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Abstract
We propose a scheme for outsourcing Private Informa-
tion Retrieval (PIR) to untrusted servers while protect-
ing the privacy of the database owner as well as that of
the database clients. We observe that by layering PIR
on top of an Oblivious RAM (ORAM) data layout, we
provide the ability for the database owner to perform
private writes, while database clients can perform pri-
vate reads from the database even while the owner is
offline. We can also enforce pricing and access control
on a per-record basis for these reads. This extends the
usual ORAM model by allowing multiple database read-
ers without requiring trusted hardware; indeed, almost
all of the computation in our scheme during reads is per-
formed by untrusted cloud servers. We implement a real
system as a proof of concept. Our system privately up-
dates a 1 MB record in a 2 GB database with an average
end-to-end overhead of 1.65 seconds and answers a PIR
query within 3.5 seconds.

1 Introduction

Private Information Retrieval, or PIR, is a privacy en-
hancing technology (PET) that allows clients to query a
database in a privacy-preserving manner. The goal is that
the database server should be able to respond to client re-
quests without learning any nontrivial information about
which record the client is seeking. A trivial solution is to
download the entire database and issue queries locally.
This solution is clearly information-theoretically secure:
no matter how much computation the server employs, it
cannot learn which record the client seeks; however, it
is highly impractical to transmit large databases over the
Internet. PIR protocols aim to provide the same level of
privacy, while incurring a strictly sublinear communica-
tion cost.

PIR schemes can be computational or information the-
oretic. Computational PIR (CPIR) schemes use crypto-
graphic techniques to encrypt the user’s query in such

a way that the server can combine the encrypted query
with the plaintext database to yield the encrypted result.
This encrypted result is then returned to the client, who
can decrypt it. The security of these schemes rely on the
security of the underlying encryption.

Information-theoretic PIR (IT-PIR) schemes, on the
other hand, are “perfectly secure” in the same sense as
above — even a server employing unlimited computation
cannot determine what the client was after. However, in
order to achieve sublinear communication and informa-
tion theoretic security at the same time, one must employ
multiple database servers [6], and rely on the assump-
tion that some number of these servers are not colluding.
This non-collusion assumption is not unusual with dis-
tributed PETs; other PETs such as Tor [9] and electronic
voting [5] make the same assumption.

In work from 2011, Olumofin and Goldberg [22] iden-
tified a CPIR scheme and a number of IT-PIR schemes
that process PIR queries faster than trivially download-
ing the database. Their experimental results show that
the fastest scheme examined processes a PIR query on
a 16 GB database in less than 10 seconds, over 3 orders
of magnitude (1000 times) faster than downloading the
database over a 10 Mb/s network.

Outsourcing PIR Although the end-to-end PIR re-
sponse time for databases of a few gigabytes is somewhat
reasonable, doing PIR over a one-terabyte database using
the same amount of computational power still requires
over 10 minutes, which is beyond practicality. Even
worse, as shown by experiments [22], when the size of
the database exceeds the size of the RAM available on
the local machine, the performance begins to deteriorate
as disk access times dominate.

Luckily, the computation in most PIR schemes can be
easily parallelized. A recent experimental study by De-
vet [7] has shown that with the help of 64 cores, Gold-
berg’s IT-PIR protocol [12] is indeed about 64 times
faster than in a single-core setting. This promising re-
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Multiple Multiple Avoids Hides Access History
Readers Writers Trusted Hardware from DB Owner

ORAM [14] × × X ×
ORAM-aided PIR [25, 26] X X × X

Delegated ORAM [10] X X X ×
This work X × X X

Table 1: This table shows how our protocol differs from related work. In all of the schemes, the access histories of clients are hidden from
the untrusted server.

sult, measured on databases of up to 256 GB, raises the
possibility of reasonable private query times to databases
of even larger sizes, if the required computational power
is available.

Providing PIR services on large databases offers a
strong motivation to outsource them to a cloud, where
the computational power of hundreds of cores can be
utilized. However, this outsourcing can come at a cost
to privacy: although the PIR ensures the privacy of the
database clients, and encryption can ensure the database
contents are protected from the untrusted cloud, the da-
tabase owner may also wish to protect his updates to the
database from being observed by the cloud. Even the
update patterns — which records get updated when, or
how often — may be sensitive information. We will later
formalize this notion as outsourcing privacy. While out-
sourcing privacy protects the database owner, the com-
plementary notion of information retrieval privacy pro-
tects the database clients by hiding their access patterns.
We aim to construct a system that provides both of these
kinds of privacy.

1.1 Related Work

Oblivious RAM (ORAM), first proposed by Goldreich
and Ostrovsky [14], provides a solution for outsourc-
ing storage to an untrusted server. With a reasonable
amount of private storage on the client side, ORAM has
been shown [17, 24, 27] to be much more efficient than
when it was first proposed [14]. ORAM allows a sin-
gle user (who possesses a secret key) to read and write
data to a database housed on an untrusted storage server.
ORAM completely hides the access patterns of records
from the server, in the sense that the server cannot even
tell whether an access to the ORAM is a read or write
operation, nor can it tell how the current access is related
to previous ones. ORAM does not allow access from
multiple users unless they share the same key: a user ei-
ther has the key and is able to access the whole ORAM
obliviously, or she does not have the key, and cannot ac-
cess any record at all. It is not obvious how to enforce
any access control or pricing which allows partial access
to the database for entitled users. Also, users who share

the secret key see the access histories of each other. In
that sense, users who share the same key should really
be conceptually treated as one single user, and what they
are reading or writing is not oblivious to anyone holding
the secret key, including the database owner.

Any ORAM scheme naturally leads to a CPIR scheme
with trusted hardware [25, 26]. The private storage re-
quired on the client side now sits on the trusted hardware,
which keeps the required ORAM secret key within itself,
and interacts with the untrusted server exactly the same
way as an ORAM client would do. A database client sim-
ply tells the trusted hardware which record she wishes
to retrieve and waits for the response through a secure
channel, hoping that the trusted hardware does not leak
her query to others, and does not fool her with a wrong
answer.

