
PCTCP: Per-Circuit TCP-over-IPSec Transport for
Anonymous Communication Overlay Networks

Mashael AlSabah Ian Goldberg
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada N2L 3G1
{malsabah,iang}@cs.uwaterloo.ca

Abstract
Recently, there have been several research efforts to

design a transport layer that meets the security require-
ments of anonymous communications while maximizing
the network performance experienced by users. In this
work, we argue that existing proposals suffer from sev-
eral performance and deployment issues and we intro-
duce PCTCP, a novel anonymous communication trans-
port design for overlay networks that addresses the short-
comings of the previous proposals. In PCTCP, every
overlay path, or circuit, is assigned a separate kernel-
level TCP connection that is protected by IPsec, the stan-
dard security layer for IP.

To evaluate our work, we focus on the Tor network,
the most popular low-latency anonymity network, which
is notorious for its performance problems that can po-
tentially deter its wider adoption and thereby impact its
anonymity. We believe the current transport layer design
of Tor, in which several circuits are multiplexed in a sin-
gle TCP connection between any pair of routers, is a key
contributor to Tor’s performance issues.

We implemented, experimentally evaluated, and con-
firmed the potential gains provided by PCTCP in an iso-
lated testbed and on the live Tor network. We ascer-
tained that significant performance benefits can be ob-
tained using our approach for web clients, while main-
taining the same level of anonymity provided by the net-
work today. Our live network experimental evaluation
of PCTCP shows improvements of more than 74% for
response times and more than 76% for download times
compared to Tor. Finally, PCTCP only requires minimal
changes to Tor and is easily deployable, as it does not
require all routers on a circuit to upgrade.

1 Introduction

While advances to the Internet have enabled users to
easily interact and exchange information online, they

have also created several opportunities for adversaries to
prey on users’ private information. Whether the moti-
vation for data collection is commercial, where service
providers sell data for marketers, or political, where a
government censors, blocks and tracks its people, or even
personal, for cyberstalking purposes, there is no doubt
that the consequences of personal information leaks can
be severe.

Consequently, several solutions emerged, a key ex-
ample of which is Tor [14]. Tor is the most widely
used privacy-preserving network that empowers people
with low-latency anonymous online access. That is, peo-
ple can surf the Internet without the fear of revealing
their identity or location. Since its introduction in 2003,
Tor has successfully evolved to support hundreds of
thousands of users using approximately 3000 volunteer-
operated routers run all around the world. Incidents of
sudden increases in Tor’s usage, coinciding with global
political events, confirm the importance of the Tor net-
work for Internet users today [13].

Despite Tor’s increasing popularity, the bitter reality is
that it offers anonymity at the expense of intolerable per-
formance costs. Not only do performance problems hin-
der Tor’s wider adoption, but they can have an immense
impact on its anonymity. If users are discouraged from
Tor’s below-mediocre service, the anonymity set of all
users would eventually shrink, which in turn reduces the
anonymity guarantees obtained from the network today.

For this reason, the Tor research community has been
intensively investigating the sources of the performance
problems in Tor, as well as proposing remedies to en-
hance the usability of Tor. First, one major problem in
Tor is traffic congestion, which has a number of causes.
One cause for congestion is the high client-to-relay ra-
tio which is approximately 165:1. To help reduce the
client-to-relay ratio, incentive-based schemes have been
introduced to encourage users to donate bandwidth to
the network to reduce the traffic pressure on the routers
[20, 27, 29].

1

Congestion is also magnified because a small fraction
of users use greedy file-sharing applications that can con-
sume up to 40% of the bandwidth [24]. What adds to the
problem is Tor’s lack of congestion control and aware-
ness, as Tor only implements an end-to-end window-
based flow-control algorithm that does not react to con-
gestion. To address these problems, some congestion
control and avoidance techniques have been proposed
to reduce congestion [6, 43]. To reduce the effects that
greedy applications impose on the network, static and
dynamic throttling approaches have been proposed for
clients’ connections [21, 27].

Regardless of all these intensive efforts, we believe
that performance problems will continue to persist in
Tor, even if the above proposals are employed. A ma-
jor culprit is Tor’s poor transport design, which has been
shown to add unnecessary latency [15, 31]. Tor multi-
plexes circuits (overlay paths established through the Tor
network) from different users over the same TCP con-
nection. Reardon and Goldberg [31] observed that since
heavy circuits are often multiplexed with light circuits
in the same TCP connection, and since heavy circuits
have higher loss rates, they result in unfair application
of the TCP congestion control of the shared connection
on all circuits. As a design solution, Reardon and Gold-
berg proposed TCP-over-DTLS, where every circuit gets
a separate user-level TCP connection, and DTLS is used
for encrypting and securing the communication between
routers. Unfortunately, TCP-over-DTLS faces the fol-
lowing design drawbacks:

• Performance: User-level implementations of TCP
provide significantly lower performance than their
kernel-level counterparts in terms of throughput and
consume substantially more CPU cycles [10, 16], a
scarce resource in Tor. Such heavy costs might ren-
der any performance benefits moot if a user-level
TCP scheme is deployed at a wide scale.

• Deployability: First, the unavailability of a reli-
able user-level TCP stack with a license that is com-
patible with Tor is a major obstacle facing TCP-
over-DTLS.1 Second, for any pair of routers to use
TCP-over-DTLS, both routers need to upgrade their
transport design.

Our Approach. In this work, we seek to enhance the
performance and usability of the Tor network for interac-
tive application users. We tackle the performance prob-
lem in Tor at its roots, and focus on fixing the weaknesses
in Tor’s transport design. This work is not concerned
with the lack of bandwidth resources, as there have been

1Reardon and Goldberg used the Daytona TCP stack for their implementation
and measurements. Unfortunately, Daytona cannot be used for the Tor network
due to its unavailability for open-source projects.

several proposals that address this problem, as we de-
scribed above. We propose PCTCP, a new transport de-
sign for Tor in which a separate kernel-level TCP con-
nection is dedicated to every circuit. To protect and se-
cure communication between routers, we use IPsec, the
standard security layer for IP. Our design significantly
improves the performance of Tor while maintaining its
threat model. Additionally, PCTCP requires only mini-
mal changes to the software. Our design combines the
advantages of the previous TCP-over-DTLS proposal,
while avoiding its deployment and performance short-
comings, inherent from using a user-level TCP stack.
Furthermore, PCTCP does not require all routers on the
circuit to upgrade, except for enabling IPsec communi-
cation for a pair of routers that wish to use PCTCP. Our
design has a significantly easier road to deployment.
Contributions. This is the first work that implements
a new transport design, for anonymous communication
systems in general and for the Tor anonymity network in
particular, and evaluates it with realistic large-scale ex-
periments, as well as live network experiments. In de-
signing and implementing PCTCP, we offer the follow-
ing contributions:

• We propose and implement PCTCP, a novel trans-
port design for anonymous communication systems
in general and for Tor in particular that avoids the
deployability and performance drawbacks of previ-
ous designs.
• We evaluate our design by performing a series of

large-scale experiments on a network emulator with
a topology that closely approximates the perfor-
mance of the live Tor network. Our results show
significant performance benefits for the download
and response times of web clients.
• We carry out experiments on the live Tor network to

validate our results. Again, our results show signif-
icant reductions in delays observed. Our response
times are improved by 27% at the median and by
74% at the 75th percentile. Moreover, download
times are improved by 55% at the median and by
76% at the 75th percentile.
• Our simple, yet effective, approach is incrementally

deployable, as our changes, except for enabling
IPsec communication between any pair of routers
using PCTCP, are local to individual routers and do
not affect their operation with other routers.

The rest of the paper is structured as follows. We pro-
vide the reader with the necessary background on Tor
and IPsec in section 2 and compare our work to previous
work in section 3. Then, we elaborate on our design in
section 4 and evaluate it in section 5. Finally, we discuss
some open issues regarding our design and experiments
in section 6 and conclude in section 7.

2

OR1

Input
buffers

Circuit queuesOutput
buffers

OR2
Input

buffers
Circuit queuesOutput

buffers

Input
buffers

Circuit queuesOutput
buffers

Input
buffers

Circuit queuesOutput
buffers

OR3

OR4

Browsing
traffic

File sharing
traffic

TCP
TCP

TCP

Figure 1: The cross-circuit interference problem: the figure demonstrates the cross-circuit interference problem when a single TCP connection is
shared between a loud and a quiet circuit. OR1, acting as an exit for both circuits, receives file-sharing data and web browsing data on two different
connection input buffers. The cells then are pushed to their circuit queues. Since the next hop for each circuit is OR2, both circuits share the same
connection output buffer. Since the file-sharing circuit is expected to drop more data on the connection between OR1 and OR2, the web browsing
circuit experiences more delays due to the unfair application of the TCP congestion control on the shared connection.

