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ABSTRACT
The Tor network is designed to provide users with low-
latency anonymous communications. Tor clients build cir-
cuits with publicly listed relays to anonymously reach their
destinations. However, since the relays are publicly listed,
they can be easily blocked by censoring adversaries. Con-
sequently, the Tor project envisioned the possibility of un-
listed entry points to the Tor network, commonly known as
bridges. We address the issue of preventing censors from
detecting the bridges by observing the communications be-
tween them and nodes in their network.

We propose a model in which the client obfuscates its mes-
sages to the bridge in a widely used protocol over the Inter-
net. We investigate using Skype video calls as our target
protocol and our goal is to make it difficult for the censor-
ing adversary to distinguish between the obfuscated bridge
connections and actual Skype calls using statistical compar-
isons.

We have implemented our model as a proof-of-concept
pluggable transport for Tor, which is available under an
open-source licence. Using this implementation we observed
the obfuscated bridge communications and compared it with
those of Skype calls and presented the results.

Keywords
Tor, bridges, Skype, pluggable transports, steganography,
protocol obfuscation, censorship circumvention

1. INTRODUCTION
Tor [19] is a low-latency anonymous communication over-

lay network. In order to use Tor, clients contact publicly
known directory servers, a fraction of the Tor network re-
sponsible for tracking the topology of the network and node
states. Directory servers allow clients to obtain a list of
volunteer-operated relay nodes, also known as onion routers.
The client then chooses some of these relays using the Tor
software and establishes a circuit through these nodes to its
desired destination. Clients’ traffic is then routed through
the Tor network over their circuits, hiding users’ identities
and activities.

The Tor network not only provides anonymity, but also
censorship resistance. To access a website censored in a
user’s home country, the user simply connects to the Tor
network and requests the blocked content to be delivered to
him. However, since a list of Tor relays can be retrieved
from publicly known directory servers, blocking all Tor con-
nections can be simply done by blocking access to all Tor
relays based on their IP addresses. There have been many

Figure 1: This graph from metrics.torproject.org shows the
number of users directly connecting to the Tor network from
China, from mid-2009 to the present. It shows that, after
2010, the Tor network has been almost completely blocked
from clients in China who do not use bridges. [41]

attempts to block access to Tor by regional and state-level
ISPs. For instance, Figure 1 shows the blocking of the whole
Tor network by the Great Firewall of China as of 2010.

In order to counteract this problem, the Tor project sug-
gested using bridges — unlisted relays used as entry points
to the Tor network. Since bridges are not publicly listed,
the censoring authority cannot easily discover their IP ad-
dresses. Although bridges are more resilient to censorship,
McLachlan and Hopper [32] showed that it is still possible
to identify them, as they accept incoming connections un-
conditionally. To solve this problem, BridgeSPA [39] places
some restrictions on how bridges should accept incoming
connections.

As the censorship techniques improve, however, more so-
phisticated methods are being deployed to discover and block
bridges. There have been reports of probes performed by
hosts located in China, aimed quite directly at locating Tor
bridges [43, 44]. The investigation revealed that after a Tor
client within China connected to a US-based bridge, the
same bridge received a series of Tor connection initiation
messages from different hosts within China and after a while
the client’s connection to the bridge was lost. We have re-
cently witnessed state-level SSL blocking [36] and blocking
of Tor connections based on the expiry time of the SSL cer-
tificate generated by the Tor software [18].

As the censorship arms race is shifting toward the char-
acteristics of connections, Appelbaum and Mathewson pro-
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posed a framework for developing protocol-level obfuscation
plugins for Tor called pluggable transports [9]. These trans-
ports appear to the Tor client to be SOCKS proxies; any
data that the Tor client would ordinarily send to a bridge
is sent to the pluggable transport SOCKS proxy instead,
which delivers it to the bridge in an obfuscated way. Devel-
opers can use this framework to build their own transports,
hiding Tor traffic in other protocols. On one side, the trans-
port obfuscates Tor messages in a different form of traffic,
e.g., HTTP, and on the other side it translates the HTTP
traffic back into Tor traffic. Pluggable transports provide an
easy way to resist client-to-bridge censorship and the ulti-
mate goal is that censoring ISPs that are inspecting packets
based on their characteristics will be unable to discover the
Tor traffic obfuscated by a transport.

At the time of writing, the only available pluggable trans-
port is “obfsproxy” [30], which passes all traffic through a
stream cipher. We extend this previous work to address its
limitation of not outputting innocuous-looking traffic; our
method greatly reduces the chances of obfuscated bridge
connections being detected by powerful censors. We also
note that simply adding the target protocol headers to pack-
ets would not be successful when facing deep packet inspec-
tion (DPI) methods [28]. Dusi et al. [20] also suggested that
obfuscating inside an encrypted tunnel might not be enough
to withstand statistical classifiers since some features of en-
crypted tunnels such as packet sizes and inter-arrival times
of packets can still be distinguished.

For the purpose of our experiment we chose the Skype [4]
protocol as our target communication for several reasons.
First, Skype enables users to make free, unlimited and en-
crypted voice and video calls over the Internet which has
led to its huge popularity [3] and therefore the amount of
Skype traffic in today’s Internet is relatively high. Second,
Skype video calls transfer a reasonable amount of data in
a short period of time, making it a desirable form of target
traffic since it will not introduce too much of a bottleneck
to the Tor connection. Third, Skype communications are all
encrypted [2], so it provides an encrypted channel for the
Tor traffic.

1.1 Our Contributions
We explore methods for Tor protocol obfuscation and in-

troduce SkypeMorph, a system designed to encapsulate Tor
traffic into a connection that resembles Skype video traffic.
We provide the following contributions:

• Tor traffic obfuscation: SkypeMorph disguises com-
munication between the bridge and the client as a
Skype video call, which is our target protocol. Pro-
tocol obfuscation is greatly needed when facing large-
scale censorship mechanisms, such as deep packet in-
spection.

