
Probabilistic Generation of Good Span n Sequences from

Nonlinear Feedback Shift Registers

Kalikinkar Mandal and Guang Gong

Department of Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, N2L 3G1, CANADA

Email: {kmandal, ggong}@ uwaterloo.ca

Abstract

A binary span n sequence generated by an n-stage nonlinear feedback shift register
(NLFSR) is a sequence with the randomness properties: period 2n−1, balanced, and ideal
n-tuple distribution. It is possible that it also has high linear span. For providing security
in constrained environments such as RFID tags and sensor networks, a span n sequence
generated by a nonlinear feedback shift register can be used as a pseudorandom sequence
generator or a building block in stream ciphers for generating random numbers, keystreams,
etc. In this paper, we propose a random NLFSR and show the expected period of the ran-
dom NLFSR sequences. Then we show a technique for producing span n sequences using
a nonlinear feedback shift register with the feedback function as the Welch-Gong (WG)
transformation. By this approach, a number of span n sequences with a moderate n can
be generated and the generated span n sequences are having linear span either 2n − 2
(optimal) or lower bounded by 2n − 2 − 4n (suboptimal). Furthermore, we consider a
generalized method, in which the WG transformation is replaced by other functions such
as three-term, five-term and Kasami functions and report the number of span n sequences
for each function.

Keywords: Nonlinear feedback shift register (NLFSR) generators, pseudorandom se-
quence generator (PRSG), stream ciphers, span n sequences.

1 Introduction

In recent years, nonlinear feedback shift registers have received much attention in designing
many cryptographic primitives such as pseudorandom sequence generators (PRSGs), stream
ciphers, and lightweight block ciphers to provide security in communication systems. Ciphers
based on NLFSRs are of great practical importance in many constrained environments, for
instance, RFID tags and sensor networks due to their need for efficient hardware implementa-
tion and high throughput. Many cryptographic primitives have been designed using NLFSRs.
For example, the design of the family of lightweight block ciphers KATAN & KTANTAN con-
sists of NLFSRs, which are used for mixing the plaintext and the key properly for producing
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the ciphertext [6]. In a stream cipher, the encryption is performed by XORing the plaintext
with the keystream bit by bit to produce the ciphertext, where the keystream, is a random-
looking bit stream, which can be generated using NLFSRs and should satisfy as many of the
following randomness properties as possible: long period, balance, equal distribution of runs
and k-tuples, 2-level autocorrelation, low crosscorrelation and high linear span [7, 11, 13, 28].
Many proposals for stream ciphers constructed using nonlinear feedback shift registers can be
seen in the Stream Cipher Project, ECRYPT, for example Grain and Trivium [10]. In gen-
eral, NLFSRs cannot be directly used for generating keystreams in stream ciphers because the
randomness properties including the period of sequences generated by the NLFSR with any
feedback function are unknown and hard to determine.

However, de Bruijn sequences with period 2n have known randomness properties, namely,
the balance, ideal n-tuple distribution and large linear span [12, 21]. A modified de Bruijn
sequence with period 2n − 1 is a pseudorandom sequence where each nonzero n-tuple occurs
exactly once in one period of the sequence. This property is referred to as the span n property
of the pseudorandom sequences with period 2n−1. Thus, a modified de Bruijn sequence is also
called a span n sequence. Often, de Bruijn sequences as well as span n sequences are generated
recursively by an n-stage nonlinear feedback shift register. Only, m-sequences, a class of span
n sequences, are generated by linear feedback shift registers.

A span n sequence can be constructed from a de Bruijn sequence by removing any one zero
from the run of zeros of length n and similarly, a de Bruijn sequence can be formed from a
span n sequence by adding one zero to the run of zeros of length n− 1. Note that by adding
an extra zero to the run of zeros of length n − 1 to an m-sequence, the linear span of the
resultant de Bruijn sequence varies between 2n−1 + n+ 1 and 2n − 1 [4], but by removing any
one zero from the run of zeros of length n from the resultant de Bruijn sequence, it becomes
an m-sequence or a span n sequence with linear span n. So the lower bound of the linear span
of the span n sequence drops to n [15] - this phenomenon suggests to study the randomness
properties, in particular, the linear span property of span n sequences instead of de Bruijn
sequences for cryptographic usages. A span n sequence with high linear span generated by an
NLFSR can be used as a PRSG or a building block to design PRSGs and stream ciphers like a
combinatorial generator. Until recently, there is no known construction of nonlinear feedback
functions which generate span n sequences.

Most of the research efforts devoted on span n sequences have been concerned with the
number of span n sequences for different n and the properties of all feedback functions [12, 21,
24], where the properties of feedback functions include the number of terms in the feedback
functions [23, 24] and the weight of truth tables of the feedback functions [22, 24]. Mayhew
and Golomb reported the number of span n sequences for different values of the linear span
of span n sequences and for different values of the number of terms in the feedback functions
(4 ≤ n ≤ 6) [21, 23] and Mayhew reported the number of span n sequences for different weight
classes of the truth tables of the feedback functions for n = 6 [24]. However, the number
of span n sequences for different weight classes and different values of the linear span is an
unsolved problem for n ≥ 7. In [5], Chan et al. have given a span n sequence generation
method that uses very simple quadratic functions as the feedback function, which is the sum
of a linear function in n variables and a quadratic term for any two variables and reported the
number of span n sequences for 5 ≤ n ≤ 12. Note that all the methods for finding the number
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of span n sequences use an exhaustive search.
In this paper, we first analyze the expected period of a sequence generated by a random

feedback function of an NLFSR and then present a technique for generating span n sequences
using a nonlinear feedback shift register with a particular type of nonlinear feedback function.
More specifically, the nonlinear feedback function is the sum of one 1-degree monomial and
the nonlinear WG transformation in t variables (5 ≤ t ≤ n − 1). In the NLFSR, using the
WG transformations as feedback functions and varying all possible t-tap positions, new span
n sequences can be produced. Our computational results on the enumeration of new span n
sequences show that the maximum number of span n sequences can be obtained if the number
of inputs to the WG transformation is about half of the length of shift registers. Using this
method, the probability for producing a span n sequence is larger than that of a random
generation. Moreover, we consider a generalized method for generating span n sequences, in
which the WG transformation is replaced by some other functions. Three-term functions,
five-term functions, and Kasami functions are used as the nonlinear feedback functions in the
generalized method and we report the number of span n sequences for each function. All
new span n sequences produced using WG transformations, three-term functions, five-term
functions and Kasami functions have an optimal linear span 2n − 2 or are lower bounded by
suboptimal linear span 2n − 2− 4n, but most new sequences have an optimal linear span.

