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ABSTRACT

Tor is the most popular low-latency anonymity network currently
available, protecting the privacy of hundreds of thousands of peo-
ple every day. To ensure a high level of security against certain
attacks, Tor currently utilizes special nodes called entry guards as
each client’s long-term entry point into the anonymity network.
While the use of entry guards provides clear and well-studied secu-
rity benefits, it is unclear how well the current entry guard design
achieves its security goals in practice.
We design and implement Changing of the Guards (COGS), a

simulation-based research framework to study Tor’s entry guard de-
sign. Using COGS, we empirically demonstrate that natural, short-
term entry guard churn and explicit time-based entry guard rotation
contribute to clients using more entry guards than they should, and
thus increase the likelihood of profiling attacks. This significantly
degrades Tor clients’ anonymity. To understand the security and
performance implications of current and alternative entry guard se-
lection algorithms, we simulate tens of thousands of Tor clients
using COGS based on Tor’s entry guard selection and rotation al-
gorithms, with real entry guard data collected over the course of
eight months from the live Tor network.

1. INTRODUCTION
Tor [9] is the most widely used volunteer-resourced anonymous

communication network. It is designed to provide communicating
parties with anonymity from their communication partners as well
as from passive third parties observing the network. This is done
by distributing trust over a series of Tor routers, which the network
clients select to build paths to their Internet destinations.
When the Tor network was first launched in 2003, clients se-

lected routers uniformly at random. However, for load balancing
reasons, the router selection algorithm was changed in 2004 so
that clients weight their selection by the amount of bandwidth that
routers offer to the network; a router that offers more bandwidth to
the network is selected more often by clients.
Another key change to the original router selection algorithm in

Tor is the use of entry guards. The concept of entry guards emerged
as a solution to safeguard against a variety of threats to end-user
anonymity [5, 13, 18]. Guards were adopted into Tor with specific
parameters that seemed likely to provide acceptable security and
performance characteristics for the network and end users. Those
parameters include the number of entry guards that a client begins
with, and the amount of time a client can use his/her entry guard
before switching (rotating) to new entry guards.
Context and motivation. Recently, there has been renewed in-
terest in reevaluating these fixed parameters in combination with
other network conditions, such as churn and load balancing, to
more carefully determine the security that entry guards provide to

users. Dingledine [8] formalizes the open issues related to Tor’s
entry guard design, which are paraphrased below:

• Quantify the vulnerability due to natural guard churn, which
is the added client compromise due to guard nodes going off-
line.
• Quantify the client compromise rates at different amounts of

adversarial bandwidth in the network.
• Quantify the vulnerability due to guard rotation and compare

with natural churn. Which of these is the dominant contrib-
utor to client compromise? Also, how does varying the rota-
tion periods affect the compromise rates?
• Quantify the compromise effects of different numbers of guards.

While analysis [13] provides evidence of security benefits and there
is a consensus within the Tor community that entry guards provide
performance and load balancing benefits, there is yet no empirical
evidence of the effects and limitations inherent in their design and
in their implementation.
Understanding and improving entry guards. To gauge the se-
curity and performance impact of entry guards in Tor and to pro-
vide direct answers to the questions above, we conduct an empiri-
cal analysis of Tor’s entry guard selection and rotation algorithms
by constructing a simulation framework called Changing of the

Guards (COGS).
Contributions. This paper offers the following contributions to
the field of anonymous communications:

• We present COGS, our simulation framework that is designed
to provide quantitative data about guard design choices.
• With COGS, we conduct an empirical characterization of en-

try guards fueled by real data on Tor routers captured by the
Tor Metrics Portal. In particular, we analyze natural churn,
entry guard rotation, the number of entry guards chosen, and
other parameters in terms of their effects on security and per-
formance through large-scale simulation of Tor’s current en-
try guard selection and rotation algorithms.
• We identify and investigate the trade-offs between the vari-

ables above from the perspective of security and performance
impact.
• We present direct answers to open research questions posed

by Dingledine with discussion on future guard design re-
search.

Our results indicate that Tor’s guard flag allocation process im-
proves overall guard stability, that guard rotation is a major contrib-
utor of client compromise yet is self-limiting, and that for certain
client/adversarial models using more guards provides far superior
security than possible under Tor’s current defaults.
Roadmap. The remainder of this paper is organized as follows:
Section 2 provides the reader with a comprehensive overview of
Tor’s design, including the guard selection and flagging algorithms.
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We present COGS in Section 3, and we provide our answers to the
open questions discussed above in Section 4. We discuss some
open issues in Section 5, and in Section 6, we outline related work.
Finally, we present our future work in Section 7 and conclude in
Section 8.

2. BACKGROUND
In this section, we present a detailed overview of Tor’s design

and system architecture.

2.1 Tor Overview
Tor provides a means to communicate over the Internet anony-

mously. A Tor client can remain anonymous from Internet servers,
and the parties in communication can remain unlinked from each
other from the perspective of an observer. We shall now discuss the
mechanics of how this is achieved.
The Tor network is composed of volunteer-operated nodes called

Onion Routers (ORs), also known as relays or nodes. These ORs
provide network connectivity and bandwidth capacity for end-user
traffic. Anyone may operate a relay and indeed a strength of Tor
is the diversity and number of its network nodes. When an OR
joins the network it announces its details, such as its network ad-
dress/port, its donated bandwidth capacity, and its exit policy—
stating to what Internet addresses and ports outside of the Tor net-
work this relay is willing to send traffic—to the (distributed) di-
rectory authority. The OR will then be listed on the global list of
relays and be a candidate for routing end user traffic.
An end user downloads the Tor client, also known as an Onion

