
Another View on Cube Attack, Cube Tester, AIDA
and Higher Order Differential Cryptanalysis

Bo Zhu1, Guang Gong1, Xuejia Lai2 and Kefei Chen2

1 Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

{bo.zhu,ggong}@uwaterloo.ca
2 Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
{laix,kfchen}@sjtu.edu.cn

Abstract. This paper introduces a more in-depth cryptanalysis framework for tweakable cryptosys-
tems than Cube Attack, Cube Tester, algebraic IV differential attack (AIDA), and higher order dif-
ferential cryptanalysis in Boolean algebra. Through the view of the new framework, the differences
among these existing analysis methods are clarified. Furthermore, a principle is proposed to design
secure systems against such cryptanalyses.

Key words: algebraic IV differential attack, Boolean function, Cube Attack, Cube Tester, higher order
differential cryptanalysis, tweakable cryptosystem

1 Introduction

Due to the fast developments of RFID and Wireless Sensor Networks, a large amount of novel security al-
gorithms, e.g., blockciphers and Message Authentication Codes, are designed to fit such resource-restrained
environments, because normally designed schemes may need a lot of storage and memory, especially when
they need to speed up computations. The threshold consideration in the environments of RFID and sensor
network is minimizing the consumption of storage and the footprint of hardware implementation. Such de-
mands lead cryptographers to devise more compact and dedicated algorithms without undermining security
levels. Consider, for example, the design of PRESENT blockcipher [1]. The round function of PRESENT
consists of a bit-pattern permutation layer and several small substitution-boxes, which are easily and cost-
effective to be realized in both hardware and software. In addition, a newly proposed KATAN & KTANTAN
blockcipher family [2] heavily relies on the computations of Boolean functions. What we can see here is that,
after achieving a certain level of security, cryptographers gradually concentrate on or dive into Boolean alge-
bra to construct more compact and efficient designs, not to mention the recall of the eSTREAM project [3].

With the development of Boolean algebra based algorithms, a lot of cryptanalysis approaches of Boolean
functions are proposed to provide more profound and detailed perspective to analyze and design cryptosys-
tems. At Eurocrypt’09, Dinur and Shamir published their paper about Cube Attack [4], which can treat
any cryptographic scheme as black-box Boolean functions and discover its potential security flaws. Later at
FSE’09, Aumasson and Meier, together with the two authors of Cube Attack, published a new type of attack
called Cube Tester [5], in which property testing algorithms are used to detect non-randomness of Boolean
functions. Nevertheless, the confusion does exist that how to define the contributions of Cube Attack and
Cube Tester, compared with two other kinds of cryptanalysis methods – algebraic IV differential attack
(AIDA) proposed by Vielhabor [6,7] in 2007 and higher order differential cryptanalysis mentioned by Lai [8]
and Knudsen [9] in 1990s. The fundamental ideas of these attacks are very similar, i.e. collecting many chosen
plaintexts and summing up their corresponding ciphertexts to gain certain properties for the ease of attacks.

The term tweakable is mentioned in [4], and also used in [5], to describe the cryptosystems whose input
variables can be divided into two kinds: some variables are public and can be changed or fixed during
cryptanalysis (so-called tweakable, e.g., plaintexts); the other variables are secret and cannot be altered when
the cryptosystems are working on line (e.g., secret keys). The goal of attacking tweakable cryptosystems is
to extract the values of the secret variables, or more generally to distinguish the systems from truly random
functions or permutations. Almost all cryptosystems, including public-key systems, can be seen as tweakable



2 Bo Zhu, Guang Gong, Xuejia Lai and Kefei Chen

systems. The practical attack procedures on such systems include chosen plaintext attack (on blockciphers),
chosen IV attack (on stream ciphers), and chosen message attack (on MACs).

Our Contributions. We first give a comprehensive definition of tweakable cryptosystems, by following which
we point out an inappropriate part in the analysis of Cube Tester. In the second place, a systematic and
profound cryptanalysis framework for tweakable systems is provided, which is more in-depth than foregoing
analysis methods, such as Cube Attack, Cube Tester, AIDA, and higher order differential cryptanalysis in
Boolean algebra. We also clarify the differences among these methods for the first time. Thirdly, a new prin-
ciple for cryptosystems to resist such attacks is proposed, which can serve as the guideline and measurement
to design secure systems.