2 Background

In this section, we start by providing an overview of the
Tor network and its current transport design. Then, we
introduce and explain the basic functionality of IPSec.

2.1 Tor

Tor is a low-latency anonymization network that is based
on the concept of onion routing. The network consists
of approximately 3000 volunteer-operated relays [39],
known as Onion Routers (ORs). Each OR creates a
router descriptor that contains its contact information,
such as its IP address, ports, public keys, and its band-
width capabilities, and sends the descriptor to directory
authorities. Tor clients, nicknamed Onion Proxies (OPs),
download the router descriptors from directories to build
paths, referred to as circuits, through the network before
they can communicate with their Internet destinations.
Each circuit usually consists of three ORs, which are re-
ferred to as the entry guard, middle, and exit OR, accord-
ing to their position in the circuit. ORs in a circuit are
connected by TCP connections and TLS [12] is used to
provide hop-by-hop authenticity, data integrity and con-
fidentiality.
Circuit Construction. For performance reasons, an OP
preemptively creates a number of spare circuits for its
user applications. When the OP receives a new TCP
stream from a user application, it attaches it to an appro-
priate pre-established circuit. If no such circuit exists, the
OP builds a new circuit by first selecting three routers,
Xi, according to Tor’s bandwidth-weighted router selec-
tion algorithm. Next, to start establishing the circuit, the
OP sends a create fast command to X1, which responds
with a created fast reply. To extend the Diffie-Hellman
(DH) channel, the OP sends an extend command to X1,
containing in its payload a create command and the first
half of the DH handshake for router X2 encrypted to X2’s

public key. Router X1 forwards this create command to
router X2, and when it receives a created cell back from
router X2, it forwards its payload in an extended cell to
the OP to finish the client’s DH handshake with router
X2. The same procedure is carried out for each subse-
quent OR added to the circuit.

The OP acts as a SOCKS proxy to communicate with
user applications. The OP divides the user’s data into
512-byte fixed-sized cells, adds a layer of encryption for
every node on the forward path, and then cells are source-
routed through the established circuits. Every hop, on
receiving a relay cell, looks up the corresponding circuit,
decrypts the relay header and payload with the session
key for that circuit, replaces the circuit ID of the header,
and forwards the decrypted cell to the next OR. When
the exit OR receives the cell, it removes the last layer of
the encryption, and establishes the connection on behalf
of the user to the intended destination.
Threat Model. Anonymity is maintained for Tor’s users
because only the entry OR receives a direct connection
from a user, and only the exit OR forms a direct connec-
tion to the destination. Therefore, no single entity can
link users to their destinations. The threat model in Tor
assumes a local active adversary that can watch part of
the network. The anonymity of a Tor circuit is compro-
mised if the adversary can watch the two ends, the entry
and exit, of the circuit.
Cross-Circuit Interference Problem. Tor’s OPs and
ORs communicate with each other using TCP connec-
tions. Every OR-to-OR TCP connection multiplexes cir-
cuits from several users. Reardon [31] pointed out that
this design can potentially hinder the performance of in-
teractive circuits. This problem is illustrated in Figure 1.
The connection between OR1 and OR2 in the figure de-
picts a scenario where a noisy circuit, carrying BitTor-
rent traffic for example, is multiplexed with a circuit car-
rying interactive web browsing traffic. In this case, TCP
congestion control would be unfairly applied on both cir-

3

cuits whenever the noisy circuit triggers congestion, due
to lost or dropped packets, on the shared TCP connec-
tion. Since the amount of data transmitted by file shar-
ing applications is significantly larger than that by inter-
active applications, it is expected that bulk application
circuits trigger congestion control more often than inter-
active circuits. However, TCP congestion control would
apply on all circuits equally and would result in extended
queueing times for data cells in TCP output buffers and
thereby, longer delays observed by clients.
Tor’s Queuing Architecture Tor uses a tiered buffer ar-
chitecture to manage cells traveling through circuits, as
also shown in Figure 1. When an OR receives a cell from
an external server or from another OR or OP, the cell
is passed from the kernel TCP receive buffer to a cor-
responding 32 KiB connection-level input buffer in Tor.
After the cell is encrypted or decrypted, it is placed on
the appropriate FIFO circuit queue. Since several cir-
cuits share the same connection output buffer, a sched-
uler is used to retrieve cells from the circuit queues to be
placed on a 32 KiB output buffer. Finally, the cells are
sent to the kernel TCP send buffer which flushes them to
the next OR or OP.

2.2 IPsec

IP security (IPsec) [22] is a collection of standards that
provides security at the network (IP) layer. It defines
several protocols that enable authenticating and/or en-
crypting IP data packets. It consists of mainly two sub-
protocols: Authentication Header (AH) and Encapsu-
lating Security Payload (ESP). We next briefly describe
each sub-protocol and their modes of operation.

The AH protocol allows two communicating points to
authenticate, and protect the integrity of the data they ex-
change. Although the AH protocol guards against spoof-
ing and replay attacks, it does not encrypt the data trav-
eling between the two ends, so an eavesdropper can view
the contents of the data packets.

The ESP protocol, on the other hand, enables both au-
thentication and encryption (or either), which provides
confidentiality of the transferred data. The two commu-
nicating ends need to have secret keys in order to decrypt
the packets. IPsec provides a variety of key-exchange
and authentication algorithms.

For both protocols, there are two modes of IPsec op-
eration: either the transport or the tunnel mode. Trans-
port mode is used to secure the connection, consisting of
the traffic from different applications, between two hosts.
The payload of the IP packet, which typically contains
TCP or UDP data, is encrypted or authenticated and an
ESP or an AH header is added to the packet. The original
IP header also remains in the packet.

Tunnel mode, on the other hand, secures not only host-

to-host communication, but it also can be used to pro-
tect communication between subnets to subnets or hosts
to subnets. In this mode, the whole IP packet is en-
crypted or authenticated and a new IP header is added
to the encrypted packet in addition to the AH or ESP
header. Using the ESP protocol in tunnel mode provides
the strongest security for communication at the expense
of a few extra bytes per packet as an overhead. However,
when only host-to-host communication is required, ESP
protocol in transport mode suffices.

In the next section, we present previous work on
anonymous communication transport design for Tor. Af-
ter that, we introduce our proposed anonymous commu-
nication transport for Tor and how we use IPsec to secure
communication between Tor ORs.

3 Related Work

Since Tor was introduced around a decade ago, it has
received a great amount of attention. Several aspects
of Tor’s design have been intensively investigated in-
cluding Tor’s routing [4, 33, 35], scalability [25, 26]
and enhancing its awareness and handling of conges-
tion [6, 17, 21, 37, 43]. There are also several proposals
that aim to increase the total number of ORs using incen-
tive schemes [20, 27, 29].

New transport designs for Tor have also been investi-
gated and considered by several previous proposals [31,
40,42]; Murdoch [28] provides a summary and compares
all these previous possible transport designs. He cate-
gorizes the available designs into three different archi-
tectures: hop-by-hop reliability, initiator-to-exit reliabil-
ity or initiator-to-server reliability. Although Murdoch
does not experimentally evaluate these design choices,
he expects that a hop-by-hop reliability approach will be
the most promising approach. Next, we summarize the
first two design categories and contrast them with our
design. For more details on the initiator-to-server design
architecture, we refer the reader to Freedom [9] and Mur-
doch’s summary [28].

TCP-over-DTLS is an example of the hop-by-hop re-
liability design, which is also the same design approach
we adopt in PCTCP. The TCP-over-DTLS proposal ad-
vocates for using a user-level TCP connection to manage
every user circuit over DTLS—the datagram alternative
to TLS—to provide confidentiality and authenticity of
Tor’s traffic. Since every circuit is managed by its own
TCP connection, every circuit is guaranteed reliability
and in-order delivery of cells. Furthermore, congestion
control is performed at the circuit level, which solves the
cross-circuit interference problem. Several differences
separate PCTCP from TCP-over-DTLS. First, PCTCP
uses mature IPsec protocols to hide TCP/IP header infor-
mation, whereas TCP-over-DTLS uses the relatively rare

4

DTLS for the same purpose. Also, TCP-over-DTLS in-
troduces deployment and performance issues that hinder
its adoption (as highlighted in Section 1). PCTCP avoids
these problems by using the kernel-level TCP stack, and
by having an easier path to deployment. Second, while
initial experiments performed on a localhost private Tor
network showed slightly less degraded latency results, as
compared to Tor, when packet drop rates increased, there
is still a need for further realistic large-scale experiments
in order to obtain conclusive results of the potential bene-
fits. With the lack of such experiments in previous work,
it is difficult to compare TCP-over-DTLS and PCTCP in
terms of performance gains.