Proxy (OP), which on start up downloads the consensus document
of all running relays as well as relay descriptors from the direc-
tory authority (or one of its mirrors). These documents contain the
details of each relay that the OP uses to route traffic through the
network. In order to protect clients against route bridging and fin-
gerprinting attacks [7], these documents are updated hourly so as to
provide a current and consistent picture of the network to all clients.
Consensus documents are published precisely once per hour and
descriptors are updated in real time as their contents change.
The directory authority also provides metadata in the consensus

document that helps the OP route traffic more intelligently. In par-
ticular, the OP uses the consensus in the process of constructing a
circuit—a path through the Tor network. By default, circuits con-
sist of three ORs selected by the OP. We next describe the process
of router selection that is performed by OPs.
Router selection. In the default setting, the OP selects ORs from
a distribution that favours higher-bandwidth relays but also allows
low-bandwidth relays to be utilized to some extent. The three ORs
in the circuit are termed the entry, middle, and exit ORs. The OP
communicates directly with the entry OR, the entry communicates
with the middle OR, and the middle communicates with the exit
OR. Finally, the exit OR communicates directly with the destina-
tion Internet server.
Although the number of circuits constructed is governed by im-

mediate and anticipated need, a general rule is that each circuit is
used for about ten minutes before the Tor client will begin using a
fresh circuit.
The OP constructs the circuit as follows. The OP first picks a

suitable exit relay—suitability being a function of the relay’s con-
figuration as an exit relay (which is communicated to clients with
the Exit flag in the consensus document) and its exit policy. Next,
the OP picks the entry OR while ensuring that all the relays have

distinct /16 IP addresses and relay families.1 (We provide more de-
tails on the constraints placed on entry selection in Section 2.2.)
The middle node is then picked in a similar fashion.

Finally, the OP constructs the circuit using the three ORs in an
incremental and telescoping manner. The OP negotiates crypto-
graphic material with the entry OR and once an encrypted channel
is established between them it asks the entry OR to extend the cir-
cuit towards the middle OR. The OP then negotiates cryptographic
material with the middle OR—communicating through the entry
OR—to establish an encrypted channel between them. The middle
OR is then asked to extend the circuit to the exit OR and the pro-
cess is repeated to establish a secure channel between the OP and
the exit relay.

2.2 Entry Guard Relays
All Tor relays are donated and as such it is hard to know which

ones can be trusted. It is easy, then, for the adversary to donate
resources and participate in circuits. The danger is when the adver-
sary controls both the entry and exit ORs on a single circuit. In this
scenario the client address and destination address of the traffic are
known to the adversary who, through tagging or traffic confirma-
tion attacks [6,10,12], effectively deanonymizes the client. Follow-
ing this previous work, we assume that these attacks are easy and
accurate to carry out; however, the extent to which this assumption
is true is beyond the scope of this paper.

Given enough time and the presence of adversarial ORs, the OP
will eventually construct circuits that have malicious entry and exit
ORs. Since Tor picks relays weighted according to bandwidth,
a sufficiently resourceful adversary can deluge the network with
high-bandwidth relays and increase the rate at which it can com-
promise circuits.

To mitigate this and related threats such as the predecessor at-
tack [18] and locating hidden services [13], entry guards were in-
troduced. They limit the impact an adversary can have on Tor’s
user base by effectively reducing the number of times each client
selects her entry relays, thus slowing the rate of compromise and
reach of the adversary.

Instead of picking a new entry every time a circuit is constructed,
the OP maintains a guard list of a handful of pre-selected entry re-
lays. When the Tor client constructs this list, it selects an expiry
time for each of the guards in the list uniformly at random from the
range of 30–60 days; after that time, the guards will be dropped and
repopulated, as described in detail below. When circuits are con-
structed, the entry relay to be used is selected uniformly at random
from the client’s guard list. The rest of the circuit building process
remains the same. The effect of this change is that if no malicious
guard relays have been picked, the user is uncompromisable by the
adversary until she picks new guards. The disadvantage is that if a
client does pick a malicious guard then she has a higher probability
of being compromised for the next 30–60 days. It is debatable if it
is better to be compromised with some probability all the time or to
be either completely safe, or else compromised with higher proba-
bility. Øverlier and Syverson [13] provide analysis that the latter is
preferable and hence the guard mechanism is embedded in the Tor
client code.

Moreover, since entry guards have the potential of negatively af-
fecting the performance of the Tor network and security of its users,
they need to be carefully selected. The main mechanisms in place
are the directory authority, which assigns guard status to relays, and
the guard selection algorithm executed by the Tor client. We next

1Operators of multiple Tor relays can voluntarily mark all the ORs
they control as being in a common family.
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Algorithm 1: Tor’s approach to retrying unavailable entry guards

Input: Current time T , last attempt at time Eℓ to contact entry
guard E, E has been unreachable since time Eu

Output: Return true if we should try to contact E, false
otherwise

1 d← T − Eu

2 if Eℓ < Eu then return true
3 else if d < 6 hours then return T > (Eℓ + 1 hour)
4 else if d < 3 days then return T > (Eℓ + 4 hours)
5 else if d < 7 days then return T > (Eℓ + 18 hours)
6 else return T > (Eℓ + 36 hours)

explain how the guard flag is obtained by ORs and how the guard
selection algorithm is carried out.
Guard flag. All ORs in the Tor network are monitored for avail-
ability and bandwidth capacity by the directory authority. Relays
deemed to be stable2 and providing bandwidth above a certain thresh-
old (currently the median of all relay bandwidths, or 250KB/s,
whichever is smaller [15]) are selected to receive the guard flag

