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Abstract — We introduce and formally define all-but-k mer-
curial commitments, a new kind cryptographic commitment
that generalizes standard mercurial and non-mercurial (vec-
tor) commitments. We provide two concrete constructions for
all-but-k mercurial commitments: the first is for committing
to unordered lists (i.e., to multisets) and the second is for
committing to ordered lists (i.e., to vectors). Both of our
constructions build on Kate et al.’s polynomial commitments,
leveraging the algebraic structure of polynomials to fine tune
the ordinary binding property of mercurial commitments. To
facilitate these constructions, we give novel zero-knowledge
protocols for 1) proving knowledge of a point on a committed
polynomial, 2) arguing knowledge of the committed polyno-
mial itself, and 3) arguing that a committed polynomial has
degree at most k.
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vector commitments, zero-knowledge proofs, polynomial
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I. INTRODUCTION

This paper introduces all-but-k mercurial commitments,
a new type of cryptographic commitments with similari-
ties to mercurial vector commitments [7]. Our new com-
mitments are suitable for committing to collections of val-
ues, which may be unordered multisets or ordered vectors.
In both instances, the all-but-k opening protocol explicitly
reveals an upper bound on the “softness” of the opening,
thus making all-but-k binding “tuneably” stronger than
binding in an ordinary mercurial commitment to the same
type of collection. One extreme in the binding spectrum
occurs when the softness bound is k > n for an n-element
collection, in which case all-but-k binding is just regular
mercurial binding; the other extreme occurs when the
softness bound is k = 0, in which case all-but-k binding
is regular non-mercurial binding. All-but-k binding for
intermediate softness bounds k € [1,n— 1] is intermediate
between the above two extremes.

Contributions. The primary contribution in this paper is:
1. We introduce and formally define all-but-k mercurial
commitments to multisets and vectors.
The secondary contributions are:
2. We describe three novel zero-knowledge protocols for
proving statements about committed polynomials.
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3. We construct all-but-k mercurial commitment
schemes from polynomial commitments and our
zero-knowledge proofs about committed polynomials.
One of our new schemes is suitable for committing
to multisets and the other for committing to vectors.

Outline. We begin with relevant background material
in §II: first we cover our notation and cryptographic
assumptions in §1I-A, next we introduce polynomial com-
mitments in §II-B and present our zero-knowledge proofs
about committed polynomials in §II-C, and finally we
provide background on mercurial commitments in §II-D.
In §III we introduce all-but-k mercurial commitments,
beginning with basic notation and terminology in §III-A
and ending with formal definitions in §III-B. Our all-but-
k constructions appear in §IV. The multiset construction
is in §IV-A and the vector construction is in §IV-B. §V
contains some brief concluding remarks.

II. MATHEMATICAL PRELIMINARIES

A. Notation and cryptographic assumptions

Throughout, G will denote a cyclic group of 27-bit
prime order ¢ with a fixed, publicly known generator g
and an admissible bilinear pairing e: G x G — G;. (For
ease of presentation, we use a symmetric pairing; however,
generalizing our constructions to use asymmetric pairings
is not difficult and may in fact improve efficiency. For
an overview of the available choices of cryptographic
pairings, we refer the reader to Galbraith et al. [10].)
We use multiplicative notation for the groups G and G;
and write o ¢ G to denote uniform random selection
of an element ¢ from G. To prove the security of our
constructions, we assume that G belongs to a polynomial-
time generated sequence of groups for which certain com-
putational hardness assumptions hold. A formal statement
of each required assumption follows in Definitions 1
through 3; in these definitions — and throughout the paper
— the term negligible describes a function £: N — R with
the property that, for every real number ¢ > 0, there exists
a positive integer T, such that (1) < 1/z¢ for all 7 > 1,.

Our first assumption is the so-called discrete logarithm
(DL) assumption, a venerable staple in the cryptographic
literature.
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Definition 1 (Discrete Logarithm Assumption; [14,
§3.6]). Let G be a probabilistic polynomial-time (PPT)
algorithm that, on input T € N, outputs a representation
of a group G, its 21-bit order g, and a generator g € G.
The discrete logarithm assumption holds in the sequence
of groups output by G if there exists a negligible function
€: N — R such that, for every PPT adversary A4, we have
Prla + A(g,8%.9) | (G,q,8) + G() N o & Zj] < &(7).