Another piece of work of particular relevance to ours
is Delegated Oblivious RAM proposed by Franz et
al. [10]. Each record in the Oblivious RAM is encrypted
and signed by a unique set of keys initially only known
by the database owner. Giving out the decryption key to
someone allows her to read that record “obliviously”, and
giving out both the decryption key and the signing key al-
lows both read and write access to the record. However,
the database owner is able to learn the access patterns
from all the other users because she knows all the keys.
Even worse, she is required to do so; the database owner
has to come back periodically to look at the access his-
tory, reshuffling the ORAM according to that history to
allow further unlinkable ORAM accesses.

It is not surprising that none of these schemes keeps
the access histories of multiple clients private from the
database owner, because a general ORAM models only
a single client interacting with an untrusted storage. The
notion of multiple clients was not introduced in ORAM’s
original design, which looks into hiding the access pat-
tern of records from the untrusted storage, not hiding the
access history of users from each other. Table 1 shows
how our protocol is different from those above.
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1.2 Our contributions
1. We propose a definition for outsourcing privacy that

reflects the privacy interests of a database owner
against both the untrusted servers housing the out-
sourced data, as well as database clients who access
that data.

2. We make a key observation that an ORAM scheme
and a PIR scheme can be fruitfully combined.
We combine this observation with a novel server-
side indexing structure to produce a system to al-
low a single database owner to privately and effi-
ciently write data to, and multiple database clients
to privately read data from, an outsourced database,
meeting our above definition of outsourcing privacy.

3. We implemented our system as a proof of concept.
We experiment with databases up to 2 GB in size,
with reasonable performance on a single commod-
ity server. Based on the benchmarks, we predict the
performance for our protocol running on databases
up to the size of one terabyte, showing its feasibility
when the database owner has a high-speed corporate
Internet connection (at least 100 Mb/s), even if the
database clients only have slow ADSL connections.

2 Background

2.1 Oblivious RAM
Oblivious RAM (ORAM) was first studied by Goldreich
and Ostrovsky [14]. In their model, a CPU with some
trusted storage of constant size wishes to conduct a com-
putation in t virtual steps using m virtual items. Oblivi-
ous RAM simulates the computation in an untrusted stor-
age such that for any two computations that require the
same number of virtual steps, the two actual access se-
quences of actual items look indistinguishable to the un-
trusted storage. A trivial solution for ORAM is to scan all
the actual items for each virtual step and rewrite every ac-
tual item with a semantically secure encryption scheme
— decrypting and then re-encrypting the original value if
the actual item is not to be updated, and decrypting and
freshly encrypting the new value if it is. (Recall that se-
mantically secure encryption is roughly the property that
someone without the decryption key must be unable to
distinguish two different encryptions of the same plain-
text from encryptions of different plaintexts. We will as-
sume in the rest of the paper that any write operation
to an ORAM will use a semantically secure encryption
scheme unless otherwise specified.) This trivial solution
requires O(t ·m) computation cost. To bring down the
asymptotic overhead, Goldreich and Ostrovsky gave two
constructions for ORAM, a Square Root Solution and a
Hierarchy Solution.

The Square Root Solution is composed of a shelter of
size
√

m , as well as a main part that contains m real items
and
√

m dummy items. Both parts are encrypted. Items
in the main part are randomly permuted using a secret
nonce. Each access to the ORAM first iterates through
the shelter. If the required virtual item is found in the
shelter, then a dummy item from the main part is fetched.
Otherwise, the required virtual item is fetched from the
main part. In either cases, the updated virtual item is ap-
pended to the shelter in the end. After each

√
m accesses,

the shelter becomes full, and all the items are obliviously
reshuffled into the main part using a new secret random
permutation. Not a single actual item in the main cell is
accessed twice between two consecutive shufflings, and
previous accesses become unlinkable to the ones after
a shuffling. Thus, no information about the access pat-
tern is revealed to the adversary. In order to obliviously
shuffle the ORAM, each item is given a tag produced
by a hash function, and an oblivious sorting algorithm
is executed with the tags treated as sorting keys. Us-
ing the O(m · log2 m) sorting network by Batcher [1], this
Square Root Solution achieves an amortized overhead of
O(
√

m · log2 m) for each virtual access.
The Hierarchy Solution organizes the ORAM into L

levels. Level i contains at most bi real items for i =

1, · · · ,L, which are hashed to bi buckets using a hash
function unique to that level. Each of the buckets is of
size s = Θ(log t) to reduce the probability of rehashing
due to hash collisions filling up buckets. To access a
virtual item, the CPU first scans all the buckets on the
first level. Then, for each of following levels, the CPU
scans the bucket that possibly stores the item required
according the hash function used to hash that level, or
accesses a dummy item if the required item has already
been found. Finally, the CPU writes the updated value to
the top level. After bi−1 virtual accesses, level (i−1) be-
comes potentially full,1 and all its items are obliviously
rehashed to level i along with the items already on level
i, using a new hash function. The total number of actual
items required is O(t · log2 t), and the amortized cost for
each virtual access is O(log3 t).

Reasonable asymptotic costs are achieved in both of
their constructions [14]. However, an unrealistically
large constant is hidden behind the big O notation be-
cause of the expensive oblivious sort required to reshuf-
fle the ORAM periodically. For this reason, ORAM has
long been considered as an impractical protocol.

Recently, with the increasing popularity of cloud ser-
vices, ORAM has been proposed as a way to outsource
data storage to the cloud while hiding the access pat-
tern of the underlying data. Encryption alone prevents

1It is possible that level i− 1 is not full at this point because of
repeated accesses to the same virtual item. However, not rehashing
would leak this access pattern.
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the untrusted server from learning the contents of the
outsourced data. However, the access pattern might be
enough for the adversary to gain confidential informa-
tion. For example, for a medical database, the access
frequency of a record might help the adversary identify
the disease the record is about, and reveals possible med-
ical conditions of patients who access those identified
records. ORAM makes accesses to the database indis-
tinguishable; the server cannot tell which record is ac-
cessed, how the accesses are interrelated, nor whether a
given access is a read or write operation.