in the consensus document; this flag marks a relay as eligible to be
included in guard lists. This criterion promotes ORs that will most
likely be around for a long time and provide a level of bandwidth
that will not likely cause bottlenecks. However, we find that there
is large variance in actual guard bandwidth and stability. At the
time of our experiments there were, on average, 800 routers with
the guard flag. An important tension to note is that if the criteria are
too selective, then few guards will be available, forcing more traffic
through fewer nodes, at a cost to both network utilization and secu-
rity. At the same time, if the criteria are too lenient, then less stable
guards are likely to churn more often, leading to larger client guard
lists, and an increased likelihood of selecting a malicious guard.
This paper investigates this balance in detail.
Guard selection algorithm. Each client ensures that the number of
guards—both online and offline—in its guard list is at least the de-
fault number at all times. If a guard goes offline, either temporarily
or permanently, and there are fewer than two online guards in the
guard list, a new entry guard is picked, but each previous guard is
retried periodically, with an increasing back-off period3, according
to Algorithm 1. In addition, each of the relays in a client’s guard
list expires in 30–60 days as a guard rotation event occurs. The
algorithm for picking a guard, in either scenario, is as follows:
• Read the consensus to find the set of relays with the guard

flag set.
• Exclude guards already in the client’s guard list, if any.
• Exclude guards in the same /16 IP block or family as any of

the guards in the client’s guard list.
• Select a guard at random from the remaining list of relays,

weighted by the relays’ adjusted bandwidths (see below).
• Assign a random expiration time 30–60 days hence.
• Repeat until the guard list contains the required number of

guard relays.
The adjusted bandwidths used as weights in the above algorithm

are based on values reported in the consensus for each relay, fur-
ther adjusted by utility weights. Since Tor’s bandwidth capacity
is at a premium, and exit bandwidth capacity more specifically,

2Not to be confused with the Stable flag from the consensus
document given to relays with above-median mean-time-between-
failures.
3While we do not analyze the effects of changing the back-
off periods—currently believed to be orthogonal to Tor’s guard
design—COGS provides us the ability to do so in the future.
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Figure 1: COGS framework

this weighting mechanism is in place to make the most of these
resources, so that the network as a whole does not suffer from
overly poor performance. These weights are a function of the to-
tal bandwidth of each relay type, the total network bandwidth, and
the relative bandwidths and relay flags of individual relays. As
the bandwidth and relay composition of the network changes, the
bandwidth weights of individual relays also change. Note that the
weighted consensus bandwidths are scalars without units; it is best
to think of them as “points,” where relays with more points are
more likely to be chosen in circuits. They are not actual bandwidth
measurements, and so it becomes difficult to translate this metric to
real-world client experiences.

In general, exit bandwidth is protected such that relays with the
Exit flag are chosen in the exit position more than in other roles.
In particular, guards that are also exits will find themselves used
more often as exits and less often as guards. This will have impli-
cations we will discuss later on.
Threat model. Tor provides anonymity properties against an ad-
versary that has a limited visibility of the network. The adversary
may operate malicious relays in the network and attain guard and
exit flags by meeting the thresholds set out by the Tor specification.
The goal of the adversary is to have relays under its control selected
as the guard and exit relays on the same circuit, thus compromising
the Tor user. The adversary does not have unlimited bandwidth and
we count any relays it compromises as its own.

Our investigation of guards is concerned with the choices for pa-
rameters made by the Tor community. These parameters are the
guard rotation duration, which at present is set to a uniformly ran-
dom time between 30 and 60 days, and the number of guards, which
at present defaults to three.

3. COGS FRAMEWORK
The design of the COGS framework was guided by Tor’s guard

path selection design, its governing parameters, the historical data
sets available, and the research questions that we would like to an-
swer. The design is extensible in that future research questions per-
taining to guard and path selection can also be investigated using
the same framework with minimal effort.

The framework encompasses a) researcher-defined observables
or run-time measurements, b) the data sets available from the Tor
Metrics Portal [16], c) a mass Tor client simulator with hooks into
the internal running state of thousands of clients, d) configuration
files that instrument the simulator for each experiment, and e) log
parsers for data aggregation and statistics. Figure 1 provides a
graphical representation of the framework. We will describe each
in turn next.
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Observables. In order to drive the analysis and produce justifiable
answers to the questions posed earlier, we define the following ob-

servables—metrics, attributes and effects that we want to measure.
It is possible to introduce more observables for further research,
some of which are outlined in Section 7.
From the historical consensus and descriptor documents we pick

observables that will shed light into the behaviour of guards. We
focus on client compromise and how it is affected by natural churn
and the operational parameters chosen by the Tor community.
The pattern of up time and down time for each relay provides

insight into its stability. Using the consensus history we measure
the consecutive down times of each relay; the same is done for up
times. From this we calculate the mean time to recover between
two runs of up times as well as the mean time between failure be-
tween two runs of down times. Statistical analysis provides the
average case for the general population of relays as well as that of
guards.
To measure the impact of guard selection we also record the

number of guards that observe each client during the simulation.
This is a useful indicator since it establishes the high water mark of
potential compromise for each client. Even though each guard may
have only been an active guard to a client for a short period of time,
it is not safe to assume that the short period afforded limited impact
on the client’s privacy, since that short period may have been very
sensitive in nature.
Additionally, we measure the number of clients at each consen-

sus for whom at least one malicious guard is in the active guard

list; we term this event guard list compromise. The active guard
list is the first N online relays in the client’s guard list ordered
by age, where N is the number of entry guards being utilized by
the client. This provides a view from the adversary’s perspective
of how many clients it could potentially compromise at any given
time. Whereas Tor will always maintain a minimum of two online
guards, we experiment with active guard lists that at times shrink
to one in Section 4.
Finally, in order to evaluate the effect on performance of reduced