Our next two assumptions regard the hardness of re-
laxed Diffie-Hellman problems [14, §3.7]. First is the n-
strong Diffie-Hellman assumption (n-SDH), which was
introduced by Boneh and Boyen in 2004 [3, §2.3] and
has since received considerable attention from the cryp-
tographic community.

Definition 2 (n-Strong Diffie-Hellman Assumption; [4,
§31). Let G be a PPT algorithm that, on input T € N,
outputs a representation of a group G, its 2T-bit order q,
and a generator g € G. For a fixed positive integer n €
N, the n-strong Diffie-Hellman assumption holds in the
sequence of groups output by G if there exists a negligible
function €: N — R such that, for every PPT adversary A,
we have Pr[(c,g") + A(g,g%....8%"q) | (G,q,8)
G(T) N & Z;] < &(t), where A is free to choose any
¢ € Zy~{—0o} during the experiment.

Our last assumption concerns a problem similar to
the n-Diffie-Hellman inversion problem [2, Appendix A]
called the n-polynomial Diffie-Hellman (n-polyDH) prob-
lem. Au et al. [1, §5.4] implicitly used this latter assump-
tion in their compact e-cash scheme to justify the claim
that Nguyen’s accumulator construction [15] is bounded.
Kate et al. [11, Definition 2] identified and explicitly
defined n-polyDH in a subsequent paper.

Definition 3 (n-Polynomial Diffie-Hellman Assump-
tion; [11, §2]). Let G be a PPT algorithm that, on input
T € N, outputs a representation of a group G, its 27t-bit
order q, and a generator g € G. For a fixed positive integer
n €N, the n-polynomial Diffie-Hellman assumption holds
in the sequence of groups output by G if there exists a
negligible function €: N — R such that, for every PPT
adversary 4, we have Pr [(f7 g/ ) — a(g,g%....8" q) |
(G,q,8) + G(T) N o & Z;] < &(T), where A is free to
choose any f € Zq[x] with \/q > degf > n during the
experiment.

Kate et al. remark [11, Footnote 4] that so bounding
the degree of f in Definition 3 prevents 4 from comput-
ing n-polyDH solutions using standard number-theoretic
identities (e.g., Fermat’s little theorem). We conclude our
discussion of computational assumptions by noting that
the n-SDH and n-polyDH assumptions are both at least
as strong as the DL assumption in that, if either the n-
SDH or the n-polyDH assumption holds in the output of
G, then the DL assumption also holds in the output of G.
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B. Polynomial commitments

A polynomial commitment scheme is a cryptographic
commitment scheme that lets a committer Alice commit
to a polynomial f € Z,[x] and later open the commitment
either polynomial-wise to f or point-wise to (i, f(i)) for
arbitrary i € Z,. Kate et al.’s [11] PolyCommit,, scheme is
a pairing-based construction for polynomial commitments
in which the size of a commitment is constant with
respect to the degree of the committed polynomial: using
a common reference string of length ®@(n 1gq) bits, Alice
can commit to any polynomial f € Z,[x] of degree at
most n < /q using only a single element from an order-g
bilinear group G. The degree-n PolyCommit,, reference
string is an ordered list PK = ((G,q,£),¢% | j € [1,n]),
where (g) =G, |gl=g¢, and (G, q,8) < G(7) for some PPT
algorithm G whose output satisfies the above DL, n-SDH,
and n-polyDH assumptions. In practice, we expect the
maximum degree n in PK to be at most polylogarithmic
in g (so that n < ,/q) or, equivalently, polynomial in T;
otherwise, the length of PK and the average-case cost of
computing and opening a commitment are both superpoly-
nomial in 7. A trusted initializer or a distributed protocol
selects & & Z; and securely discards it immediately after
computing PK.!

To commit to a polynomial f(x) = le‘»zoa jxj € Zglx]
of degree k < n, Alice computes C =JT¢_o(g*' )" = g/
using the appropriate values from PK. Alice can of course
open C to f by simply revealing f to Bob and having
Bob redo the calculation. Alternatively, Alice can open
C to (i, f(i)) by appealing to the polynomial remainder
theorem [17] as follows.

