above MD-MITM
attack, so it is easy to see MD-MITM attacks have the same data complexities as 1D-MITM attacks.

The memory complexities of MD-MITM attacks are upper bounded by the sum of memory con-
sumptions of T1, T

′
1, T2, · · · , T ′i+1. To get the minimum value for the time complexity equation (2), the

sizes of T ′1, T2, · · · , Ti+1, i.e. 2|kb1
|, 2|kf2

|, · · · , 2|kfn+1
|, should be much smaller than the sizes of T1 and

T ′i+1, i.e. 2|kf1
| and 2|kbi+1

|. So it is safe to ignore T ′1, T2, · · · , Ti+1 here and give an upper bound for

the memory complexities of these simple MD-MITM attacks as 2|kf1
| + 2|kbi+1

|.

3 Application to KATAN

In this section, we first briefly describe the KATAN family of block ciphers, and present our crypt-
analysis results on KATAN by using MD-MITM attacks.

3.1 KATAN Family of Block Ciphers

KATAN [1] is a block cipher family designed for constrained devices and embedded systems, which
has a very small footprint and an acceptable security level. It consists of three versions with different
block sizes, 32, 48 and 64 bits, which are named KATAN32, KATAN48 and KATAN64 respectively.
Despite of their different block sizes, they all use 80-bit master keys. The structure of KATAN is shown
in Fig. 4.

In the encryption process of KATANn, the plaintext p is first divided to two pieces and loaded into
the registers L1 and L2. Next, Two nonlinear functions defined by the equations (3) are operated on
L1 and L2 respectively.

fa[L1] = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka
fb[L2] = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb

(3)

In the above equations, xi and yj are predefined indices for different versions of KATAN, and IR is an
irregular update sequence to prevent self-similarity attacks. The parameters xi, yj are IR are given in
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Cipher |L1| |L2| x1 x2 x3 x4 x5

KATAN32/KTANTAN32 13 19 12 7 8 5 3
KATAN48/KTANTAN48 19 29 18 12 15 7 6
KATAN64/KTANTAN64 25 39 24 15 20 11 9

Cipher y1 y2 y3 y4 y5 y6
KATAN32/KTANTAN32 18 7 12 10 8 3
KATAN48/KTANTAN48 28 19 21 13 15 6
KATAN64/KTANTAN64 38 25 33 21 14 9

Table 2. Parameters defined for the KATAN family of ciphers

L2

←−−−

L1

−−−→

?
L

?L? -∧-
?-IR ∧ - ?

L - � ka

?

6

L

6

L

6

� ∧� 6

�∧�
6

L�-kb

6

Fig. 1. The Outline of a round of the KATAN/KTANTAN ciphers

feedback polynomial x8+x7+x5+x3+1. Then, the encryption process starts, and ends
after 254 additional clocks when the LFSR returns to the all 1’s state. As mentioned
earlier, we use the most significant bit of the LFSR to control the irregular update (i.e.,
as the IR signal). For sake of completeness, in Table 3 in the Appendix we give the
sequence of irregular rounds.

We note that due to the way the irregular update rule is chosen, there are no sequences
of more than 7 rounds that share the pattern of the regular/irregular updates, this ensures
that any self-similarity attack cannot utilize more than 7 rounds of the same function
(even if the attacker chooses keys that suggest the same subkeys). Thus, it is easy to see
that such attacks are expected to fail when applied to the KATAN family.

We implemented KATAN32 using Synopsys Design Compiler version Y-2006.06 and
the fsc0l d sc tc 0.13µm CMOS library. Our implementation requires 802 GE, of which
742 are used for the sequential logic, and 60 GE are used for the combinational logic.
The power consumption at 100 KHz, and throughput of 12.5 Kbps is only 381 nW. This
is a gate level power estimation obtained using Synopsys Design Compiler3.

For KATAN48 the implementation size is 927 GE (of which 842 are for the sequential
logic) and the total power consumption is estimated to 439 nW. For the 64-bit variant,
KATAN64, the total area is 1054 GE (of which 935 are for the sequential logic) and the
power consumption 555 nW.

