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ABSTRACT
We present BLACRONYM, a suite of new communication- and

computation-efficient protocols for anonymous blacklisting without
trusted third parties. Our protocols improve on Tsang et al.’s Black-
listable Anonymous Credentials (BLAC) system and its variants
by incorporating novel batch zero-knowledge proof and verification
techniques. BLACRONYM provides comparable functionality and
security guarantees to those of BLAC and its derivatives, but it is
substantially faster and it consumes much less bandwidth. At the
heart of BLACRONYM is the first batch zero-knowledge protocol
in the literature for proofs of partial knowledge over non-monotone
access structures; we suspect that our new techniques will find appli-
cations in speeding up other cryptographic constructions that require
proofs of similar statements.

1. INTRODUCTION
The Internet can be a dangerous place to visit. As the propor-

tion of our daily activities that occur online continues to increase,
so too does our exposure to online privacy risks imposed on us
by fraudsters and identity thieves, by intrusive advertising compa-
nies, by oppressive governments, and by countless unknown others.
Anonymous communications systems like Tor1 mitigate some of
these threats by helping users to access services over the public
Internet while concealing their identities and usage patterns from
prying eyes. A global user base leverages the anonymity afforded by
Tor and its counterparts to circumvent online censorship, to research
taboo and unpopular subjects, and to speak their minds without fear
of retaliation. Not only is this a win for privacy and free speech
online, but it is also a potential boon for many online communities
that might benefit from added diversity in their respective user pop-
ulations. Compelling examples of such online communities include
collaborative encyclopedias like Wikipedia2 and community-driven
review sites like Yelp3.

Yet reality is rarely so simple. The providers of such online ser-
vices must ultimately weigh the expected benefits (both to them-
selves and to their user communities) of more inclusivity against
the risks posed by abusive users, especially those who would hide
behind the veil of anonymity to skirt accountability for their ac-
tions. A number of popular services—notably including Wikipedia,
Yelp, Slashdot4, Craigslist5, and most major IRC networks [36]—
presently block contributions from anonymous users, despite the im-
plied loss of diversity and the broader implications for free speech
and the open exchange of knowledge and ideas.

*This is the revised and extended version of our WPES 2013 publication with the
same title [23].

1https://www.torproject.org/
2https://en.wikipedia.org/
3https://www.yelp.com/

4https://slashdot.org/
5http://www.craigslist.org/

In response, the cryptographic and privacy research communi-
ties have proposed several anonymous blacklisting designs, which
seek to provide mechanisms through which service providers (SPs)
may hold anonymous users accountable for their individual actions
without threatening those users’ anonymity. SPs can thereby pro-
tect their user communities from abuse by the occasional “naughty”
anonymous user without inflicting collateral damage on all the “nice”
users. An early proposal called Nymble [26] solved the anony-
mous blacklisting problem both elegantly and efficiently; however,
Nymble and its progeny [24, 30, 31] rely on powerful trusted third
parties (TTPs) that can deanonymize (or link) users’ connections
undetectably and at will. Subsequent designs [4, 9, 39] have intro-
duced clever cryptography to replace the TTPs, thus solving the
trust problem at a cost of much computation and communication
overhead for the users and for the SPs.

Blacklistable Anonymous Credentials.
One such TTP-free anonymous blacklisting design is Tsang et

al.’s Blacklistable Anonymous Credentials (BLAC) [37]. In BLAC,
a semi-trusted group manager (GM) registers each new user into the
system by issuing it an anonymous credential C(x) that encodes as
an attribute a secret key x unique to that user. (The GM is semi-
trusted in the sense that, although the users and the SPs must trust
the GM to provide availability and accountability, the users need
not trust it to maintain their anonymity.) The user holding C(x) au-
thenticates to an SP by producing a ticket Γ = (g,gx ) together with
zero-knowledge proofs that (i) the exponent x used to compute Γ
is the same as the secret key x in C(x), and (ii) no ticket on the
SP’s blacklist of tickets from past abusive sessions uses that same x.
Both proofs are instantiable using standard techniques for proving
statements about the equality [13, §3.2] and inequality [11, §6] of
discrete logarithms (DLs). The SP grants the user access (and stores
Γ for future reference) if and only if it accepts both proofs. If it later
deems the user’s actions during the session to have been abusive, the
SP can add Γ to its blacklist to curtail further abuse by that user. The
notion of “abuse” in this model is entirely subjective: each SP must
define, identify, and penalize abusive behaviour in a way that is ap-
propriate within the context of its user community and the services
it provides. For instance, the SPs comprising an IRC network may
collectively define “abuse” to include acts of hate speech, cyberbul-
lying, circumventing a ban, spamming, or copyright infringement.
Any user that engages in an abusive act is blacklisted for a duration
commensurate both with the severity of the abuse and with the per-
ceived likelihood that the user will re-offend. Servers on the network
always refuse connection requests from blacklisted users.6