Protocol 1 (Point-wise opening in PolyCommit,, [11]).
Al: Write ‘ fx) = O@)(x — i) + f(i), where Qx) =
Z};;} bjx! is the polynomial quotient obtained by di-
viding f(x) — f(i) by (x —1i). Compute the witness
;= ]]‘.;(} (gaj)bj =29 gnd send (i,f(i)7 a),-) to Bob.

B2: Return “true” if and only if e(Clgf®,g) =
e(w;, 8%/g"); otherwise, output “false”.

Note that the witness ; is itself a PolyCommit,,
commitment whose length, like C, is independent of deg f.

Both point-wise and polynomial-wise opening are com-
plete by inspection. Hiding is unconditional when Bob
knows at most k — 1 evaluations of a committed degree-k
polynomial f, computational under the DL assumption
when Bob knows exactly k evaluations of f and that
deg f = k, and trivially nonexistent when Bob knows
k+1 or more evaluations of f; point-wise evaluation
binding is computational under the n-SDH and n-polyDH
assumptions and polynomial-wise binding is computa-

! Alternatively, one can regard PolyCommitp, commitments as trap-
door commitments with ¢« as the trapdoor: given «, it is possible to
open any commitment C to any arbitrary point (i,y;) € (Zq\ {(x}) X Zyg.
Note that knowledge of « affects binding but does not affect hiding.
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tional under the DL assumption [11, Appendix C1]. A
trapdoor prover can of course solve instances of the n-
SDH and n-polyDH problems, which is why she can open
arbitrary commitments to arbitrary evaluations. We refer
the reader to Kate et al.’s paper [11] for further details
on PolyCommit, commitments, including proofs of the
above assertions.

C. Zero-knowledge proofs for polynomial commitments

Both of our all-but-k constructions in §IV extend Kate
et al’s PolyCommit, scheme. To facilitate these con-
structions, we introduce three new honest-verifier zero-
knowledge protocols for assertions about committed poly-
nomials; in particular, we give 1) an honest-verifier zero-
knowledge proof of knowledge of a point on a committed
polynomial, 2) an honest-verifier zero-knowledge argu-
ment of knowledge of the committed polynomial itself,
and 3) an honest-verifier zero-knowledge argument that a
(known) committed polynomial has degree at most k.

1) Proving knowledge of a point on a committed polyno-
mial. In their technical report [12, Appendix E], Kate et
al. suggested an honest-verifier zero-knowledge proof of
knowledge of a point (i7 f(i)) € Zy x Z; on a polynomial
f committed to by C, where i € Z, is public and f(i)#0
is the prover’s secret. Our own argument of knowledge of
a committed polynomial, which we will present shortly,
follows from the observation that if a non-trapdoor, PPT
prover Alice can prove knowledge of such a point for an
arbitrary verifier-selected challenge i € Z,, then with all
but negligible probability (in 7 = (I2¢)/2) she must indeed
know a polynomial f such that C = g/(®. Of course, Alice
cannot simply let Bob challenge her to prove knowledge
of arbitrary points on f using Kate et al’s protocol,
since doing so would leak information about the roots
of f. (If honest Bob selects a challenge i € Z, uniformly
at random, then with all but negligible probability we
have that f(i) # 0 and so the protocol is indeed honest-
verifier statistical zero-knowledge; however, if dishonest
Bob conjectures that f has a root at some particular input
i, he can use Alice as an oracle to prove or disprove his
conjecture. One might object that such an attack is outside
of the threat model since, absent this attack, our protocol
is still only zero-knowledge with respect to the honest-
verifier; nevertheless, we feel that the attack’s simplicity
and power makes Kate et al.’s protocol unpalatable for
our particular application. Moreover, standard defenses
like having Bob commit to his challenge input i ahead of
time are clearly ineffectual against this particular attack.)
We therefore propose the following alternative proof of
knowledge, which is slightly more efficient than Kate
et al.’s proof and, importantly, does not depend on f(i)
being nonzero. (However, the zero-knowledge property
does require that C/g/®D #1.)

Note that the subprotocol in Steps Alb through B4 of
Protocol 2 is a standard Schnorr-like proof of knowledge
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of a value committed to by a Pedersen commitment [16]
in G;.

Protocol 2 (Proof of knowledge of a point on a
committed polynomial).