active guard lists that may occur due to changes to Tor’s default be-
haviour, we measure the occurrences of active guard lists whose
average bandwidth falls below a certain threshold. The number of
active guards is not as important here as the average of their band-
widths, since this can directly influence the client’s expected per-
formance. We measure the average active guard list bandwidth as
an indicator of the end user’s experience and not as an expectation
of the performance of any particular circuit. Recall also, from Sec-
tion 2.2, that the weighted consensus bandwidths do not represent
absolute bandwidths; nonetheless, we can meaningfully compare
the schemes against each other to find the relative merits of each.
Data sets. The Tor Metrics Portal [16] provides hourly snap-
shots of publicly downloadable Tor relay descriptors and actual
published consensus documents frommid-2007 to the present. This
data offers a glimpse into the state of the Tor network over the past
several years in terms of the total number of relays, their flags, and
their bandwidths. In addition, the presence (or absence) of any par-
ticular relays enables us to track and analyze relay stability over
time.
Configuration files of run-time options. We can change the be-
haviour of Tor clients, the adversary’s attributes, and the network
characteristics by passing parameters at run time through config-
uration files. Many experiments can be run simultaneously and
independently—contingent on compute and storage resources—to
provide insights into the behaviour of stock Tor and the many in-
teresting variations open research questions introduce. This mech-

anism allows us to attain answers in an efficient and reproducible
manner. We discuss our parameter choices below in more detail.
Tor path selection simulator. Using the publicly available data
sets and our selected observables, we constructed a Tor path se-
lection simulator that selects guard relays and generates paths for
a large number of simulated Tor clients. The simulator takes two
pieces of data and a configuration file as input:

1. Consensus documents: The simulator reads unmodified con-
sensus documents, one at a time, over the course of the time
period desired. The consensus provides information such as
each relay’s bandwidth weighting and its flags.

2. Relay descriptors: The simulator also reads in relay descrip-
tors that correspond to each relay listed in a particular con-
sensus to allow correct Tor client behaviour.

3. Run-time options: The simulator takes run-time parameters
to introduce an adversary (if one is modeled), augment the
behaviour of clients (if required), choose the number of clients
to be simulated, and produce logs depending on the observ-
ables.

In order to ensure the highest possible level of fidelity to Tor’s
design, our simulator is based on Tor’s original source code (ver-
sion 0.2.2.33). For each consensus period, the simulated clients
select or update their guard lists, following all of the Tor rules for
guard replacement as described in Section 2.2.

Our simulator allows us to control the guard rotation mechanism
built in to Tor to test the effects of various guard rotation durations
(or lack of) on client compromise and also allows us to investigate
the effects of client guard list size.

The granularity of our simulations is one hour, which corre-
sponds to the granularity of the consensus documents. Every con-
sensus lists the relays that were available at the time; they are
loaded into the memory of our simulator, which then proceeds to
select guard relays according to Tor’s procedure for every client.
These guards are written to a log file for later processing. Each
consensus is fed into the simulator as a means to walk through time
and produce guard selection scenarios using parameter settings pro-
vided by us to simulate different network characteristics such as the
number of guards, guard rotation period, and others. Where con-
sensuses are missing from the Tor Metrics dataset, the simulator
skips that hour of history but all time-sensitive rules and operations
are followed and are reflected in the simulation results.

We can simulate an adversary with a fixed budget of relay band-
width by injecting it into the list of routers in each consensus pe-
riod. The adversary is modeled by the amount of bandwidth it owns
and the number of nodes it controls.

We also instrument the Tor client code to log client state to disk
for all observables we are interested in. We refrained from logging
all state changes due to storage constraint considerations.

We have made COGS available as open-source software and it is
available from http://crysp.uwaterloo.ca/software/.
Simulation setup and parameter choices. Our simulations were
run on multi-core servers to take advantage of parallelism in the
experiments. Each simulation run introduced 80,000 clients.4

It is not yet clear how to best model the client behaviour as there
is yet no consensus within the Tor community on real-world client
behaviour. Indeed, this is a research problem in itself and out of the
scope of this work. Therefore, we model the user base size as con-
stant with no new clients joining the network, since our simulations
focus on long-term effects that are not sensitive to user churn. For

4This sample size was chosen by conducting preliminary experi-
ments of increasing sizes, and finding the point at which the result
distributions stabilize, according to the Kolmogorov-Smirnov dis-
tance.
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simplicity, the clients in our simulation are always online, which is
a worst-case scenario since real-world clients likely do not use Tor
continuously.
We choose the duration of our simulation by providing the start-

ing and ending epoch times. We chose Apr 2011–Nov 2011 as our
target time slice since it has relatively stable bandwidth character-
istics and a consistent consensus version number.
COGS allows the injection of malicious routers into the network

at run time through a configuration parameter.5 We have chosen to
introduce the malicious relay one consensus period, i.e. one hour,
after the simulation has begun and all clients already have honest
guards in their lists. This simulates an adversary attacking Tor after
clients have already started using it and also establishes more con-
servative compromise rates—effectively a lower bound. For our
simulations we assigned our malicious relay the guard flag only
since also having the exit flag reduces the probability of a router
being picked as a guard relay and would confound our results. Note
that the choice to operate an exit node is with the relay operator and
is not controlled by any authority.
The bandwidth assigned to this relay, approximately in the top

20% of guards, is incorporated into the network using the same
rules and bandwidth weightings as the normal routers. Using the
results from Murdoch [11], we only introduce one malicious re-
lay because Tor’s guard selection algorithm chooses guards in pro-
portion to their bandwidth; this means that an adversary operat-
ing one high-bandwidth relay is equivalent to one operating many
low-bandwidth relays as long as the total bandwidths are the same.
Since we consider the adversary to be intelligent and capable of
leveraging any and every advantage, we consider a client to be com-
promised if even one malicious guard exists in her active guard list.
It should be noted that while we initially set malicious bandwidth

as a proportion of the total bandwidth, this proportion changes over
time along with the total network bandwidth. We reason that keep-
ing this value constant does not harm the experiments since i) a real
adversary would not measure bandwidths on the entire network to
keep malicious bandwidth proportions constant and ii) the band-
width variance is small in our selected time period.
Log parser and data visualization The log parsers—there are
several variants depending on the observables—extract the data we
are most interested in and compile it into a format that can then be
fed into data visualization programs. The raw data can be processed
by different parsers to gain insight into the various aspects of guard
design.
Our existing parsers process the raw logs to provide data on

client compromise rates, total guard exposure over the experiment
run and expected client performance.
While COGS is rooted in guard analysis, it can also be used to

simulate other Tor-related phenomena that do not involve actual
network traffic. Examples include the analysis of client circuit di-
versity, the effects of introducing exit guards, and assessing whole-
network effects of heterogeneous client configurations.