UDP-OR [42] is an example of an initiator-to-exit re-
liability design. In this design, an OP and the exit OR of
the circuit maintain a TCP connection, while intermedi-
ate ORs communicate using UDP, an unreliable transport
protocol. While this design significantly simplifies the
operations of the intermediate routers, it still suffers from
several problems. The first problem is that since hop-by-
hop communication is unreliable, there will be a need to
change the cryptographic protocols that are implemented
in Tor as the current circuit encryption scheme depends
on in-order delivery of cells. Another problem is that this
design uses the OP’s host TCP stack, rather than a user-
level one, which opens the door for OS fingerprinting
attacks [23] in which the exit node can learn informa-
tion about the client. Second, since a circuit’s round trip
time is large, it would take the TCP endpoints a signifi-
cant amount of time before congestion is triggered. Also,
with the high variability of circuit performance in Tor, a
non-trivial amount of tuning for TCP parameters, includ-
ing congestion timers, thresholds and windows, may be
required for the TCP endpoints; see section 4 for more
details.

Torchestra [17] was recently proposed to enhance the
performance of interactive application users of Tor. In
that proposal, two TCP connections are used for OR-
to-OR communication. One TCP connection is dedi-
cated for light circuits and another is dedicated for heavy
circuits. An Exponentially Weighted Moving Average
(EWMA) algorithm of the number of cells sent on a cir-
cuit, originally proposed by Tang and Goldberg [37], is
used to classify circuits into light and heavy categories.
Previous work [5] suggested that this metric alone is not
enough to distinguish circuits.2 Also, Torchestra has not
been examined using large-scale experimentations to un-
derstand the system-level effects of utilizing it. Finally,
to benefit from Torchestra, all ORs on the circuits need to
upgrade, as two TCP connections, as well as a new com-
mand cell type, are needed between every pair of ORs in
a circuit.

2Unfortunately, the classification accuracy was not discussed in Torches-
tra [17].

Tschorsch et al. [40] consider the impact of several
proposed transport designs for Tor on throughput, packet
loss, delay and fairness. For their analysis, the authors
use a TCP performance model proposed by Padhye et
al. [30]. They examine the performance of several pro-
posed transport designs for Tor using a discrete-event
simulator, and conclude that they expect that a joint con-
gestion control that detects loss rates and congestion for
all circuits traversing an overlay node would be a good
direction. The authors ruled out the use of parallel TCP
connections, such as in PCTCP, as a design option, as
more connections traversing a bottleneck may result in
higher packet losses, which reduces throughput. We ar-
gue that packet losses mainly occur for the connections
carrying bulk traffic, as they send significantly more data
than connections carrying interactive applications. We
also demonstrate through comprehensive emulation and
live-network experiments that our approach is effective.

4 Proposed Transport

Before embarking on the description of PCTCP, we first
ask ourselves, why not adopt and implement an end-to-
end TCP approach, which has been proposed as a possi-
ble transport design for Tor. We first start by explaining
why we avoided such an approach, and then we elaborate
on our design.

4.1 Why not end-to-end TCP?

One transport design that has received some positive
speculation in the Tor research community is the end-to-
end TCP design. This design is inspired by many previ-
ous proposals [9, 11, 42]. The basic idea of this design is
that a TCP connection is maintained by the two ends of
the circuit. In the context of Tor, one end is the client and
the other end can be the exit OR or the destination server.
Communication between intermediate ORs is carried out
using a datagram protocol, such as UDP. We next point
out some weaknesses in this design choice.
Tuning Parameters TCP is a reliable transport. If a
packet gets dropped or lost due to congestion or rout-
ing problems in the underlying IP network, TCP’s con-
gestion control algorithm is triggered and the sender re-
transmits the lost packet. Also, TCP ensures that the Tor
process, residing at the application layer, receives data in
the order they were sent. This functionality significantly
simplifies the task of data processing for Tor. By con-
trast, a datagram protocol like UDP, or its secure DTLS
alternative, do not implement reliability or in-order de-
livery.

In the end-to-end TCP design for Tor, it is assumed
that reliable in-order delivery is maintained only by the

5

end points. There are several shortcomings with this de-
sign that might worsen the experience of Tor users. The
biggest challenge is how to best tune the TCP parame-
ters to yield a reasonable performance for Tor. TCP re-
lies on duplicate acknowledgement packets sent by the
receiver to detect congestion which signals that several
out of order packets have been received at the destina-
tion. Moreover, TCP also relies on retransmission timers
at the sender to detect loss of packets.

Typically, retransmission timers should be equal to the
round-trip-time (RTT) between a source and a destina-
tion. In a network like Tor, where the RTT of circuits can
be several seconds long, it can be easily seen that a client
would detect congestion very late. Of course, the client
can set a smaller retransmission timer to detect conges-
tion faster; however, one should be careful not to send
redundant packets too quickly, as this might cause even
further congestion. Striking a good balance between how
fast we want to detect congestion and how careful we
should be before we decide we are experiencing conges-
tion is a very difficult problem. Also, considering the
timing characteristics of Tor circuits, which are notorious
for their highly variable performance, one soon realizes
that an end-to-end TCP solution for Tor is unwise.

Interoperability and Anonymity. An important aspect
of any new transport design for Tor is to ensure that it
can be smoothly integrated to work with the existing Tor
network infrastructure without disrupting the operation
of the network and its users. Recall that Tor today cur-
rently has thousands of ORs and hundreds of thousands
of users. The network has not experienced significant
downtime since its deployment in 2003. Using a drasti-
cally different transport design such as end-to-end TCP
would require the network to pause its operation while
ORs and users update. As a workaround, it might be pos-
sible for ORs upgraded with end-to-end TCP to coexist
with unmodified ORs; however, this might open the door
for fingerprinting or partitioning attacks. For example,
an upgraded malicious exit can reduce the anonymity set
of the entry guard used on a circuit from the set of all en-
try guards in the network to the smaller set of upgraded
entry guards. Therefore, one shortcoming of upgrading
to an end-to-end TCP design is possibly hindering the
anonymity provided by the network.

Cryptographic Protocols. An inherent consequence of
allowing an unreliable transport is for the Tor process to
expect lost packets. Since Tor uses the Advanced En-
cryption Standard (AES) in counter mode for encrypting
and decrypting cells at ORs, lost or dropped cells will
cause subsequent cells to be unrecognized. Therefore,
adopting an end-to-end TCP approach requires chang-
ing the cryptographic protocols that are currently used in
Tor; this is another obstacle facing such a design.

4.2 PCTCP

The aim of this work is to address the shortcomings of
the transport design in Tor. In particular, our goal is to re-
duce the impact of the cross-circuit interference problem
which hinders the experience of interactive application
users. Based on our discussion in section 4.1, we believe
that reliability should be maintained on a per-hop basis
for Tor circuits. Therefore, in this work, we advocate for
maintaining TCP connections between each adjacent pair
of ORs that comprise a circuit. In particular, we propose
two key design changes to Tor’s transport.

4.2.1 Kernel-mode per-circuit TCP

We propose using a separate kernel-mode TCP connec-
tion for each circuit for Tor. Our design is similar to the
TCP-over-DTLS design that was introduced by Reardon
and Goldberg in the sense that reliable in-order deliv-
ery of data is implemented between every two commu-
nicating ORs. Also, both designs ensure that congestion
control is performed at the circuit granularity. The elimi-
nation of connection-sharing among circuits ensures that
we isolate the effects of loud circuits on the quiet ones; a
cell dropped or lost from one circuit will only affect that
particular circuit.

However, one key difference between PCTCP and
TCP-over-DTLS is that for circuit management, PCTCP
uses kernel-mode TCP connections for every circuit,
while TCP-over-DTLS uses a user-space TCP imple-
mentation. The lack of availability of a reliable open-
source user-level TCP stack whose license is compatible
with that of Tor hinders the deployability of the TCP-
over-DTLS solution. Furthermore, PCTCP uses IPsec to
protect the communication between ORs whereas TCP-
over-DTLS uses DTLS. One issue that is inherent from
using DTLS is that it is rarely used today on the Inter-
net. IPsec, on the other hand, is increasingly common, as
it is utilized in many implementations of Virtual Private
Network (VPNs) [34]. Consequently, the rarity of DTLS
makes it easier to be blocked by censors without fearing
side effects. Blocking IPsec would be more problematic,
as blocking it may interrupt the operation of legitimate
businesses and organizations.