• Innocuous-looking traffic: A client who wishes to
access a SkypeMorph bridge runs our software along-
side his usual Tor client and instructs his Tor client
to use the SkypeMorph software as a transport. Upon
startup, SkypeMorph first attempts a Skype login pro-
cess and then establishes a Skype call to the intended
destination; i.e., the bridge. Once the bridge receives
the call, the client innocuously drops the call and uses
the channel to send the obfuscated Tor messages. We
give comparisons between the output of SkypeMorph

and actual video calls of Skype and we conclude that
for the censoring adversary it would be difficult to dif-
ferentiate between the two. Consequently, a censor
would be required to block a great portion of legit-
imate connections in order to prevent access to the
obfuscated Tor messages.

• UDP-based implementation: Since Skype mainly
uses UDP as the transport protocol, we also use UDP.
The choice of UDP as the transport protocol will also
be useful when Tor datagram designs [33] are rolled
out.

• Improved traffic shaping: Traffic Morphing as pro-
posed by Wright et al. [46] is based on the premise of
efficiently morphing one class of traffic into another.
However, the authors neglected one key element of en-
crypted channels, namely the inter-packet delay be-
tween consecutive packets, from their design scope.
SkypeMorph extends the previous work to fully repro-
duce the characteristics of Skype calls.

• Comparison between traffic shaping methods:
We compare different modes of implementing traffic
shaping and describe how each of them performs in
terms of network overhead. In particular, we explore
two methods, namely näıve traffic shaping and our
enhanced version of Traffic Morphing, and compare
them.

• Proof-of-concept implementation: We have made
our open-source proof-of-concept SkypeMorph imple-
mentation available online at:

http://crysp.uwaterloo.ca/software/

The outline of the remainder of the paper is as follows.
In Section 2 we discuss related work and in Section 3 we
formalize our threat model and design goals. Section 4 cov-
ers some background and we present our architecture and
implementation in Sections 5 and 6. We present our results
in Section 7, discuss possible future work in Section 8, and
conclude in Section 9.

2. RELATED WORK

2.1 Information Hiding and Steganography
Hiding information within subliminal channels has been

studied extensively in the last three decades. Simmons [38]
stated the problem for the first time and proposed a solution
based on digital signatures. Currently the topic is studied
under the term steganography or the art of concealed writing,
and it has recently attracted a lot of attention in digital
communications [35].

Employing a steganographic technique, one needs to con-
sider two major factors: the security and efficiency of the
method. Hopper et al. [22] proposed a construction that
can formally be proven to be secure and can be applied to
a broad range of channels. The OneBlock stegosystem de-
scribed in their work, however, needs an expected number of
samples from the channel that is exponential in the number
of bits transmitted.
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2.2 Image Steganography
Hiding information within pictures is a classic form of

steganography. Least Significant Bit (LSB) based image
steganographic techniques [24] — using a small fraction of
the information in each pixel in a cover image to send the
actual data — is a common method and Chandramouli et
al. [16] showed the upper bounds for the capacity of such
channels. There are also some existing open-source stegano-
graphic tools available, such as outguess1 and steghide2.
Collage [15] is a recently developed system that uses user-

generated content on social-networking and image-sharing
websites such as Facebook and Flickr to embed hidden mes-
sages into cover traffic, making it difficult for a censor to
block the contents. Collage has a layered architecture: a
“message vector layer” for hiding content in cover traffic (us-
ing outguess internally as their steganographic tool) and a
“rendezvous mechanism” for signalling. The authors claim
the overhead imposed by Collage is reasonable for sending
small messages, such as Web browsing and sending email.

2.3 Voice over IP and Video Streaming
Wright et al. [47] studied the effectiveness of security mech-

anisms currently applied to VoIP systems. They were able
to identify the spoken language in encrypted VoIP calls
encoded using bandwidth-saving Variable Bit Rate (VBR)
coders. They did so by building a classifier which could
achieve a high accuracy in detecting the spoken language
when a length-preserving encryption scheme was used and
they concluded that the lengths of messages leak a lot of
information. Further experiments showed that it is possible
to uncover frequently used phrases [45] or unmask parts of
the conversation [42], when the same encryption method is
employed for confidentiality.

However, the statistical properties these attacks exploit
are less prevalent in streaming video data, rather than the
audio data they consider; therefore, those algorithms should
not be able to distinguish our Tor traffic disguised as Skype
video traffic from real Skype video traffic. Nonetheless, we
consider the question of matching SkypeMorph traffic to the
higher-order statistics of Skype video traffic to fully resemble
Skype communication to a censor.

Previous work has shown some success in determining
whether a target video is being watched, using informa-
tion leakage of electromagnetic interference (EMI) signa-
tures in electronic devices [21], or revealing which videos in
a database are being viewed in a household by throughput
analysis [37]. However, those methods require the purported
video to be selected from a set known in advance. Skype-
Morph, on the other hand, attempts to disguise its traffic as
a real-time video chat, which would not be in such as set.

VoIP services have also been used for message hiding. For
example, Traffic Morphing [46] exploits the packet size dis-
tribution of VoIP conversations to transmit hidden messages
(we will return to this method in section 4). Another exam-
ple of steganographic communications over voice channels
is TranSteg [31], in which the authors try to re-encode the
voice stream in a call with a different codec, resulting in
smaller payload size. Therefore, the remaining free space
can be used for sending the hidden messages. The short-
coming of this method is that the most of the bandwidth

1http://www.outguess.org
2http://steghide.sourceforge.net

is allocated to the actual voice conversation, leaving only a
limited space for steganograms.

2.4 Steganography over Encrypted Channels
Although steganographic models similar to those men-

tioned above are powerful, they impose relatively large over-
heads on our channel. Therefore, we used a combination of
methods suggested for encrypted communications [20, 46].
We argue that on an encrypted communication such as those
of Skype calls, every message appears to be random (since
we expect the encryption scheme to output a randomly dis-
tributed bit string), thus exploiting the channel history is
not required for cover traffic and we can perform signifi-
cantly better than the OneBlock stegosystem, Collage, or
TranSteg. The only important characteristics of encrypted
channels, as suggested by previous works, are packet sizes
and inter-arrival times of consecutive packets [12, 29, 20].
Hence, a protocol obfuscation layer only needs to reproduce
these features for an encrypted channel.