The rest of the paper is organized as follows. In Section 2, we define and explain some
terms which will be used in this paper for producing span n sequences. In Section 3, we prove
the period of a sequence generated by a random nonlinear feedback function. In Section 4,
we present the technique for generating span n sequences using WG transformations and their
success probability and in the same section, we generalize the technique for producing span n
sequences by considering three-term, five-term and Kasami functions. In Section 5, we present
the linear span property of new span n sequences generated by the aforementioned functions.
Finally, in Section 6, we briefly conclude the paper.

2 Notations and Preliminaries

In this section, we define and explain some terms and mathematical functions which will be
used to produce span n sequences.

• F2 = {0, 1} - the Galois field with two elements.

• F2t = {(x0, x1, ..., xt−1) : xi ∈ F2} - an extension field which is generated by a primitive
element α with p(α) = 0, where p(x) = c0 + c1x + · · · + ct−1x

t−1 + xt is a primitive
polynomial of degree t (≥ 2) over F2.

• Fn2q = {(a0, a1, ..., an−1) : ai ∈ F2q} - a vector space over F2q (q ≥ 1) with 2nq elements.

• Tr(x) = x+ x2 + · · ·+ x2
t−1

- the trace function from F2t to F2.

• Dt = {d : d is a coset leader with gcd(d, 2t − 1) = 1}. Then the cardinality |Dt| of Dt is

given by φ(2t−1)
t , where φ(·) is the Euler phi function.
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2.1 Basic Definitions and Properties

An n-stage linear or nonlinear feedback shift register is used to generate a periodic sequence a
= {ai} over the field F2q and the recurrence relation for the (N)LFSR is defined as [11]

an+k = f(ak, ak+1, ..., ak+n−1) = ak + g(ak+1, ..., ak+n−1), ai ∈ F2q , k ≥ 0

where Sk = (ak, ak+1, ..., ak+n−1) is the k-th state of the shift register, S0 is the initial state,
f(·) is a function from Fn2q to F2q and g(·) is a function from Fn−12q to F2q . In particular q = 1,
the function f as well as the function g is called a Boolean function and the sequence a is
called a binary sequence. If the function f is an affine function, then the sequence a is called
an LFSR-sequence; otherwise it is called an NLFSR-sequence.

The complementary binary sequence of a binary sequence b = {bi}i≥0, denoted as b̄, is
given by {b̄i}i≥0, where b̄i = bi + 1 mod 2.

A binary sequence with period 2n which satisfies the property that all n-tuples in one period
are distinct is called a de Bruijn sequence. For a binary sequence of period 2n− 1, we say that
it is balanced if there are 2n−1 1’s 2n−1 − 1 0’s in one period of the sequence. If each nonzero
n-tuple occurs exactly once in one period of the sequence, then it is called a modified de Brujin
sequence or span n sequence. In the rest of the paper, we use the term span n sequence. The
linear span or linear complexity of a sequence is the length of the shortest LFSR that will
generate the given sequence.

Property 1 The linear span of a de Bruijn sequence, denoted as LSdb, is bounded by [4]

2n−1 + n+ 1 ≤ LSdb ≤ 2n − 1. (1)

On the other hand, the linear span of a span n sequence, denoted as LSs, is bounded by

2n < LSs ≤ 2n − 2. (2)

From this property, we say that a span n sequence has the optimal linear span if its linear
span is equal to 2n − 2.

The WG Transformation

Let t be a positive integer with t mod 3 6≡ 0 and 3k ≡ 1 mod t. We define the function h(x)
from F2t to F2t by h(x) = x+ xq1 + xq2 + xq3 + xq4 and the exponents are given by

q1 = 2k + 1, q2 = 22k + 2k + 1, q3 = 22k − 2k + 1, q4 = 22k + 2k − 1.

Then the function from F2t to F2t is defined as

WGP(x) = h(x+ 1) + 1

is known as the WG permutation and the functions from F2t to F2 are defined by

fd(x) = Tr(WGP(xd)) and gd(x) = Tr(h(xd)), d ∈ Dt
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are known as the WG transformation and five-term ( or 5-term) function, respectively [8, 14,
27]. The WG transformation has good cryptographic properties such as high algebraic degree,
high nonlinearity, and high linear span.

For a fixed t, the number of WG transformations is given by
(
φ(2t−1)

t

)2
. We now define a

set
D∗t = {d : d ∈ Dt and fd(·) is a nonlinear function}.

For such a choice of decimation numbers in D∗t , we take into account all nonlinear WG
transformation functions.

Three-term Functions and Kasami Functions

Let t = 2k − 1 and t ≥ 5. We denote the permutation by h(x) over the field F2t and defined

by h(x) = x + x2
k+1 + x2

k−1, which is known as the three-term permutation [8]. Then the
three-term (or 3-term) function from F2t to F2 is defined by

Td(x) = Tr(h(xd)), d ∈ Dt, x ∈ F2t .

Note that the function Td(x) is a quadratic function.
Let t be an odd positive integer. The Kasami exponent is defined as e = 22s−2s+1, where

s < t and gcd(s, t) = 1. Then the function

h(x) = xe, x ∈ F2t

is called a Kasami power function [17].

3 Average Period of Sequences Generated by a Random NLFSR

In this section, we first recall the relation between a regular directed graph and an NLFSR
over an extension field. We then define the notion of random nonlinear feedback functions.
Finally, we prove the expected period of a sequence generated by a random feedback NLFSR
with a random starting state (an initial state) using random walks.

3.1 Generation of Random NLFSR Sequences

Let Sk = (ak, ak+1, ..., ak+n−1) and Sk+1 = (ak+1, ak+2, ..., ak+n) be the k-th state and (k+ 1)-
th state, respectively. Then Sk+1 = f(Sk), k ≥ 0, where f is the feedback function of the
NLFSR. Let G = (V,E) be a directed graph, which is defined as: denote each state Sk as
a vertex vk ∈ V and there exists a directed edge ek ∈ E from the state Sk to the state
Sik+1 = (ak+1, ak+2, ..., an+k−1, a

i
n+k), a

i
n+k 6= ajn+k, i 6= j, for i = 1, 2, ..., 2q. This directed

graph G is known as a de Bruijn graph [2, 16], which is a 2q-regular graph with |V | = 2qn and
|E| = 2q(n+1).