6An alternative to such subjective revocation is objective (or contract-based ) re-
vocation [20, §IV.A], introduced by Schwartz, Brumley, and McCune and exem-
plified by their RECAP protocol [35]. In the objective revocation model, users
and SPs enter into mutually binding contracts that stipulate unambiguously the

https://www.torproject.org/
https://en.wikipedia.org/
https://www.yelp.com/
https://slashdot.org/
http://www.craigslist.org/


Fifty shades of BLAC. BLAC’s all-or-nothing approach to revo-
cation may be overly punitive in some settings. The anonymous
blacklisting literature includes two variants of BLAC that seek to
address this shortcoming. The first variant does so with a d-strikes-
out revocation policy [39], wherein each anonymous user may au-
thenticate until it has accumulated d or more tickets on the blacklist
(after which future authentications will fail). The second variant
supports reputation-based blacklisting [2], wherein SPs can assign
scores (both positive and negative) to the anonymous actions of
users, and each user may subsequently authenticate only if the ag-
gregate score associated with all of its scored tickets exceeds some
minimum threshold value. (More generally, SPs may categorize pos-
itive and negative scores according to the nature of the associated
behaviours and require each authenticating user to prove a statement
pertaining to its aggregate scores across all categories of scored be-
haviours.) We herein refer to the first variant as ‘d-BLAC’ and to
the second variant as ‘BLACR’; we continue to refer to the original
system simply as ‘BLAC’ or, occasionally, as ‘vanilla BLAC’ to
emphasize when a remark applies to BLAC but not to d-BLAC or
to BLACR.

Scalability of BLAC. Judged solely on the basis of privacy and
functionality, the BLAC approach to anonymous blacklisting is very
attractive indeed; judged also on the basis of scalability, however,
it becomes much less so. In all three BLAC variants, the bottle-
neck operation is the second zero-knowledge proof (in which the
user demonstrates that its own tickets on an SP’s blacklist do not
meet that SP’s revocation criteria). The ‘size’ of this proof scales
as the total number of tickets on the blacklist, which can introduce
substantial delays and consume considerable bandwidth and com-
putation capacity for large SPs that cater to millions of users. Prior
work [2, 37, 39] essentially regards the zero-knowledge proofs as
“black boxes”, to be instantiated using the standard techniques from
the literature. Unfortunately, those standard techniques become pro-
hibitively expensive even for moderate-sized blacklists (say, those
containing a few hundred tickets). This fact has contributed to the
common conception [1, 4, 20] that—despite being both novel and
elegant—BLAC’s approach to anonymous blacklisting is impracti-
cal for large SPs.

Privacy-Enhanced Revocation with Efficient Authentication. Aw-
are of the limitations imposed by BLAC’s poor scalability, a subset
of its creators proposed an alternative TTP-free anonymous black-
listing design called Privacy-Enhanced Revocation with Efficient
Authentication (PEREA) [38]. In PEREA, each SP encodes its
blacklist in a universal dynamic accumulator [27], thereby decou-
pling the size of zero-knowledge proofs about (non-)membership
on the blacklist from the number of tickets on the blacklist. This ap-
proach improves the per-authentication computation cost for the SP
and the (outgoing) communication cost for the user, but it falls short
of solving the scalability problem: both the SP’s (outgoing) commu-
nication cost and the user’s worst-case computation cost in PEREA
remain linear in the blacklist size. (In fact, the user’s computation
cost may be noticeably higher than in BLAC [4, Figure 2], as the
“hidden constant” in PEREA is nearly four times greater than the one
in BLAC [19].) Moreover, the accumulator-based approach used in
PEREA places restrictions on blacklistability [20] by requiring SPs
to detect and penalize abusive behaviour within a fixed revocation

SPs’ terms of service. An SP can then revoke a given anonymous user’s authen-
tication privileges if and only if that user provably violates the terms set forth
in its contract with the SP. Unfortunately, some perfectly reasonable terms of
service are simply too nebulous to specify and enforce without relying on human
subjectivity. For example, consider a contract that forbids vandalizing articles
on Wikipedia or one that forbids posting disingenuous reviews on Yelp—in both
examples, identifying contract violations seems to necessitate a human in the
loop.

window [4, §1.2]. We note in passing that the anonymous blacklist-
ing literature contains variants of PEREA with features analogous
to those of d-BLAC [4] and BLACR [1, 40].
Enhanced Privacy ID. We would be remiss not to mention the En-
hanced Privacy ID (EPID) scheme for direct anonymous attestation,
proposed concurrently with BLAC by Brickell and Li [8]. EPID
utilizes the same core idea as vanilla BLAC to facilitate the anony-
mous revocation of trusted platform modules (TPMs) that have had
their private keys compromised; we will not discuss it further.