In the data outsourcing model, the constraint of O(1)
client-side storage does not apply any more, and the prac-
ticality of ORAM has been revisited. We denote the
number of records stored on the untrusted server by n.
Built on top of the primitive of cuckoo hashing and an
efficient randomized Shellsort, Goodrich et al. [15–17]
propose several ORAM schemes with O(logn) amortized
access overhead and O(n1/r) storage on the client side for
some constant r > 1. Stefanov et al. [24] suggest keeping
track of all the records on the client side, because the size
of a data item is much larger than its index. The ORAM
is partitioned into smaller ORAMs, such that each small
ORAM can fit in the client-side memory to allow very
efficient oblivious reshuffling. The access overhead of
their scheme is O(logn). They claim that their construc-
tion is the most efficient scheme so far in practice, with
private access times only 20–35 times slower than nor-
mal unprotected access times, under practical parameter
choices. Recently, Williams et al. [27] implemented an
oblivious file system called PrivateFS, which utilizes a
set of optimizations to make ORAM practical. On a 1 TB
database across 50 ms network links, they achieve multi-
ple queries per second to the file system. The underlying
ORAM uses a hierarchy structure similar to Goldreich et
al.’s Hierarchy Solution. Instead of trying a bucket that
possibly contains the required record, the client down-
loads an encrypted Bloom filter on each level that tells
her whether that record is on that level; if not, a dummy
item is fetched instead of a possibly real one. This allows
the server to use a collision-free hash function for each
level, which lowers the storage overhead on the server
from O(n logn) to O(n). An efficient oblivious merge
sort with O(

√
n ) client storage scrambles a level as it be-

comes full, and succeeds with overwhelming probability.
We do not intend to make an exhaustive review of all

the ORAM schemes in the literature, nor do we intend
to cover full details of the schemes above. The key is
that the practicality of ORAM has been shown under the
assumption that the client also has a moderate amount of
private storage, which is entirely reasonable in the data-
outsourcing setting. A typical client might work with a
local private storage in the order of gigabytes, wishing to
store a database in the order of terabytes to the cloud.

2.2 Goldberg’s IT-PIR

Our construction builds on top of Goldberg’s multi-
server IT-PIR protocol [12]. We choose Goldberg’s IT-
PIR for three reasons: 1) it supports the notion of τ-
independence, which is important for protecting the pri-
vacy of the database owner, as will be discussed in more
detail in Section 2.4; 2) it has an open-source implemen-
tation Percy++ [13]; and 3) it is experimentally quite ef-
ficient [22].

Goldberg’s construction models the database as a r-
by-s matrix M over some finite field F. Let e j be a stan-
dard basis vector in Fr with the j-th entry being 1, so
that e j ·M yields exactly the jth row of M. In the sim-
plest version of the scheme, each of ` servers holds a
copy of the matrix M. In order to retrieve the ith record,
the database client sends a share of ei under Shamir se-
cret sharing (with threshold t) to each of the servers, who
sees a vector v that looks indistinguishable from one cho-
sen uniformly at random, and computes v ·M. Because of
the linearity of Shamir’s secret sharing, by interpolating
the resulting vectors using Lagrange interpolation, the ith

row can be reconstructed by the PIR client. Unless more
than t servers collude to share the queries they received
from the client, none of them learns anything whatsoever
about which record the client is after. The communica-
tion cost is `(r+s) field elements, which optimally equals
2`
√

rs when the matrix is square; i.e. r = s.
This PIR scheme also supports robustness and Byzan-

tine robustness. [8] For the above privacy parameter t, as
long as at least t + 2 servers respond to the query cor-
rectly, the other (misbehaving) servers will be identified,
and the client will still be able to reconstruct the correct
response. This allows us to withstand — and identify —
servers that attempt to disrupt the protocol.

2.3 Symmetric PIR and Oblivious Transfer

Symmetric PIR (SPIR) protects the privacy of the da-
tabase server by making sure that the database client
learns only one record per access request. (This rules
out the trivial download scheme, for example.) Oblivi-
ous Transfer (OT) provides the same privacy guarantee,
but does not have SPIR’s constraint of sublinear commu-
nication cost, and so is a strictly weaker notion. Coupled
with anonymous credentials and zero-knowledge proofs,
some of the SPIR and OT schemes in the literature can
support pricing and access control over the records in the
database, which is well-suited for e-commerce applica-
tions, such as selling e-books in a privacy-friendly way.
We briefly introduce two flavors of such constructions
below.
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Henry et al.’s SPIR Built on top of Goldberg’s IT-
PIR protocol [12] and Kate et al.’s polynomial commit-
ments [20], Henry et al.’s SPIR protocol [19] supports
tiered pricing, which naturally induces an SPIR scheme
with access control. The database client proves to each
database server that her query vector evaluates to a stan-
dard basis vector at x = 0 with an efficient batch zero-
knowledge proof. If the proof is valid, the server receiv-
ing the proof is convinced that only one row is retrieved
by multiplying the input vector with the database ma-
trix. By utilizing the homomorphism of the polynomial
commitments, the database client can also prove in zero-
knowledge that her wallet, which is encoded as an anony-
mous credential, stores enough balance to purchase the
record with a price corresponding to the tier encoded in
the wallet. For full details, please refer to the paper [19].

Camenisch et al.’s OT In Camenisch et al.’s OT con-
struction [3, 4], the entire encrypted database is pub-
lished. The encryption key for the ith record is a unique
signature on the message “i”. (A unique signature
scheme is one in which there is exactly one valid sig-
nature for any given message and public key.) In order to
decrypt a record, an OT client requests a blinded signa-
ture on the desired index. Since the signature is blinded,
the signer does not learn the message to be signed, which
is the index of the record. In order to enforce access
control (AOT [3]) or pricing (POT [4]), access control
or pricing information is encoded in the signature as
well. The client proves that the blinded message is well-
formed, and that her credential satisfies the access con-
trol policy specified in that blinded message. We refer
readers to the papers [3, 4] for further details.