We now pose the notion of a random NLFSR-sequence. We define the random feedback
function F as F = (f,Ω), where Ω is a uniform probability distribution and the uniform
probability is given by pj = 1

2q , j = 1, 2, ..., 2q and f is the feedback function. Then, on the
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input state Sk, F outputs Sik+1, i.e., Sik+1 = F (Sk), for some i, where i is chosen according to
Ω and f such that Sik+1 is not already generated by F . For any initial state S0, the random
NLFSR-sequence generated by F is given by a = {a0, a1, ..., ak, ak+1, ...} and the period of the
sequence is P (> 0), if S0 = FP (S0), where FP (S) = FP−1(F (S)).

We shortly recall the definition of a random walk on the directed graph G. Let F = (f,Ω)
be a random nonlinear feedback function. The random walk between the vertices vk and vk+1

with the imposed uniform probability distribution is defined by [20]:

• Let Sk and Sk+1 be the states corresponding to the vertices vk and vk+1, respectively.

• Then, at the vertex vk, the random walk according to F choses a vertex vk+1 randomly
under uniform distribution, i.e., Pr(Sk+1 = F (Sk)) = 1

2q .

We now consider a simple random walk R(P ) of length P on the graph G and which is defined
by [3, 20]:

• Starting at any vertex v0

• The vertex v1 is chosen at v0 with Pr(S1 = F (S0)) = 1
2q , if v1 is not visited before

• Repeat the above step until it reaches v0

• If it reaches v0 then stop.

From the above, it can be noticed that the generation of sequence {ai} by F is equivalent
to a random walk which is performed according to F and consequently, finding the expected
period of the random NLFSR-sequence is equivalent to finding the expected value of P in
R(P ).

Consider the above random walk on a connected directed graph. The marking time is
defined as the number of steps required to visit all the vertices of the graph [3]. The expected
marking time for a connected directed regular graph with m vertices is stated in the following
lemma.

Lemma 1 [3] For a regular graph G, one has expected marking time E(T ) = mHm
p + O(1),

where p is uniform probability to choose a vertex.

Theorem 1 Let us consider an n-stage NLFSR with a random feedback function, which is
defined over the field F2q , where each cell of the shift register has q bits. The expected period P
of an NLFSR-sequence generated by the random feedback NLFSR is lower bounded by

√
2qn.

Proof The directed de Bruijn graph G = (V,E) of an n-stage feedback shift register over
the field F2q is a 2q-regular graph with N = 2qn vertices. Let {ai} be a periodic random
NLFSR-sequence with period P generated by the random feedback function F for any initial
state S0. Let us consider the above random walk R(P ) of length P on G with a starting vertex
v0, which is corresponding to the initial state S0. To prove the expected period of the random
NLFSR-sequence is equivalent to finding the expected length of R(P ). We now find the lower
bound of the expected value of P .
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For large N , the N -th harmonic number can be written as HN = 1 + 1
2 + · · ·+ 1

N ≈ logN
and NHN ≈ N logN . Assume that in N steps the expected P = Nx(x ≥ 0) number of vertices
will be visited according to the random walk R(P ). Then, according to Lemma 1, the expected
number of steps required to visit all P vertices, i.e., the marking time, is given by 2qP logP .

We define the function f(x) as f(x) = 2qP logP −N = 2qxNx logN −N . We now want
to find an approximate value of x such that f(x) ≥ 0. We can see that at x = 1

2 , f(x) < 0 and

f(x′) = 0 for some 1 > x′ > 1
2 . So the value of P is greater than

√
N . Hence, in N steps, it is

possible to visit at least
√
N vertices (on average) using a random walk R(P ). Therefore, the

expected period of a sequence generated by a random feedback function in an NLFSR is lower
bounded by

√
N =

√
2qn. �

4 Generation of Span n Sequences Using the WG Transfor-
mations

In this section, we consider the generation of span n sequences using nonlinear feedback shift
registers with the WG transformations as the feedback functions. The WG transformations in
t variables are balanced and have even Hamming weight 2t−1, so the new span n sequences gen-
erated using WG transformations belong to the weight class 2n−2. The new span n sequences
have good randomness properties, especially, they have high linear span.

4.1 Description of A Span n Sequence Generation Procedure

Let a = {ai} be a binary sequence generated by an n-stage nonlinear recurrence relation, which
is defined as

an+k = ak + fd(xk), xk = (ar1+k, ar2+k, · · · , art+k) ∈ F2t , d ∈ D∗t , k = 0, 1, 2, · · · , (3)

where (r1, r2, ..., rt) with 0 < r1 < r2 < · · · < rt ≤ n−1 is called a t-tap position of the NLFSR
and fd(x) is the WG transformation. A block diagram of the generation procedure is given in
Figure 1. For a proper selection of a t-tap position and a feedback function fd(x), the binary
sequence a can be a span n sequence, which is produced by the WG transformation. Note that
if the number of terms in the Boolean representation of the WG transformation fd(·) is even,
then the recurrence relation (3) cannot generate any span n sequence for all t-tap positions,
since for the all-one state the recurrence relation generates the all-one sequence.

... 

... 

WG Tr. 

r1 rt r2 rt-1 

Figure 1: Block diagram of the span n sequence generation procedure
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Let b = {bi} be a binary sequence generated by the following recurrence relation

bn+k = 1 + bk + fd(xk), xk = (br1+k, br2+k, · · · , brt+k) ∈ F2t , d ∈ D∗t , k = 0, 1, 2, · · · . (4)

Similarly, for a proper selection of a t-tap position and a feedback function fd(x), the comple-
mentary binary sequence b̄ of b can be a span n sequence, but the sequence b cannot be a
span n sequence since it contains all-zero initial state.

In algebraic normal form (ANF) representations of WG transformations, we can notice
that some WG transformations having an odd number of terms and some having an even
number of terms, so using the recurrence relations (3) and (4), all the WG transformations
are to be included for producing span n sequences. In the recurrence relations (3) and (4), by
varying three parameters, namely, the primitive polynomial p(x), the decimation number d,
and the t-tap position (r1, r2, ..., rt), a number of new span n sequences can be found and that
number mainly depends on the length n of the NLFSR and the number t of inputs to the WG
transformation. Note that we may not always obtain span n sequences for any length n of the
NLFSR. A special case of the recurrence relation (3) with the trace function of n− 1 variables
as the feedback function is defined in [26].