4. MEASUREMENTS AND EVALUATION
We now use COGS to collect the empirical data that will be

used to answer the four open research questions introduced ear-
lier. The main aim is to understand the effects of various guard
design choices on client compromise rates. We measure the fre-
quency with which a client picks new guards, since the more often
guards are picked the more often a malicious relay has the chance
to be placed in the client’s guard list. The two main influences on

5While this paper investigates only one value of this parameter, it
is simple to instantiate other behaviours through other values.
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Figure 2: Client compromise rates at various adversarial band-

widths.

Table 1: Up and Down times in hours of guard relays for Apr–

Nov 2011
Min 1st Qu. Median Mean 3rd Qu. Max

Guard Down 1 1 3 42.17 11 4978

Guard Up 1 7 20 156.7 127 3829

All Down 1 3 10 45 20 5454

All Up 1 1 4 19.82 11 3829

the frequency of guard selection—other than a new client joining
the network—are natural churn and guard rotation. We measure
and evaluate characteristics of each in order to better understand
the threats to client privacy.
Adversarial bandwidth and compromise rates. We base the
subsequent analysis on the assumption that malicious bandwidth is
directly related to client compromise rates, albeit in complex ways.
As the adversary increases their bandwidth contribution they are
able to compromise more clients. This is by design, as the Tor
guard selection algorithm favors relays with higher bandwidth. We
provide confirmation of this assumption in Figure 2 which shows
that as the malicious bandwidth increases the compromise rates
also increase.

Since bandwidth is independent of the other variables under study,
we keep the adversarial bandwidth constant for the rest of our ex-
periments.

4.1 Natural Churn
To measure the effect of natural churn, we start by first analyz-

ing the consensus data and establishing the pattern of churn (e.g.,
up and down times) for each relay over time. The subsequent statis-
tical analysis provides the results in Table 1. Note that we allow for
the effects of relays that had a high frequency of up/down events,
and that only relays that were available April to November 2011
were included in the data set.

From the distance between the upper and lower plots in Figure 3
we find that guards are more stable compared to the general router
population due to their relative longer up times and shorter down
times.

Next, we measure the effect of natural churn on guard list com-
promise and present the results in Figure 4 as the lower plot. For
this analysis we have removed the normal guard rotation mecha-
nism in the Tor client to isolate the effects of natural churn. We note
that natural churn occurs frequently and also has a large effect on
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Figure 4: Effects of natural churn and guard rotation on com-

promised guard lists

the network as indicated by the large uptick in compromised guard
lists over time. The sharp peaks and valleys between May 1, 2011
and June 30, 2011 are indicative of honest guards that go down
briefly—during which time our malicious guard has an opportunity
to move into the active guard list—and then return—which bumps
the malicious guard out of the active list again. These characteristic
short guard down times concur with both Table 1 and Figure 3.
From the upward trend of the plot we now know that natural

churn has a real and lasting effect on client security and increases
with time. Given enough time a long-lived adversary will appear
in all clients’ guard lists. This risk can be mitigated with periodic
guard rotation, which is presented next.

4.2 Guard Rotation
The second factor to guard list compromise is the mechanism to

rotate each client’s guards after defined periods of time. By de-
fault a Tor client drops its guards that are between 30–60 days old
in the guard list. There are two major reasons: to limit the num-
ber of clients a single well-resourced guard can service, and hence
compromise, at any given time and to balance the load so that long-
serving guards do not potentially end up bearing the load of more
clients over time. A negative effect is that clients with all honest
guards are exposed to potentially selecting a malicious guard upon

rotation, thus ensuring that after enough time all clients will have
been compromised at some point.

It is difficult to isolate the effects of guard rotation from those
of natural churn under simulation with real data. We can, however,
analyze the effects of guard rotation in closed form and also analyze
the empirical results of the additional effect of guard rotation to
natural churn in simulation.

During our target time slice of eight months, we expect that every
client will rotate their guards at most as often as 30 days and at least
as often as every 60 days. The maximum number of potentially
unique guards that a client selects in those eight months is therefore
24, the minimum is 12, and the average is 17. This is the number of
guard relays that can potentially compromise the client. Note that
without guard rotation, the least number of guards per client would
be three.

The upper plot in Figure 4 shows the additional effect that guard
rotation has on client compromise rates. In the first 30 days we
see a steady increase on both plots in compromise rates as only
natural churn is in effect. Then between 30–60 days the guard ro-
tation really begins to show its effects in the upper plot, peaking
at the end of May after which point a steady state seems to have
been reached, where the amount of new compromised active lists is
offset with losses in compromised active lists. The downward and
upward trends are due to our malicious relay’s relative bandwidth
fluctuating as the total network bandwidth fluctuates.

It is obvious that guard rotation increases the chances of active
guard list compromise substantially. This implies that guard ro-
tation has a larger effect on compromise than does natural churn
alone. Although it is difficult to isolate the interplay of natural
churn and guard rotation it is simple to see that guard rotation does
have negative effects.

A key takeaway here is that the nature of guard rotation and nat-
ural churn are different, which explains the disparity between the
plots. Guard rotation replaces a guard, while natural churn only
provides a backup guard. If the client picks no malicious guards
(as is the case initially), then with only natural churn in effect the
malicious relay can only hope to be picked once a client’s guard
goes offline. However, it will never be at the top of the list and will
be bumped out of the active list once the original guard returns. On
the other hand, when guard rotation is used, every 30–60 days the
malicious relay gets a chance to be picked as one of the first three
guards thus cementing its place in the active guard list and thus
allowing potential compromise whenever it is the selected guard
relay.