2.4 SPIR and OT with Data Privacy
Our protocol will contain a component where the un-
trusted cloud servers need to provide access to records
from a database Mkey of symmetric keys, using pricing
or access control to limit who gets to see which keys.
This can be easily accomplished with the SPIR or OT
protocols above. Importantly, however, the cloud servers
themselves must not be allowed to see the keys.2 We now
provide two solutions to this problem.

τ-independence The notion of τ-independence was
introduced by Gertner et al. [11]. It ensures that a coali-
tion of τ or fewer servers can deduce nothing nontriv-
ial about the contents of the database. This feature is
supported by Henry et al.’s SPIR protocol [18]. With τ-
independence enabled, rather than each server storing a

2If a cloud server acts as a database client and purchases a key for
itself, then it of course will learn that key. Note that this scenario does
not violate our security notions, however.

copy of Mkey, the servers instead each hold a Shamir se-
cret share of Mkey. Unless more than τ of them come
together to combine their shares, no one learns the con-
tents of Mkey.

Threshold signature As above, in Camenisch et al.’s
OT construction [3, 4], the encryption key of a record is
an unique signature on its index. In a nutshell, the client
blinds a message m by raising it to a random power k.
The server signs the blinded message mk using a secret
key h by computing L = e(mk,h) where e is a bilinear
pairing. The client then computes K = L1/k = e(m,h)
which is then the decryption key.

We can prevent the servers from learning K by turn-
ing this into a threshold signature scheme. Now, the
database owner generates ` secret shares s1, · · · ,s` for
the value 1 using Shamir secret sharing with threshold
τ . Each server gets a share h j = hs j and uses it to com-
pute L j = e(mk,h j). The client then performs Lagrange
interpolation in the exponent to recover L = e(mk,h) with
τ + 1 valid responses.

In both solutions, if there is no coalition of servers ex-
ceeding some threshold τ , none of the servers learns any
nontrivial information about Mkey by providing the SPIR
or OT service. In reality, cloud computing service pro-
viders care about their reputation. It is not an unrealistic
assumption that they would honestly follow the proto-
col instead of actively breaching from it by talking to
parties they are not supposed to talk to, although they
might be curious to try to learn something from the tran-
scripts they are allowed to see. It would interesting to
examine the non-collusion assumption from the perspec-
tive of game theory, and provide more incentives for non-
colluding behaviours. This is, however, out of the scope
of our paper.

3 Construction

We now describe the construction of our scheme. There
are three parties involved: one database owner, denoted
by O; ` servers each holding a copy of the outsourced
database; and database clients who issue read queries
for records stored in the database. In reality, each of
the ` “servers” might be a cloud service itself, such as
Windows Azure, Amazon AWS, etc. Note that in this
case, ` servers do not refer to ` computation units within
one cloud, but rather ` non-colluding clouds. We denote
by private storage the storage local to O. The database
owner stores records in the database; these correspond
to the virtual items in Section 2.1 above. We denote the
number of records by n, and each record is associated
with a unique id ranging from 1 to n.
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item1 item2 · · · itempROW1

· · ·ROW2

· · ·ROW3

...
· · ·ROWR−1

· · ·ROWR

Figure 1: The layout of Mrec. Each row places p data items from
the underlying ORAM in a level-by-level order, starting from the
top level. p = dN/Re, where N ≈ 4n is the number of data items (n
real plus about 3n dummy) in the ORAM and R is the number of
rows in Mrec.

3.1 Privacy Constraints
We care about the privacy both for the database clients
and the database owner. We define information retrieval
privacy and outsourcing privacy for them respectively
below.

Information retrieval privacy The definition of infor-
mation retrieval privacy starts with a database client re-
trieving a record with id i. Assuming that the number of
colluding servers in transaction with the client does not
exceed the privacy threshold t, none of the servers learns
anything about i through the transaction. The database
owner O also learns nothing about i.

Outsourcing privacy The database owner O updates
the database over time. Neither the database clients nor
the untrusted servers learn anything about the update pat-
tern for records they are not entitled to access.

All of the interactions between a database client and
the servers are standard PIR or SPIR transactions, and the
database owner can be completely offline during those
transactions; thus it is easy to see that information re-
trieval privacy is guaranteed by the properties of PIR and
SPIR.3

3.2 Overview
Our system stores three matrices on the cloud servers.
First, Mrec stores the encrypted database records. These
records are arranged logically into an ORAM and then
laid out into a matrix by concatenating the elements of
the ORAM in some deterministic order (say, level-by-
level), and having each row of the matrix Mrec consist of
some (integer) number of the ORAM elements so as to
make the shape of Mrec as close to square as possible.

3Note that although Goldberg’s IT-PIR protocol is information-
theoretically secure, the zero knowledge proofs required for SPIR
makes information retrieval privacy protected only computationally
when exactly t servers collude in Henry’s SPIR scheme [19].

IVr i ri IVk Ki MACi

Figure 2: The layout of a data item. The light grey parts are en-
crypted.

Database clients will use PIR to retrieve rows of Mrec;
this novel combination of ORAM and PIR will allow for
multiple database clients to privately read records, while
a single database owner can privately update the data-
base. Figure 1 shows the layout of Mrec. The second
matrix, Mind , stores the encrypted indices that keep track
of the location of each record within Mrec. Finally, Mkey
stores a list of uniformly random symmetric encryption
keys {K1, . . . ,Kn}, one for each record in the database.

Mrec and Mind are replicated across each of the `
clouds, while Mkey is distributed using one of the data
privacy techniques from Section 2.4 so that no coalition
of τ or fewer cloud providers can read the contents of
Mkey.

The data owner maintains a master secret key KEY ,
which is used to access Mrec and Mind as decribed in de-
tail below.