Here we would like to note that the further area reduction for KATAN48 and KATAN64
is possible by utilizing a clock gating technique. As explained above, the only difference

3 Although the gate level power estimation gives a rough estimate, it is useful for comparison
with related work reported in the literature.

7

Fig. 4. The structure of KATAN [1].

the appendix. ka and kb are two sub-key bits produced from the 80-bit master key by a linear feedback
shift register (LFSR). The 80-bit master key K is loaded as the initial state of the LFSR, and each
output bit is used as a sub-key bit sequentially. Assuming {ki} is the output sequence of the LFSR,
ki is equal to the i-th bit of the master key if i < 80, and ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 if i ≥ 80.
For r-th round, ka = k2r−2 and kb = k2r−1, where 1 ≤ r ≤ 254.

For KATAN32, after computing fa[L1] and fb[L2], the registers L1 and L2 are shifted to left one
time, and the most significant bits of L1 and L2 are discarded. Next, fa[L1] is fed into the least
significant bit of L2, and fb[L2] is put into L1. After 254 rounds of such updating operations, the
states of L1 and L2 are concatenated as the ciphertext c.

KATAN48 and KATAN64 have the same structure as KATAN32, and have the same total number
of rounds, i.e. 254, but in each round L1 and L2 of KATAN48 and KATAN64 are updated two and
three times respectively, by using the same ka and kb.

3.2 New Attacks on KATAN32

Use si to denote the 32-bit intermediate state after partial encryption of i rounds, which implies s0 = p
and s254 = c. Let us show a simplest case of 2D-MITM on KATAN32 first and improve it in following
discussions. For simplicity, we use Ei(s) to denote Efi(kfi , s), and Dj(s) to denote E−1bj

(kbj , s). ki...j is
the sub-key containing all the sub-key bits whose indices are from i to j. The detailed attack procedure
is as follows.

1. Compute s40 = E1(s0) using every possible kf1 = k0...79, and compute k80...127 by using linear
functions derived from the LFSR. Put each k0...79 in a table T1 indexed by s40 and k80...127. Each
entry of the table should have one element on average.

2. Compute s′88 = D2(s128) using every possible kb2 = k176...255, and compute k128...175 by using linear
functions derived from the LFSR. Store each k176...255 in a table T ′2 indexed by s′88 and k128...175.
Similarly each entry of the table has one element on average.

3. For each guess of g = s64.

(a) Compute s′40 = D1(s64) for each kb1 = k80...127, and then find the matching key k0...77 in T1.
On average there is only one such key, and put it in a set S.

(b) Compute s88 = E2(s64) for each kf2 = k128...175, and similarly find the matching key k176...255
in T ′2. Then compute k0...79 by using the linear relations defined by the LFSR, and check
whether it is also in the set S. If so, perform brute-force testing on this candidate key. If it
passes all tests, output it as the correct master key.
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To fairly compare with the complexities of existing attacks, we adopt the method proposed in [17]
to estimate the time complexity of the above attack on KATAN. Use Rf1 , Rb1 , Rf2 and Rb2 to denote
the numbers of rounds involved in different phase of the 2D-MITM attack, and the total number of
attacked rounds is R. The time complexities without brute-force testing are computed as follows.

2|kf1
| · Rf1

R
+ 2|kb2

| · Rb2

R
+ 2n ·

(
2|kb1

| · Rb1

R
+ 2|kf2

| · Rf2

R

)
Here we simply ignore the time complexities of linear transformations on sub-keys, because these
computations usually only involve several linear operations, which are much more cost-efficient than
the iterations of nonlinear partial encryptions or decryptions, and the exhaustive key search also needs
to compute the sub-keys on the fly by costing almost equivalent time.

In the above 2D-MITM attack on KATAN32, since |kf1 | = |kb2 | = 80 and |kb2 | = |kf2 | = 48, its
total time complexity is

280 · 40

128
+ 280 · 40

128
+ 232 ·

(
248 · 24

128
+ 248 · 24

128

)
+ 280−32 ≈ 280,

where 280−32 is the time complexity of the brute-force testing phase. Please note that 280 is exactly
the time complexity of exhaustive key search on KATAN. The memory complexity of the attack is
280 + 280 + 280−32 ≈ 281, since we need to store T1, T2 and S in memory. The data complexity is still
the same as 1D-MITM attacks, i.e. d80/32e = 3.