Figure 5 shows the distribution of the number of clients that have
been seen by various numbers of guards for Tor with and without
guard rotation. Guard rotation greatly increases the visibility of
each client on average to 19 guards. Recall that rotation causes
at least 15 guards to see the client at minimum, so coupled with
natural churn this effect is amplified. The effects of natural churn
alone are small according to this metric: the mean increases to five
versus the minimum three guards per client as indicated by the left
plot.

As a counterpoint we observe that guard rotation does serve a
beneficial purpose. As mentioned earlier, it reduces the likelihood
that certain long-lived guards will accumulate a large set of clients
and hence potentially compromise them. This self-limiting nature
means that it is not desirable to remove guard rotation as a mech-
anism without a suitable alternative; we are actively exploring this
area as ongoing work.
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4.3 Client guard list size
Finally, we investigate the effects of the size of the client’s guard

list and provide results and analysis for various values. We include
results both with and without guard rotation enabled.
Recall that the client will only replace a guard if guard rotation

dictates it (if in effect) or when there are fewer than two guards on-
line from the client’s guard list. Figure 6 shows client compromise
rates with guard rotation when the size of the client’s guard list is
1, 2, 3, 5 and 10 guards, where the ‘G’ stands for guards. From this
we discover that increasing the size of the guard list increases the
client compromise rates.
However, compare this to the results without guard rotation in

Figure 7, where the absolute compromise rates are far lower but
steadily increase over time and would eventually surpass the guard
rotation plots. Also note that with guard rotation off, increasing the
guard list size beyond 3 guards has the reverse effect of decreasing
client compromise (plots for 5 and 10 guards). However, this ef-
fect does not last as we see the plot for 5 guards crossing over the
1 guard plot and would eventually cross over 2 and 3 guard plots
as well. The same trend occurs for the 10 guard plot. The reason
behind this is that initially the pool of possible guards is large and
all are online; as guards fail, the client does not take any steps to re-
place them since the size of the guard list is still large enough and at
least two of them are online. As the guards that failed are removed
from the list, more guards are picked to maintain the overall size of
the client’s guard list. This last effect slowly erodes the advantage
of starting off with a large pool of guards.
We now consider the number of guards seen over time for differ-

ent values of starting guard list size. Figure 8 shows the effect of
increasing guard list size on clients’ guard exposure. It becomes ap-
parent that increasing the guard list size increases the client’s guard
exposure.
Figure 9 provides results for when guard rotation is turned off.

While the overall guard exposure is far less than when guard rota-
tion is in effect, we see the same trend where larger starting guard
list size equates to more guard exposure. We observe that as the
client guard list size increases, the probability of more guards ever
being added to the list decreases. This is particularly striking for
the 10 guard plot, and also evident for the 5 guard plot. This is
both an effect of relative guard stability and due to the condition
that fewer than two guards be present before a new guard is added.
Comparing both figures we see a more general trend that without
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sizes, without guard rotation.

guard rotation the value of guard exposure is close to the starting
guard list size (more pronounced for higher values) whereas with
guard rotation the values of guard exposure are many times larger.

4.4 Available bandwidth
Before we can make any conclusions we must look at the effects

of these parameters on the average available bandwidth a client’s
guards provide it. Figure 10 shows the expected bandwidth for a
client circuit. Results with and without guard rotation are nearly
identical with negligible variations meaning that average perfor-
mance is independent of guard rotation.

Recalling that higher-bandwidth guards are more likely to be se-
lected for spots in a client’s guard list, poor guard bandwidth avail-
ability happens when all of a client’s active guards have low band-
width. This occurs with decreasing probability as the number of
active guards increases, and this is reflected in the dramatic de-
crease in the long left tail in Figure 10 as the number of guards
increases from 1 to 3. Above 3, however, the improvements are
less pronounced.

In this section, we measured and analyzed the effects of varying
the parameters of Tor’s guard design. Next we discuss the impli-
cations of these findings, and address Dingledine’s open research
questions.
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5. DISCUSSION
Guard stability and selection. As guards are the first hop on cir-
cuits, all of Tor’s functionality is contingent on their availability.
We explored their stability and found that on the whole guards are
quite stable. Compared to the general population of relays, guards
are generally available for longer stretches of time and offline for
shorter durations. This is a consequence of the guard flag distribu-
tion process governed by the directory authority and is as designed.
However, this process is not perfect, as we see that there are a

large quantity of guards with a wide variety of stability character-
istics that deviate from the intended entry guard design—recall Ta-
ble 1 for the range of downtimes and uptimes for guards. We note
that the incidence of active guard lists with low average bandwidth
in general is not prevalent; note that the plots for 3–10 guards in
Figure 10 do not have long tails to the left of the median as com-
pared to the 1 guard plot—meaning occasions where the entire ac-
tive list has low bandwidth are rarer—and that perhaps the guard
flag could be more selective. Indeed, Table 2 provides statistics
on the median guard bandwidth during our 8-month time slice; it
shows that the maximum of median guard bandwidth is just 113,
a level of active guard bandwidth which is surpassed by all clients
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rotation at various guard list sizes. Performance results without

guard rotation are nearly identical.

Table 2: Median guard bandwidth from Apr–Nov 2011

Min Median Mean Max

40 67 68.31 113

under “3G” and above and only suffered by 5% of “1G” clients
(Figure 10).

We reason that since low-bandwidth guard lists are rare, low-
bandwidth guards are not depended upon by end users and so re-
moving them from guard lists will not have a big impact from a
performance perspective.