Ala: Write‘ fx) = Qx)(x — i) + f(i), where Q(x) =
le‘;& bjx! is the polynomial quotient obtained by di-
viding f(x) — f(i) by (x —i). Compute the witness
w; = ];-;(} (g“'/)bj = g% and blind it as @; = a)il/' for
some r & ZLs,.

Alb: Choose so,8, S Zj and compute S = e(@;,8%/g')" -
e(g,2)". Send (@;,S) to Bob.

B2: Choose c & Z, and send it to Alice.

A3: Compute vy =s,—rc mod g and vi=s,—y;c mod g,
where y; = f(i). Send (vy,v,) to Bob.

B4: Return “true” if and only if (e((b,-,g"‘/gi)vo .e(g7g)vl) .
e(C,8)° = S; otherwise, return “false”.

Lemma 1. Protocol 2 is a system for honest-verifier zero-
knowledge proofs of knowledge of a witness-evaluation
pair (0;,y;) € G X Zq such that e(C/g¥i,g) = e(®;,8%/g").

Proof. Completeness is clear from inspection of the
protocol. The protocol is honest-verifier zero-knowledge
because C/g¥ # 1 implies that @; # 1 and therefore that
the blinded witness @; = a)i] " is statistically independent
of ;. Since the subprotocol in Steps Alwb)—B4 is itself
honest-verifier zero-knowledge [5, §2.4.3], a simulator for
the honest verifier just chooses @; €x G and then invokes
the simulator for the honest verifier in the subprotocol.
Soundness and extractability in Protocol 2 follow directly
from soundness and extractability in the subprotocol,
which is itself special sound. In particular, the subprotocol
proves knowledge of (r,y;) such that e(C, g) = e(®;,8%/g)" -
e(g,g)i. This is equivalent to e(C/g¥,g) = e(®],&%/g");
thus, an extractor for the subprotocol can extract (r,y;)
and compute ®; = @] to get the desired tuple (@;,y;). The
knowledge error of Protocol 2 is clearly no worse than
the knowledge error of the subprotocol. ]

We denote Protocol 2 using a Camenisch-Stadler [6]
inspired notation by PK{(®;,y;) | C = g/ A w; = g% A
F@®) = O(x)(x — i) + y;}. As should be clear from this
notation, Protocol 2 does not prove that Alice knows
a polynomial f and output y; such that C = g/® and
f(@) = y;; all it proves is that she knows a witness-
evaluation pair (®j,y;) that, together with the public values
(C,i), satisfies Bob’s verification equation in the point-
wise opening protocol. Alice may have learned (@j,y;),
for example, from some earlier point-wise opening of C
by Carol, or perhaps she computed @; = (C/gyi)ﬁ using
the trapdoor o or by solving an instance of the n-SDH
problem. In each case, the proof is still valid: its soundness
is not contingent on any computational assumptions.
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2) Proving knowledge of a committed polynomial. Con-
sider a variant of Protocol 2 that starts with an additional
Step B0 in which Bob arbitrarily chooses the index i & Z,
with respect to which Alice proves knowledge of (wj,y;)
in the remainder of the protocol. As we will show, this
variant yields an honest-verifier zero-knowledge argument
of knowledge of a polynomial f such that C = g/(®. The
arguments are computationally convincing under the n-
SDH and n-polyDH assumptions. Completeness follows
immediately from completeness in Protocol 2. A simulator
for the honest verifier just chooses i &g G and invokes
the simulator for Protocol 2. It follows that, if a non-
trapdoor, PPT prover Alice is not privy to a (nonconstant)
polynomial f such that C = g/®, then the probability
that she knows an (@j,y;) pair for Bob’s challenge index
i & Zg is at most about n/q. The restriction n < \/q
implies that n/q < 1/, /g so that the protocol’s knowledge
error is negligible in 7 ~ (Ig¢)/2. Thus, if a PPT prover
Alice can convince honest Bob with a probability that is
polynomial in 7, then a knowledge extractor for Protocol 2
can extract f from Alice in expected polynomial time by
extracting deg f'+ 1 distinct points on f and interpolating.
The runtime of the extractor is linear in n, which may,
in theory, be superpolynomial in 7; this is fine, however,
because the extractor still runs in polynomial time with
respect to the same parameters as the PPT prover). We
thus get the following lemma.