We next describe how we modify the behaviour of Tor
to support PCTCP. Recall that during the circuit con-
struction process, every time an OP attempts to extend
the circuit by one more hop, it sends an extend command
cell to the current last OR on the partially constructed cir-
cuit. When an OR Xi receives an extend cell to another
OR X j, Xi checks if it has a current TCP connection with
X j. If a connection exists, Xi uses that connection to send
the create cell; otherwise, it creates a new TCP connec-
tion to X j before a create cell is sent.

6

TCP connection
Tor Circuit
IPsec

OPs

Tor

PCTCP

ORs ORs

Figure 2: Design comparison between Tor and PCTCP. The upper
figure shows the current transport design of Tor. An OP maintains a
single TCP connection with its entry guard, which also maintains a
single TCP connection to the next OR on the circuit. Each TCP con-
nection multiplexes several circuits depicted by the dashed lines. The
lower figure shows the design of PCTCP. As before, only a single TCP
connection is used between the client and the entry guard; this connec-
tion multiplexes all the client’s circuits. For OR-to-OR communication,
however, several TCP connections, one for each circuit, are created and
protected by IPsec.

In PCTCP, when an OR Xi receives an extend com-
mand cell to X j, PCTCP always establishes a new TCP
connection from Xi to X j. In PCTCP, we maintain the
same queueing architecture of Tor, except that our de-
sign eliminates the contention that occurs among circuits
when they share the same connection output buffer, as
each circuit queue is mapped to a single output and a sin-
gle input connection buffer. When a circuit is torn down,
its corresponding TCP connections are closed.

Figure 2 visualizes a design comparison between Tor
and PCTCP. As the figure shows, between an OP and an
OR, PCTCP, like Tor, maintains a single TCP connec-
tion, which can multiplex several circuits from the same
user. However, PCTCP dedicates a separate TCP con-
nection for each circuit between any two ORs.

This design has the advantage that it does not require
clients to upgrade, as each client in our design contin-
ues to maintain a single TCP connection with each of its
entry guards. Moreover, the modifications proposed in
PCTCP are only local to each OR. This means that not
all ORs in the circuit need to upgrade to benefit from
PCTCP. For example, if the middle and exit ORs are the
only ORs upgraded with PCTCP on a circuit, that pair
of ORs will use PCTCP for their communication even if
the entry guard is not upgraded. Nevertheless, we believe
that more performance gains can be obtained when more
ORs on the circuit upgrade.

4.2.2 Replace TLS with IPsec

One issue that arises with our design so far is that it al-
lows an adversary monitoring a relay to easily count the
total number of circuits that are currently serviced by the
monitored relay. Furthermore, the adversary can perform
traffic analysis to infer the activity of each circuit [5].
While it is not clear how this extra information can be

TLSTCPIP Application Data (cells)

TCP Application Data (cells)

Tor

PCTCP IP ESP

Figure 3: Packet headers for current Tor and for PCTCP. The grey
shaded area depicts the encrypted part of the packet. The upper figure
shows the design of the Tor packets at the network (IP) layer. TLS is
used to encrypt the TCP payload, but not the TCP header. The lower
figure depicts the packet format when PCTCP is used. The whole
IP payload, which contains the TCP segment, is encrypted. An ESP
header is added between the encrypted data and the IP header.

beneficial for a non-global adversary,3 there is no doubt
that such a design reduces the overall anonymity of the
system and its users. To alleviate this problem, we pro-
pose using the ESP protocol of IPSec in transport mode
to encrypt and protect the traffic between the ORs us-
ing PCTCP. Since IPsec can encrypt the IP packet pay-
load, TCP connection ports will be encrypted and hidden
from an eavesdropper. This makes it more difficult for
an adversary to perform traffic analysis on TCP connec-
tions between routers. Figure 3 compares the format of
PCTCP and Tor data packet headers.

Using ESP makes the TLS encryption redundant for
PCTCP for OR-to-OR communication, as ESP can pro-
vide the hop-by-hop authenticity and data confidentiality
that is currently provided by TLS in Tor. Furthermore,
like TLS, ESP provides perfect forward secrecy for the
data on connections, and prevents an attacker from mod-
ifying data. For two ORs to authenticate each other, they
can use a certificate-based authentication method that is
provided by IPsec. Since ORs issue a long-term identity
key that they use to sign their descriptors, they can use
the same identity key to sign their IPsec certificates.

Alternatively, ORs can use a public-key authentication
approach. An OR could publish its IPsec public key with
its signed descriptor to the directory authorities. Then,
when other ORs download the descriptors, they can find
each other’s public keys and use them to start the IPsec
connections. Communication between ORs and direc-
tory authorities or OPs can continue to use the traditional
TLS connections that are used in Tor today.

Ideally, a user-mode IPsec implementation integrated
with Tor would be the best option. First, OR opera-
tors would not have to deal with the details of setting
up IPsec. Second, for user-mode IPsec to operate, supe-
ruser privileges are not needed. However, with the lack
of an available user-space IPsec implementation, we de-
fault to the kernel-mode IPsec option. Luckily, installing
IPsec is a one-time operation which typically should not
require periodic maintenance.

3Recall that the threat model of Tor assumes an active local adversary.

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

ExperimenTor 5 MiB
Live Tor 5 MiB

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

Live Tor 50 KiB
ExperimenTor 320 KiB

Live Tor 1 MiB

(b)

Figure 4: Comparison between the performance of torperf (Live Tor), and our scaled-down testbed Tor network (ExperimenTor). Figure 4(a)
depicts the download time measurements for downloading 5 MiB files for torperf and ExperimenTor. The results obtained from ExperimenTor
closely approximate the distribution of the live network (torperf) and the medians intersect at 65 seconds. Figure 4(b) shows how the download
time distribution of 320 KiB, obtained from ExperimenTor for stock Tor, fits between torperf’s download time distributions for 50 KiB and 1 MiB.
These measurements suggest that our experimental setup accurately reflects the performance of the live Tor network.

5 Experiments

To evaluate the performance benefits possible with
PCTCP, we have implemented our proposed transport in
a stable release (0.2.2.39) of the Tor source code. Our im-
plementation, which changes fewer than 20 lines of code
in the Tor OR application, can be easily turned on or off
using a configuration option for any OR. We performed a
series of large-scale experiments on an isolated testbed.
We also performed small-scale experiments on the live
Tor network. As evaluation metrics, we use the down-
load time, the time needed for a client to finish down-
loading a file over a Tor circuit after issuing a request,
and the time-to-first-byte, which is the time it takes the
client to receive the first chunk of the file data after issu-
ing a download request.

5.1 Large-scale experiments
Emulation Tools. In order to understand the system-
level effects of our proposed transport, we use Exper-
imenTor [8], a Tor network emulation-based testbed
that is based on the Modelnet network emulation plat-
form [41]. Modelnet offers the ability to evaluate large-
scale distributed networked systems using commodity
hardware and OSes. Briefly, our Modelnet setup consists
of two machines, an emulator node and a virtual node.
The virtual node runs the Tor network, which consists
of directory authorities, ORs and OPs. The virtual node
also runs the destination servers. Communication among
the different nodes on the Tor network and the destina-
tion servers is routed through the emulation node, which
provides the underlying IP network emulation. Several
network parameters such as the bandwidth, propagation
delay and drop rate can by configured on the network
topology deployed on the emulator node to provide a
realistic underlying network emulation. In our experi-
ments, we use the network and Tor topology models that

were recently proposed by Jansen et al. [18] in order to
accurately produce a scaled-down Tor network that that
closely approximates the performance of the live net-
work.
Underlying Network Topology. We use the network
topology that was produced and published4 by Jansen et
al. in an effort to facilitate methodically modeling the
Tor network for ExperimenTor and Shadow [19]. Briefly,
the authors form a complete network graph consisting of
vertices that correspond to different locations (countries,
American states and Canadian provinces) with upstream,
downstream and packet loss properties that they obtained
from the Ookla Net Index dataset [2]. All the vertices are
connected by edges with approximated latency,5 jitter,
and packet loss properties.
Overlay Tor Topology. We follow the footsteps of
Jansen et al. and create a scaled-down topology that con-
sists of 500 Tor clients (OPs), 50 Tor ORs, and 50 HTTP
servers. Of the 50 ORs, 5 work as directory authorities.
Our ORs are assigned bandwidth values that are sampled
from the bandwidth distribution of the live Tor network
ORs. We create two client types: web clients and bulk
clients. Our client model is based on a previous study of
the exit Tor traffic by McCoy et al. [24]. The study found
that 95% of connections that exited the Tor network are
HTTP connections which consumed approximately 60%
of traffic volume. They also found that file sharing appli-
cations consumed approximately 40% of the bandwidth
in Tor. During our experiments, our web clients con-
tinuously fetch fixed-sized 320 KiB files, and pause ran-
domly for 1 to 30 seconds between fetches. Our bulk
clients continuously download 5 MiB files without paus-
ing. Finally, our web-client-to-bulk-client ratio is 19:1,
as recommended by Jansen et al.