Reducing Complexities. To make the time and memory complexities of the above attack to be under
280, we can reduce the numbers of attacked rounds of first forward and second backward phases by one.
But in this case, when constructing T1 (or similarly T ′2), we cannot simply use s38 and kb1 = k78...125
as indices like in the above attack, because kf1 = k0...77 does not have full 80-bit information of the
master key, certain bits of kb1 depend on the values of k78 and k79. Under such circumstance, we
propose the following attack procedure.

1. Compute s39 = E1(s0) using every possible kf1 = k0...77, and compute k′80...125 by treating k78 =
k79 = 0. Put each k0...77 in a table T1 indexed by s39 and k′80...125. Each entry of the table should
have one element on average.

2. Compute s′87 = D2(s126) using every possible kb2 = k174...251, and compute k′126...171 by treating
k172 = k173 = 0. Store each k174...251 in a table T ′2 indexed by s′87 and k′126...171. Similarly each
entry of the table has one element on average.

3. For each guess of g = s63:
(a) Compute s′39 = D1(s63) for each kb1 = k78...125, and compute k′80...125 by deducting k78 and k79

from k80...125. Then use s′39 and k′80...125 to find the matching k0...77 in T1. On average there
is only one matching k0...77, combine it with the k78 and k79 to form the master key. Put the
candidate master key in a set S.

(b) Compute s87 = E2(s63) for each kf2 = k126...173, and compute k′126...171 by deducting k172 and
k173 from k126...172. Then use s87 and k′126...171 to find the matching k174...251 in T ′2. Compute
k0...79 from k172...251 by using the linear relations defined by the LFSR, and check whether it
is also in the set S. If so, perform brute-force testing on it.

The overall time complexity of this attack on 126-round KATAN32 is

278 · 39

126
+ 278 · 39

126
+ 232 ·

(
248 · 24

126
+ 248 · 24

126

)
+ 280−32 ≈ 279.10,

and its memory complexity is 278 + 278 + 248 ≈ 279. This attack already reaches the number of rounds
more than any previous attack on KATAN32, but we still have room for improvements.
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Increasing Attacked Rounds. We can see there is a large time complexity gap between the MD-
MITM and brute-force testing phases in the above attacks on KATAN32. The time complexities of
brute-force testing are always 248, and the complexities of MITM phases are close to 280. If we can
balance complexities of the two phases, the overall time complexities may drop. One way to do this
is reducing bit-lengths of the intermediate states for matching, i.e. v1, v2, · · · . As a result, computing
incomplete parts of original v1, v2, · · · may not need to use up all of the sub-key bits, and may extend
the attack to more rounds. In this way, more candidate keys are left to be tested in brute-force phases.
This technique is called partial matching, and has been used in various papers, such as [16, 17].

By adopting the partial matching technique, we are to extend our attack on 126-round KATAN32
to more number of rounds. For simplicity, we only use partial matching in the second MITM attack.
After analysis, we found the best meeting point is s87 and the second MITM attack ends at s152.
Based on the 78-bit information of kb2 = k226...303, we can still compute 2 bits of s87. By using these 2
bits for matching, there will be 278 candidate keys left for brute-force testing, and thus the total time
complexity of the attack should be still less than 280.

The partial matching details are shown as follows. The column a is for ka, and b is for kb. Here we
use the same notations as [16] and [17]: 0 implies this bit is fully computable based on information
we know and considered as known; 1 means computing this bit needs extra key information and is
considered as unknown. To form a matching, the two resultant bits from both sides should be known.