Organization. The next section is the core part of this paper, which includes the new definition of tweakable
cryptosystems, the more comprehensive cryptanalysis of tweakable systems, and the principle for tweakable
cryptosystem design. In Section 3, the relationships of the new proposed cryptanalysis with existing methods
are well investigated, and the differences among these methods are also clarified. Section 4 discusses the
practical procedures to perform such cryptanalysis. Section 5 concludes the paper and points out several
potential aspects for further works.

2 Definitions, Lemmas and Theorem

In this section, we will first give a comprehensive definition of tweakable cryptosystems for later use. And
a more theoretically advanced attack on tweakable systems is well investigated, along with which several
mathematical theorems are given and proved. Finally, a principle to design tweakable cryptosystems is
proposed, which can serve as the measurement or guideline of designing systems with high-level security.

2.1 A Comprehensive Definition of Tweakable Cryptosystems

Almost every tweakable cryptosystem can be represented as

Fκ(χ) : Vr × Vs → Vt ,

where κ = (k1, k2, · · · , kr) ∈ Vr is the vector consisting of all the variables that cannot be changed during
cryptanalysis (secret variables, e.g., secret key bits), and χ = (x1, x2, · · · , xs) ∈ Vs is the vector of all
the tweakable variables (public variables, e.g., plaintext bits). Because every output variable is definitely
determined by the inputs κ and χ, we can write each of the output variables as a function of κ and χ, as
follows.

Fκ(χ) = (f1,κ(χ), f2,κ(χ), · · · , ft,κ(χ))

If we treat every bit of input and output as an individual variable, which implies Vr, Vs and Vt are over
the field F2 = {0, 1}, we possibly get the most detailed representations of the cryptosystem. Each component
function of Fκ(χ) can be written as a Boolean function in Algebraic Normal Form (ANF for short, which
consists of only two kinds of operations, XOR and AND).

fi,κ(χ) = fi,κ(x1, x2, · · · , xs) =
⊕
α∈Vs

ci,α(κ)xa11 x
a2
2 · · ·xass , (1)

where α = (a1, a2, · · · , as). Here every ci,α(κ) is a Boolean function with respect to κ. When the system is
online and the secret key κ is fixed, the value of each ci,α(κ) is fixed too, that is either 0 or 1, which serves
as a coefficient of the Boolean function fi,κ(x1, x2, · · · , xs).

Attacks on tweakable systems are generally considered to include two different phases, offline phase (so-
called preprocessing) and online phase. During offline phase, adversaries can use both public variables (which
are tweakable) and secret variables (fixed later in online phase), to discover the inner security shortcomings
of the systems. For example, adversaries can take advantage of the detailed specification of a scheme, or even
treat the whole algorithm as a black box and take some experiments with it. Such analysis or computations



Another View on Cube Attack, Cube Tester, AIDA and Higher Order Differential Cryptanalysis 3

in offline phase may only need to be performed once as long as enough information about the structures of
the schemes is gotten. In Section 4, we will talk about the procedures of offline phase detailedly.

What we want to emphasize here are the rules to analyze cryptosystems during online phase, which
can also, in turn, determine the analysis methods used in offline phase. After clarifying the structures of
the cryptosystems in offline phase, the information is used in online phase to extract the values of secret
variables or distinguish the algorithms from true randomness. During online phase, adversaries are allowed
to choose, change, or fix each of the public variables, but are unable to alter the values of secret variables. In
addition, adversaries may be able to know or fix part of secret variables. The most significant difference of
this definition with the foregoing ones is the additional notion that fixing certain secret variables (choosing
one and fixing it, which are still unalterable) is allowed, which is a very natural requirement in practice and
can be seen as a situation of related-key attacks. The protections against this additional condition may be
able to guarantee that leaking partial secret information will not significantly affect the overall security of
the cryptosystems.

2.2 Cryptanalysis of Tweakable Cryptosystems

In this subsection, a mathematical theorem is given, which forms the solid foundation for our cryptanalysis.
We will illustrate and prove it step by step.