4The model files are available for download from the authors’ websites
(http://www.mit.edu/~ke23793/misc/tormodel_exptor.tar.gz).

5The authors use iPlane [1] RTTs to approximate latency.

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

PCTCP
Tor

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to First Byte (s)

PCTCP
Tor

(b)

Figure 5: Performance of the web clients in the large-scale experiment. Figure 5(a) shows the download time distributions using PCTCP and
stock Tor, and demonstrates a substantial improvement for the long tail. Figure 5(b) shows the time-to-first-byte results using PCTCP and Tor. We
see significant improvements using PCTCP, as compared to Tor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

PCTCP
Tor

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to First Byte (s)

PCTCP
Tor

(b)

Figure 6: Performance of the bulk clients in the large-scale experiment. Figure 6(a) shows the download time distributions using PCTCP and
stock Tor, and shows a 26% degradation for 60% of the downloads when PCTCP is used. Figure 6(b) shows the time-to-first-byte results using
PCTCP and Tor. We again see significant improvements using PCTCP, as compared to Tor.

Model Accuracy. Before we present our results, we first
compare the performance of our stock Tor bulk and web
clients, which we obtained from our testbed, to the per-
formance of the live Tor network published by the Tor
metrics portal [38]. This comparison step was also car-
ried out by Jansen et al. The purpose of this step is to con-
firm that our testbed measurements can indeed approxi-
mate the measurements taken from the live network, even
though our network is significantly scaled down.

Figure 4(a) compares the distribution of the download
times of our testbed bulk downloaders and those mea-
sured by torperf, a tool that measures download perfor-
mance on the live Tor network. As can be seen in the
figure, the two distributions display comparable perfor-
mance and they indeed intersect at the median. That is,
50% of the 5 MiB downloads take 65 seconds or less on
the live network, and the same is true on our testbed.
Figure 4(b) compares the results of our 320 KiB down-
loads and torperf’s 50 KiB, and 1 MiB downloads.6 As
expected, the distribution of download times for our web
clients fits between the distributions of download times
between torperf’s 1 MiB and 50 KiB file downloads.
Results. Now that we have verified that our Tor model

6Torperf only maintains the results of 5 MiB, 1 MiB and 50 KiB file down-
loads.

closely approximates the performance of the Tor net-
work, we next shift attention to our results. Figure 5(a)
compares the download time observed by web clients
when stock Tor and PCTCP are used. The figure shows
similar download times for the fastest 50% downloads
as these downloads are most likely performed when less
congested ORs are used for circuits. However, the fig-
ure shows significant improvement for the slowest 50%
of the downloads, especially for the fourth quartile of the
download times. For example, the download times for
Tor range from 17 to 90 seconds, whereas for PCTCP,
the download times range from 14 to 56 seconds.

Figure 5(b) shows significant time-to-first-byte im-
provements when PCTCP is used, as compared to Tor.
At the median, it takes Tor clients 3.6 seconds before
the browser starts changing for them, whereas PCTCP
clients only wait for 1.6 seconds, which is a 55% im-
provement. For the 75th percentile response times, the
time-to-first-byte is only 2 seconds for PCTCP users,
whereas Tor clients experience delays of up to 6 seconds.
This increases the observed improvements to 66%.

We observe in Figure 6(a) that download times for
bulk clients are actually degraded when PCTCP is used.
For example, the median download time for stock Tor
is 65 seconds, whereas for PCTCP, the median down-

9

OP1

OP2

OP3

OP4

Server

IPsec

Entry Middle Exit

250 KB/s 250 KB/s

 Web

 Web

 Web

 Web

Figure 7: Setup for live experiment 1. The four web clients are
configured to use the same entry and middle ORs for all of their circuits.
The exit is chosen according to Tor’s usual router selection algorithm.
The entry and middle ORs communicate using an IPsec connection and
are both configured with a bandwidth rate of 250 KB/s.

OP1

OP2

Server

IPsec

Entry Middle Exit

250 KB/s 250 KB/s

 Web

 Bulk

Figure 8: Setup for live experiment 2. The two (web and bulk) clients
are configured to use the same entry and middle ORs for all their cir-
cuits. The exit is chosen according to Tor’s router selection algorithm.
The entry and middle ORs communicate using an IPsec connection and
are both configured with a bandwidth rate of 250 KB/s.

load time is approximately 82 seconds. For 60% of the
download times, the degradation is roughly 26%. With
PCTCP, heavy circuits might observe more delays be-
cause such circuits are expected to drop more cells, and
their respective TCP connections would back off more
frequently as a result of the separate TCP congestion
control. However, we believe that performance improve-
ments can be observed even for bulk clients if more band-
width was available. For example, we have observed
significant improvements for both web and bulk clients
in the higher-bandwidth experiments we report in Ap-
pendix A.

However, the time-to-first-byte results are signifi-
cantly improved for the bulk downloaders, as can be seen
in Figure 6(b). This suggests that congestion is vastly re-
duced in the network. We have also repeated the same
large-scale experiments using a 9:1 web-to-bulk-client
ratio in order to test PCTCP under exaggerated conges-
tion loads, and our results consistently showed signifi-
cant improvements (see Appendix B).

5.2 Live Experiments
To further test our new proposed design, we also con-
ducted some experiments on the live Tor network in Oc-
tober and November 2012. We next describe our experi-
mental setup and then present our results.
Experimental Setup. Our setup is shown in Figures 7
and 8. Using OpenSwan [3], we configured an IPsec con-
nection between our two ORs, entry and middle, which
we deployed on the live Tor network. Our entry im-

plements PCTCP which can be enabled as a configura-
tion option only for our clients, so as not to affect other
users of the network. Our middle OR runs an unmodi-
fied Tor process, but, as above, has an IPsec connection
configured. For gathering Tor measurements, we simply
turned off the option to enable PCTCP from the configu-
ration of the entry. Both ORs have been configured with
a bandwidth rate of 250 KB/s. To protect the privacy of
other users, we configure both ORs to belong to the same
Tor family, which prevents other users’ unmodified Tor
clients from choosing them both on one circuit. Also,
we do not disable TLS in order to avoid risking other
users’ privacy in case of an accidental misconfiguration.
We next describe our two experiments and present our
results.
Experiment 1. In our first live experiment, we run four
local web clients, which are configured to use our entry
and middle ORs as their first two hops for all circuits con-
structed. The exit OR is chosen according to Tor’s router
selection algorithm from other ORs on the live network.
Our clients download a fixed-sized 300 KB file from an
external server and pause randomly for 3 to 30 seconds
between downloads.7 We have also implemented the
MeasureMe [5] cell. Briefly, this is a new command cell
type that is sent by our clients to any OR on a circuit
they create to inform the OR to enable PCTCP only for
the respective circuit. For this particular experiment, our
clients send this cell to the entry OR. This ensures that
PCTCP is not used for other users’ traffic, but only for
our clients.
Results of Experiment 1. Our download time and
time-to-first-byte results are shown in Figures 9(a) and
9(b). Both metrics show a substantial improvement for
the clients using PCTCP, as compared to Tor clients.
Additionally, the performance distributions of PCTCP
show a very slow degradation, and are much tighter, with
smaller tails, compared to their Tor counterparts. Fig-
ure 9(a) compares the download time results for Tor and
PCTCP. At the median, PCTCP clients finish download-
ing the file in 1.9 seconds, whereas Tor clients finish
downloading the file in 4.3 seconds. This translates to an
improvement of roughly 55%. The improvement jumps
to 76% at the 75th percentile.