A periodic reverse binary sequence is defined as follows [22, 23]: For a binary sequence
{a0, a1, ..., a2n−2} with period 2n − 1, the reverse sequence of the binary sequence is given by
{a2n−2, a2n−3, ..., a1, a0}. A reverse sequence of a span n sequence is also a span n sequence,
which is not shift equivalent of the original one and the reverse span n sequence can be generated
by the same function but with a different t-tap position.

Our span n sequences are uniquely determined by three parameters:

1. the decimation number d,

2. the primitive polynomial p(x), and

3. the t-tap position (r1, r2, ..., rt).

Similarly, the reverse span n sequence of the span n sequence is represented by the same
decimation number d and the same primitive polynomial p(x), but with the different t-tap
position (n − r1, n − r2, ..., n − rt). Table 3 presents a few instances of new span n sequences
for t = 5 and n = 7. For n > t, there are different choices of t-tap positions, so for a fixed WG
transformation fd(x), a span n sequence generated by fd(x) is different, if the t-tap position
is different.

4.2 The Complexity/Size of the Search Space

Recall that three parameters are involved in the recurrence relation for finding the number of
new span n sequences for fixed n and t. The size of the search space or the number of possible
span n sequences in terms of n and t is determined in the following proposition.

Proposition 1 For any n > t ≥ 6, the complexity or size of the search space for finding the

span n sequences is given by C =
(
φ(2t−1)

t

)2 (
n−1
t

)
.
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Proof In the recurrence relations, the first position is fixed for the sequence to be periodic
and any t tap positions is chosen from n − 1 positions (n ≥ 6) to form a t-tap position, so
the number of distinct t-tap positions is given by T =

(
n−1
t

)
. The total number of nonlinear

feedback functions is given by np · |D∗t |, where np = φ(2t−1)
t is the number of t degree primitive

polynomials over F2 and |D∗t | is the number of decimation numbers for which the feedback
function is nonlinear. Hence, for fixed n and t, the complexity/size of the search space is

C = np · |D∗t | · T =

(
φ(2t − 1)

t

)2(
n− 1

t

)
for t > 5

=

(
φ(2t − 1)

t

)(
φ(2t − 1)

t
− 1

)(
n− 1

t

)
for t = 5,

since for d = 5 the WG transformation is linear. �

4.3 New Span n Sequences Generated Using WG transformations

In this subsection, we report the number of new span n sequences obtained using the recurrence
relations (3) and (4) for different t and n; the new span n sequences are generated by computer
simulations. We consider the WG transformations over the field F2t for t = 5, 7, 8, 10, and 11.
Tables 1 and 2 present the number of new span n sequences corresponding to the recurrence
relations (3) and (4), respectively (6 ≤ n ≤ 20). However this method can be applied to
generate larger length span n sequences. In Tables 1 and 2, “×” represents that for such
values of n and t the recurrence relations are not defined and ∼ represents that those cases the
number of span n sequences is not yet determined. We present some instances of new span n
sequences for different n in the Appendix.

Table 1: Number of span n sequences generated using the recurrence relation (3)

n

t WGt 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 WG5 0 9 7 14 8 11 17 11 13 10 3 7 7 0 1

7 WG7 × × 3 25 42 63 108 138 138 125 126 111 83 86 63

8 WG8 × × × 3 9 18 34 76 96 104 106 108 110 90 79

10 WG10 × × × × × 5 40 107 246 373 627 819 999 ∼ ∼
11 WG11 × × × × × × 31 204 574 1313 2539 4079 ∼ ∼ ∼

Total 0 9 10 42 59 97 230 536 1067 1925 3401 5124 – – –

A graphical representation of the number of new span n sequences is provided in Figure 2,
which shows that for different t the distribution of the number of new span n sequences has
the following property: the number of span n sequences increases as n increases and it reaches
the maximum for some value of n. After that the number of span n sequences decreases as n
increases. At a quick glance, we can see that the number of span n sequences is maximal close
to n = 2t, which follows from the fact that the complexity of the search space is a multiple of
the binomial coefficient. This phenomenon reveals that there exists a tradeoff between n and
t to obtain the maximum number of span n sequences.
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Table 2: Number of span n sequences generated using the recurrence relation (4)

n

t WG-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 WG5 1 7 7 10 16 18 10 8 4 10 2 1 3 1 0

7 WG7 × × 4 25 47 59 121 122 137 125 123 98 74 84 ∼
8 WG8 × × × 1 6 35 33 75 73 91 123 115 106 ∼ ∼
10 WG10 × × × × × 4 47 118 270 401 680 863 ∼ ∼ ∼
11 WG11 × × × × × × 33 186 576 1350 2522 ∼ ∼ ∼ ∼

Total 1 7 11 36 69 116 244 509 1060 1977 3450 – – – –
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Figure 2: Distribution of the number of span n sequences

Example 1 The following example describes our span n sequence generation procedure for
t = 5 and presents new span n sequences for n = 7. The WG transformation over F25 is given
by

f(x) = Tr(x+ (x+ 1)5 + (x+ 1)13 + (x+ 1)19 + (x+ 1)21).

After simplification, f(x) can be written as

f(x) = Tr(x19), x ∈ F25 .

For t = 5, Dt = {1, 3, 5, 7, 11, 15}, the set of coset leaders and D∗t = {1, 3, 7, 11, 15}, since for
d = 5, the function fd(x) is linear. The d-th decimation of f(x) is given by

fd(x) = f(xd) = Tr(xd
′
), d′ = (19 · d) mod 2t − 1, d ∈ D∗t .

The n-stage nonlinear recurrence relation with a t-tap position is given by

an+k = ak + fd(xk), xk = (ar1+k, ar2+k, ar3+k, ar4+k, ar5+k) ∈ F25 , k ≥ 0.

For n = 7, we have found nine span n sequences by an exhaustive search and present those
sequences in Table 3.
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Table 3: Span n sequences generated using WG5 for n = 7

Decimation Polynomial t-tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 1 0 1 1 2 3 4 5

1 1 1 0 1 1 1 3 4 5 6

7 1 0 0 1 0 1 2 3 4 6

7 1 0 1 0 0 1 2 4 5 6

7 1 0 1 1 1 2 3 4 5 6

11 1 0 0 1 0 1 2 4 5 6

11 1 1 1 1 0 1 2 4 5 6

11 1 1 1 0 1 1 2 4 5 6

15 1 1 1 1 0 1 2 4 5 6

4.4 Successful Probability and Comparisons with Existing Approaches

Tables 1 and 2 show that at t =
⌈
n
2

⌉
or t is close to

⌈
n
2

⌉
, the maximum number of span n

sequences can be obtained, which motivates us to compute the search complexity at t =
⌈
n
2

⌉
for finding the maximum number of span n sequences. Assume that we use NLFSRs defined
by relations (3) and (4) for t =

⌈
n
2

⌉
. Let N be the number of span n sequences (including

reverse span n sequences) obtained using the relations (3) and (4). Then we have the following
theorem.