Here we focus on only one component function of the tweakable system Fκ(χ), just as the function (1).
For the ease of description, if α = (a1, a2, · · · , an) and β = (b1, b2, · · · , bn) ∈ Vn, and ai ≤ bi holds for any i,
we define αE β (assuming 0 < 1 in F2). And wt(·) denotes the hamming weight of a vector.

Theorem 1. Given a keyed Boolean function,

fκ(χ) = fκ(x1, x2, · · · , xn) =
⊕
α∈Vn

cα(κ)xa11 x
a2
2 · · ·xann , (2)

where κ is fixed (but unknown), for any chosen pair of vectors ω, υ ∈ Vn, where ω E υ, we can get the value
of ⊕

α : ωEαEυ

cα(κ) ,

by choosing 2wt(ω) inputs and summing up their corresponding outputs of fκ(χ).

We will explain this theorem from simpler cases, and then give a complete proof at the end of this
subsection.

Lemma 1. In the equation (2), if there is a monomial xi1xi2 · · ·xim that is not the sub-monomial of any
other one, then we can calculate the coefficient of xi1xi2 · · ·xim by choosing 2m inputs and summing up their
corresponding outputs of fκ(χ).

A more mathematical expression of this lemma is that, if there exists a vector β ∈ Vn such that cα(κ) = 0
holds for any α, where β E α ∈ Vn but α 6= β, then we can calculate cβ(κ) by using 2wt(β) chosen inputs. It
is easy to see that Lemma 1 is a special case of Theorem 1, when ω = β and certain coefficients are always
zeros. And later in Section 3.1, we will show that Lemma 1 is exactly the same as the theoretical foundation
of Cube Attack.

To prove this lemma, we first introduce a convenient tool to analyze Boolean functions, called bitwise
higher order differential cryptanalysis [10], which is an application of higher order differential cryptanalysis [8]
in Boolean algebra.

Definition 1 (Bitwise Derivative [10]). For a Boolean function f(x1, x2, · · · , xn), the bitwise derivative
of f with respect to the variable xm is defined as

δxmf = fxm=0 ⊕ fxm=1 .

The 0-th bitwise derivative is defined to be f itself. The i-th, where i ≥ 2, bitwise derivative with respect to
the variable sequence (xm1

, xm2
, · · · , xmi

) is defined as

δ
(i)
xm1 ,xm2 ,···,xmi

f = δxmi
(δ

(i−1)
xm1 ,xm2 ,···,xmi−1

f) .



4 Bo Zhu, Guang Gong, Xuejia Lai and Kefei Chen

Two important properties of bitwise derivative:

1. The result is independent of the ordering of the variable sequence. For instance, it is easy to see that

δ(2)x1,x2
f = δ(2)x2,x1

f .

2. The variable xm will never appear in the Boolean function δxm
f . More specifically, when calculating

δxm
f , the variable xm in the monomials of f will be removed, and the monomials that do not consist of

xm will be eliminated directly. Take the Boolean function f(x1, x2, x3) = x1x2 ⊕ x2x3 for example.

δx1
f(x1, x2, x3) = (0 · x2 ⊕ x2x3)⊕ (1 · x2 ⊕ x2x3)

= (0 · x2 ⊕ 1 · x2)⊕ (x2x3 ⊕ x2x3)
= x2 ⊕ 0

Now we can prove Lemma 1 by using the power of bitwise higher order differential cryptanalysis.

Proof of Lemma 1. When calculating the m-th bitwise derivative of fκ(χ) with respect to the public variable
sequence (xi1 , xi2 , · · · , xim), i.e.

δ
(m)
xi1

,xi2
,···,xim

fκ(x1, x2, · · · , xn) , (3)

each of the public variables xi1 , xi2 , · · ·, and xim in the monomial xi1xi2 · · ·xim will be removed and only the
coefficient will be left. In addition, because the monomial xi1xi2 · · ·xim is not the sub-monomial of any other
one in the Boolean function (2), every other monomial misses at least one variable from xi1 , xi2 , · · ·, and
xim , and thus these monomials will be eliminated directly when computing (3). Therefore, the function (3)
is equal to the coefficient of the monomial xi1xi2 · · ·xim .