Lemma 2. The above variant of Protocol 2 is a system for
honest-verifier zero-knowledge arguments of knowledge of
a polynomial f such that C = g/®. It is computationally
convincing under the n-SDH and the n-polyDH assump-
tions.

We denote the above zero-knowledge argument of
knowledge by PK{ f | C = g/® A degf <n}.

3) Proving that a committed polynomial has degree at
most k. Suppose that the PolyCommit,, reference string
PK bounds the degree of committed polynomials by
n < \/q/2 (which, in practice, is not a restriction since
v/4/2 is still superpolynomial in 7). Under the n-polyDH
assumption, it should be infeasible for a non-trapdoor PPT
prover Alice to output a commitment to any polynomial
whose degree is greater than n but less than ,/g; in par-
ticular, if Alice knows a polynomial f such that C = g/(®
and k < degf < n, then she can exhibit a commitment
C to fi(x)= Xk f(x) with at most negligible probability
(in T ~ (Igg)/2). Note that the restriction n < /q/2 is
necessary to ensure that degf; = degf + (n — k) will
never exceed /g (cf. Definition 3). The following is
a noninteractive trapdoor zero-knowledge argument (i.e.,
an argument that is zero-knowledge with respect to all
trapdoor verifiers) that exploits the above observation to
prove that f(x) = Z’]‘-ZO a jxj has degree at most k.
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Protocol 3 (Proof that a committed polynomial has
degree at most k).
Al: Compute C' = Hljzo(go‘"fk”)“f = g ysing the
appropriate values from PK. Send C' to Bob.

B2: Output “true” if and only ife(C,g“n*k) Ze(C,g);
otherwise, output “false”.

For provable soundness under the n-polyDH assump-
tion, Protocol 3 requires that the prover knows a poly-
nomial f such that C = g/(®. We denote Protocol 3
in combination with an argument of knowledge of f
by PK{f | C = g/® Adegf < k}. Tt is straightforward
to convert the protocol into a (non-trapdoor, interactive)
honest-verifier zero-knowledge argument by blinding '
as (C)". Alice then uses a Schnorr proof in G, to
prove knowledge of r such that e((’,g) = e(C, g“”ik)’.
Fortunately, the simpler trapdoor zero-knowledge version
we have presented here suffices for the security of our
all-but-k constructions.

Lemma 3. Protocol 3 is a system for noninteractive,
trapdoor zero-knowledge arguments that, if Alice knows f
such that C = g/'®, then deg f < k. It is computationally
convincing under the n-polyDH assumption.

Proof Completeness for any k € [1,n] is clear from
inspection of the protocol. The protocol is trapdoor zero-
knowledge because a trapdoor simulator can trivially
output ' = ¥ given (C,n,k). If Alice knows f such
that C = ¢/® and k < degf < n, and ¢’ such that
e(C, g% ") = e(C',g), then she knows fi(x) = ¥ f(x)
such that ¢’ = g® and n < f; < 2n. Moreover, since
2n < \/q, we have that (fi, (') is an n-polyDH tuple in G
(cf. Definition 3). Under the n-polyDH assumption, Alice
can exhibit such a ' with only negligible probability in
T; thus, the proof is computationally sound under the n-
polyDH assumption when Alice knows f. ]

D. Mercurial commitments

Chase et al. introduced mercurial commitments at Euro-
crypt 2005 [8]. Mercurial commitments are a special type
of commitment with a carefully relaxed binding property.
A committer Alice can either hard commit to a value x
or soft commit to no specific value. The two kinds of
commitment look indistinguishable to a recipient Bob,
but they have very different binding properties. A hard
commitment is computationally binding in the traditional
sense: if Alice hard commits to x, then she can later hard
open or soft open the commitment to x and only to x.
In contrast, a soft commitment is entirely nonbinding: if
Alice soft commits, then she can later soft open (or tease)
the commitment to an arbitrary value of her choosing (but
she can never hard open it). Thus, when Alice soft opens
a commitment to x, she effectively proves that “if this
commitment can be hard opened at all. then it hard opens
to x”. A mercurial vector commitment scheme [7] is just a
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mercurial commitment scheme that lets Alice hard commit
to an arbitrary subset of components from some length-n
vector in a single commitment. Alice can then soft open
the commitment with respect to any position, and she
can hard open it with respect to any position in which
she initially hard committed. As in regular mercurial
commitments, the binding guarantee is that a position-
wise soft opening cannot contradict a position-wise hard
opening at the same position.