A data item in Mrec contains three parts (as shown
in Figure 2): the encrypted content ERi of the under-
lying database record, the encryption EKi of key Ki
(both under a semantically secure encryption scheme),
and a MAC tag MACi. Here ERi = IVr‖ENCKi,IVr (i‖ri),
EKi = IVk‖ENCKEY,IVk (Ki), ENCK,IV (·) is symmetric
encryption with key K and IV IV , and MACi =

MACKi (i‖EKi‖ERi),4 where ri is the content of the
record with id i. We allow ri to carry whatever necessary
metadata is required by the particular ORAM scheme in
use. EKi helps the database owner recover Ki for reshuf-
fling operations. For simplicity, we call the record with
id i the ith record or record i. A dummy data item can
simply be a random string of the appropriate length.

The elements of Mind can be thought of as
a list of authenticated semantically secure encryp-
tions, such as (IV,EIi,MACKi (IV‖EIi)), where EIi =

ENCKi,IV (i‖OFFSETi) and OFFSETi indicates where
record i resides within Mrec.

Every time a record is updated in Mrec, the ORAM will
move records around, due to the rewrite to the top level
or because of the reshuffling of some levels. Therefore,
Mind will also need to be updated. However, updating a
subset of the entries in Mind can leak information about
the access pattern. For now, consider our scheme to up-
date the entire Mind for each update operation on Mrec.
For records that do not change their offsets in Mrec, their
entries in Mind are simply re-encrypted using a new IV.

4For good cryptographic hygiene, separate keys derived from Ki
should be used for the encryption and the MAC. We elide this detail for
ease of notation.
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We will provide a more efficient construction for Mind in
Section 3.4.

Now, a complete retrieval action for the ith record in
the database requires three PIR queries on the three ma-
trices mentioned above.

1. A PIR query on Mind for the offset of record i in
Mrec. No access control is required for this PIR
query, since the database client can decrypt the off-
set only if she has already retrieved Ki. There might
be multiple data items corresponding to a record in
Mrec (depending on the underlying ORAM scheme),
and Mind keeps track of the one that reflects the most
recent update. With Ki, the database client is able to
verify the MAC and decrypt the offset for record i.

2. An SPIR query over Mkey to retrieve Ki. Pric-
ing and access control can be enforced using ex-
isting schemes in the literature, such as Henry et
al.’s PSPIR [19] or Camenisch et al.’s ACOT or
POT [3, 4]. ACOT and POT are not SPIR schemes
per se, because they all require downloading the
whole encrypted database (albeit just the smaller
database of keys Mkey and not the entire database
Mrec). However, as observed by Henry et al. [18],
clients can issue PIR queries to retrieve the part
of the encrypted database they are interested in,
and then conduct zero-knowledge proofs required in
ACOT or POT with constant communication over-
head, thus in overall achieving the sublinear com-
munication cost required by SPIR.

3. A PIR query on Mrec for the encrypted record. Note
that the database client needs to learn OFFSETi be-
fore she knows which row to retrieve from Mrec.

Dummy entry in Mkey. In a priced PIR scenario, a PIR
user might not want to reveal the fact that she is retriev-
ing the up-to-date version of a record she has already pur-
chased by skipping the SPIR query. To circumvent this,
we can add a dummy entry to Mkey which allows data-
base clients to purchase a dummy key with price 0. This
of course requires that the price of an SPIR query be hid-
den from the SPIR servers, as in Henry et al.’s work [19].

Sequence of PIR/SPIR queries. Each retrieval re-
quest should start with a PIR query on Mind , followed
by a SPIR query on Mkey, and end with a PIR query on
Mrec. Querying Mkey before Mind works as well for some
applications, but not always, as we will discuss in Sec-
tion 3.5.

3.3 Choice of ORAM scheme

We must consider which ORAM scheme should be used
for our construction. Some ORAM schemes cannot be
employed directly for our purpose, such as that of Ste-
fanov et al. [24], which stores some up-to-date data items
in the private storage; in our scheme, we require the data-
base owner be able to be completely offline when clients
read the database.

Another consideration is efficiency. There are vari-
ous engineering factors in all dimensions that would af-
fect the performance of a real-world system, especially
in a cloud setting, such as data replication, load balanc-
ing, etc., the discussion of which is out of the scope of
this paper. We do not intend to find a particular ORAM
scheme that would work best with those engineering fac-
tors, which are probably highly dependent on the spe-
cific underlying application as well. A concrete scheme
that fulfills our privacy requirement is shown here for the
sake of the completeness of our paper. However, we do
not argue that it is the most suitable ORAM scheme for
all purposes.

We present an simplified version of William et al.’s
ORAM scheme which replaces the Bloom filters with
a full index that keeps track of where each individual
record resides in the ORAM. This index is stored en-
tirely on O, which consumes roughly n · log2(4n) bits of
private storage, where log2(4n) is the number of bits to
encode a single index record. The private storage also
keeps track of a list of locations storing dummy items
on each level that have not been visited; this consumes
about (2n) · log2(2n) bits, where 2n is roughly the num-
ber of dummy items that the database owner needs to
keep track of and log2(2n) is the number of bits to en-
code each of them (since there are at most 2n locations
on each level). Note here that the total number of blocks
in the ORAM is about 4 times the number of records n.

Table 3 lists the estimated amount of private storage
required given different record sizes measured in bytes.
Each record is encrypted in a data item. A data item
is slighly larger than the record because of the metadata
encoded, such as EKi, IVk, etc.

Our ORAM is organized into L levels with 2i items on
the i-th level (i = 1, · · · ,L), including at least 2i−1 dummy
items. An exception is the first level, where there are
only 2 items, and no dummy items are required. Because
of the full index in the private storage, O knows which
level the up-to-date record resides in and where exactly
the corresponding item is on that level. An access to the
ORAM starts with a single request, which fetches the tar-
get location on the target level, the entire first level, and
also a unique dummy item from all the other levels. The
updated record is then written back to the top level. The
outdated item should be erased by writing back a new
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items dummy items reshuffled moved down
level 1 2 0 every update every two updates

level i (i > 1) 2i at least 2i−1 every 2i−1 updates every 2i updates

Table 2: This table shows how each level in the ORAM is organized. Note the column “items” includes the number of dummy items. A
reshuffle of level 1 means fetching the entire 2-item level and writing the entire updated level back.

dummy item. To avoid leaking which level the required
record is at, every single dummy item accessed should
be re-encrypted as well.