Without loss of generality, assume xi1xi2 · · ·xim = x1x2 · · ·xm. To calculate δ
(m)
x1,x2,···,xmfκ(χ), we need to

collect 2m chosen inputs of the form

(∗1, ∗2, · · · , ∗m, xm+1, xm+2, · · · , xn) ,

where ∗ means both 0 and 1 must be chosen, and sum up their corresponding outputs of fκ(χ). The rest
variables can be either 0 or 1, but have to be fixed. ut

Higher order differential cryptanalysis is a kind of chosen-input attacks. The next lemma will show how
to gain more in-depth properties of Boolean functions by using a further chosen-input method.

Lemma 2. In the keyed Boolean function (2), we can get the value of cβ(κ), where β ∈ Vn, by choosing
2wt(β) inputs and summing up their corresponding outputs of fκ(χ).

Proof. By setting some variables of a Boolean function to be zeros, we can get a sub-function of the original
function. Here the term sub-function describes a function which contains part of the monomials in the original
function and the coefficients in the new function are exactly the same as the original ones.

Without loss of generality, assume

β = (11, 12, · · · , 1m, 0m+1, 0m+2, · · · , 0n) ,

where the subscripts denote the positions in the vector. By setting the variables xm+1, xm+2, · · · , xn to be
zeros, we can get the sub-function f ′κ(χ) as

f ′κ(x1, x2, · · · , xm) = fκ(x1, x2, · · · , xm, 0m+1, 0m+2, · · · , 0n) .

Because the monomial x1x2 · · ·xm must have the highest algebraic degree in the sub-function f ′κ, by following
Lemma 1, we can get the coefficient of x1x2 · · ·xm by calculating them-th bitwise derivative of f ′κ with respect
to the variable sequence (x1, x2, · · · , xm), i.e.

cβ(χ) = δx1,x2,···,xmf
′
κ(x1, x2, · · · , xm)

= δx1,x2,···,xm
fκ(x1, x2, · · · , xm, 0m+1, 0m+2, · · · , 0n) .

To compute this bitwise derivative, we need to collect 2m chosen inputs of the form

(∗1, ∗2, · · · , ∗m, 0m+1, 0m+2, · · · , 0n) ,

and sum up their corresponding outputs of fκ(χ). ut



Another View on Cube Attack, Cube Tester, AIDA and Higher Order Differential Cryptanalysis 5

Lemma 2 is the special case of Theorem 1, when ω = υ = β. Later in Section 3.3, we will show that
Lemma 2 is theoretically the same as the fundamental principle of AIDA.

After the analysis of Lemma 1 and Lemma 2, it is much easier to explain and prove Theorem 1. In the
proof of Lemma 2, we set some variables to be zeros to get a sub-function. Now we would like to show what
we can get if some variables are set to be ones, and some of other variables are set to be zeros.

Proof of Theorem 1. Fixing certain variables in the function (2) to be ones, and some other variables to be
zeros, we can get a small Boolean function, which consists of part of the variables but may not be a sub-
function of the original function. The coefficients of the newly obtained, small function are the summations
of certain coefficients in the original function.

Without loss of generality, assume{
ω = (11, 12, · · · , 1i, 0i+1, 0i+2, · · · , 0j , 0j+1, 0j+2, · · · , 0n)
υ = (11, 12, · · · , 1i, 1i+1, 1i+2, · · · , 1j , 0j+1, 0j+2, · · · , 0n)

,

where i ≤ j. By setting the variables xj+1, xj+2, · · · , xn to be zeros, we get a sub-function of fκ(χ), just as
follows.

f ′κ(x1, x2, · · · , xj) = fκ(x1, x2, · · · , xj , 0j+1, 0j+2, · · · , 0n)

Furthermore, by setting part of the variables of f ′κ, xi+1, xi+2, · · · , xj , to be ones, we get a small function
which contains less number of variables than f ′κ and fκ.

gκ(x1, x2, · · · , xi) = f ′κ(x1, x2, · · · , xi, 1i+1, 1i+2, · · · , 1j)
= fκ(x1, x2, · · · , xi, 1i+1, 1i+2, · · · , 1j , 0j+1, 0j+2, · · · , 0n)

The coefficient of the monomial x1x2 · · ·xi in the newly obtained function gκ is equivalent to the summation
of several coefficients in f ′κ, which are also the coefficients of fk. It is equal to⊕

α : ωEαEυ

cα(κ) ,

where α ∈ Vn. Calculating the i-th derivative of gκ with respect to the variable sequence (x1, x2, · · · , xi), we
can get the coefficient of the monomial x1x2 · · ·xi, which implies,

δ
(i)
x1,x2,···,xigκ(x1, x2, · · · , xi) =

⊕
α : ωEαEυ

cα(κ) .