Theorem 2 The number of instances in the search space for possible span n sequences is given

by C0, where C0 ≈
(
φ(2d

n
2 e−1)
dn2 e

)2

· 2n−1√
π·n−1

2

and C0 ≈ 22n−1−2
3n
2 +1

√
π·(dn

2
e)5/2 , if 2t−1 is a Mersenne prime,

and the success probability of obtaining such a span n sequence is given by N
C0

.

Proof We recall that the complexity of search space is

C =

(
φ(2t − 1)

t

)2(
n− 1

t

)
, for t > 5.
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Putting t =
⌈
n
2

⌉
in the above formula, then we get

C0 =

(
φ(2d

n
2 e − 1)⌈
n
2

⌉ )2

·
(
n− 1⌈
n
2

⌉ )

=

(
φ(2d

n
2 e − 1)⌈
n
2

⌉ )2

·
(

n− 1⌊
n−1
2

⌋
+ 1

)
, for positive n

=

(
φ(2d

n
2 e − 1)⌈
n
2

⌉ )2

·
(n−

⌊
n−1
2

⌋
− 1) ·

( n−1
bn−1

2 c
)

(
⌊
n−1
2

⌋
+ 1)

.

By Stirling’s formula (
m⌊
m
2

⌋) ∼ 2m√
πm/2

,

the above equation can be written as

C0 ∼

(
φ(2d

n
2 e − 1)⌈
n
2

⌉ )2

·
⌊
n−1
2

⌋
· 2n−1

(
⌊
n−1
2

⌋
+ 1) ·

√
π · n−12

∼

(
φ(2d

n
2 e − 1)⌈
n
2

⌉ )2

· 2n−1√
π · n−12

.

≈ 22n−1 − 2
3n
2
+1

√
π · (dn2 e)5/2

, if 2t − 1 is a Mersenne prime.

Hence, the result is proved. �

Note that the success probability to obtain a randomly generated span n sequence is 1
2n−3

[24]. We compared the success probability to obtain a span n sequence (including reverse
sequences) with our approach and with random span n sequence generation method for t =
5, 7, 8 ( for t ≈

⌈
n
2

⌉
), 10 and 11 (for 13 ≤ n ≤ 17) and the comparison shows that our approach

is better than the random span n sequence generation method. Moreover, in our approach a
span n sequence is generated according to a construction of a nonlinear recurrence relation,
but not in a random way.

As mentioned earlier, most existing techniques for generating span n sequences conduct
an exhaustive search over all Boolean functions or very simple types of quadratic functions
[5, 21, 23]. Considering the algebraic normal form of an arbitrary Boolean function, it is not
easy to understand the construction of that function. However, we use a particular type of
nonlinear feedback functions which have compact representation and these nonlinear feedback
functions can be studied apart from their ANF representations. One may analyze feedback
functions, i.e., WG transformations with a t-tap position from the point of view of the bases of
finite fields, the decimation numbers, the permutations and the selection of t-tap positions. For
example, there exist many span n sequences whose t-tap positions, the bases of the finite field
are the same but their decimation numbers are different. In addition, the WG transformations

12



have good cryptographic properties such as the algebraic degree, high nonlinearity, and high
linear span. Using this type of functions, we can generate a number of span n sequences for
a proper choice of parameters t and n, for example, t = n

2 . Again, for a fixed n, by varying t,
that is, by considering all the WG transformations over different fields, one can obtain more
span n sequences.

4.5 On the Reduction of Search Complexity

This subsection discusses how to reduce the size of the search space when not all new span n
sequences are aimed to be obtained. The idea of reducing the size of the search space is the
following: by restricting the exhaustive search over a particular type of decimation numbers
and over a selection of t-tap positions. If one or a few span n sequences are aimed to obtain,
then a search might be performed according to some patterns of decimation numbers or/and
t-tap positions. Below we list a type of decimation number and t-tap positions. In some cases,
we may not find any span n sequence. However, according to our observations based on the
above heuristic, it is possible to obtain many span n sequences with reduced search complexity.

4.5.1 Observations on Decimation Numbers

We have performed a search on the following type of decimation numbers for different n

Ddec = {d : d ∈ D∗t and d = 2i − 1, i = 1, 2, · · · , t− 1}

for t = 7, 8, and 10 and the result shows that there exist many span n sequences whose
decimation numbers are of the above type. The complexity of the search space for this type
of decimation numbers is given by

Cdec =
φ(2t − 1)

t
(t− 1)

(
n− 1

t

)
≈ φ(2t − 1)

(
n− 1

t

)
.

Obviously, the reduced complexity Cdec is less than the original complexity C.

4.5.2 Observations on t-tap Positions

The search complexity can also be reduced by fixing a few tap positions among t positions.
Assume that it is possible to fix, let’s say, k tap positions (1 ≤ k ≤ t). Then, the total number
of fixed tap positions is k + 1 and we only need to choose t − k positions out of n − 1 − k
positions. So, for k fixed choices of tap positions, the search complexity is reduced to

Ctap =

(
φ(2t − 1)

t

)2(
n− 1− k
t− k

)
.

We have done an investigation on the t-tap positions for t = 7, 8, and 10 and the result
shows that the following types of t-tap positions are effective when the slope of the curves in
Figure 2 increases gradually. For example, in case of t = 7, n = 11, 12, 13 and 14 and in case
of t = 8, n = 13, 14, 15, 16, 17 and 18, the t-tap positions are given by:

{1, 2, 3, 4, · · ·}, {1, 2, 3, · · ·, n− 1}, {1, 2, · · ·, n− 2, n− 1}, {1, · · ·, n− 3, n− 2, n− 1},
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where the numbers in the tap positions represent fixed positions in a t-tap position (i.e., k = 4
fixed positions) and “· · · ” represents any other combinations of n− k − 1 tap positions. With
respect to the above approach, we can reduce the size of the search space by some factors if
we aim at finding only a few span n sequences.