However, it can be argued that for the sake of load balancing
these low-bandwidth relays provide relief whenever the end user
chooses them from their guard list instead of one of their higher-
bandwidth guards. These nodes may also provide added security
through additional relay diversity. It is unclear at the moment if
these nodes actually fulfill these desired effects, and this is an av-
enue of future investigation.
Natural churn and its effects on client compromise. In the lower
plot in Figure 4, it is clear that natural churn provides an adversary
increased opportunities to compromise guard lists. We also note
that although there is some downward pressure due to returning
honest guards, the trend is upwards over time. If not for guard
rotation, after a sufficient length of time a malicious relay should be
able to compromise all client lists. Recall that while guard rotation
speeds up the adversary’s accumulation of clients initially, it is self
limiting as the rate of clients gained equals the rate of clients lost
due to churn.

These trends indicate that guards are not dependable, but that
this is an unavoidable consequence of the volunteer nature of the
Tor network.

Furthermore, when reasoning about the impact of natural churn
it is difficult to know beforehand when a guard is likely to return,
if ever. It is due to this uncertainty that Tor has opted for such
sensitive guard replacement policies, and sophisticated guard retry
mechanisms.

Putting natural churn in perspective, we can reason that it is an
artifact that cannot be removed from the network, and it has a large
effect on the security and performance of the network. Therefore,
the best policy may be to avoid situations that lead to churn in the
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first place by selecting guards more cautiously and mitigating the
effects of churn when we do find one of our active guards offline.
Guard rotation. Long-lived relays will tend to accumulate clients
over time, and malicious relays will remain online to take advan-
tage of this effect. Rotating guards periodically mitigates that even-
tuality.
We note that guard rotation does, however, increase the chance

of compromise. This can be seen by the sudden increase in May
2011—when guard rotation began to take effect in our experiment,
30 days after its beginning—of the plot in Figure 4. We also note
that in Figure 5 the number of guards a client is serviced by, and
can hence potentially be compromised by, is much larger when
guard rotation is in effect. Furthermore, Figure 9 indicates that all
schemes expose clients to fewer guards when guard rotation is not
enabled. As mitigation of the above, we could increase the min-
imum and maximum durations of guard rotation from the current
30–60 days and see a reduction in both metrics, since the frequency
of rotation events would decrease.
In order to reason about rotation durations and pick better ones

we plot in Figure 11 the CDF of guard longevity for Apr–Nov 2011.
We note that only about 9% of guards remained part of the Tor net-
work for the entire 8-month duration of our experiments. Also, the
distribution is skewed towards shorter-lived routers with the median
at 1371 hours. The current rotation period is between 720–1440
hours which means that the majority of guards undergo guard rota-
tion. Since most guards are not long lived and leave the network of
their own accord, guard rotation occurring as frequently as it cur-
rently does is both unnecessary and undesirable. We would prefer
to target only those guards that are truly longer lived and thus are
the cause for our concern, and ignore those that simply do not exist
long enough to be worried about. Unfortunately, there is not an up-
ward inflection point, apart from the two small ones at the extreme
end of the time slice, which would indicate that longer-lived guards
stand apart from the others and thus can be dealt with using a more
appropriate rotation duration.
Perhaps as an alternative for longer-lived, and potentially more-

utilized guards, Tor ought to adjust their probabilities of being se-
lected according to how long they have been part of the network, in
addition to their bandwidths. The directory authorities can estimate
the number of clients currently using each guard relay based on its
historical weights and bandwidths, and adjust the weights in order
to balance the load. In this manner, over time, each guard will ef-

fectively limit the load on itself as well as reduce the accumulation
of clients.
Tor with One Guard. Intuitively, it seems that one guard ought
to provide the best security but that perhaps performance would
suffer. We revisit the results in Section 4 to evaluate this intuition.
From a circuit compromise perspective, we see in Figure 6 that Tor
with one guard offers the least likelihood of compromised guard
lists. We also note that fewer guards participate in an end user’s
guard list in that case (Figure 8). However, from a performance
perspective we note in Figure 10 that compared to Tor with three
guards, Tor with one guard suffers from 60% worse performance
50% of the time but is better 50% of the time where it provides
25% more average guard list bandwidth. This can be explained
with guard lists that have a combination of slow and fast guards,
which causes the average to be lower than the fastest guard. In the
case of Tor with only one guard, when a fast guard is selected, the
client can expect to receive fast service, provided that the middle
and exit nodes are not slow. It is important to note, however, that
Tor with one guard is superior to the other schemes evaluated in
Section 4 when the bandwidths are already at acceptable levels,
whereas it provides far slower performance at the lower ends of the
bandwidth spectrum.

Hence, the number of guards is a parameter that needs careful
adjustment, since our present results suggest that too few may lead
to performance degradation, while more can have unnecessary se-
curity implications. Indeed, it may be the case that there are hereto
undiscovered security implications of using just one guard as well.
COGS provides a way to investigate these questions and find solu-
tions.
Answers to Research Questions. We now tie the results of our
investigation to the questions posed in Section 1, and see how much
progress has been made and what remains to be answered.

We found that adversarial bandwidth is directly related to client
compromise rates and that this is an unavoidable effect of favouring
higher bandwidth relays—recall that this is a design choice, for the
sake of better performance. What is interesting is that, as seen in
Figure 2, bandwidth and compromise rates are not linearly related.
While more research is required to establish the exact relationship,
it is clear that performance-enhancing measures have led to higher
client compromise rates in this regard.

We found that users achieve greater security if they reduce the
number of entry guards they use. They can further improve their
security by eliminating or reducing the process of guard rotation.
However, we also found that the security improvements through
the reduction of guards and guard rotation come at the expense of
performance degradation. We also found that natural churn, while
inherent in the network and a source of compromise, works to am-
plify the compromise rate, but is not a dominating factor in the
present Tor network.

We did not vary guard rotation periods in this paper, and this
is an avenue of future work. We hope to identify an alternative
mechanism that is independent of relay stability and network char-
acteristics.

By putting all the parameters together we find in general that if
a suitable alternative to guard rotation can be found and smaller
guard lists used, then the security of Tor’s users will increase sig-
nificantly while the impact to performance for clients with slower-
than-average guards will degrade only slightly.