That is to say, we need to collect 2i chosen inputs of the form

(∗1, ∗2, · · · , ∗i, 1i+1, 1i+2, · · · , 1j , 0j+1, 0j+2, · · · , 0n) ,

and sum up their corresponding outputs of fκ(χ). ut
This theorem shows that if adversaries can get enough and specific inputs and their corresponding outputs

of a tweakable cryptosystem, then certain information about secret keys can be recovered. If the obtained
information can be represented as linear functions of the secret key bits, then the secret keys could easily
be figured out. If the obtained coefficient is always inclined to be a constant value whatever the keys are
chosen, then the system could simply be distinguished from randomness.

2.3 A Security Principle for Tweakable Cryptosystem Design

If certain components of a tweakable cryptosystem are far away from truly random distributions, such
properties perhaps can be utilized by adversaries to perform actual attacks, such as differential attack and
linear attack. To avoid such potential problems, defeat the cryptanalysis mentioned in the last subsection, and
improve the security level of cryptosystems, the following definition is given to propose a security principle
for tweakable system design.



6 Bo Zhu, Guang Gong, Xuejia Lai and Kefei Chen

Assume the following is the Boolean representation of a tweakable cryptosystem (component),

fκ(χ) = fκ(x1, x2, · · · , xn) =
⊕
α∈Vn

cα(κ)xa11 x
a2
2 · · ·xann , (4)

where Vn is the vector space over F2 = {0, 1} and each coefficient is a Boolean function with respect to the
secret variable vector κ.

Definition 2 (Tweakable Balance). In the keyed Boolean function (4), if for any nonempty sub-set of
Vn, e.g., Sn ⊆ Vn, where Sn 6= ∅, and the all-one vector is not included in this sub-set, i.e. (1, 1, · · · , 1) /∈ Sn,
then the Boolean function ⊕

α∈Sn

cα(κ) (5)

should be

1. balanced, or
2. if adversaries are allowed to fix (or know) the values of ε bits of secret variables, the resultant function

after fixing these variables should be balanced.

The Boolean function (4) is defined to be tweakably balanced if it satisfies the first requirement. The function
is defined to be ε-th tweakably balanced if it satisfies the second requirement.

The feasibility of the attack. The value of the function (5) can be computed by using Lemma 2 directly.
As long as we do not calculate the value of the coefficient of the monomial with the highest degree, i.e.
x1x2 · · ·xn’s, we will not use up all the possible inputs. For example, the chosen input of the form (1, 1, · · · , 1)
will be needed only when we want to compute the coefficient of x1x2 · · ·xn. Therefore, the attack to calculate
any combination of the rest coefficients is valid and valuable in theory.

The sufficiency to defeat the attack. If the obtained Boolean function (5) is balanced, and κ is chosen
randomly, the outputs will be uniformly distributed on F2. If the secret key κ is unknown, and the Boolean
function is balanced, then the possibilities to get the values of 0 and 1 will be equal, in which case the
cryptosystem is impossible to be distinguished from randomness.

A balanced function which is also ε-th order correlation immune (so-called ε-resilient function) seems
to be ε-th tweakably balanced. The value of ε can serve as an indication of the security level of tweakable
cryptosystems. The value of ε partially determines the hardness to attack the cryptosystem theoretically.
This principle possibly leads cryptographers to look for the guidelines to help design round functions and key
schedules, in order to ensure the tweakable balance. Perhaps the parameter ε could also be used to provide
provable security for the necessary number of secret key bits, because for a balanced Boolean function of
algebraic degree d of n variables its order of immunity ε will not be larger than n− d− 1 (see [11]).