3. THREAT MODEL AND DESIGN GOALS
In this section we discuss our threat model and assump-

tions. In our model, we assume that the user is trying to
access the Internet through Tor, while his activities are be-
ing monitored by a state-level ISP or authority, namely “the
censor”, who can capture, block or alter the user’s communi-
cations based on pre-defined rules and heuristics. Therefore,
we consider adversarial models similar to anti-censorship so-
lutions such as Telex [48], Cirripede [23] and Decoy Rout-
ing [25]. In particular, the censor is able to block access to
Tor’s publicly listed routers, and to detect certain patterns
in Tor’s traffic and hence block them [18]. This is also true
for other services or protocols for which the censoring au-
thority is able to obtain the specification. Examples include
protocols in the public domain, e.g., HTTP, and services
whose provider can be forced or willing to reveal their im-
plementation details.

However, we assume that the censoring authority is not
willing to block the Internet entirely, nor a large fraction
of the Internet traffic. The censoring authority is also un-
willing to completely block popular services, such as VoIP
protocols. Thus, the filtering is based on a “black list” of
restricted domains and IP addresses, accompanied by a list
of behavioural heuristics that may suggest a user’s attempt
to circumvent censorship; for example, a TCP SYN packet
following a UDP packet to the same host may indicate a
special type of proxy using port knocking [26]. Bissias et
al. showed how such heuristics can be employed to detect
certain traffic patterns in an encrypted channel [12].

The assumption that censorship is done based on “black
lists” is a realistic one since usually the cost of over-blocking
is not negligible. If the censor used a small “white list” of
allowed content and hosts, then every new website or host
on the Internet would need to sign up with the censor in
order to be accessible by nodes within its control. This is a
quite cumbersome task and seems unreasonable.

Also, we assume that encrypted communications, includ-
ing Skype calls, are not blocked unless the censor has evi-
dence that the user is trying to evade the censorship. Al-
though there have been instances where Skype or other VoIP
services were either banned or have gone inaccessible in some
countries [8], to the best of our knowledge these instances
are very rare and in most cases either the Skype website is
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filtered or users are threatened with legal actions [7]. For
instance, China has a different approach toward Skype and
has partnered with it to be able to filter unwanted messages
through a modified version of Skype, called TOM-Skype3;
we strongly discourage SkypeMorph users from using this
version with our software for anonymity purposes, however.
Although some regimes may choose to block Skype, or more
subtly, bandwidth-limit Skype so heavily that Skype video
is unusable, but Skype audio persists, the diversity of meth-
ods of censoring Internet content suggests that our approach
will remain pertinent.

We further assume that the censor does not have access
to information about particular bridges, including their IP
addresses and Skype IDs; otherwise it can readily block the
bridge based on this information. (We will discuss in Section
8 how a bridge using SkypeMorph can easily change its IP
address if it is detected by the censor.) SkypeMorph users,
however, can obtain this information from out-of-band chan-
nels, including email, word-of-mouth, or social networking
websites. We also note that it is possible to have multiple
Skype calls use a single IP address but with different ports,
to allow users behind NAT to make simultaneous calls using
a shared IP address.

In our model, we are trying to facilitate connections to
bridges outside the jurisdiction of the censor where it has
no control over the network nodes. However, the censor
can set up its own SkypeMorph bridges and distribute their
information.

In general, SkypeMorph aims to build a layer of protocol
obfuscation for Tor bridges,4 with the following goals:

• Hard to identify: SkypeMorph outputs encrypted
traffic that resembles Skype video calls. The details of
how we try to minimize the chances of being detected
by the censor are discussed in Section 4.

• Hard to block: Since the outputs of SkypeMorph
greatly resemble Skype video calls, in order to block
SkypeMorph, the censor would need to block Skype
calls altogether, which we assume it is unwilling to do.

• Plausible deniability: The only way to prove that
a node is actually using SkypeMorph software is to
break into a user’s machine or to coerce him to divulge
his information. Otherwise, communicating through
SkypeMorph should look like a normal Skype video
chat.

Finally, we note that our work aims at defeating firewall
and DPI tools which look for Tor flows. However, there are
other approaches for enumerating bridges that are outside
the scope of this paper. [17]

4. BACKGROUND

4.1 Skype
Skype [4] is a proprietary “voice over IP” (VoIP) service

that provides voice and video communications, file transfer,

3http://skype.tom.com
4Note that our technique can be applied to Tor’s public ORs,
but since blocking public ORs based on their IP address is
a trivial task, we choose to present it for bridges.

and chat services. With millions of users and billions of min-
utes of voice and video conversations, Skype is undoubtedly
one of the most popular VoIP services available [3].

Protection mechanisms and code obfuscation techniques
used in the Skype software have made it difficult to learn
about its internals, so there is no open-source variant of the
Skype application. However, there have been attempts to re-
verse engineer and analyze the application [10, 11]. The find-
ings from these attempts and our own experiments, along-
side some insights from the Skype developers have estab-
lished the following facts:

• Skype encrypts messages using the AES cipher and
uses RSA-based certificates for authentication [2, 11].
Also our experiments showed that Skype utilizes some
form of message authentication and would not accept
altered messages. Thus an eavesdropper is neither able
to access the content of a packet nor can he alter them
in such a way that is not detectable. All that is possi-
ble to such an attacker is selective packet dropping or
denial of service.

• There are three types of nodes in the Skype network:
server nodes, which handle users’ authentication when
they sign in, normal nodes, which can be seen as peers
in the P2P network, and supernodes, which are those
peers with higher bandwidth; supernodes can facili-
tate indirect communication of peers behind firewalls
or NAT [11, 13, 40].