As can be seen in Figure 9(b), at the median, there is a
27% improvement for the time-to-first byte when PCTCP
is used. At the 75th percentile, the performance benefits
are 74%; there, PCTCP successfully reduces the time-to-
first-byte from 3.9 seconds to only 1 second.
Experiment 2. The setup of our second experiment
is similar to the first, except that we run two clients in-
stead of four. One client acts as the bulk traffic gener-

7While it is possible to use more realistic user think time distributions, we
observe such distributions would result in a much lower load as they tend to be
long-tailed.

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

PCTCP
Tor

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to First Byte (s)

PCTCP
Tor

(b)

Figure 9: Results of live experiment 1, showing large performance benefits when PCTCP is used. Figure 9(a) depicts the download time
performance for PCTCP and Tor. Figure 9(b) shows the time-to-first-byte performance for PCTCP and Tor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

PCTCP
Tor

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to First Byte (s)

PCTCP
Tor

(b)

Figure 10: Results of live experiment 2 for the web client, showing improved performance when PCTCP is used. Figure 10(a) shows the
download time comparison of PCTCP and Tor. Figure 10(b) shows the time-to-first-byte results for PCTCP and Tor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

PCTCP
Tor

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to First Byte (s)

PCTCP
Tor

(b)

Figure 11: Results of live experiment 2 for the bulk client. Figure 11(a) shows the download time comparison of PCTCP and Tor. Figure 11(b)
shows the time-to-first-byte results for PCTCP and Tor. Both figures show similar performance for PCTCP and Tor.

ator by continuously downloading a 5 MB file without
pausing between downloads. The second client is an in-
teractive web browsing client that downloads a 300 KB
file and pauses randomly for 3 to 30 seconds between
downloads. Our clients also used the MeasureMe cell to
ensure PCTCP is only used for their circuits.
Results of Experiment 2. Figure 10(a) depicts the
download time performance for Tor and PCTCP for the
web client.8 With PCTCP, it takes 4.9 seconds to finish
downloading, while Tor takes 6.8 seconds at the median.

8Note that the stair-step pattern is a consequence of Tor’s token bucket al-
gorithm which flushes data once per second. This pattern becomes more visible
with increased congestion. In versions of Tor more recent than the stable version
we used, this flushing has been increased to ten times per second.

The improvements become more visible for the fourth
quartile, as download times show a 26% improvement
when PCTCP is used. Figure 10(b) shows the time-to-
first-byte results for PCTCP and Tor. Again, the results
consistently show strong improvements that are magni-
fied at the third and fourth quartiles. For instance, at the
75th percentile, the time-to-first-byte for Tor clients is ap-
proximately 4 seconds, whereas for PCTCP clients, it is
only 2.1 seconds, which is a more than 47% improve-
ment.

Finally, Figure 11(a) demonstrates that the PCTCP
bulk client exhibited slightly better performance than the
Tor bulk client. Note that in this experiment, the intro-

11

duction of the bulk downloader consumes the majority of
the available bandwidth between entry and middle. Nev-
ertheless, PCTCP still maintains the performance advan-
tage for web clients compared to Tor. In Figure 11(b),
both PCTCP and Tor produced very similar fast time-to-
first-byte results as the light web traffic did not introduce
congestion to the bulk client.

From the previous experiments and results, one can
make the following interesting observation: the amount
of download time performance improvements achieved
for a circuit using PCTCP highly depends on the avail-
able bandwidth between the two ORs that use PCTCP.
That is, the more the available bandwidth between two
ORs that use PCTCP between them exists, the more
the download time enhancements will be observed with
PCTCP.

For example, in experiment 1, we observed download
time improvements that start at 76% for the fourth quar-
tile, whereas for experiment 2, the respective improve-
ments start at 26%. The main difference between the
two experiments is that the bulk client introduced sig-
nificantly more congestion in experiment 2, leaving less
room for improvements for the web client. However, we
observe that PCTCP produces significantly smaller time-
to-first-byte delays than Tor, regardless of the congestion
state between the ORs.

Based on these observations, we conclude that PCTCP
produces performance benefits that can certainly be per-
ceived by clients. To maximize the benefits of using
PCTCP, we believe it should be used in combination
with previous proposals that aim to increase the amount
of available bandwidth in the network, such as traffic
classification [5], throttling approaches [21, 27] or ap-
proaches aimed to incentivize clients to run ORs [20,29].

6 Discussion

We next discuss a variety of open issues regarding
PCTCP.

6.1 Anonymity Implications

Since our transport proposal is designed for Tor, an
anonymity network, it is essential to consider the
anonymity implications of our design. In particular, it
is important to ensure that our new design does not add
new vulnerabilities to the Tor network. Recall that the
anonymity of a circuit is compromised in Tor if its two
ends, the entry and exit, are compromised. Therefore,
one issue to consider is whether using PCTCP can re-
duce the anonymity set of the ORs used in a circuit. For
example, can an exit OR reduce the anonymity set of the
entry OR used on a circuit because of PCTCP?

First, with exception of the IPsec connections, the
changes that are imposed by PCTCP on any OR are local.
That is, our design does not introduce a new cell type or
require other ORs on the circuit to upgrade. If an entry
OR uses PCTCP, then only the middle OR will notice be-
cause the middle has to agree to establish the IPsec con-
nection with entry and because it receives more than one
TCP connection from the upgraded entry. Those changes
do not affect the exit OR in the circuit; therefore, the exit
would not be able to know if entry belongs to the set of
upgraded ORs or not. Even if the exit learns from router
descriptors that middle is an upgraded OR, the exit would
still not be able to know if entry is upgraded or not.

Furthermore, one might wonder if dedicating separate
TCP connections might open the door to timing attacks.
First, a connection between the OP and the OR is very
similar for Tor and PCTCP. Second, because the commu-
nication between ORs is protected using IPSec, it would
be difficult for the adversary to extract specific circuit in-
formation even though each circuit uses a separate TCP
connection. Therefore, we believe that PCTCP does not
introduce any new threats to the Tor network.

6.2 Incremental Deployment

One advantage of PCTCP is that it is incrementally de-
ployable in two steps. The first step towards deployment
is enabling IPsec communication among ORs. Basically,
ORs need to advertise in their descriptors that they are
willing to accept IPsec connections. Then, IPsec-enabled
ORs can try to establish IPsec connections proactively
among each other. When OR1 wishes to use PCTCP
with OR2, it can check if it has an existing IPsec con-
nection with OR2,9 in which case OR1 can proceed with
using PCTCP. If OR1 detects no IPsec connection with
OR2, it uses the default Tor TLS connection with OR2
and multiplexes the circuits in the same connection.

6.3 Experimental Limitations

To be able to faithfully test and evaluate our new trans-
port proposal, we ran a series of testbed experiments on
different network topologies using different traffic mod-
els and loads. Regardless of our efforts, we recognize
that our large-scale experiments were conducted on an
isolated experimental testbed. We were unable to exper-
iment with larger topologies because we are limited by
our CPU, bandwidth and memory resources.

However, to ensure that we report accurate results, we
followed the methodology of Jansen et al. [18] to pro-
duce an accurate model of the Tor network. We also used

9For Openswan, the visibility of IPsec for an application can be established
using libwhack.

12

their published topology files in order to avoid biased re-
sults that might be obtained using a different experimen-
tal setup. Finally, we carried out additional experiments
on the live Tor network to confirm our results.

Another experimental difficulty we faced is running
IPsec on ExperimenTor. Our large-scale experiments
that tested PCTCP did not use IPsec; however, we have
not disabled the TLS encryptions in our PCTCP experi-
ments to maintain a by-hop layer of encryption. While
we do not expect TLS and IPsec to have the same exact
performance, we believe that the slight difference in per-
formance between TLS and IPsec would not impact the
validity of our large-scale experimental results. This is
evident in the results revealed by our live network exper-
iments, in which we used an IPsec connection between
the first two ORs.

6.4 IPsec through NATs
One challenge that IPsec faced in the past is its inabil-
ity to connect to hosts behind NATs. As a result, NAT-
Traversal [36] (NAT-T) has evolved to address this prob-
lem. NAT-T can be used when two hosts detect that if
they are behind a NAT. In the context of Tor, we believe
this problem is currently irrelevant as most Tor ORs are
publicly reachable; however, there are some efforts to en-
able the operation of ORs from behind NATs [7]. In this
case, IPsec can still benefit from NAT-T.

6.5 File Descriptor and Memory Usage
One issue to consider is how this work affects the very
busy routers on the live network. Since Tor uses a
weighted-bandwidth OR selection algorithm where ORs
are selected in proportion to their bandwidth, some high-
bandwidth ORs service thousands of circuits at the same
time. This means that, with PCTCP, such routers are
expected to maintain thousands of file descriptors at the
same time. One might wonder if such a requirement
might raise memory usage concerns due to the TCP
buffer space allocated in the kernel for each file descrip-
tor.