4.6 A Generalized Method for Span n Sequences Generation Using NLFSRs

In this subsection, we present a generalized technique for generating span n sequences, which
is similar to the span n sequence generation technique using WG transformations. A natural
generalization is done by taking into account any permutation over the field F2t instead of the
WG permutation or by considering any other functions which have a trace representation. In
the generalized method, we have considered three-term, five-term, and Kasami functions for
different t, 5 ≤ t ≤ 11. Tables 4 - 9 present the number of span n sequences obtained using
the recurrence relations (3) and (4) for three-term functions, five-term functions, and Kasami
functions. (Note that, when t = 5, the WG transformations and Kasami functions degenerate
to the same functions and similarly, three-term functions and five-term functions degenerate
to the same functions.)

Table 4: Number of three-term span n sequences generated using rec. rel. (3)

n

t T3-t 6 7 8 9 10 11 12 13 14 15 16 17

5 T3-5∗ 1 3 9 8 9 8 4 3 5 2 3 1

7 T3-7 × × 6 25 51 89 103 150 131 128 127 123

9 T3-7 × × × × 8 52 104 223 391 549 710 770

11 T3-11 × × × × × × 35 190 624 1323 2580 4056

Total – 1 3 15 33 68 149 246 566 1151 2002 3420 4950

Table 5: Number of three-term span n sequences generated using rec. rel. (4)

n

t T3-t 6 7 8 9 10 11 12 13 14 15 16 17

5 T3-5∗ 1 2 2 5 10 5 6 5 3 1 3 5

7 T3-7 × × 4 24 44 84 98 122 133 146 128 111

9 T3-7 × × × × 12 47 109 237 361 553 694 823

11 T3-11 × × × × × × 34 186 578 1416 2554 ∼

Total – 1 3 6 29 66 136 247 550 1075 2116 3379 –

14



Table 6: Number of five-term span n sequences generated using rec. rel. (3)

n

t FT-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 FT-5∗ 1 3 9 8 9 8 4 4 5 2 3 1 0 1

7 FT-7 × × 5 22 44 66 118 131 115 135 124 118 99 90

8 FT-8 × × × 1 9 18 37 56 88 101 104 86 92 90

10 FT-10 × × × × × 9 37 116 246 411 621 797 943 ∼
11 FT-11 × × × × × × 25 171 590 1443 2618 4194 ∼ ∼

Total 1 3 14 31 62 101 221 478 1044 2092 3470 5196 – –

Table 7: Number of five-term span n sequences generated using rec. rel. (4)

n

t FT-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 T3-5∗ 1 2 2 5 10 5 6 5 3 1 3 5 0 ∼
7 FT-7 × × 8 19 43 74 108 138 138 127 117 102 84 91

8 FT-8 × × × 0 6 22 38 54 66 116 89 106 83 ∼
10 FT-10 × × × × × 7 47 119 223 443 627 861 ∼ ∼
11 FT-11 × × × × × × 20 172 609 1397 2558 ∼ ∼ ∼

Total 1 2 10 24 59 108 219 488 1039 2084 3394 – – –

5 Linear Span of New Span n Sequences

In this section, we study the linear span of new span n sequences generated using the WG
transformations, five-term functions, three-term functions, and Kasami functions. We note
that all the nonlinear feedback functions have a trace representation. The linear span of
a sequence is an important randomness property that is considered as an upper bound on
sequence unpredictability because using only twice the linear span many consecutive bits of
the sequence one can certainly predict the remaining bits of the sequence by the Berlekamp-
Massey algorithm [1, 19]. There is no theoretical result on the linear span of span n sequences
generated by a nonlinear feedback shift register. What we know is the bounds presented in
Property 1 in Section 2.

We compute the linear span of new span n sequences by the Berlekamp-Massey algorithm
and our computational results show that the linear spans attained by new sequences are the
optimal 2n−2, the suboptimal 2n−2−4n and between the optimal and suboptimal. Tables 10
and 11 present a summary of the linear spans of WG span n sequences generated by the recur-
rence relations (3) and (4), respectively. Moreover, Tables 12, 13, and 14 exhibit a summary of
the linear spans of the span n sequences generated by Kasami functions, three-term functions,
and five-term functions, respectively for different values of t. There exists only one span n
sequence whose linear span lies in the range from 2n − 2− 4n to 2n − 2− 3n and for all other
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Table 8: Number of Kasami span n sequences generated using rec. rel. (3)

n

t KP-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 KP-5 0 9 7 14 8 11 17 11 13 10 3 7 7 0

7 KP-7 × × 6 17 41 76 79 118 108 99 125 78 88 72

9 KP-7 × × × × 10 43 120 258 410 519 662 788 ∼ ∼
11 K-11 × × × × × × 26 188 604 1423 2491 ∼ ∼ ∼

Total – 0 9 13 31 59 130 242 575 1135 2051 3281 – – –

Table 9: Number of Kasami span n sequences generated using rec. rel. (4)

n

t KP-t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 KP-5 1 7 7 10 16 18 10 8 4 10 2 1 3 1

7 KP-7 × × 4 25 45 60 98 117 114 104 116 96 86 77

9 KP-7 × × × × 6 37 131 239 367 558 740 860 ∼ ∼
11 K-11 × × × × × × 32 184 596 1403 2547 ∼ ∼ ∼

Total – 1 7 11 35 67 115 271 548 1081 2075 3405 – – –

sequences the linear span is lower bounded by 2n − 2 − 3n. Our computational results also
show that most of new sequences obtain the optimal linear span value 2n − 2, only very few
span n sequences obtain the linear span value 2n − 2 − 3n and in some cases all the linear
spans are greater than 2n − 2− 3n. We summarize the above discussions in the following two
properties.

Property 2 For all newly found span n sequences (including reverse span n sequences), for
7 ≤ n ≤ 20 and n is a prime number, then the WG, 5-term, 3-term, and Kasami span n
sequences have the linear spans which take the following three values

{2n − 2− 2n, 2n − 2− n, 2n − 2}.