• Skype calls are operated in a peer-to-peer architecture
and users connect directly to each other during a call,
unless some of the participants cannot establish direct
connections. This is where supernodes come into the
picture to facilitate the call.

• In our experiments with Skype we noticed that when a
Skype call takes place there are some TCP connections
which are mainly used for signalling. These TCP con-
nections remained open even after the call is dropped.
The Skype client listens to a customizable UDP port
for incoming data, but when UDP communication is
not possible, it falls back to TCP [10, 11].

• Skype has a variety of voice and video codecs and se-
lects among them according to bandwidth, network
speed and several other factors [13, 14].

The facts that Skype traffic is encrypted and very popular
makes it a good candidate for the underlying target traffic
for our purpose. We will explore this more in Section 5.

The choice of Skype video, as opposed to voice, calls as the
target protocol in SkypeMorph is motivated by the fact that
in voice calls, usually at any time only one party is speaking
and thus we would need to consider this “half-duplex” effect
in our output stream. However, this is not the case in video
calls since both parties send almost the same amount of
data at any given time during a video conversation, making
the implementation of SkypeMorph easier, and not requiring
the client or bridge to withhold data until it is its turn to
“speak”.

4.1.1 Bandwidth Control
Network congestion control and bandwidth throttling is

a major concern in online applications. In order to be able
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(b) Increasing bandwidth available to Skype

Figure 2: Bandwidth usage by Skype under different net-
work situations. Figure 2a shows the drops in the Skype
transfer rate while decreasing the network bandwidth and
Figure 2b shows the increase in the rate.

to accommodate for changes in the network status, a traffic
control mechanism is essential and Skype uses a congestion
detection mechanism to back off whenever it is no longer pos-
sible to communicate at the current rate. Skype voice calls
were shown to have a few number of possible bitrates [14],
however, as shown in Figure 2, Skype video calls seem to
enjoy much more flexibility in terms of bandwidth usage.5

Figure 2a suggests that by limiting the available bandwidth,
Skype’s bandwidth usage drops significantly at each step to
a level far below the available rate (this phenomena is more
noticeable in higher rates) and then it builds up again to
achieve the maximum rate possible. Also Skype is able to
detect whether it is possible to send at a higher rate, as
depicted in Figure 2b. Therefore, by a similar rate lim-
iting technique, SkypeMorph is able to transfer data at a
reasonable rate which at the same time complies with the
bandwidth specified by the bridge operator.

4.2 Naïve Traffic Shaping
To achieve a similar statistical distribution of packet sizes

in the output of our system to that of target process, a
basic approach would be to simply draw samples from the
packet size distribution of the target process and send the
resulting size on the wire. Thus, if there is not enough data
available from Tor, we have to send packets without useful

5The degree of flexibility in bandwidth usage of Skype video
calls is due to availability of different frame rates and video
codecs.

information and this imposes some additional overhead on
the network. An alternate approach is to consider the in-
coming packet sizes from the source distribution, which is
how Traffic Morphing deals with the problem.

4.3 Traffic Morphing
We briefly mention how the original Traffic Morphing [46]

method works. Traffic Morphing attempts to counter an ad-
versary who is trying to distinguish traffic from the source
process from that of the target process through statistical
means. As previously discussed, the only statistical traces
that the attacker might be able to collect from encrypted
traffic are packet sizes and timing attributes. Traffic Mor-
phing aims at obfuscating the packet size distribution by
assuming that probability distributions of the source and
destination processes are available.

Assume that the probability distribution of the source
process is denoted by the vector X = [x1, . . . , xn]T , where
xi is the probability of the ith packet size. Similarly Y =
[y1, . . . , yn]T denotes the target process packet size distribu-
tion. Traffic Morphing finds matrix A for which we have
Y = AX such that the number of additional bytes needed
to be transmitted is minimal. Using this technique requires
some considerations, for example dealing with larger sample
spaces or overspecified constraints, which are discussed in
the original paper.

Even though the underlying premise of Traffic Morphing
is that if the source process generates a sufficiently large
number of packets, the output of the morphing will converge
in distribution to that of the target, it only considers packet
sizes in the encrypted traffic. We extend this technique,
below, by introducing inter-packet timing to it as well.

4.4 Higher-Order Statistics
Although reproducing Skype packet size and inter-packet

delay distributions is a step towards defeating censoring fire-
walls, DPI tools can take advantage of higher-order statistics
in our encrypted channel to distinguish it from a Skype video
call. We observed that there are second and third order
statistics, discussed in the appendix, in the Skype traces. We
ensure that SkypeMorph respects those higher-order statis-
tics in the packets and timings it outputs. An alternative for
preserving all the characteristics of the Skype video call is to
use the output of the audio and video encoder shipped with
the Skype software to generate the statistics. If a live video
source is available, we can run the encoder on it while the
Tor bridge connection is in progress, and use the resulting
packet sizes and inter-packet delays output by the encoder
directly (replacing the encrypted packet contents with our
own encrypted Tor data, of course). In this way, we can en-
sure that our traffic accurately mimics that of a real Skype
video call.

5. SKYPEMORPH ARCHITECTURE
Skype, like any other instant messaging or voice and video

calling/conferencing application, performs an authentication
step before it allows a user to join the network. A user needs
to sign up with the Skype website and obtain a username
and password for authentication. The user then inputs these
credentials to the Skype software to use them in the authen-
tication process. After the user authenticates himself to the
network, he is able to make calls or send messages. Due to
the proprietary nature of the Skype protocol, it is unclear
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how the login process is initiated and proceeds. The same
is true for the call setup phase. To look like Skype as much
as possible, SkypeMorph uses the actual Skype application
to perform these actions.

In order to be able to use Skype network, we used Skype
APIs which enable programmers to log in to the Skype net-
work and have almost the same functionality as the Skype
application, including making voice and video calls and send-
ing files and text messages. Skype APIs come in two flavours,
namely the SkypeKit [5] API that has a separate runtime
executable (which must be purchased from Skype) and can
operate as a command line application, and the Skype Pub-
lic API, which can speak to any running instance of the usual
Skype application through message passing systems such as
DBus. These APIs allow us to perform the login and call
initiation processes. The basic setup is discussed next and
details of our implementation will appear in Section 6.