To get an idea of how many file descriptors would be
needed when PCTCP is used, we examined a fast exit
OR on the live network configured with a bandwidth of
100 Mb/s, which puts it among the fastest 6% of the net-
work routers. This fast exit OR used roughly 10,000 file
descriptors for its communication with other ORs and
with destination servers. Since an exit OR uses one file
descriptor for each stream within a circuit, the number of
circuits it is handling is certainly less than the number of
file descriptors it is using. Note that intermediate routers
are currently expected to use a number of file descrip-
tors that is equal to the number of ORs in the network,

which is approximately 3000. We therefore expect that
other intermediate ORs, such as middles or entries that
have the same bandwidth capabilities as the fast exit,
to use between 3000 and 10,000 file descriptors if they
use PCTCP. In short, file descriptor and memory usage
should not be a problem with PCTCP, as even the busiest
entry and middle ORs running PCTCP should consume
fewer of these resources than the existing Tor network
requires exit ORs to support today.

6.6 Future Work
One important area for future investigation is to im-
plement other transport proposals such as TCP-over-
DTLS and UDP-OR, in order to compare their perfor-
mance to that of PCTCP in large-scale network emula-
tion. Tor’s forthcoming transport abstraction layer [32]
should greatly facilitate this task.

Another area for future work is to consider an alter-
native queueing design for Tor that reduces the number
of times cells are copied. Indeed, our design eliminates
the need for circuit queues as every input buffer corre-
sponds to single output buffer, which means that data can
be copied immediately from the input buffer to the output
buffer after being encrypted or decrypted.

7 Conclusion

In this work, we recognize the importance of the Tor net-
work as a privacy-preserving tool online and seek to en-
hance its performance for interactive application users.
To this end, we propose PCTCP, a new anonymous com-
munication transport design for Tor which allows every
circuit to use a separate kernel-level TCP connection pro-
tected by IPsec. Our design is easily deployable and re-
quires minimal changes to routers. Furthermore, exper-
imental evaluation of PCTCP shows vast improvement
gains, while maintaining the threat model of the Tor net-
work. Our live experiments show that it is possible to ob-
tain improvements of more than 74% for response times
and more than 76% for download times when PCTCP is
used, as compared to Tor.

Acknowledgments

We are grateful to Qatar University, NSERC, the Ontario
Research Fund, and The Tor Project for funding this re-
search.

References
[1] iPlane: Data. http://iplane.cs.washington.edu/

data/data.html. Accessed Feb. 2013.
[2] Net Index Dataset. http://www.netindex.com/

source-data/. Accessed Feb. 2013.

13

[3] OpenSwan. https://www.openswan.org/projects/
openswan/. Accessed Feb. 2013.

[4] AKHOONDI, M., YU, C., AND MADHYASTHA, H. V.
LASTor: A Low-Latency AS-Aware Tor Client. In Pro-
ceedings of the 2012 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 2012), SP ’12, IEEE
Computer Society, pp. 476–490.

[5] ALSABAH, M., BAUER, K., AND GOLDBERG, I. En-
hancing Tor’s performance using real-time traffic classi-
fication. In Proceedings of the 2012 ACM conference on
Computer and communications security (2012), CCS ’12,
ACM, pp. 73–84.

[6] ALSABAH, M., BAUER, K., GOLDBERG, I., GRUN-
WALD, D., MCCOY, D., SAVAGE, S., AND VOELKER,
G. M. DefenestraTor: Throwing out Windows in Tor. In
11th Privacy Enhancing Technologies Symposium (July
2011), pp. 134–154.

[7] APPELBAUM, J. Tor and NAT devices in-
creasing bridge & relay reachability or enabling
the use of NATPMP and UPnP by defaults.
https://trac.torproject.org/projects/tor/
attachment/ticket/4960/tor-nat-plan.pdf,
August 2012. Accessed Feb. 2013.

[8] BAUER, K., SHERR, M., MCCOY, D., AND GRUN-
WALD, D. ExperimenTor: A Testbed for Safe and Re-
alistic Tor Experimentation. In Proceedings of the 4th
USENIX Workshop on Cyber Security Experimentation
and Test (CSET) (August 2011), pp. 51–59.

[9] BOUCHER, P., SHOSTACK, A., AND GOLDBERG, I.
Freedom Systems 2.0 Architecture. White paper, Zero
Knowledge Systems, Inc., December 2000.

[10] BRAUN, T., DIOT, C., HOGLANDER, A., AND ROCA,
V. An Experimental User Level Implementation of TCP.
Tech. Rep. RR-2650, INRIA, Sept. 1995.

[11] BROWN, Z. Pragmatic IP Anonymity. http://
www.cypherspace.org/cebolla/cebolla.pdf, June
2002. Accessed Feb. 2013.

[12] DIERKS, T., AND RESCORLA, E. RFC 5246The Trans-
port Layer Security (TLS) Protocol Version 1.2. http:
//www.ietf.org/rfc/rfc5246.txt, August 2008.

[13] DINGLEDINE, R. Tor and Circumvention: Lessons
Learned. In Proceedings of the 31st Annual Conference
on Advances in Cryptology (CRYPTO) (August 2011),
pp. 485–486.

[14] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON,
P. Tor: The Second-Generation Onion Router. In Pro-
ceedings of the 13th USENIX Security Symposium (Au-
gust 2004), pp. 303–320.

[15] DINGLEDINE, R., AND MURDOCH, S. Performance Im-
provements on Tor or, Why Tor is Slow and What We’re
Going to Do about It. http://www.torproject.org/
press/presskit/2009-03-11-performance.pdf,
March 2009.

[16] EDWARDS, A., AND MUIR, S. Experiences implement-
ing a high performance TCP in user-space. In Proceed-
ings of the conference on Applications, technologies, ar-
chitectures, and protocols for computer communication
(1995), SIGCOMM ’95, ACM, pp. 196–205.

[17] GOPAL, D., AND HENINGER, N. Torchestra: Reducing
Interactive Traffic Delays over Tor. In Proceedings of the
2012 ACM Workshop on Privacy in the Electronic Society
(WPES 2012) (2012), ACM, pp. 31–42.

[18] JANSEN, R., BAUER, K., HOPPER, N., AND DINGLE-
DINE, R. Methodically Modeling the Tor Network. In
Proceedings of the USENIX Workshop on Cyber Security
Experimentation and Test (CSET 2012) (August 2012).

[19] JANSEN, R., AND HOPPER, N. Shadow: Running Tor
in a Box for Accurate and Efficient Experimentation. In
Proceedings of the 19th Network and Distributed Security
Symposium (February 2012).

[20] JANSEN, R., HOPPER, N., AND KIM, Y. Recruiting New
Tor Relays with BRAIDS. In Proceedings of the 17th
ACM Conference on Computer and Communications Se-
curity (2010), CCS ’10, ACM, pp. 319–328.

[21] JANSEN, R., SYVERSON, P., AND HOPPER, N. Throt-
tling Tor Bandwidth Parasites. In 21st USENIX Security
Symposium (August 2012).

[22] KENT, S., AND ATKINSON, R. RFC 2401Security Ar-
chitecture for the Internet Protocol. http://www.ietf.
org/rfcs/rfc2401.txt, November 1998.

[23] KOHNO, T., BROIDO, A., AND CLAFFY, K. C. Remote
Physical Device Fingerprinting. IEEE Trans. Dependable
Secur. Comput. 2, 2 (Apr. 2005), 93–108.

[24] MCCOY, D., BAUER, K., GRUNWALD, D., KOHNO, T.,
AND SICKER, D. Shining Light in Dark Places: Un-
derstanding the Tor Network. In Proceedings of the 8th
Privacy Enhancing Technologies Symposium (July 2008),
pp. 63–76.

[25] MCLACHLAN, J., TRAN, A., HOPPER, N., AND KIM,
Y. Scalable Onion Routing with Torsk. In Proceedings of
the 16th ACM conference on Computer and Communica-
tions Security (2009), CCS ’09, ACM, pp. 590–599.

[26] MITTAL, P., OLUMOFIN, F., TRONCOSO, C., BORISOV,
N., AND GOLDBERG, I. PIR-Tor: Scalable Anonymous
Communication Using Private Information Retrieval. In
Proceedings of the 20th USENIX Security Symposium
(August 2011).