Property 3 For 7 ≤ n ≤ 20 and all the other cases, except for those in Property 2, listed
below, the linear span, denoted as LS, is bounded by

2n − 2− 4n ≤ LS ≤ 2n − 2

for all WG span n sequences, 5-term span n sequences, 3-term span n sequences and Kasami
span n sequences when n is a composite number and their respective reverse span n sequences
for any n.
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6 Conclusions & Discussions

In this paper, we first introduced the notion of random NLFSR-sequences and proved the
expected period of a random NLFSR-sequence for any initial state. We then studied a span
n sequence generation technique using a nonlinear feedback shift register with the nonlinear
WG transformation as the feedback function. Our computational results show that using
WG transformations and varying all t-tap positions, a number of new span n sequences can
be generated by an exhaustive search and the maximum number of span n sequences can
be obtained if about half of the length of the shift register many tap positions participate
in the WG transformation. In this approach, a span n sequence is searched according to a
construction of a nonlinear feedback function and the success probability to obtain a span
n sequence using the WG transformations is greater than the success probability to obtain
a span n sequence in a random way for n ≈ 2t. Moreover, we generalized the technique for
producing span n sequences by considering any permutation instead of the WG permutation or
by considering other functions instead of the WG transformations. In the generalized method,
three-term functions, five-term functions, and Kasami functions have been considered and the
number of span n sequences is reported for each function. Finally, we presented the linear span
property of newly generated span n sequences using the aforementioned functions and gave a
summary of the bounds of the linear span for different values of t. The linear span of the new
span n sequences lies between the suboptimal 2n−2−4n and optimal 2n−2. We have noticed
that the majority of span n sequences have an optimal linear span. The new span n sequences
with optimal linear span or span n sequences produced using the given method can be used as
building blocks to design PRSGs and stream ciphers.
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A Appendix

In this appendix, we present the upper and lower bounds of the linear span of new span n
sequences generated using WG transformations, three-term, five-term, and Kasami functions
for different n and t and give all new span n sequences generated using WG transformations for
t = 5. All new span n sequences generated using WG transformations with t = 7, 8, 10, and 11
is presented in [29].

Table 10: The bounds of the linear span of WG
span n sequences using rec. rel. (3)

Range on n t Upper bound of LS Lower bound of LS

7 ≤ n ≤ 20 5 2n − 2 2n − 2− 2n

8 ≤ n ≤ 20 7 2n − 2 2n − 2− 2n

9 ≤ n ≤ 20 8 2n − 2 2n − 2− 3n

11 ≤ n ≤ 17 10 2n − 2 2n − 2− 3n

12 ≤ n ≤ 17 11 2n − 2 2n − 2− 2n

Table 11: The bounds of the linear span of WG
span n sequences using rec. rel. (4)

Range on n t Upper bound of LS Lower bound of LS

7 ≤ n ≤ 20 5 2n − 2 2n − 2− 2n

8 ≤ n ≤ 20 7 2n − 2 2n − 2− 3n

9 ≤ n ≤ 20 8 2n − 2 2n − 2− 2n

11 ≤ n ≤ 17 10 2n − 2 2n − 2− 4n

12 ≤ n ≤ 16 11 2n − 2 2n − 2− 2n
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Table 12: The bounds of the linear span of
Kasami span n sequences using rec. rel. (3)

Range on n t Upper bound of LS Lower bound of LS

7 ≤ n ≤ 19 5 2n − 2 2n − 2− 2n

8 ≤ n ≤ 19 7 2n − 2 2n − 2− 3n

8 ≤ n ≤ 17 9 2n − 2 2n − 2− 3n

12 ≤ n ≤ 16 11 2n − 2 2n − 2− 3n

Table 13: The bounds of the linear span of
three-term span n sequences using rec. rel. (3)

Range on n t Upper bound of LS Lower bound of LS

7 ≤ n ≤ 17 5 2n − 2 2n − 2− 2n

8 ≤ n ≤ 17 7 2n − 2 2n − 2− 3n

8 ≤ n ≤ 17 9 2n − 2 2n − 2− 3n

12 ≤ n ≤ 17 11 2n − 2 2n − 2− 3n

Table 14: The bounds of the liner span of five-term span n sequences using rec. rel. (3)

Range on n t Upper bound of LS Lower bound of LS

7 ≤ n ≤ 19 5 2n − 2 2n − 2− 2n

8 ≤ n ≤ 19 7 2n − 2 2n − 2− 2n

9 ≤ n ≤ 19 8 2n − 2 2n − 2− 3n

11 ≤ n ≤ 17 10 2n − 2 2n − 2− 3n

12 ≤ n ≤ 16 11 2n − 2 2n − 2− 2n

Table 15: Span n sequences generated using
WG7

Length Decimation Polynomial t-tap position

n d (c0, c1, ..., c5, c6) (r1, r2, ..., r6, r7)

8 5 1 1 0 0 0 0 0 1 2 3 4 5 6 7

9 1 1 0 1 1 1 1 1 1 2 3 4 5 6 7

10 27 1 1 1 1 0 1 1 1 2 3 4 5 6 7

11 1 1 1 1 1 0 1 1 1 2 3 5 8 9 10

12 1 1 0 1 1 1 0 0 1 2 4 5 8 10 11

13 9 1 1 0 0 1 0 1 1 2 3 4 5 6 8

14 43 1 1 1 0 1 1 1 1 2 3 4 5 6 7

15 31 1 1 0 0 0 0 0 1 2 3 4 7 12 14

16 27 1 1 1 1 0 1 1 1 2 3 5 6 8 14

17 1 1 0 1 1 1 0 0 1 2 3 4 7 9 13

18 1 1 0 1 1 1 0 0 1 2 3 4 6 9 16

19 3 1 1 1 1 1 1 0 1 2 3 5 7 15 17

20 31 1 1 1 1 1 1 0 1 2 3 7 8 12 15

Table 16: Span n sequences generated using
WG8

Length Decimation Polynomial t-tap position

n d (c0, c1, ..., c6, c7) (r1, r2, ..., r7, r8)

9 13 1 1 1 1 0 0 1 1 1 2 3 4 5 6 7 8

10 1 1 1 1 0 0 1 1 1 1 2 3 5 6 7 8 9

11 7 1 0 1 1 0 0 0 1 1 2 5 6 7 8 9 10

12 1 1 1 1 0 0 1 1 1 1 2 3 4 6 8 9 11

13 11 1 0 1 0 1 1 1 1 1 2 3 4 5 6 8 10

14 1 1 0 0 1 0 1 1 0 1 4 5 6 7 11 12 13

15 11 1 0 1 1 0 0 0 1 1 2 5 6 7 9 10 12

16 19 1 1 1 0 0 1 1 1 1 2 3 4 8 10 13 14

17 23 1 1 1 1 0 0 1 1 2 5 6 7 8 11 12 15

18 37 1 0 1 1 1 0 0 0 1 2 3 5 6 10 11 17

19 127 1 1 0 0 0 1 1 0 1 2 5 9 13 15 16 18

20 53 1 0 1 0 1 1 1 1 1 2 3 6 7 10 17 19
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Table 17: Span n sequences of stage n = 8
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 0 1 0 0 1 2 4 5 7