5.1 Setup

• Step 1: The bridge, which we denote by S, selects a
UDP port number, PS and uses the Skype APIs to log
in to the Skype network, with a predefined set of cre-
dentials.6 After successfully logging in to Skype, the
bridge will listen for incoming calls. The bridge makes
its Skype ID available to clients in much the same way
that bridges today make their IP addresses and port
numbers available — using Tor’s BridgeDB [6] service,
for example.

• Step 2: The client, denoted by C, picks a UDP port
number, PC and uses the same method to log in to the
Skype network, using its own credentials.

• Step 3: The client generates a public key PKC . After
that, it checks to see whether the bridge is online and
sends a Skype text message of the form PKC : IPC :
PC , to the bridge, where IPC is the IP address of the
client.

• Step 4: Upon receiving the message from the client,
the bridge generates a public key PKS and sends the
following text message PKS : IPS : PS back to the
client.

• Step 5: The bridge and client each compute a shared
secret using the public keys they obtained and the
client sends a hash of resulting key to the bridge.

• Step 6: The bridge then checks the received hash and
if it matches the hash of its own secret key, it sends a
message containing “OKAY”.

• Step 7: If step 6 is successful and the client receives
OKAY, it initiates a Skype video call to the bridge. Oth-
erwise, it falls back to step 3 after a timeout.

• Step 8: The client keeps ringing for some random
amount of time, then drops the call.

6Skype allows multiple logins, so it might seem reasonable
to share the same username and password for every bridge.
However, in that case all the messages sent to a certain
Skype ID will be received by all the bridges currently logged
in with that ID, which is an undesirable setting. We there-
fore require that every bridge has its own exclusive creden-
tials, which are made available to the SkypeMorph bridge
software on startup.

SkypeMorph
SkypeMorph

To
r 
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a
ffi

c

To
r Tra

ffi
c

Skype Video Traffic

Figure 3: Overview of the SkypeMorph Architecture. The
histograms show the distribution of packet sizes in Tor (at
the bottom) and Skype video (at the top).

• Step 9: When the bridge notices the call is dropped
it listens for incoming SkypeMorph messages on port
PS . The bridge selects another UDP port for the Skype
runtime for it to listen for other incoming connections.

• Step 10: Afterwards, the client uses the shared key
and the UDP port obtained in previous steps to send
data.

Note that having the bridge switch to a different UDP port
for the next client connection should not arouse suspicion
since, as discussed in Section 3, this is how normal Skype
calls to multiple users behind NAT would appear to the
censor.

5.2 Traffic Shaping
Tor sends all of its traffic over TLS. We do not change this;

rather, we just treat the TLS data as opaque, and send the
TLS data over our own encrypted channel, masquerading it
as Skype video. This means that the data is encrypted by
Tor (multiple times), by TLS, and also by SkypeMorph.

After the above connection setup, it is possible to send the
re-encrypted TLS messages through the established channel.
As discussed in previous sections, in order to maximize the
resemblance to real Skype traffic, we modify the output of
our application to closely match that of Skype. The mod-
ification is done on the packet sizes and inter-arrival times
of consecutive packets. For the packet sizes, two scenar-
ios are considered: In the first scenario, we obtain our re-
sulting packet sizes using the näıve traffic shaping method
discussed in Section 4.2. We use the higher-order statistics
mentioned above to produce joint probability distributions
for the next inter-packet delay and packet size, given the
values outputted previously. We sample from this condi-
tional distribution to produce the delay and size of the next
packet.

For the second scenario, the Traffic Morphing method of
Section 4.3 is used; however, this method only supports first-
order statistics.

The overview of the SkypeMorph architecture is shown
in Figure 3. The red arrows represent the Tor traffic. On
one side the Tor traffic is passed to SkypeMorph, where the
traffic shaping mechanisms morph the traffic to resemble a
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Skype call on the wire. On the other side the Tor traffic is
reconstructed.

6. IMPLEMENTATION
In this section we describe our prototype implementation

of SkypeMorph on Linux, which is implemented in C and
C++ with the boost libraries [1]. The prototype is built into
two executable files called smclient and smserver, which
realize the client C and the bridge S of the previous section,
respectively. We describe in the following the two phases in
the execution of our prototype, namely, the setup and the
traffic-shaping phases.

6.1 Setup Phase
As in the previous section, both the client and the bridge

log into Skype using the Skype API, exchange public keys,
and then start their Skype video conversation. As we men-
tioned in Section 4, there are various TCP connections ac-
companied with the Skype video conversation, which stay
active even after the conversation is finished. In order to re-
tain these TCP connections, our prototype implementation
performs the following tricks:

• A TCP transparent proxy component is built into our
prototype, which transparently relays all TCP connec-
tions the Skype runtime outputs and receives. We take
advantage of the TPROXY extension in iptables, avail-
able in the Linux kernel since version 2.6.28. Corre-
sponding iptables rules are created when our proto-
type starts execution.

• As a consequence of retaining the Skype TCP con-
nections, the Skype runtime has to stay active during
the SkypeMorph session. Hence the UDP port PC or
PS will still be assigned to the Skype runtime when
SkypeMorph starts to tunnel Tor traffic; therefore,
SkypeMorph has to operate on another UDP port. To
overcome this, the Skype runtime on the client op-
erates on another UDP port, say P ′

C , and smclient

creates an iptables rule RC with SNAT target to al-
ter the source port of all Skype UDP packets from P ′

C

to PC . When smclient starts to tunnel Tor traffic,
it first deletes rule RC , and it then operates on UDP
port PC . On the bridge side, the Skype runtime oper-
ates on UDP port PS , and smserver runs on another
UDP port P ′

S . When smserver starts to communi-
cate with smclient, it first creates an iptables rule
RS that redirects traffic towards UDP port PS to P ′

S ;
it then runs on P ′

S . Note that SkypeMorph starts its
tunneling task only when the Skype video call is fin-
ished; thus the iptables rules RC and RS affect only
the client Skype runtime and the bridge SkypeMorph.
This prevents the censor from noticing port changes
between the genuine Skype video call traffic and the
SkypeMorph traffic.