Our contributions.
In this work, we improve on BLAC and its derivatives by peer-

ing inside their zero-knowledge black boxes and optimizing the
underlying protocols; that is, we innovate by “thinking inside the
BLAC box”. We find, in particular, that existing batch proof and
verification techniques can reduce substantially the communica-
tion and computation overhead in vanilla BLAC’s bottleneck zero-
knowledge proof. We then extend our optimized protocol in a novel
way to deal also with the bottleneck proofs in d-BLAC and BLACR.
At the heart of these latter constructions is a new system for batch
zero-knowledge proofs of partial knowledge for DLs over non-mon-
otone access structures. Our new protocols are the first in the liter-
ature for batch zero-knowledge proofs over non-monotone access
structures and we suspect that our techniques will find applications
in speeding up other cryptographic protocols that also require proofs
of similar statements.

We refer to our new protocol suite—that is, to BLAC equipped
with our new and improved black boxes—as BLACRONYM. Our
BLACRONYM protocols offer similar functionality and superior
performance when compared to the “default” protocol instantiations
suggested for use in BLAC, d-BLAC, and BLACR.
Paper outline. The rest of the paper proceeds as follows. We begin
with a brief discussion of our notation and cost model in §2. In
§3, we introduce the formal model for BLACRONYM and describe
each of our new zero-knowledge protocols in detail. We compare
the communication and computation costs of our BLACRONYM
protocols with those of BLAC, d-BLAC, and BLACR in §4 and we
conclude in §5.

2. NOTATION AND PRELIMINARIES
Throughout, G denotes a finite multiplicative group with 2τ-bit

prime order q and a fixed generator g ∈ G, andG∗ = G\{1} denotes
the set of non-identity elements inG. Similarly, Zq denotes the field
of integers modulo q, and Zq∗ = Zq \ {0} denotes its multiplicative
group of units. For a given finite set S, a ∈R S denotes uniform
random selection of an element a from S and A ⊆d S denotes
that the set A is a size-d subset of S. If S ⊆ N, then Sj is the
j th smallest element in S. We use s‖t to denote the concatenation
of binary strings s and t. A function ε : N → R+ is negligible
if it vanishes faster than the inverse of every positive, real-valued
polynomial. An event E occurs with negligible probability in κ if
the probability that it occurs is a negligible function of κ, and E
occurs with overwhelming probability in κ if the probability that
¬E occurs is a negligible function of κ.

2.1 Zero-knowledge proofs
We assume the reader is familiar with zero-knowledge proofs

and their theoretical underpinnings; if not, we suggest the relevant
lecture notes from Ivan Damgård’s course on cryptographic protocol
theory [15, 16] for a thorough yet gentle introduction to the basic
concepts we require.
The Camenisch-Stadler notation. We use Camenisch and Stadler’s
ubiquitous notation [12, §4] for denoting zero-knowledge proofs of



knowledge by expressing the prover’s intent. For example, if R is
an NP relation such that (x, y) ∈ R if and only if F (x, y) and if
x is given as a public input to the prover and to the verifier, then
we write PK{ γ : F (x, γ) } to denote a zero-knowledge protocol
in which the prover demonstrates knowledge of a witness γ satisfy-
ing (x, γ) ∈ R. By convention, values appearing to the left of the
colon are secret knowledge of the prover, while values appearing
only to the right of the colon are common knowledge of the prover
and verifier. Our new protocols in §3 are batch zero-knowledge
proofs of knowledge [22, Definition 3]—that is, zero-knowledge
proofs of compound statements with strictly lower communication
and computation costs than those of proving each component state-
ment individually. We write BPK{ γ : F (x, γ) } to denote a batch
variant of PK{ γ : F (x, γ) }.