Initially, all the items are on the bottom level (so
n ≤ 2L−1), and they are gradually moved to top levels
with update accesses from O. After each 2i accesses, the
contents of levels 1 through i are moved down to level
i + 1, which is reshuffled using an oblivious sort algo-
rithm, such as the Θ(m · logm) oblivious merge sort in-
troduced by Williams and Sion [26]. Table 2 shows how
each level is organized in our ORAM.

Our construction is similar to Williams et al.’s ORAM
protocol, the key difference being that we do not need
a Bloom filter on each level, because the owner-side in-
dex stored in O tells her directly where the target item
is. The reason behind this simple construction is to make
the guarantee for outsourcing privacy less obscure, and
we think it is good enough for a proof-of-concept imple-
mentation, which is discussed in Section 5. Assuming
an oblivious sorting scheme of complexity Θ(m · logm)
is used to sort m items, after 2L−1 updates, the number
of operations required for reshuffling is Θ(∑L

i=1 2i+1 · (i +

1) · 2L−i) = Θ(2L ·L2), and all the items are moved back
to the lowest level again. Therefore, the amortized cost
for each update is Θ(log2 n).

How outsourcing privacy is protected. We call
records that someone is entitled to access (due to access
control or purchase) “disclosed records” to her. For up-
date operations corresponding to the records disclosed to
an untrusted cloud server, the server does learn the fact
that those records are updated after these operations, but
this is allowed by the definition of outsourcing privacy.
For an update of a non-disclosed record to a server, by
comparing Mind with the older version, the server only
learns that her disclosed records are not updated, and
nothing more. In Mrec, she simply sees the entire first row
is fetched with a new item written back that looks ran-
dom to her, and for each of the following levels, a unique
position is fetched since the last reshuffling, and that po-
sition is not any of the positions where her disclosed
records are. Thus by looking at Mrec, the server cannot
tell which record is being accessed, and how the current
access could be linked to previous ones. The same ar-
gument holds for a database client, who has strictly less
information than the cloud server.

Database size
64 GB 256 GB 1 TB

R
ec

or
d

si
ze 4 KB 240 MB 1 GB 4 GB

64 KB 12 MB 48 MB 240 MB
1 MB 704 KB 3 MB 12 MB
8 MB 64 KB 288 KB 1.5 MB

Table 3: Size of local storage required on the database owner O
for the index. The column headers show the number of bytes re-
quired if the database were to be stored on O without outsourcing;
note that if the database is organized as an ORAM on an untrusted
server, there is a storage overhead inherently required by ORAM,
which is about 4 times in our ORAM scheme. The row headers
indicate varying record sizes.

3.4 Server-side Index

From Table 3, we see that the size of a full indexing struc-
ture goes up to the order of gigabytes under some param-
eter choices. This is a manageable size for the client-
side index in the private storage, because accessing that
structure from O is completely local and does not require
any network transmissions. For Mind , however, if after
each database update, the entire structure needs to be re-
encrypted and transmitted over the Internet, the overhead
is rather high and seems unrealistic to deploy for data-
bases with large numbers of records.

We propose an enhancement: partition the list of in-
dices in Mind into m parts p1, · · · , pm. Each of these par-
titions is organized as a queue of constant limited size,
and partition pi contains the indices for records with id
ranging from (i−1) ·dn/me+1 to i ·dn/me (though not in
any particular order, and intermingled with dummy ele-
ments). When the index of a record needs to be updated,
an index item should be appended to the end of the cor-
responding queue and when the size of a queue hits its
limit, O needs to retransmit all the encrypted indices for
that partition.

Each partition is treated as a row in Mind for the data-
base clients to issue PIR queries; that is, when looking
for the offset of record i in Mrec, the database client will
perform a PIR query to retrieve row di/dn/mee from Mind .
This will be a partition containing the offset information
for record i somewhere inside it. In order to find the right
index record, the database client, once it learns Ki, sim-
ply tests each MAC value in the retrieved row to find the
right one, which it then decrypts to yield OFFSETi. The
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p1

p2

p3

LOC1 · · · · · · LOCq

· · ·

· · ·
...
· · ·
· · ·

pm−1

pm

Figure 3: The layout of Mind . Each row pi is organized as a limited-
sized queue with a size limit of q≈Qdn/me, which stores the indices
for records with id ranging from (i− 1) · dn/me+ 1 to i · dn/me (as
well as some dummy items). The light grey part in p2 indicates
the length of the current queue in p2 (known only by O). When
that queue grows to LOCq, the entire p2 needs to be rewritten by
O. Q is a parameter that trades off write performance for read
performance.

database client should test the MAC values starting from
the end of the queue to get the most up-to-date OFFSETi.
Figure 3 shows the layout of Mind .

To update an index in p j, the database owner appends
the updated index item to p j for the target record index,
and appends a random string the same length as an index
item as a dummy item for all the other partitions. For
this construction to work, we require O to store all the
indexes locally, which has been justified in Table 3.

If we limit each queue size to Q ·dn/me, then for every
(Q− 1)dn/me index changes, O needs to replace each
individual partition only once. Thus the amortized end-
to-end response time for updating one index is m · (1 +

1
Q−1 ) ·U , where U is the overhead to encrypt an index
item and upload it to ` servers.

With m equal to 1, we achieve the maximum savings
for update operations, but database clients will need to
download the entire indexing structure for each query. A
proper choice of m is required to strike a balance between
the efficiency of update operations and PIR queries.