For the cryptographic features, we use the curve25519-

donna [27] library to generate elliptic-curve Diffie-Hellman
keys shared between smclient and smserver. Each Skype-
Morph instance derives four keys: two for outgoing and in-
coming message encryption, and another two keys for out-
going and incoming message authentication purposes.

6.2 Traffic-shaping Phase
In the traffic-shaping phase, an smclient and smserver

pair can be viewed together as a SOCKS proxy that relays
streams between a Tor client and a Tor bridge. Between sm-

client and smserver, bytes in Tor streams are exchanged in
segments by a simple reliable transmission mechanism over
encrypted UDP communication, and they are identified by
sequence numbers. Reliable transmission is supported by
acknowledgments over sequence numbers. The cryptogra-
phy functions are provided by CyaSSL7, a lightweight SSL
library also used in SkypeKit. We give more details below.

SkypeMorph UDP Packet Layout
First, we present the layout of the SkypeMorph UDP

packets transmitted between smclient and smserver. We
set the maximum size of a single packet to be 1460 bytes to
avoid packet fragmentation, because 1500 bytes, including
the IP header, is a common MTU over the Internet. Thus,
besides a fixed 8-byte UDP header, each packet contains
up to 1452 bytes of SkypeMorph data. The first 8 bytes
are an HMAC-SHA256-64 message authentication code for
the remaining bytes in the packet. We use the 256-bit AES
counter mode stream cipher algorithm to encrypt the rest
of the packet, which, prior to encryption, is formatted into
five fields:

• type: This 1-byte field denotes the purpose of the
packet. Currently there are two types: regular data
and a termination message; the latter is used to in-
form the packet receiver to terminate the communica-
tion session.

• len: This is a 16-bit unsigned integer denoting the size
of the contained Tor stream segment. This allows the
packet receiver to discard the padding data.

• seq: This field contains the sequence number, a 32-bit
unsigned integer, of the first byte of the contained Tor
stream segment.

• ack: This field contains the ack number, a 32-bit un-
signed integer used to identify those bytes that have
been properly received.

• msg: This field is of length up to 1425 bytes and con-
tains a Tor stream segment (of length len, above) and
the padding data (taking up the rest of the packet).

We output the MAC, followed by the random AES initial
counter, and then the encrypted payload, as seen in Figure 4.

Figure 4: SkypeMorph UDP packet body layout, where the
size (in bytes) is under the name for each field. The shaded
parts are encrypted using 256-bit AES counter mode. All
bytes after the mac field are included in the HMAC-SHA256-
64 computation.

Traffic Shaping Oracle

7http://www.yassl.com/yaSSL/Home.html
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We next discuss the traffic shaping oracle component,
which controls the sizes and timings of each successive UDP
packet to be sent. We implement both the näıve and the
Traffic Morphing methods in the oracle to compare them.
The goal of the oracle is to provide traffic shaping parame-
ters.

When using the näıve method, the oracle first reads the
nth-order distributions of the packet sizes and inter-packet
delays of Skype traffic, as noted in the appendix. We cur-
rently have gathered data for up to n = 3, but nothing in
principle prevents us from gathering more. For each query,
the oracle remembers the last n answers x1, . . . , xn, where
xn is the last packet size output, and the xi alternate be-
tween packet sizes and inter-packet delay times. It then
selects the nth-order distribution X of inter-packet delays,
conditioned on the values of x1, . . . , xn, and randomly draws
an inter-packet delay te from X. Next the size of the packet
se is outputted similarly from the distribution X ′ of sizes,
where X ′ depends on x2, . . . , xn, se. The oracle responds to
the query with the pair (se, te).

For the traffic morphing method, the oracle first reads
distributions of the packet sizes of the Tor traffic, the inter-
packet delays of the Skype traffic, and a pre-computed mor-
phing matrix. We use the morpher library from the Mor-
pher Project8 to compute the expected packet size se. The
Traffic Morphing morpher library does not take timings into
account. It expects to receive a packet input to it, and to
send out that packet immediately, possibly padded to a new
size to emulate the target distribution. As such, the packet
timing distribution of the output of Traffic Morphing is iden-
tical to its input distribution, which is not what we want.
We need to decouple the arriving packets from the sent pack-
ets, so arriving data is placed into a buffer, and we adopt
the technique of the näıve method to sample from the packet
timing distribution to yield te. The oracle randomly selects
a packet size so from the Tor traffic packet size distribution,
and calls the morpher library to compute the output packet
size se. The pair (se, te) is then the answer to the query.

Packetizer
The communication between smclient and smserver is

handled by a packetizer, whose structure is shown in Fig-
ure 5. The purpose of the packetizer is to relay Tor streams
with UDP packets such that the traffic exposed to the censor
is indistinguishable from that of Skype video calls.

The data stream received from Tor over the pluggable
transport SOCKS connection is first buffered in a sending
buffer, and then retrieved in segments corresponding to the
sizes produced by the traffic shaping oracle. On the other
end, the received Tor stream segments are rearranged in
order in a receiving buffer according to their sequence num-
bers, and then form the incoming Tor stream.

The packetizer creates two threads, t_send and t_recv,
such that:

• Thread t_send first queries the oracle for the expected
packet size se and delay te. It then checks the sending
buffer to determine if any re-transmission is needed,
and it locates and reads up to se bytes from the send-
ing buffer. Currently re-transmission is triggered when
three duplicated ack numbers are received, which is an
approach found in most TCP implementations. Then

8https://gitorious.org/morpher/morpher

Figure 5: Structure of the packetizer.

an encrypted UDP packet of size se is created with any
necessary random padding bytes. Next, t_send sleeps
for time te and then sends the packet out.