III. ALL-BUT-K MERCURIAL COMMITMENTS

An all-but-k mercurial commitment scheme is similar
to a mercurial vector commitment scheme. With all-but-k
mercurial commitments, the committer Alice can commit
to a collection of values # and later open that commit-
ment to an arbitrary “supercollection” of # to which she
has added up to k additional values. Exactly what it means
to “add values” to H to form a “supercollection” of course
depends on what sort of collection # is. We consider
two basic collection types: ordered lists (i.e., vectors) and
unordered lists (i.e., multisets).

A. Terminology and notation

We assume, without loss of generality, that all values to
which Alice commits are from the interval D =[0,d — 1]
for some fixed positive integer d. (To commit to elements
from a finite commitment domain D’ that is not of the
above form, it suffices to set d = |D’| and define an injec-
tive encoding function ¢ : D’ — D that maps each element
of D' to a representative element of D =[0,d —1].)

Committing to multisets. If # and S are multisets over a
common universe D, then H &S denotes the multiset sum
of # and S. We say that # is (D, n)-committable if it has
universe D and cardinality at most n and that (#,S) is
(D, n,k)-decommittable if S has cardinality at most k£ and
H WS has universe D and cardinality equal to n. We write
H ={(f,n;) |i€[1,m]} to denote that # has m distinct
elements #; € D such that, for each i € [1,m], A occurs in
H with multiplicity n; € N. A polynomial A(x) € Zy[x] is
a polynomial representation of H = {(f;,n;) | i € [1,m]}
if h(x) = r[TZ, (x — ﬁi)"i for some r € Z;. We denote
the set of all polynomial representations of a set # by
PolyRep(#). Note that degh = |#| if h is a polynomial
representation of #.

Committing to vectors. For committing to vectors i
and 5, we introduce a placeholder element “x” whose
sum with any a € D (notably, with a = 0) we define
to be a. We then define the sets #H = {i | ;; = %} and
S ={i|s =%}, where f; and s; respectively denote the
i" components of A and 5. We say that A is (D,n)-
committable if € (DU{*})" and that (,5) is (D,n,k)-
decommittable if f and 5 are both (D, n)-committable, if
|H| <k, and if HUS =[1,n] and H NS =0. A pair of
polynomials (h(x),h’ (x)) € Zglx] X Zg[x] is a polynomial
representation of K if degh = n, if h(i) = k; for every
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i€, and if /' is a polynomial representation of #. We
denote the set of all polynomial representations of a (D, n)-
committable vector A by PolyRep(#). Note that choosing
(h(x),h’ (x)) & PolyRep(f) is equivalent to choosing h
such that h(i) = f if i € [1,n]~ H and h(i) & Z, if
i€ HU{0} and W' (x) = rTcqr(x — i) for r & Z.

B. Formal definitions for all-but-k commitments

Definition 4 (All-but-k mercurial commitment scheme).
For a fixed collection type, let ©® be the binary operator
that maps two collections to a supercollection.” An all-
but-k mercurial commitment scheme to such collections
is a four-tuple of PPT algorithms:

AllButK-Init(7,d, n,) takes as input a security parameter
T € N, an upper bound d € N for the commitment
domain D = [0,d — 1], and a maximum cardinality
ny € N for a committable multiset. It outputs a common
reference string PK suitable for committing to all-but-
k elements of an n-element collection of values from
D for any pair (n,k) of nonnegative integers with k <n
and n < ny. Each of the other algorithms take PK as
an implicit input.

AllButK-Commitpg (1, H) takes as input a cardinality n <
ny and a (D,n)-committable collection H. It outputs
an all-but-k commitment C and decommit information
6 =(H,n,...) for (C,H,n) suitable for opening C to
H ® S for any collection S and k € N such that (H,S)
is (D, n,k)-decommittable.

AllButK-Open, (C,k, S, d) takes as input an all-but-k
commitment C, an integer k € N, a collection S, and
decommit information & for (C,H,n). If (H,S) is
(D,n,k)-decommittable, then it outputs a decommit-
ment (C,0,k,®), where O =H ®S and o is a witness
for (C, O,k); otherwise, it outputs L.