The second requirement also ensures, to some extent, the Boolean representations of the coefficients in
the function cannot be too simple, and thereby can increase the difficulty for adversaries to solve equations.

3 Relationships with Other Cryptanalysis Methods

In this section, the theoretical foundations of Cube Attack, Cube Tester, and algebraic IV differential attack
(AIDA) are carefully investigated, which shows that all these theories are certain special cases of Theorem 1.
Since higher order differential cryptanalysis (HODC) is not limited to analyze Boolean functions, Theorem
1 is just an application of HODC in Boolean algebra, cooperating with further chosen-input methods. The
influence of the proposed cryptanalysis framework, in turn, to the theories of HODC is also discussed. Finally,
a brief comparison among these cryptanalysis methods is given.

3.1 Relationship with Cube Attack

In Cube Attack [4], both public input bits and secret input bits are treated as variables, denoted by x1, x2,
· · ·, xn. A Boolean function can always be written as

p(x1, x2, · · · , xn) = tI · pS(I) + q(x1, x2, · · · , xn) .



Another View on Cube Attack, Cube Tester, AIDA and Higher Order Differential Cryptanalysis 7

I ⊆ {1, 2, · · · , n} is an index set, and tI is the monomial which is the multiplication of all the variables whose
indices are in the set I. Here pS(I) is called the superpoly of I in p, which does not contain any common
variable with tI . And each monomial in q(x1, x2, · · · , xn) misses at least one variable from I.

The cube CI is defined as a set containing 2|I| vectors by assigning all the possible combinations of 0/1
values to the variables whose indices are in I, and leaving all the other variables undetermined. Then we
can obtain the superpoly pS(I) by summing up all the derived functions whose inputs are in the cube CI . If
pS(I) is a function with respect to secret variables, especially a linear function, then we may be able to solve
the equations to figure out the secret information (e.g., certain secret key bits).

The basic idea of Cube Attack is exactly the same as Lemma 1. As long as the superpoly pS(I) is the
Boolean function of secret variables, the monomial tI is not the sub-monomial of any other monomial with
respect to public variables in p(x1, x2, · · · , xn). Theorem 1 provides a cryptanalysis framework suitable for
more situations, and the idea of Cube Attack can be seen as a special case of Theorem 1.

3.2 Relationship with Cube Tester

The fundamental theory of Cube Tester [5] is the same as Cube Attack. However, the authors mentioned
that assigning fixed values to certain public and secret variables for the sake of efficiency, such as choosing
suitable values of some message (and key) words of MD6 in order to simplify the first several rounds. The
authors also mentioned that assigning differential values to inputs will influence the coefficients in resultant
Boolean functions. The analysis in Section 2 has detailedly investigated the underlying influence of such
further chosen-input methods. Theorem 1 serves as a solid theoretical background for Cube Tester.

Moreover, instead of to extract secret information, Cube Tester intends to utilize efficient property testing
algorithms to detect nonrandom behaviors of tweakable cryptosystems. This thought is very brilliant, but
which property testers are suitable for the analysis of tweakable cryptosystems should be carefully considered.
The best attack of Cube Tester on MD6 is obtained by testing the balance of the Boolean representations
of coefficients.

3.3 Relationship with Algebraic IV Differential Attack

Algebraic IV differential attack (AIDA) is presented first in [6] and later in [7] in order to provide a powerful
tool to analyze stream ciphers, especially Trivium. In AIDA, the Boolean functions of stream ciphers are
written as

f(v1, v2, · · · , vn, κ) =
⊕

I⊆{1,2,···,n}

aI(κ)v∧I ,

where v1, v2, · · · , vn are the bits of IV, and κ denotes the vector of secret key bits. The notation v∧I is similar
to tI in Cube Attack, and aI(κ) is the coefficient of the monomial v∧I .

The fundamental principle of AIDA is the following theorem,

aI(κ) =
⊕
M⊆I

dM ,

where dM denotes the corresponding entries in the truth table when the IV bits whose indices are in the set
M are set to be ones, and the other bits are left to be zeros. Thus, 2|I| queries of the function f are enough
for calculating the value of aI(κ). This theorem is theoretically the same as Lemma 2, which is also a special
case of Theorem 1.