• Thread t_recv is blocked until a new UDP packet is re-
ceived. It decrypts the packet to get a Tor stream seg-
ment, which is then pushed into the receiving buffer.
The receiving buffer returns the sequence number seqr

of the last byte that is ready to be committed to the
TCP stream. Similar to TCP, seqr+1 is used as the ack
number to be sent in the next outgoing UDP packet.
Any in-order segments that have been received are de-
livered to Tor over the pluggable transport SOCKS
connection and are removed from the receiving buffer.

As we observed from Skype video call traffic, when the
network bandwidth is limited, the distributions of packet
sizes and inter-packet delays change accordingly. To mimic
this behaviour, our prototype first determines bandwidth
changes by measuring the number r of re-transmissions oc-
curring per second. Based on r, the oracle selects the most
relevant distributions and computes the traffic shaping pa-
rameters. The dependence on r can be tuned through ex-
periments to match the most relavent distributions.

As outlined above, our current implementation uses a sim-
ple TCP-like acknowledgement and retransmission scheme
to ensure the in-order delivery of the underlying Tor data.
An attacker may attempt to disrupt this scheme by dropping
some fraction of all Skype video traffic. This will cause a
modest decrease in the quality of actual Skype video conver-
sations, but may cause a disproportionate decrease in Skype-
Morph’s effective throughput due to repeated retransmis-
sions. We anticipate that a more advanced reliable transport
algorithm, such as one using selective acknowledgements,
may help to ameliorate this issue.

7. EXPERIMENTS
We performed our experiment in two parts. First we cap-

tured network traces of the Skype application to form a
better understanding of how it operates. Our experimen-
tal testbed for this part consisted of several hosts running
different operating systems, including Microsoft Windows,
Linux and mobile devices. Using these traces we were able
to obtain an empirical distribution of packet sizes and inter-
packet arrival times for Skype video calls, which were used
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as input to the SkypeMorph traffic-shaping oracle for draw-
ing samples and generating the morphing matrix. Next, we
used the SkypeMorph proxy for browsing and downloading
over a bridge set up on a node in the same local network as
the Tor client.

Figure 6 shows the cumulative distributions of packet sizes
and inter-arrival delays between consecutive packets both
for SkypeMorph (both with the näıve and enhanced Traffic
Morphing traffic shapers) and for the original Tor distribu-
tion and the Skype video call distribution we obtained in
the first part of the experiment. The graphs depict how
closely the SkypeMorph output follows that of the Skype
video calls, both in packet sizes and inter-packet delays;
indeed, all three lines overlap almost perfectly. Also, the
Kolmogorov-Smirnov test [34] for both the packet sizes and
inter-packet delays shows no statistically significant differ-
ence between the Skype video and SkypeMorph distribu-
tions, using either the näıve traffic-shaping or the enhanced
traffic morphing methods. This is of course expected, as the
traffic shaping oracle is designed to match the Skype distri-
bution. In addition, using the näıve traffic-shaping method,
we also match the higher-order Skype traffic distributions.
The distribution of regular Tor traffic, however, is consid-
erably different, and this shows the utility of our method.
The original Traffic Morphing [46] technique does not take
into account timings, so its distributions would match Skype
video for the packet sizes, but regular Tor traffic for the
inter-packet timings.

In order to evaluate the performance of SkypeMorph, we
tried downloading the g++ Debian package from a mirror lo-
cated in South America9 by directly connecting to a bridge
operated by us at a rate of 40–50 KB/s. Using the same
bridge, we downloaded the file over SkypeMorph, using each
of the näıve traffic shaping and enhanced Traffic Morph-
ing methods, and compared the average download speed,
network bandwidth used, and overhead percentage. We re-
peated the experiment 25 times for each method. The results
are given in Table 1.

The overhead given is the percentage that the total net-
work bandwidth (including TCP/IP or UDP/IP headers,
retransmissions, padding, TLS, etc.) exceeds the size of the
file downloaded. Although the very high variance makes it
hard to see just by comparing the summary statistics in the
table, the raw data shows that normal bridge traffic con-
sistently incurs a 12% overhead, due to overheads incurred
by Tor, TLS, and TCP/IP. The overhead of SkypeMorph
is a little more than twice that; we incur the extra cost of
sending padding when not enough data is available to fill
the packet size informed by the traffic shaping oracle. We
see that the näıve traffic shaping method and the enhanced
Traffic Morphing method perform very similarly; indeed, the
Kolmogorov-Smirnov test reports that there is no statisti-
cally significant difference between the results of those two
methods (p > 0.5). Do note, however, that this overhead in-
cludes no silent periods, i.e., times for which we have no Tor
traffic in our buffer, and so everything sent on the wire is
padding. Taking these silent periods into account, the over-
head is increased by the current bandwidth usage (in this
experiment, about 43 KB/s). This is the same behaviour as
an ordinary Skype video call; data is transmitted at an ap-

9http://ftp.br.debian.org/debian/pool/main/g/gcc-
4.4/g++-4.4_4.4.5-8_i386.deb

proximately constant rate, whether or not the participants
are actually communicating.

8. DISCUSSION AND FUTURE WORK
Overhead. As seen in the previous section, we found

that when inter-packet timing is introduced to the Traffic
Morphing technique, the traffic becomes less distinguishable
from Skype traffic (the target distribution), but it also be-
comes less effective in reducing the overhead. The overhead
in SkypeMorph is highly dependent on how much Tor traffic
is available to the proxy. SkypeMorph will always send the
same amount of data as a real Skype video connection would;
if there is not that much useful Tor traffic to send, the rest is
padding. Hence, if we experience many silent periods—when
the proxy’s sending buffer is empty—the overhead grows due
to the padding sent by the proxy.

Mobile Bridges. A side advantage of SkypeMorph is
that bridges can easily change their IP addresses and ports,
without having to re-distribute contact information to clients
or the BridgeDB. With SkypeMorph, all a client needs to
know to contact a bridge is its Skype ID. This makes it
harder for censors to block bridges, even once they are found.