Signature proofs of knowledge. We present each zero-knowledge
proof in its interactive (honest-verifier) form. In an implementation,
the proofs would instead be noninteractive, with the verifier’s chal-
lenges being output by a cryptographically secure hash function and
security holding in the random oracle model [18]. (In this case, the
input to the hash function includes all common state shared by the
prover and the verifier, in addition to the entire protocol transcript
up to the point where the verifier would have issued the challenge
in the noninteractive version of the protocol.) Typically, the verifier
(or environment) kicks off the transcript with an extra random nonce
m, thus forcing the prover to compute the entire proof in real time;
we denote this by appending (m) to the above Camenisch-Stadler
notation. Thus, PK{ γ : F (x, γ) }(m) is the noninteractive form of
PK{ γ : F (x, γ) } using nonce m. Such proofs are called signature
proofs of knowledge since, if we interpret m as a message, then
the protocol transcript proves that some prover holding γ such that
F (x, γ) has “signed” m.

2.2 Computing powers & products of powers
As our goal in this work is to optimize certain zero-knowledge

proofs about DLs, we take this opportunity to introduce our cost mo-
del. In implementations of DL-based proofs, the CPU time required
to compute powers (exponentiation) and products of powers (multi-
exponentiation) dominates the running time. We measure the cost of
such operations by counting the expected number of multiplications
they require. (For simplicity, we ignore the cost of arithmetic re-
quired, for example, to determine which exponents to use in a given
exponentiation, although we note that our own BLACRONYM pro-
tocols fare no worse than the original BLAC, d-BLAC, and BLACR
protocols in this respect.) Following Bellare, Garay, and Rabin [5,
§2.3], we write ExpCostmG(b) to denote the cost of raising a generator
g ∈ G to m distinct, random b-bit powers. When m = 1, we omit
it from the notation. The classic “square-and-multiply” algorithm
yields

ExpCostG(b) ≤ 1.5b

and more sophisticated windowing methods [7, 33] can reduce the
coefficient in this bound to about 1.2. We also note the trivial bound

ExpCostmG(b) ≤ m ExpCostG(b)

and remark that well-known techniques from the literature [10, 28,
29] can make the inequality in this bound strict.

For products of powers, we replace the bit length b by a list
of ordered pairs, so that ExpCostmG((n1,b1), . . . , (nk ,bk )) denotes
the cost of computing m products of powers of a common set of
n =
∑

k
i=1 ni bases of which, in each product, exactly ni are raised

to random bi -bit exponents for i = 1, . . . , k. Bellare et al.’s fast

multiexponentiation algorithm [5, §3.2] gives the bound

ExpCostmG((n1,b1), . . . , (nk,bk )) ≤ m( max
1≤i≤k
{bi } + 1

2

k∑
i=1

nibi ).
One can further reduce the cost of multiexponentiation by using
precomputation [10, 28, 29], at the expense of additional storage for
the precomputed values.

3. FADE TO BLACRONYM
The BLACRONYM design is identical to that of BLAC and its

derivatives; our own contributions are contained entirely within the
black boxes implementing its zero-knowledge proofs. Nonetheless,
we shall find it useful to provide some additional detail on that basic
design, if only for completeness. (Additionally, some aspects of the
design are relevant in our security analyses.) We claim no originality
in the first subsection; the BLAC design is due entirely to Tsang
et al. [39] and any differences in our presentation of it are purely
cosmetic.

3.1 Model
The basic setting is exactly as in the introduction: A population

of anonymous users wish to use the services offered by one or more
participating SPs who, in turn, will only service those users whom
they can hold individually accountable for their respective actions.
The SPs do this by each maintaining a blacklist of metadata about
past abuses and requiring each authenticating user to prove that it is
not responsible for “too many” of those abuses. (The precise defi-
nition of “too many” abuses, of course, varies from vanilla BLAC
to d-BLAC to BLACR.) A semi-trusted (and possibly distributed)
GM facilitates all of this.

Initialization. The GM runs the initialization protocol once to set
up the system. The protocol takes as input 1τ for security parameter
τ and it outputs (i) a description (G,q,g) of a DDH-hard group
G [32, §3.7], (ii) a random oracle H mapping binary strings to
elements of G, and (iii) a public-private key pair (pk, sk) for anony-
mous credentials. In an actual implementation, H would be a cryp-
tographically secure hash function and G an elliptic curve group
that can be efficiently “hashed into” [25]. Each of the remaining
algorithms takes (G,q,g,H ,pk) as an implicit input.