Rd. a b L1 L2

second backward phase

114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

113 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

112 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

111 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

110 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

109 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

108 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

107 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

106 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

105 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

104 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

103 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1

102 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1

101 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1

100 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1

99 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1

98 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1

97 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1

96 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1

95 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1

94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1

93 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1

92 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

91 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

90 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

89 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

88 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

second forward phase

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

matching

2 bits 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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For the second MITM attack with partial matching, we cannot simply construct T ′2 by using the 2
matching bits and other 46 linear independent values computed based on kb2 as indices, so we propose
a simple way using product set as in the following attack procedure.

1. Compute s39 = E1(s0) by using every possible kf1 = k0...77, and compute k′80...125 by treating
k78 = k79 = 0. Save k0...77 in a table indexed by s39 and k′80...125. This step is similar to the
previous attack. Every entry of the table will have one element on average.

2. Compute the 2 bits of s′87 = D2(s152) by using every possible kb2 = k226...303, and save all compu-
tation results in a table T ′2, whose index is k226...303.

3. For each guess of s63:
(a) Compute the 2 bits of s87 = E2(s63) by using every possible kf2 = k126...173, and store all

k126...173’s in a table T2 indexed by different values of the 2 bits, and each entry is a sub-set of
k126...173’s. After this step, T2 and T ′2 together form a product set.

(b) Compute s′39 = D1(s63) for each kb1 = k78...125, calculate k′80...125 by deducting k78 and k79
from k80...125, and find the matching k0...77 in T1. Next, based on the knowledge of k0...79,
compute the sub-key pair k126...173 and k226...303, and check whether the pair is also in the
product set of T2 and T ′2: First look up k126...173 in T ′2 to find the corresponding values of the
two bits, and then check whether k226...303 is in the (set) entry of T2 indexed by the two bits.
If so, perform further brute-force testing on the candidate key.

In this attack we extend the number of rounds to 152. The total time complexity of this attack is

278 · 39

152
+ 278 · 65

152
+ 232 ·

(
248 · 24

152
+ 248 · 24

152

)
+ 280−2 ≈ 279.56.

The memory consumption contains T1, T2 and T ′2, the total of which is the same as the previous
attack, i.e. 279. Please note that the data complexity of this attack is also the same as before, i.e. 3
known plaintext-ciphertext pairs, because even if the first pair used in the MITM attack phase is only
consumed 2-bit information, we can reuse it in the brute-force testing phase to filter out more wrong
keys.

3.3 3D-MITM Attacks on KATAN32

For MD-MITM attacks, computations of certain steps may be repeating. For example, as in Fig. 3,
Ef3 is computed 22n times, so we can actually cache the computation results for first 2n times and
reuse them later. Let us use this caching technique in attacks on KATAN32, and start from a simple
3D-MITM attack.

The two guessed states are s64 and s88. The first MITM attack starts from s0, ends at s64, and
meets at s40. The second MITM attack starts from s64, ends at s88, and meets at s80. The third one
is from s88 to s152, and meets at s112. The detailed attack procedure is described as follows.

1. Compute s40 = E1(s0) and k80...127 for each possible kf1 = k0...79, and store k0...79 in a table T1

indexed by s40 and k80...127. Every entry of T1 will have one element on average.
2. Compute s′112 = D3(s152) for each kb3 = k224...303, and store k224...303 in a table T ′3 indexed s′112,

and each entry of T ′3 is a set containing certain k224...303’s.
3. For each guessed pair of g2 = s88 and kf3 = k176...223, compute s112 = E3(s88) and store the

computation results in a table T3 indexed by s88 and kf3 . After this step, T3 and T ′3 form a
product set.

4. Fore each guess of g1 = s64:
(a) Compute s′40 = D1(s64) for each kb1 = k80...127, and find the matching k0...79 in T1 by using

the indices k80...127 and s′40. Next, based on the matching key k0...79 compute k128...175, and
then store k0...79 in a table S indexed by k128...175. Each entry of S will have one element on
average.
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(b) Compute s80 = E2(g64) for each kf2 = k128...159, and store k128...159 in a table T2 indexed by
s80, where each entry has one element on average.

(c) For each guess of g2 = s88:
i. For each kb2 = k160...175, compute s′80 = D2(s88), and look up the table T2 by s′80 to find

the matching k128...159. Next, look up the table S by k128...175 to find the matching k0...79.
Finally use k0...79 to compute the corresponding pair of k176...223 and k224...303, and check
whether the pair is also in the product set of T3 and T ′3. If so, do further brute-force testing
on k0...79.