Skype Protocol. SkypeKit allows peers to exchange
streaming data through the Skype network. However, the
data sent to the Skype network might be relayed by other
nodes in the network and this can impose an overhead on
the Skype network, which is not desired. Therefore, we de-
liberately chose not to use this feature of SkypeKit. Skype-
Morph data is sent directly from the client to the bridge; it
is disguised as Skype data, but it is not sent over the Skype
network.

Attacks on SkypeMorph. In order to be able to block
a SkypeMorph bridge, the censor either needs to totally ban
Skype communications, or it has to verify the existence of
SkypeMorph on a remote Skype node. This is only pos-
sible if the censor already knows the IP address or Skype
ID of the bridge, which we have already excluded from our
threat model. Also note that although we are not trying
to prevent threats that may arise if the content of a Skype-
Morph handshake is disclosed by Skype, it is still possible
to use steganographic methods to hide the handshake in
innocuous-looking messages.

The censoring authority can as well run its own Skype-
Morph bridges and distribute its descriptor to users. Even
though this is possible, users’ privacy is not threatened be-
cause of this, as they are still selecting their own relays and
connecting to the Tor network. Therefore, the censor can
only detect that a user is connected to its own instance of
SkypeMorph.

SkypeMorph and Other Protocols. Our current im-
plementation of SkypeMorph is able to imitate arbitrary en-
crypted protocols over UDP. The target protocol, Skype in
our case, can be replaced by any encrypted protocol that
uses UDP as long as distributions of packet sizes and inter-
arrival times are available. The source protocol, Tor, can
also be replaced by an arbitrary TCP protocol. Note that if
Traffic Morphing is going to be used, the morphing matrix
needs to be recalculated for every pair of source and target
protocols based on their distributions. Moreover, the current
formulation of Traffic Morphing is not amenable to higher-
order statistics. However, if näıve traffic shaping is used,
the system is actually completely independent of the source
protocol and it is possible to mimic higher-order statistics.
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Figure 6: Experimental cumulative distributions for Skype video, SkypeMorph, and Tor. We show packet size and inter-packet
delay distributions in (a) and (b) respectively.

Table 1: Download speed (goodput), network bandwidth used, and overhead imposed by (a) Normal Tor-over-TCP, (b)
SkypeMorph-over-UDP with näıve traffic shaping, and (c) SkypeMorph-over-UDP with our enhanced Traffic Morphing.

Normal SkypeMorph SkypeMorph
bridge (Näıve Shaping) (Traffic Morphing)

Goodput 200± 100 KB/s 33.9± 0.8 KB/s 34± 1 KB/s
Network bandwidth used 200± 100 KB/s 43.4± 0.8 KB/s 43.2± 0.8 KB/s

Overhead 12%± 1% 28%± 2% 28%± 3%

SkypeMorph Software. Our current proof-of-concept
implementation targets the Linux operating system. We
would naturally like to extend the work to support Win-
dows and other platforms. The only obstacle is the port
redirection described in Section 6.1. This can be handled ei-
ther with native firewalling support, or possibly by running
Linux-based software on a Tor-aware home router.10

Also as discussed in Section 4.4, we plan to experiment
with using the audio and video encoders shipped with the
Skype in order to more easily match Skype’s packet size and
timing patterns perfectly.

9. CONCLUSIONS
We have presented SkypeMorph, a pluggable transport

for Tor that disguises client-to-bridge connections as Skype
video traffic. We present two methods to morph Tor streams
into traffic with indistinguishable packet sizes and timings
to Skype video; the first method uses näıve traffic shaping to
emulate the target distribution, independent of the source
distribution. The second method takes the source distribu-
tion into account, enhancing Wright et al.’s Traffic Morph-
ing [46] to also account for packet timings. The two methods
have statistically similar performance, but the näıve traffic
shaping method is much easier to implement, is unaffected
by a changing source distribution, and can match the higher-
order patterns in Skype traffic. While our methods are ef-
fective at matching the desired distributions, they come at

10https://trac.torproject.org/projects/tor/wiki/
TheOnionRouter/Torouter

some cost in extra bandwidth used between the client and
the bridge—but no more so than if an actual Skype video
call were in progress. Our software is freely available, and is
easily adaptable to other encrypted UDP-based target pro-
tocols.
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APPENDIX
In this section we examine the higher-order statistics in
Skype video calls.

• Second-order Statistics: We explored the space of
second-order statistics in Skype calls by measuring or-
dered pairs (si, ti) where si is the size of a packet sent
on the wire and ti is the delay until the next packet.
For all possible packet sizes the empirical shown in Fig-
ure 7a.11

The same experiment was repeated with all (ti, si) pairs
with ti being the delay and si the packet size sent on the
wire after ti milliseconds. As Figure 7b shows, smaller
delays tend to result in larger packet sizes following
them.

• Third-order Statistics: For third-order statistics we
considered tuples (si, ti, s

′
i), where si and s′i are consec-

utive packet sizes and ti is the delay between the two
packets. Thus, for all possible s′i we formed the dis-
tribution P [s′i|(si, ti)] and compared them. Figure 7c
shows this distribution for a fixed ti, demonstrating
that there are third-order statistics not explained by
the second-order statistics.

Similarly, we also considered tuples of the form (ti, si, t
′
i).

Figure 7d shows the distribution of P [t′i|(ti, si)] for a
fixed si, again revealing nontrivial third-order statis-
tics.

• Higher-order Statistics: Extending this method to
higher orders is a straightforward task and depending
on the precision needed, we can find these statistics up
to the desired order. This allows us to fully mimic the
traffic characteristics of a Skype call.

11As the space of all possible tuples was huge, we binned the
packet sizes and delays to make the figure easier to read.
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(a) Second-order statistics (size - delay)
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(b) Second-order statistics (delay - size)
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(c) Third-order statistics (size - delay - size)
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(d) Third-order statistics (delay - size - delay)

Figure 7: Second and third-order statistics of a Skype video call for arbitrary bins of size and delay.
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