3.4 Relationship with Higher Order Differential Cryptanalysis

Higher order differential cryptanalysis (HODC) is proposed in early 1990s [8, 9], intending to discover more
advanced characteristics than differential attack, by using multiple pairs of chosen inputs. HODC has a
systematic and theoretical foundation, and can be used to analyze the functions over an Abelian group.
The analysis in Section 2 is only a special application of HODC in Boolean algebra, associating with further
chosen-input methods. [12] shows the similar idea as Lemma 1, but unfortunately the authors did not develop
it further.



8 Bo Zhu, Guang Gong, Xuejia Lai and Kefei Chen

However, the analysis in Section 2 reminds us there might be some areas undiscovered in HODC. The
theories of HODC concentrates on the decrease of the overall degree of the function, e.g.,

deg(∆af) ≤ deg(f)− 1 ,

where ∆af denotes the derivative of f as the point a. Maybe after carefully choosing the points to calculate
higher order derivatives, we can get more detailed information about the functions over an Abelian group,
just as the keyed coefficients in Boolean functions, or we can minimize the amount of chosen inputs to gain
certain properties.

3.5 Summary

From the foregoing analysis, we can see that, except higher order differential cryptanalysis, the theoretical
foundations of Cube Attack, Cube Tester and AIDA can be derived from the theorem in Section 2. In
addition, due to the result of Lemma 1 is covered by Lemma 2, AIDA is more in-depth than Cube Attack
in theory. And because the methods used in Cube Tester are the most closed to Theorem 1, Cube Tester
is more advanced than AIDA and Cube Attack. The essential difference is how to deal with the variables
not in the so-called cube. Whether the values of these variables are chosen in purpose and what values the
variables are set to be, can lead to great differences in theory.

What we want to emphasize here is that even if more in-depth and advanced theories are provided,
the practical cryptanalysis procedures are still not trivial works. Just as searching the differential paths of
blockciphers and hash functions, finding appropriate properties of Boolean functions (in this paper, choosing
proper coefficients) also needs a large amount of computations and trials, and even some personal skills. For
example, although AIDA [6] is proposed before the first announcement of Cube Attack at CRYPTO’08, and
the theory of AIDA is somewhat more in-depth than Cube Attack, the actual result of analyzing Trivium
via AIDA (breaking 576 rounds) is worse than the result in the paper about Cube Attack (breaking 767
rounds). The next section will discuss some practical procedures to perform such cryptanalysis.

4 Cryptanalysis Procedures in Practice

This section discusses some possible methods that can be used in offline phase to discover potential defects
of tweakable cryptosystems, such as nonrandom behaviors.

4.1 Empirical Approaches

A straightforward way is to randomly choose inputs and then check whether the outputs are obviously away
from the uniform distribution. The following is a simple algorithm to check the randomness of the Boolean
function (4).

Require: ω E υ ∈ Vn
1: ξ ← 0
2: (optionally) fix the values of ε variables in κ = (k1, k2, · · ·)
3: for i = 1 to N do
4: randomly pick the values of the (other) variables in κ
5: compute η =

⊕
α:ωEαEυ cα(κ) by using 2wt(ω) chosen χ = (x1, · · · , xn)

6: ξ ← ξ + η
7: end for
8: return ξ

If N is big enough, in a truly random system, ξ should be closed to N/2. Cryptographers can also take
advantage of some efficient property testing algorithms to speed up the discovery of inner flaws.

An advantage of this kind of experimental approaches is that we do not need to know the detailed
constructions of the schemes. We can treat any tweakable system as a block box, and perform cryptanalysis.



Another View on Cube Attack, Cube Tester, AIDA and Higher Order Differential Cryptanalysis 9

4.2 Theoretical Methods

If the detailed specification of a cryptosystem is known, certainly it can be utilized to help us analyze the
system. For example, if we can symbolically calculate the keyed Boolean representations of certain output
bits, then we can clearly and concretely know some properties of the cryptosystem. This kind of methods is
perhaps suitable for simple schemes whose Boolean representations do not have very high algebraic degrees
and do not involve too many input variables.