For example, for a 1 TB database with block size
1 MB, with 128-bit AES and 128-bit HMAC-MD5, the
server-side index is roughly 96 MB, (there is about 2
times storage overhead if we set Q = 2), which can be
partitioned into 64 partitions, each with size 1536 KB,
which fits easily in any desktop. The cost for updating
one index in our efficient Mind construction should be
roughly equal to uploading 64 · (1 + 1

2−1 ) · 48 = 6 KB of
data. Note that each index item is of size 48 bytes and
that in an Internet setting, the cost for uploading 6 KB
of data should dominate the cost to encrypt them. For
a database client, Mind is a matrix of dimension 64 ×
1536 KB, and thus the communication cost between the
client and one server is then about 1.5 MB for each query.
These partitions should be initialized to different states
to avoid the replacing of all partitions simultaneously;
this affords some measure of de-amortization. When a
reshuffling of some level i in Mrec happens, we need to

update the indices for more than one record. To avoid
leaking access patterns, the database owner should pre-
tend that 2i−1 records were updated (it might be true) and
access each partition 2i−1 times. When the cost of doing
so becomes too high, it might just be more efficient to
replace the partition with an entirely new one using a sin-
gle write. It is straightforward to verify that our efficient
server-side indexing structure does not break outsourcing
privacy.

3.5 Pricing and Access Control
In our construction, each record is associated with a
unique key. We enforce pricing and access control
when a database client retrieves this key obliviously,
through Henry et al.’s PSPIR [19], or Camenisch et al.’s
ACOT [3] and POT [4].

Re-purchase on update. In some applications, it
might be a desirable feature to force database clients to
re-purchase a record after an important update. The da-
tabase owner can change Ki to enforce a re-purchase for
record i. To avoid leaking access patterns, the entire Mkey
needs to be re-shared if the underlying SPIR scheme is
PSPIR with τ-independence. On the other hand, with an
SPIR scheme based on POT modified with our thresh-
old signature scheme, it is not obvious how to do this
at all; that is, how to hide which Ki is updated while
keeping all the other K j ( j 6= i) unchanged; we leave this
as an open problem, and recommend sticking to PSPIR
with τ-independence if support for forcing re-purchase
of records is desired.

A client will realize she has to re-purchase a record
when no entry in Mind has a valid MAC tag. Then she
can purchase either the updated key or the dummy entry
from Mkey, depending on whether she wishes to purchase
the updated record or not. Note that this decision can
be made only after learning whether the record has been
updated since the last purchase; this justifies our choice
of querying Mind before Mkey in Section 3.2.

4 Discussion

4.1 De-amortized ORAM
One drawback of ORAM is that an expensive periodic
shuffling is required, which makes some accesses far
more expensive than others, especially when a high-
numbered level needs to be shuffled. The result is that
some update operations have to queue up if the previous
update happens to be an expensive one. For some appli-
cations, blocking an update operation for too long can be
a serious problem. De-amortized ORAM, well studied in
the literature [2, 16, 21, 23, 24, 27], makes each access to
the ORAM bounded by a reasonable overhead.

9



0.0

 0.4

 0.8

 1.2

 1.6

2.0

 2.4

 128  512  1024  2048

A
m

o
rt

iz
ed

 R
es

p
o
n
se

 T
im

e 
(s

)

Database Size (MB)

Figure 4: Measured amortized end-to-end response time for pri-
vate writes to ORAMs of size up to 8 GB (underlying databases
being up to 2 GB). Each experimental trial consists of n updates for
a database with n records. The large standard deviation for the
8 GB ORAM (2 GB database) is an effect of our testing machine
starting to run out of memory with three ORAM servers executing
at the same time.

For some of these schemes, de-amortization comes
naturally in their construction, such as in the work of Shi
et al. [23] and Stefanov et al. [24]. We suspect that these
two schemes can both be used in our construction with
some slight modifications. For example, in Stefanov et
al.’s scheme [24] we can move those up-to-date records
which are supposed to be stored in the private storage
to the untrusted servers by organizing them in a separate
ORAM on each server. However, a careful security ex-
amination is required before building an outsourced PIR
system on top of them.

The other works on de-amortized ORAM follow a par-
ticular paradigm [2, 16, 21, 27]. The idea is to construct
a new level preemptively in the background, which be-
comes ready right before the old level has to be dis-
carded. Some extra space is required for the construction
of the new level, because the old level should be kept in
its entirety to serve continuing ORAM queries before the
new level completes its shuffling. It is not hard to see
that such a paradigm can be applied to our ORAM con-
struction as well, such that outsourcing privacy is still
guaranteed. After we apply this de-amortizing technique
to Mrec, updates to Mind are somewhat de-amortized nat-
urally, because we can update Mind along the way as a
new level is being constructed gradually in Mrec.

5 Performance Evaluation

As a proof of concept, we implemented an end-to-end
system that fulfills our privacy requirements. We require
the binaries compiled from Percy++ [13], an open-source
implementation of Goldberg’s IT-PIR protocol, to make
our system work. We used AES-128 for encryption and
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Figure 5: Average end-to-end response time for private reads over
ORAMs of different sizes up to 8 GB (underlying databases being
up to 2 GB). The deviation is small, implying stable performance.
For each parameter choice, we ran the experiment 100 times. The
dominating overhead comes from retrieving the record from Mrec.
For PIR queries over Mrec and Mind , Chor’s PIR scheme [6] is used
for better performance.

128-bit HMAC-MD5 for message authentication codes.
In all our experiments, one client, one database owner
and three servers ran on a machine with two quad-core
2.5 GHz Intel Xeon E5420 CPUs, 32 GB of 667 MHz
DDR2 memory, and Ubuntu Linux 9.10. Figure 4 and
Figure 5 present the end-to-end response time for our
system. All the databases in our experiments are stored
entirely in RAM, and the figures show the computation
time without the I/O time to read the database into mem-
ory. Unless otherwise specified, the size of each ORAM
block in rrec is set to be 1 MB, and when we mention
the size of the database, it is the size of the original
database before organized into an Oblivious RAM. The
ORAM containing the database is about four times as
large as the database. In order to update the server-side
index Mind , the database owner simply sends the entire
encrypted Mind over, which is small enough for our pa-
rameter choice. (We did not use the enhancement of
Section 3.4 in our implementation.) The end-to-end re-
sponse time is measured entirely from the perspective of
the client for PIR queries and of the database owner for
update requests respectively. For larger databases that do
not sit entirely within the memory of a single machine,
it requires some engineering efforts to make our system
work efficiently, especially in a cloud setting; we leave
this for future work. Prior results [7, 27], however, have
shown that both Oblivious RAM and Private Information
Retrieval are feasible on databases of a terabyte scale.