The total number of attacked rounds is 152. The time complexity of this 3D-MITM attack is

280 · 40

152
+ 280 · 40

152
+ 232+48 · 24

152
+ 232 ·

(
248 · 24

152
+ 232 · 16

152
+ 232+16 · 8

152

)
+ 280−32 ≈ 279.84.

Since we need to store T1, T3, T ′3, S and T2 in memory, the memory complexity is 280 + 280 + 232+48 +
248 + 232 ≈ 281.58. We use only one known plaintext-ciphertext pair in the MITM attack phase, so the
total data complexity of the 3D-MITM attack is still 3 known plaintexts as before.

Improvements. To reduce the time complexity a little bit and make the memory complexity under
280, we can lower the numbers of attacked rounds of the phases f1, f3 and b3 by one round. In this
case, the memory complexity will decrease to about 281.58−2 = 279.58, and the time complexity will
also decrease.

The partial matching technique can also be used in 3D-MITM attacks to increase the number of
attacked rounds. Adopting the partial matching technique in the phases f3 and b3, we can still use the
similar positions for the two matching bits as the 2D-MITM attack in the last subsection.

Our final 3D-MITM attack with the above improvement methods can attack 175-round KATAN32.
The first MITM attack starts from s0, ends at s63, and meets at s39. The second one is from s63 to
s87, and meets at s79. The third one meets at s110 and ends at s175. The detailed attack procedure is
described as follows.

1. For each possible kf1 = k0...77, calculate s39 = E1(s0), and compute k′80...125 by treating k78 =
k79 = 0, and store k0...77 in a table T1 indexed by s39 and k′80...125. Every entry of T1 will have one
element on average.

2. For each kb3 = k272...349, compute the 2 bits of s′110 = D3(s175) for matching use, and store
k272...349 in a table T ′3 indexed by values of the two bits. Each entry of T ′3 is a set containing
certain k272...349’s.

3. For each guessed pair of s87 and kf3 = k174...219, compute the two bits of s110 = E3(s87) and store
the computation results in a table T3 indexed by s87 and kf3 . After this step, T3 and T ′3 form a
product set.

4. For each guess of g1 = s63:
(a) Compute s′39 = D1(s63) for each kb1 = k78...125, compute k′80...125 by deducting k78 and k79

from k80...125, and find the matching k0...77 in T1 by using the indices k′80...125 and s′39. Next,
compute k126...173 based on k0...79, and then store k0...79 in a table S indexed by k126...173. Each
entry of S will have one element on average.

(b) Compute s79 = E2(s63) for each kf2 = k126...157, and store k126...157 in a table T2 indexed by
s79, each entry of which has one element on average.

(c) For each guess of g2 = s87:
i. For each kb2 = k158...173, compute s′79 = D2(s87), look up the table T2 by s′79 to find

the matching k126...157. Next, look up the table S by k126...173 to find the matching k0...79.
Finally use k0...79 to compute the sub-key pair of k174...219 and k272...349, and check whether
the pair is also in the product set of T3 and T ′3. If so, do further brute-force testing on
k0...79.
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The total time complexity of this attack is

278 · 39

175
+ 278 · 65

175
+ 232+46 · 23

175
+ 232 ·

(
248 · 24

175
+ 232 · 16

175
+ 232+16 · 8

175

)
+ 280−2 ≈ 279.30.

The memory complexity is 278 + 278 + 232+46 + 248 + 232 ≈ 279.58. The data complexity stays as the
same, i.e. 3 known plaintext-ciphertext pairs.

3.4 New Attacks on KATAN48 and KATAN64

We can apply similar 2D-MITM attacks on other versions of KATAN, i.e. KATAN48 and KATAN64,
but only one state can be guessed in the middle because the block sizes of KATAN48 and KATAN64
are larger than halves of their key lengths. We can also use the partial matching technique in attacks
on KATAN48 and KATAN64 in order to increase numbers of attacked rounds. The detailed analysis
procedure is omitted here and we just give the descriptions of the new attacks. The details of partial
matching steps are listed in the appendix.