In a well-designed cryptosystem, to get its Boolean representations may be quite time-consuming, so we
would need some methods to simplify computations. Two possible ways are proposed as follows.

1. Do not consider public variables. For instance, set all the public variables in the function (2), x1, · · · , xn,
to be zeros, which will save a lot of space and time for computations. Then calculate the symbolic Boolean
function with respect to the secret variables, k1, k2, · · ·. The obtained Boolean function is exactly the
representation of the constant term in the function (2). If we can correctly calculate this Boolean function,
then we can get certain information about the secret key bits in online phase by using only one chosen
input.

2. Do not consider secret variables. For example, just indicate the coefficients in the function (2) with
either 0 or 1. Under such circumstance, we possibly intend to check whether a monomial exists in the
Boolean function, i.e. whether a coefficient is always equal to 0. This situation is much common to see
when certain Boolean representations do not reach the possibly highest algebraic degrees due to the lame
designs of round functions.

In [10], an efficient algorithm of the second kind is proposed, which is suitable for both practical calculations
and theoretical proofs.

5 Conclusion and Further Works

This paper mainly concentrated on how to analyze the Boolean representations of tweakable cryptosystems,
and provided a concrete mathematical theorem which is more in-depth than all the theories of higher order
differential cryptanalysis in Boolean algebra, Cube Attack, Cube Tester and AIDA. The differences among
these cryptanalysis methods are also clarified through the view of this new theorem. Moreover, a principle
for designing secure tweakable cryptosystems is proposed to defeat such cryptanalysis methods.

With the development of dedicated and compact cryptosystem designs, the views of cryptanalysis methods
become more and more deep and detailed. Such change seems to be natural and inevitable, because even
if the overall condition of a system is secure enough, certain small components may still be flawed. These
newly proposed cryptanalysis methods can possibly support or cooperate with traditional ways, especially
differential cryptanalysis, linear cryptanalysis and integral cryptanalysis, which would be one of our further
works.

As we mentioned in Section 3.5, although a more in-depth cryptanalysis framework is proposed, the actual
analysis of cryptosystems still requires hard working. This paper only provided the theoretical foundation,
and thus the influence of the new theorem to the practical world is not determined. Our further works would
also include utilizing the new theorem to analyze some existing, practical cryptosystems.

References

1. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.:
PRESENT: An Ultra-lightweight Block Cipher. CHES’07. LNCS 4727 (2007) pp. 450–466

2. Cannire, C.D., Dunkelman, O., Kneevi, M.: KATAN & KTANTAN - A Family of Small and Efficient Hardware-
Oriented Block Ciphers. CHES’09. LNCS 5747 (2009) pp. 272–288

3. The eSTREAM Project. www.ecrypt.eu.org/stream/

4. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. EUROCRYPT’09. LNCS 5479 (2009)
pp. 278–299

5. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery Attacks on Reduced-Round
MD6 and Trivium. FSE’09. LNCS 5665 (2009) pp. 1–22



10 Bo Zhu, Guang Gong, Xuejia Lai and Kefei Chen

6. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. Cryptology ePrint Archive,
Report 2007/413 (2007) http://eprint.iacr.org/.

7. Vielhaber, M.: AIDA Breaks BIVIUM (A&B) in 1 Minute Dual Core CPU Time. Cryptology ePrint Archive,
Report 2009/402 (2009) http://eprint.iacr.org/.

8. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. Communications and Cryptography: Two Sides
of One Tapestry (1994) pp. 227

9. Knudsen, L.: Truncated and Higher Order Differentials. FSE’95. LNCS 1008 (1995) pp. 196–211
10. Zhu, B., Chen, K., Lai, X.: Bitwise Higher Order Differential Cryptanalysis. In: The First International Conference

on Trusted Systems (INTRUST’09). To appear
11. Siegenthaler, T.: Correlation-Immunity of Nonlinear Combining Functions for Cryptographic Applications (Cor-

resp.). IEEE Transactions on Information Theory 30(5) (1984) pp. 776–780
12. Moriai, S., Shimoyama, T., Kaneko, T.: Higher Order Differential Attack Using Chosen Higher Order Differences.

SAC’98. LNCS 1556 (1999) pp. 106–117