1 1 1 1 1 0 1 3 4 5 6

1 1 1 1 1 0 2 4 5 6 7

3 1 1 0 1 1 1 2 3 5 6

7 1 0 1 1 1 1 2 3 5 7

7 1 0 1 0 0 2 3 4 6 7

15 1 1 1 1 0 2 3 4 6 7

Table 18: Span n sequences of stage n = 10
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 0 1 1 1 2 4 5 8

1 1 1 1 0 1 1 3 4 6 7

1 1 1 1 0 1 1 3 4 6 9

3 1 1 0 1 1 1 2 3 4 8

7 1 0 0 1 0 1 2 4 7 8

11 1 0 1 1 1 1 2 3 4 5

11 1 0 0 1 0 1 2 3 7 8

11 1 1 1 1 0 1 4 5 8 9

Table 19: Span n sequences of stage n = 9
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 1 0 1 1 2 5 6 8

1 1 1 1 0 1 1 3 6 7 8

1 1 1 1 1 0 2 3 5 7 8

1 1 1 1 0 1 4 5 6 7 8

3 1 1 0 1 1 1 2 4 5 6

3 1 0 1 0 0 1 2 4 5 8

3 1 0 1 0 0 2 4 6 7 8

7 1 0 1 0 0 1 2 3 4 6

11 1 1 1 0 1 1 4 6 7 8

11 1 1 1 1 0 2 4 5 6 7

11 1 1 1 1 0 2 4 5 6 8

11 1 1 1 0 1 2 4 6 7 8

15 1 1 1 1 0 1 2 3 4 6

15 1 1 1 0 1 1 2 5 7 8

Table 20: Span n sequences of stage n = 11
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 1 0 1 1 2 7 8 10

1 1 1 1 1 0 3 4 5 8 10

1 1 1 1 0 1 6 7 8 9 10

7 1 0 1 1 1 1 2 3 6 7

7 1 0 0 1 0 1 3 7 8 10

7 1 0 1 1 1 2 3 4 7 10

7 1 1 0 1 1 2 3 7 9 10

7 1 0 0 1 0 2 4 5 6 10

7 1 1 0 1 1 3 4 5 8 9

11 1 1 1 1 0 1 2 4 5 8

11 1 1 1 0 1 1 3 4 6 10

Table 21: Span n sequences of stage n = 12
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 1 1 0 2 3 4 5 6

1 1 0 1 0 0 2 3 4 5 8

1 1 1 1 0 1 2 3 5 7 9

1 1 0 1 0 0 2 3 6 9 10

1 1 1 1 0 1 4 6 9 10 11

3 1 1 0 1 1 1 2 3 4 5

3 1 1 0 1 1 2 5 7 8 10

3 1 0 1 0 0 4 5 6 9 11

7 1 0 1 0 0 1 2 4 7 8

7 1 1 0 1 1 1 2 5 6 8

11 1 0 0 1 0 1 3 4 6 10

11 1 1 1 0 1 1 3 4 9 11

11 1 1 1 1 0 1 4 5 8 9

11 1 1 1 0 1 2 3 6 7 10

11 1 1 1 1 0 3 5 7 8 9

11 1 1 1 1 0 4 6 7 9 10

15 1 1 1 1 0 1 2 4 7 8
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Table 22: Span n sequences of stage n = 13
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 0 1 0 0 1 3 4 5 9

1 1 0 1 0 0 5 8 9 11 12

3 1 1 0 1 1 5 6 10 11 12

7 1 0 1 0 0 1 2 3 6 8

7 1 1 0 1 1 3 5 7 10 12

7 1 1 0 1 1 6 7 9 10 12

11 1 0 0 1 0 1 2 3 5 10

11 1 1 1 0 1 1 2 5 10 12

11 1 1 1 0 1 1 5 6 10 12

11 1 1 1 0 1 4 5 7 8 9

15 1 1 1 1 0 1 2 3 6 8

Table 23: Span n sequences of stage n = 14
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 0 1 0 0 1 3 5 7 9

1 1 1 1 1 0 2 6 8 9 13

1 1 1 1 0 1 3 4 6 8 10

1 1 1 1 0 1 3 5 8 10 13

3 1 1 0 1 1 1 8 10 11 13

7 1 0 0 1 0 1 2 6 9 12

7 1 0 0 1 0 1 3 10 12 13

7 1 0 0 1 0 1 6 9 12 13

7 1 0 1 0 0 3 5 7 8 9

11 1 1 1 1 0 1 2 4 11 12

11 1 1 1 1 0 1 2 9 10 11

15 1 1 1 0 1 3 5 6 8 13

15 1 1 1 1 0 3 5 7 8 9

Table 24: Span n sequences of stage n = 15
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 1 0 1 4 5 12 13 14

3 1 0 1 0 0 2 6 8 9 10

3 1 0 1 0 0 4 5 6 7 14

7 1 0 1 1 1 2 5 7 10 13

7 1 0 1 1 1 2 5 8 11 14

7 1 0 0 1 0 3 4 5 7 12

11 1 0 0 1 0 2 3 6 7 13

11 1 1 1 0 1 2 4 9 11 13

11 1 0 1 1 1 2 9 10 11 12

15 1 1 1 0 1 1 2 3 5 6

Table 25: Span n sequences of stage n = 18
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 1 0 1 1 2 12 13 14

3 1 1 0 1 1 4 7 8 10 15

3 1 1 0 1 1 5 10 11 14 17

7 1 0 0 1 0 1 2 5 7 11

7 1 1 0 1 1 5 7 8 11 17

11 1 0 0 1 0 1 8 9 11 15

15 1 1 1 0 1 2 9 12 15 17

Table 26: Span n sequences of stage n = 16
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 0 1 1 1 10 11 12 14

1 1 1 1 0 1 1 10 11 12 14

15 1 1 1 0 1 3 6 9 12 14

Table 27: Span n sequences of stage n = 17
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

3 1 0 1 0 0 1 6 7 8 9

3 1 1 0 1 1 4 7 8 9 12

7 1 0 1 0 0 1 3 12 13 14

7 1 1 0 1 1 1 4 10 11 13

7 1 0 0 1 0 1 5 11 12 13

11 1 1 1 0 1 1 3 6 12 13

15 1 1 1 1 0 1 3 12 13 14

Table 28: Span n sequences of stage n = 20
generated using rec. rel. (3)

Decimation Polynomial Tap position

d (c0, c1, c2, c3, c4) (r1, r2, r3, r4, r5)

1 1 1 1 0 1 5 10 12 18 19
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