This could be further mitigated by making the guard flag more
selective and thus removing low-bandwidth guards, which would
raise the average guard bandwidth for all clients. We identify this
as an area for further analysis.
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6. RELATEDWORK
Entry guards were first proposed by Wright et al. [17] (there

called “helper nodes”) to mitigate the threat of the predecessor at-
tack [18] in low-latency anonymity networks. In the predecessor
attack, an adversary who deploys relays into the anonymity net-
work can passively link possible senders with possible receivers. If
clients choose their paths through the anonymity network by uni-
formly random selection, the predecessor attack predicts that an
adversary that controls c out of n nodes has the expectation of suc-
cessfully observing a given client after c/n rounds; the same adver-
sary has a (c−1)/(n−1) probability of observing the correspond-
ing destination server and a (c/n)((c− 1)/(n− 1)) probability of
linking the two. To eliminate the predecessor attack, Wright et al.
propose that the first node in a path be fixed. Clients who have the
misfortune of choosing a malicious entry node are guaranteed to
have a compromised first hop, while all other clients are protected
from this threat.
Entry guards for modern onion routing networks (like Tor) were

proposed by Øverlier and Syverson [13]. Since Tor does not choose
circuits with uniform selection over the available nodes (but in-
stead, in proportion to each node’s bandwidth capacity), the de-
tails of the analysis of the predecessor attack are more complicated.
However, Øverlier and Syverson found that an adversary who ar-
tificially inflates his perceived bandwidth capacity will be selected
more often and can launch a powerful predecessor attack. To miti-
gate this threat, they propose that Tor clients choose a small, fixed
number of Tor relays to always use as entries into the anonymity
network.
Extending Øverlier and Syverson’s attack, Bauer et al. [4] showed

that an adversary who controls a large number of nodes can launch
a type of Sybil attack that has the effect of replacing all non-malicious
entry guards with malicious ones (potentially all running on the
same machine). The attack works by deploying enough malicious
nodes that advertise high bandwidth and uptimes to effectively raise
the criteria for the guard flag so that only malicious nodes can be
used as entry guards. This attack was dangerously easy to launch,
due to the fact that Tor’s authoritative directories relied solely on
self-reported (and potentially inflated) bandwidth and uptime claims.
In part due to this attack, the directories now track each router’s
bandwidth and uptime [2, 14], and ensure that no one can launch
too many malicious nodes from the same machine (or network) [3].
Borisov et al. [5] describe the effects of entry guards on the se-

lective denial of service (DoS) attack. They argue that while the
selective DoS attack will never be effective on a client that uses
honest entry guards, the attack becomes more powerful when a
client uses malicious entry guards. The authors also suggest that
the choice of three entry guards results in the highest number of
compromised circuits, and they suggest fixing both the entry and
exit ORs as suggested by Wright et al. [18].
Abbott et al. [1] describe a browser-based attack on Tor where

a malicious exit injects a signal generator to the user’s traffic. A
malicious entry guard is required to perform traffic analysis on its
clients’ circuits to identify if a circuit carries the injected signal.
If such a circuit is identified, then the attacker is able to link the
client to its destination. A strong point of this attack is that it does
not require both entry and exit to compromise a circuit at the same
time, as it only requires that a malicious entry guard detect a spe-
cific signal encoded by a malicious web service. The authors argue
that using three entry guards helps to protect clients that use hon-
est entry guards. However, the attack becomes more effective for
unlucky clients who use malicious entry guards.
Since its initial proposal for Tor, the entry guard design has be-

come more sophisticated, including the many minute details de-

scribed in Section 2. However, to date, there has been no thor-
ough investigation into the security and performance implications
of Tor’s entry guard design. This work serves to fill this gap.

7. FUTUREWORK
The major next step, research we are currently engaged in, is to

use the results presented here coupled with further COGS-driven
analysis to answer the big picture guard flag assignment question
posed by Dingledine [8]. A related research problem currently un-
der way is the Tor client model. We noted in Section 3 that it is
unclear how to model the Tor client base and the adversary’s inser-
tion strategy. We have presented results for the adversary arriving
after all clients have picked their guards and no client leaves the Tor
network or joins it. Counterintuitive properties—like those in Fig-
ure 7 where increasing guard list size actually reduces compromise
rates—may not hold for other conditions. Indeed, we have pre-
liminary results, from ongoing research, that suggest that when the
adversary exists before the clients arrive, the above counterintuitive
properties do not appear. We need better models that accurately re-
flect user and adversary behaviour in the Tor network in order to
properly resolve these questions.

We are also presently considering alternative guard selection al-
gorithms that have desirable properties. As an example of one pos-
sible direction, we note that in Section 5 the consensus bandwidth
weightings currently utilized to control the guard selection process
could be augmented with an age-related weighting that would af-
fect the probabilities of a guard’s selection. Also being examined,
and closely related, is Tor’s “weighted-fractional-uptime” metric—
a component in ensuring that the guard flag is given to a relay with
little churn—which could be replaced with an alternative calcula-
tion that better predicts relay churn behaviour. Another example
is a trust-based [13] guard selection scheme such that clients pick
guards according to how much they trust them. One final exam-
ple is to investigate the condition that guards are only added to a
client’s guard list when fewer than two online guards remain in the
list; we have results that indicate that two is a safe value but further
analysis remains on how it may interact with various guard selec-
tion algorithms.

It is a strength of our COGS framework that it is sufficiently
flexible to address all of these, and many related, questions.

8. CONCLUSION
In this work, we investigated the open questions relating to Tor’s

entry guard design posed by Dingledine [8]. We constructed COGS,
a flexible simulation framework, and using it, provided thorough
empirical data and analysis to answer most of the questions posed.
This leaves the larger question of enhancing the guard selection and
allocation algorithms in Tor. This is an area of ongoing work, with
promising preliminary results, and we are confident that COGS
provides a valuable tool in tackling these important problems.
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