We predict the performance of our protocol for larger
databases based on the number of block operations
(e.g. uploading, downloading, encrypting, and decrypt-
ing blocks) and how fast each of them can be con-
ducted according to our benchmarks of small data-
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Figure 6: Predicted amortized end-to-end response time for a pri-
vate 1 MB record update by the database owner for larger data-
bases. We assume that the ADSL connection bears upload and
download throughputs of 2 Mb/s and 10 Mb/s respectively, and that
the bidirectional throughput of a corporate network is 100 Mb/s.
In a high-throughput network setting (100 Mb/s, Gigabit Ether-
net, etc.), the prediction shows that our protocol is feasible over a
terabyte-sized database. On the other hand, network transmission
is a great bottleneck for ADSL users; this is an inherent limitation
of the underlying ORAM scheme. If it is necessary for home users
to be database owners, we propose using a less communication-
intensive ORAM scheme (e.g. Stefanov et al.’s scheme [24] with
modification) to address this issue, but a careful investigation on
the privacy implications and the performance of the new construc-
tion is out of the scope of this paper.

bases. Considering an ORAM containing n records
organized into L levels where n = 2L−1, after n up-
date requests for the purpose of reshuffling, the total
number of blocks that need to be downloaded and de-
crypted is ∑

L−1
i=2 [2i · i + (2i+1−2)] ·2L−i−1 + 2L+1 − 2 +

2L · L = ( 1
2 L2 + 5

2 L − 1) · 2L−1, and the total number
blocks that needs to be encrypted and uploaded is
∑

L−1
i=2 (2i · i + 2i) ·2L−i−1 + 2L + 2L · L = ( 1

2 L2 + 7
2 L− 2) ·

2L−1. According to this computation, to update an
ORAM containing n records in our construction bears
an amortized overhead of 1

2 L2 + 9
2 L−1 of download and

decryption operations as well as 1
2 L2 + 7

2 of upload and
encryption operations on blocks. We also take into ac-
count the cost to update Mind in our prediction without
the efficient Mind construction in Section 3.4. The result
is plotted in Figure 6 for different network speeds. The
take-away is that each update operation takes about one
minute (amortized) for a database owner with corporate
network connections, which is feasible, especially in ap-
plications where updates are infrequent.

Devet’s experiment [7] shows that the time for a cloud
to compute a PIR query is inversely proportional to the
number of cores it uses for the computation, which is not
a surprising result at all. To give an idea of how par-
allelization might push the boundary of PIR computa-
tion, for example, with the computation power of 256
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Figure 7: End-to-end response time for one ORAM update request
when the given level needs to be shuffled after the request. Level i
will be shuffled every 2i−1 updates.

cores in each untrusted cloud, we estimate that a PIR
query over a 1 TB-sized database (organized into a 4 TB
ORAM) takes about 7 seconds to compute using Chor’s
IT-PIR [6] option in Percy++, and less than 2 seconds to
transmit between the servers and the PIR client (even if
the client has slow ADSL speeds of 2 Mb/s upload and
10 Mb/s download). To justify our preference of Chor’s
IT-PIR over Goldberg’s scheme [12] for the Mrec and
Mind databases, we observe that τ-independence is not
required for them (unlike for Mkey). In addition, a re-
alistic deployment may not use enough different cloud
providers in parallel to effectively take advantage of the
Byzantine robustness of Goldberg’s scheme. The upside
of making the choice to use Chor’s scheme is that it is
about 4 times faster than Goldberg’s in the Percy++ im-
plementation.

Figure 7 shows the end-to-end overhead to update one
ORAM record when varying levels need to be shuffled
after the update. (Recall that level i will be shuffled ev-
ery 2i−1 updates.) De-amortizing techniques are not im-
plemented, but for a system that is to be used in the real
world, such techniques are recommended.

Our construction seems much slower than that of
Williams et al.’s ORAM scheme [27]. However, note
the in Williams et al.’s experiment, a block size of 4 KB
is used in comparison to 1 MB in our measurement. In-
deed, each of our update operations is updating 256 times
as many bytes as in William et al.’s benchmarks. Figure 8
shows our prediction of update request performance for
a block size of 256 KB. As the block size becomes even
smaller, encrypting and transmitting index items is be-
coming a performance bottleneck. We suspect that em-
ploying our efficient Mind construction would address
this issue.
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Figure 8: Predicted amortized end-to-end reponse time for a pri-
vate 256 KB record update for larger databases. We assume
that the ADSL connection bears upload and download through-
puts of 2 Mb/s and 10 Mb/s respectively, and that the bidirectional
throughput of a corporate network is 100 Mb/s.

6 Conclusion

We construct a protocol that allows one database owner
to privately read from and write to a database, and mul-
tiple clients to privately read from the database. The
access patterns of updates are completely hidden from
parties who are not entitled to read those records, and
the read histories of any user are completely hidden
from any parties other than that user, under a standard
non-collusion assumption and common cryptographic
assumptions. The direct application of our protocol is
in outsourcing Private Information Retrieval to untrusted
cloud servers with access control and pricing. We im-
plement and measure a real system that shows the practi-
cality of our work for a 2 GB database. We estimate that
for a terabyte-sized database with one-megabyte records,
a private read can be served over the Internet in the or-
der of seconds with moderate cloud computing power,
and that a private write from the database owner over a
high-speed network (e.g. 100 Mb/s) incurs an amortized
response time of about one minute.
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