[27] MOORE, W. B., WACEK, C., AND SHERR, M. Explor-
ing the Potential Benefits of Expanded Rate Limiting in
Tor: Slow and Steady Wins the Race with Tortoise. In
Proceedings of the 27th Annual Computer Security Appli-
cations Conference (ACSAC) (December 2011), pp. 207–
216.

[28] MURDOCH, S. J. Comparison of Tor Datagram Designs.
Tor Project Technical Report (November 2011).

[29] NGAN, T.-W. J., DINGLEDINE, R., AND WALLACH,
D. S. Building Incentives into Tor. In Proceedings of
Financial Cryptography (January 2010), pp. 238–256.

[30] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE,
J. Modeling TCP throughput: a simple model and its em-
pirical validation. In Proceedings of the ACM SIGCOMM
’98 conference on Applications, technologies, architec-
tures, and protocols for computer communication (1998),
SIGCOMM ’98, ACM, pp. 303–314.

[31] REARDON, J., AND GOLDBERG, I. Improving Tor Us-
ing a TCP-over-DTLS Tunnel. In Proceedings of the 18th
USENIX Security Symposium (August 2009).

[32] SHEPARD, A. Build abstraction layer around
TLS. https://trac.torproject.org/projects/
tor/ticket/6465. Accessed Feb. 2013.

[33] SHERR, M., BLAZE, M., AND LOO, B. T. Scalable
Link-Based Relay Selection for Anonymous Routing. In
PETS ’09: Proceedings of the 9th International Sympo-
sium on Privacy Enhancing Technologies (Berlin, Heidel-
berg, 2009), Springer-Verlag, pp. 73–93.

[34] SHUE, C., SHIN, Y., GUPTA, M., AND CHOI, J. Y.
Analysis of IPSec overheads for VPN servers. In Pro-
ceedings of the First international conference on Se-
cure network protocols (Washington, DC, USA, 2005),
NPSEC’05, IEEE Computer Society, pp. 25–30.

[35] SNADER, R., AND BORISOV, N. A Tune-up for Tor:
Improving Security and Performance in the Tor Network.
In Proceedings of the Network and Distributed Security
Symposium (NDSS) (February 2008).

[36] T. KIVINEN, B. SWANDER, A. H., AND VOLPE, V. RFC
53947 Negotiation of NAT-Traversal in the IKE. http:
//www.ietf.org/rfc/rfc3947.txt, January 2005.

[37] TANG, C., AND GOLDBERG, I. An Improved Algorithm
for Tor Circuit Scheduling. In Proceedings of the 17th
ACM Conference on Computer and Communications Se-
curity (CCS) (October 2010), pp. 329–339.

14

[38] THE TOR PROJECT. Tor Metrics Portal: Data.
https://metrics.torproject.org/data.html#
performance. Accessed Feb. 2013.

[39] THE TOR PROJECT. Tor Metrics Portal: Network. http:
//metrics.torproject.org/network.html. Ac-
cessed Feb. 2013.

[40] TSCHORSCH, F., AND SCHEURMANN, B. How (not) to
Build a Transport Layer for Anonymity Overlays. In Pro-
ceedings of the ACM Sigmetrics/Performance Workshop
on Privacy and Anonymity for the Digital Economy (June
2012).

[41] VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN,
P., KOSTIĆ, D., CHASE, J., AND BECKER, D. Scala-
bility and Accuracy in a Large-scale Network Emulator.
SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 271–284.

[42] VIECCO, C. UDP-OR: A Fair Onion Trans-
port Design. http://www.petsymposium.org/2008/
hotpets/udp-tor.pdf, 2008. Accessed Feb. 2013.

[43] WANG, T., BAUER, K., FORERO, C., AND GOLDBERG,
I. Congestion-aware Path Selection for Tor. In Pro-
ceedings of Financial Cryptography and Data Security
(FC’12) (February 2012).

A Large-scale experiments using a higher-
bandwidth topology

To observe the effect of PCTCP in a potential future Tor
network with more available bandwidth, we construct an
experiment on ExperimenTor using a higher-bandwidth
underlying Modelnet network topology. Our overlay Tor
network is a scaled-down network in which we run 400
clients and 20 Tor routers. The ORs are assigned band-
width capabilities that are sampled from the bandwidth
distribution of the live Tor network ORs. We test the per-
formance of PCTCP in this topology using a light traffic
load of 39:1 web-to-bulk client ratio, and using a high
traffic load of 9:1 web-to-bulk client ratio.

We also experiment with PCTCP on ExperimenTor
using a higher-bandwidth underlying Modelnet network
topology. Our overlay Tor network is a scaled-down net-
work in which we run 400 clients and 20 Tor routers. The
ORs are assigned bandwidth capabilities that are sam-
pled from the bandwidth distribution of the live Tor net-
work ORs. We test the performance of PCTCP in this
topology using a light traffic load of 39:1 web-to-bulk
client ratio, and using a high traffic load of 9:1 web-to-
bulk client ratio.

Figures 12 and 13 show the download time and time-
to-first-byte comparisons for Tor and PCTCP using the
different traffic loads for the web and bulk clients. The
figures show that for Tor clients, the performance de-
grades faster, compared to PCTCP clients, as we increase
the traffic load in the network by decreasing the web-to-
bulk client ratio. For example, for the web client, the me-
dian time-to-first-byte remains 0.9 seconds for PCTCP
under the low and high traffic loads, whereas the corre-
sponding value in Tor degrades by approximately 20%.
This is also true for the download time distribution. The
median download time for PCTCP remains the same
as we increase the load (though the fourth quartile is
slightly degraded), whereas the median download time
for Tor clients degrades by more than 30%.

Because this network topology has more available
bandwidth than the topology used in Section 5.1, more
substantial performance benefits can be obtained when
PCTCP is used, as summarized in Tables 1 and 2, be-
cause using separate TCP connections for each circuit
allows each circuit to negotiate more bandwidth from the
underlying network topology.

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o
n

Download Time (s)

PCTCP 39:1
PCTCP 9:1

Tor 39:1
Tor 9:1

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o
n

Time to First Byte (s)

PCTCP 39:1
PCTCP 9:1

Tor 39:1
Tor 9:1

(b)

Figure 12: Performance of the web clients in a high-bandwidth network of 400 clients and 20 routers. Compare to Figure 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

PCTCP 39:1
PCTCP 9:1

Tor 39:1
Tor 9:1

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to First Byte (s)

PCTCP 39:1
PCTCP 9:1

Tor 39:1
Tor 9:1

(b)

Figure 13: Performance of the bulk clients in a high-bandwidth network of 400 clients and 20 routers. Compare to Figure 6.

Table 1: Download time performance improvements at the median when PCTCP is used, as compared to Tor.

Client Light load (39:1) High load (9:1)
Web client 46% 65%
Bulk client 56% 44%

Table 2: Time-to-first-byte performance improvements at the median when PCTCP is used, as compared to Tor.

Client Light load (39:1) High load (9:1)
Web client 68% 73%
Bulk client 53% 61%

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Download Time (s)

PCTCP
Tor

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Time to First Byte (s)

PCTCP
Tor

(b)

Figure 14: Performance of the web clients in a network of 500 clients and 50 routers with a 9:1 web-to-bulk client ratio. Compare to Figure 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o
n

Download Time (s)

PCTCP
Tor

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o
n

Time to First Byte (s)

PCTCP
Tor

(b)

Figure 15: Performance of the bulk clients in a network of 500 clients and 50 routers with a 9:1 web-to-bulk client ratio. Compare to Figure 6.

B Large-scale experiments with smaller
web-to-bulk client ratio

Recall that our large-scale experiments presented in Sec-
tion 5.1 used a web-to-bulk client ratio of 19:1. Al-
though this ratio approximates the performance of the
Tor network, we also performed similar large-scale ex-
periments on the same network topology recommended
by Jansen et al. where we lower the web-to-bulk client
ratio to 9:1 in order to test PCTCP with different traf-
fic loads and with increased congestion. We next present
our results.

The download time comparison between PCTCP and
Tor for web and bulk clients, depicted in Figures 14(a)
and 15(a), shows that PCTCP improves the long tail
of the distribution for the web clients by approximately
20%. The reason for the improvement is that PCTCP al-
lows each circuit at the transport layer to get its fair share
of the bandwidth and forces the bulk downloads present
in the system to back off whenever they attempt to get
more than their allocated bandwidth, as evident by the
degradation of the bulk client performance shown in Fig-
ure 15(a).

Figures 14(b) and 15(b) show the significant time-to-
first-byte improvements for both the web clients and the
bulk downloaders. The improvements at the 75th are
more than 60% for both the web and bulk clients.

17