The 2D-MITM attack on KATAN48 can reach 130 rounds. The guessed state is s55. The first
MITM attack meets at s39 and the second meets at s71. The attack steps are described as follows.

1. Compute s39 = E1(s0) by using every possible kf1 = k0...77, and compute k′80...109 by treating
k78 = k79 = 0. Save k0...77 in a table indexed by s39 and k′80...125.

2. Compute the 2 bits of s′71 = D2(s130) by using every possible kb2 = k182...259, and save all compu-
tation results in a table T ′2, whose index is k182...259.

3. For each guess of s55:

(a) Compute the 2 bits of s71 = E2(s55) by using every possible kf2 = k110...141, and store all
k110...141’s in a table T2 indexed by values of the 2 bits, and each entry is a sub-set containing
certain k110...141’s. After this step, T2 and T ′2 together form a product set.

(b) Compute s′39 = D1(s55) for each kb1 = k78...109, calculate k′80...109 by deducting k78 and k79
from k80...109, and find the matching k0...77 in T1. Next, based on the knowledge of k0...79,
compute the sub-key pair of k110...141 and k182...259, and check whether the pair is also in the
product set of T2 and T ′2. If so, do further brute-force testing on the candidate key.

The time complexity is

278 · 39

130
+ 278 · 59

130
+ 248 ·

(
232 · 16

130
+ 232 · 16

130

)
+ 280−2 ≈ 279.45.

The memory complexity is 278 + 278 + 232 ≈ 279. The data complexity is d80/48e = 2 known plaintext-
ciphertext pairs.

The new attack on KATAN64 is similar as above, except we found performing partial matching
technique in the first MITM attack will allow us attack more rounds. The final number of attacked
rounds on KATAN64 is 112. The guessed point is s65, the first MITM attack meets at s46, and the
second one meets at s73. The attack steps are as follows, and the detailed partial matching procedure
is listed in the appendix.

1. Compute the 2 bits of s46 = E1(s0) by using every possible kf1 = k0...77, and save all computation
results in a table T1 indexed by k0...77.

2. Compute s′73 = D2(s112) by using every possible kb2 = k146...222, and compute k′130...143 by treating
k144 = k145 = 0. Save k146...222 in a table T ′2 indexed by s′72 and k′130...143.

3. For each guess of s65:

(a) Compute the 2 bits of s′46 = D1(s65) by using every possible kb2 = k114...129, and store all
k114...129’s in a table T ′1 indexed by values of the 2 bits, and each entry is a sub-set containing
certain k114...129’s. After this step, T1 and T ′1 together form a product set.
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(b) Compute s73 = E2(s65) for each kf2 = k130...145, calculate k′130...143 by deducting k144 and
k145 from k130...143, and find the matching k146...222 in T ′2. Next, based on the knowledge of
k144...223, compute the sub-key pair of k0...77 and k114...129, and check whether the pair is also
in the product set of T1 and T ′1. If so, do further brute-force testing on the candidate key.

The time complexity is

278 · 46

112
+ 278 · 39

112
+ 248 ·

(
232 · 19

112
+ 232 · 8

112

)
+ 280−2 ≈ 279.45.

The memory complexity is 278 + 278 + 216 ≈ 279. The data complexity is d80/64e = 2 known plaintext-
ciphertext pairs.

4 Optimization Methods

The new attacks proposed in the previous section focus on maximizing the numbers of rounds that we
can attack. There are many techniques that can help us reducing the attacks’ complexities.

One way to reduce the time complexities is that when computing intermediate states for partial
matching we do not actually need to complete the calculations of partial encryptions or decryptions.
Consider the detailed steps of the partial matching used in the 2D-MITM attack on KATAN32 (see
Sec 3.2). One of the two bits used for matching in s′87 has actually been computed after the decryption
of the 106th round, and the other bit is computed in the 104th round. So we do not need to continue
the partial decryptions after the 104th round. Moreover, the computations of these two bits depend
on only parts of previous states, and thus we may also be able to save some time on the computations
before the 104th round. But this technique will not push our attacks to more rounds, and might make
attack steps very complicated to explain. Based upon these considerations, in addition to making our
complexity estimations generous, this optimization method is not used in our attacks.