AllButK-Verify, (C, O,k, w) takes as input a decommit-
ment (C,0,k,®). It outputs “true” if @ is a witness
for (C, 0, k) and it outputs “false” otherwise.

Definition 5 (Position-wise opening). An all-but-k mer-
curial commitment scheme (AllButK-Init, AllButK-Com-
mit, AllButK-Open, AllButK-Verify) for vectors supports
position-wise decommitment if it has the four additional
PPT algorithms:

AllButK-SoftOpen (C, O, k, @, i) takes as input a decom-
mitment (C, O, k, @) and an index i € [1,|O|]. It outputs
a position-wise soft decommitment (C,k,®,i,0;,T),
where 0; € D is the jth component of O, and 7 is a
noninteractive proof of knowledge of O such that o is
a witness for (C,0,k) and the i component of O is
0j.

2For vectors, we interpret © as componentwise addition; for mul-
tisets we interpret it as multiset sum; with other collection types, the
interpretation might differ.
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AllButK-SoftVerify, (C,k, @,i,0;, ) takes as input a
position-wise soft decommitment (C,k,®,i,0;, ). It
outputs “true” if 7 proves that the committer knows
O such that @ is a witness for (C,0,k) and the i
component of O is o;.

AllButK-HardOpen, (C, 8,i) takes as input a commit-
ment C, decommit information 6 = (H,n,...), and
an index i € [1,n]. It outputs a position-wise hard
decommitment (C,i,h;, ®;), where h; € D is the i
components of H and w; is a witness for (C,1i, h;).

AllButK-Hard Verify, (C, i, h;, @;) takes as input a posi-
tion-wise hard decommitment (C,i,h;, @;). It outputs
“true” if @; is a witness for (C,i,h;) and it outputs
“false” otherwise.

Definition 6 (Secure all-but-k mercurial commitment
scheme). An all-but-k commitment scheme is secure if it
satisfies the following properties.

1. Correctness. Let (H,S) be (D,n, k)-decommittable for
n < ng, let (C,0) < AllButK-Commit(H, |H ® S|), and
let (C,0,k,®) < AllButK-Open(C,k,S,5). Then All-
ButK-Verify(C, O, k, ®) = “true”.

2. Hiding. No adversary A4 can win the following indis-
tinguishability game against the honest challenge C
with a probability exceeding (1/2) + €(7):

1. A chooses a positive integer n < n,, a nonnegative
integer k < n, and two (D, n,k)-decommittable pairs
(Hy,S,) and (H},S)) such that Hy® Sy = H,®S,, then
sends (PK,(Ho,S,),(Hy,S),n,k) to C.

2. C chooses b & {0,1}, computes (C,8) + All-
ButK-Commit(H,,n), and (C, O, k, ®) < AllButK-O-
pen(C,k,Sy,0), then sends @ to 4.

3. A4 outputs b’ and wins if and only if &’ = b.

If 4 can only run PPT algorithms, then hiding is
computational; otherwise, it is unconditional.

3. Binding. For any adversary A4, if {C,(0;,k;, ;)| i€
[1,m]} + APK) and AlButK-Verify(C,O;,k;, @) =
“true” for each i € [1,m], then with probability at least
(1 — E(T))m, there exist H,S,...,S, such that, for all
i € [1,m], the pair (H,S;) is (D,n,k;)-decommittable
and O; = H®S,;. If 4 can only run PPT algorithms,
then binding is computational; otherwise, it is uncon-
ditional.

IV. CONSTRUCTIONS
A. Multiset commitments from roots of polynomials

Our first construction implements all-but-k mercurial
multiset commitments. It is provably secure under the DL,
n-SDH, and n-polyDL assumptions in the random oracle
model (a version with interactive opening/verification pro-
tocols would be secure in the standard model). The idea is
quite simple. To hard commit to a multiset # we output
a PolyCommit, commitment C to a random polynomial
representation /i(x) € PolyRep(H). Suppose we want to

Rev: 104 (allbutk.tex)

open the commitment to a superset # WS of . If h(x) has
leading coefficient r € Z;, we let s(x) € PolyRep(S) be the
polynomial representation of .S with leading coefficient 1/r
and observe that h(x)s(x) € PolyRep(H W S) is the monic
polynomial representation of H W.S. The prover reveals
D=g"» guws, and TT=PK{s| D= g"®Adegs < k}.
We use Fiat and Shamir’s heuristic to make the above
proof of knowledge non-interactive in the random oracle
model [9].