Another way to improve the attacks is to segment the ciphers’ round functions into smaller steps.
For example, the round functions of KATAN48 and KATAN64 update the internal states by two and
three times respectively, by using same sub-keys, so we may divide them to two or three sub-functions.
And we can even separate operations of updating L1 and L2 to different sub-steps, which is applicable
to any KATAN variant. By analyzing iterations of smaller steps or functions, we may further refine
time and memory complexities, or extend attacks to more rounds.

The paper [17] proposes an improved partial matching technique called indirect partial matching,
in order to obtain more usable intermediate bits for matching. Originally, when computing a partial
matching state, if the value of one bit si depends on the key bit kj only known to its opposite phase,
then si will be considered as unknown. Nonetheless, after adding this key bit kj into computations, kj
may still remain linear in intermediate states for many rounds. Thus, if we compute si ⊕ kj instead
of si, this bit can still be used for matching. This technique may help us extend our attacks to more
rounds, which can be a future work.

5 Concluding Remarks

In this paper, we investigate a new cryptanalysis method called multidimensional meet-in-the-middle
attack. A theoretical analysis is given and actual attack examples are presented on the block cipher
family KATAN. The new attacks on KATAN32/48/64 can reach much more numbers of rounds than
existing attacks. Multidimensional meet-in-the-middle attacks are very applicable to lightweight ciphers
with simple key scheduling algorithms and block sizes smaller than master key sizes.

Consider KATAN’s sibling block cipher family KTANTAN32/48/64 [1], who has the same round
functions as KATAN but a different key scheduling algorithm. For its key schedule algorithm, we cannot
manually find a MD-MITM attack on it. However, we may be able to refine our matching techniques,
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and program to search potential attack patterns, in which way we may able to apply more efficient
attacks on KTANTAN. Similarly, we may apply MD-MITM attacks to other lightweight ciphers.

For MD-MITM attacks with dimensions larger than two, there are portions of the attacks that can
be pre-computed. For example, the two ends of the middle portion for a 3D-MITM attack are both
guessed values. Thus we can build a look-up table for the middle computations off-line without any
knowledge about plaintexts and ciphertexts, which is illustrated in Fig. 5. Especially, we can use any
means to construct the loop-up table, not only limited to MITM methods.

p

Ef1

v1 v′1

E−1
b1

g1 g2

Ef3

v3 v′3

E−1
b3

c

look-up table

Fig. 5. Multidimensional MITM attacks with look-up tables.
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Appendix A Parameters for the KATAN Family of Block Ciphers

The parameters for the nonlinear functions (3) are given in Table 2. The irregular update sequence
(IR) is listed in Table 3.

Table 2. Parameters for KATAN.

|L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

Table 3. Irregular Update Sequence (IR) for KATAN.

#round IR

1 - 20 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1
21 - 40 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0
41 - 60 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0
61 - 80 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1
81 - 100 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1
101 - 120 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1
121 - 140 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0
141 - 160 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1
161 - 180 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0
181 - 200 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0
201 - 220 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0
221 - 240 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1
241 - 254 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0

Appendix B Detailed Steps of Partial-matching for KATAN48/64

The detailed computation steps of partial matching technique used in the second MITM phase of the
attack on KATAN48 are listed as follows.

Rd. a b L1 L2
second backward phase
92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
91 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
88 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
87 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1
86 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0
85 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1
84 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1
83 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1
82 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1
81 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
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80 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
79 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
78 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
77 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
76 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
75 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
74 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
73 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
second forward phase
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
matching
2 bits 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The steps of partial matching for the first MITM phase of the attack on KATAN64 are listed as follows.

Rd. a b L1 L2

first forward phase

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

first backward phase

58 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

57 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

56 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

55 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

54 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

53 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

52 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

51 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

matching

2 bits 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