Construction 1.

AllButK-Init(7,d,ny) chooses (G,q,g) < G(t) and out-
puts a PolyCommit,, common reference string PK =
(G,q,8),8" | i € [1,n0l) if ny < \a/2 and q > d;
otherwise, outputs 1.

AllButK-Commit(n, #) outputs C = g"® for a random
polynomial representation h(x) € PolyRep(H) with
leading coefficient r and decommit information 6 =
(H,n,r) if n <ng and H is (D,n)-committable; other-
wise, outputs L.

AllIButK-Open(C, k, S, 8) outputs a witness @ = (C',I1,r-
) if n < ny and (H,S) is (D,n,k)-decommittable,
where C' = g% for a random polynomial represen-
tation s(x) of S with leading coefficient r' & Z, and
I=PK{s|D=g"® Adegs <k}, otherwise, it outputs
1.

AllButK-Verify(C, 0, k, ®) computes g°® for the polyno-
mial representation o(x) € PolyRep(O) with leading co-
efficing r-v', then outputs “true” if e(g°®, g) = e(C, ")
and 11 is correct.

Theorem 1. Construction 1 is a secure all-but-k mercu-
rial multiset commitment scheme under the DL, n-SDH,
and n-polyDH assumptions in the random oracle model.

B. Vector commitments from evaluations of polynomials

Construction 2.

AllButK-Init(7,d,n,y) chooses (G,q,g) < G(t) and out-
puts a PolyCommit,, common reference string PK =
((G,q,8),8% |i€l,nol) if no < V4 and q > d; other-
wise, outputs L. .

AllButK-Commit(n, £) outputs a commitment C = (g"®,
ghl(o‘)) to a random _ polynomial representation
(h(x),h’(x)) &g PolyRep(h) and decommit information
8 = (R,n, h(0), 1 ().

AllButK-Open(C, k, 5, 0) outputs a  witness © =
(C',D,r,m) if (h,5) is (D,n,k)-decommittable, where
C' = g"Y and s(i) = s;— h(i) for all i € H, D = g"®,
r = s(0) + h(0), and t(x) = K'(x) - s(x)/TT,(x — i),
and = PK{(s,t) : C = @ A D = g"® A degs <
no A degt < k}.

AllButK-Verify(C, 3, k, ®) computes g”® for the polyno-
mial representation o(x) € PolyRep(d) that has o(0) =r,
and g% for z = " (x—1i), then outputs “true” if
go(oc) 2 gh(oc)gs(a)’ e(gs(a),gh,(a)) — e(gt(oc)vgz(a)), and T
is correct.
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Theorem 2. Construction 2 is a secure all-but-k mercu-
rial vector commitment scheme under the DL, n-SDH, and
n-polyDH assumptions in the random oracle model.

Optimization. Define z,(x) = [[j=;(x — i) and, for each
i €[0,n], define the Lagrange coefficient A;(x) =] i %
where the product is over j € [0,n]\ {i}. Now con-
sider the augmented common reference string PK’' =
(G,q,8),8%®,g%® g% | i € [1,n]}, which is of course
computable from the standard reference string PK using
O(n2 7) multiplications in G. We can write all commitment
computations as a multiexponentiation in which all-but-k
of the exponents is 1gd bits long.

Theorem 3. Using the above augmented reference string,
AllButK-Commit, AllButK-Open, and AllButK-Verify in
Construction 2 each have runtime in ®(n lgd) multiplica-
tions for any fixed k.

V. CONCLUSION

We introduce and formally define all-but-k mercurial
commitments, a new kind cryptographic commitment that
generalizes standard mercurial and non-mercurial (vector)
commitments. We provide two concrete constructions for
all-but-k mercurial commitments: the first is for commit-
ting to unordered lists (i.e., to multisets) and the second
is for committing to ordered lists (i.e., to vectors).

Please check back soon for a more detailed draft
including proofs of correctness for the constructions and
applications.
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draft.
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