Registration. Each user runs the interactive registration protocol
once with the GM to enroll in the system. Upon successful comple-
tion of the protocol, the user obtains an anonymous credential C(x)
under the GM’s public key pk , which encodes a secret key x unique
to the user. We emphasize that the GM learns zero information
about x during this interaction and it therefore has no computational
advantage in linking two or more authentications by a common user.
The particular choice of credential system is immaterial to the fol-
lowing protocols, provided credentials in it

1. are unconditionally hiding,

2. are fully anonymous (i.e., multiple showings of the same cre-
dential are mutually unlinkable), and

3. admit efficient honest-verifier perfect zero-knowledge proofs
of knowledge about x.

(Note that unconditional hiding and perfect zero-knowledge are
not strictly required, but they do help to simplify the security analy-
sis.) The authors of BLAC and its derivatives suggest using BBS+

signatures [3, §4.2] for the credentials and we do not object. BBS+

signatures satisfy each of the above criteria and are computationally
binding under the n-SDH assumption [6, §3].

Despite its learning nothing about x during registration, the users
and SPs must still trust the GM. For instance, SPs must trust the



GM to issue at most one credential to any given user, lest some users
obtain several credentials with which to launch Sybil attacks [17]
against the SPs. A reliable GM must consequently collect (and re-
tain, in some form) personally identifiable information (PII) about
each enrolled user; those users, in turn, must trust the GM to act re-
sponsibly with their PII. (See our survey of anonymous blacklisting
systems [20, §V] for more on this point.) As our new protocols do
not affect registration, we defer further discussion about it to Tsang
et al. [39, §4.1.2 and §5.3].

Authentication. The authentication protocol is an interactive proto-
col that anonymous users run with SPs to initiate their anonymous
sessions. The user’s input is its credential C(x) and a random string
z ∈R {0,1}2τ , and the SP’s input is its current blacklist B , revo-
cation policy ρs, and a soundness parameter λ. (The revocation
policy is a boolean-valued function that, on input the SP’s current
blacklist B and the authenticating user’s secret key x, outputs 1 if
and only if the entries on B with tickets encoding x meet the SP’s
revocation criteria.) The SP will accept the authentication only if the
user convinces it that ρs(B , x) = 0 with probability overwhelming
in λ. The output of the authentication protocol is a return value
b ∈ {0,1,⊥} and an authentication transcript $ containing the
ticket Γ = (z,H (z‖s)x ), where s ∈ {0,1}∗ is a fixed, publicly
known canonical name for the SP. A return value of 0 indicates
that the SP rejected the authentication and a return value of 1 in-
dicates that the SP accepted the authentication. A return value of
⊥ indicates that the user aborted the protocol prematurely (perhaps
because it discovered that ρs(B , x) = 1). In practice, we assume
that λ � τ, say λ = 40 or 60. The SP should output b = 1 with
probability at most 1 / 2λ when ρs(B , x) = 1.

Blacklist management. Blacklist management involves three pro-
tocols that SPs use to manage their respective blacklists. The ex-
traction protocol takes as input an authentication transcript $ and
it outputs the associated ticket Γ. The add protocol takes as input
a blacklist B and a ticket Γ (and, in the case of reputation-based
blacklisting, an associated score ς), and it outputs a new blacklist
B ′ that contains every entry from B plus a new entry for ticket Γ
(with score ς). The remove protocol takes as input a blacklist B
and a ticket Γ, and it outputs a new blacklist B ′ that contains every
entry from B whose ticket is not equal to Γ.

Security definitions.
We provide (informal) definitions for the necessary security and

privacy properties of a secure BLAC construction in Appendix A.
(Note that such informal definitions suffice for our purposes: since in
this work we only modify the internals of black boxes, the existing
system-level security proofs for BLAC and d-BLAC [39, §7.2] and
for BLACR [2, Appendix A] also prove that our BLACRONYM
protocol suite yields secure BLAC constructions.)

Federated identity systems.
Note that the GM and the SPs in a secure BLAC construction gain

no adversarial advantage from colluding with one another (beyond,
perhaps, some additional inference power they obtain by combin-
ing metadata in their respective transaction logs); in fact, in some
settings a single entity may wish to operate simultaneously as a
GM and as an SP in a single BLAC deployment. Alternatively, an
SP may wish to outsource its (expensive) verification operations to
some (computationally well-equipped, benevolent) third party. If
the outsourced verifier were dishonest, then it could accept invalid
proofs, thus helping repeatedly misbehaving users circumvent the
revocation policy; however, a crucial observation is that the GM can
already help users circumvent revocation by issuing them multiple
credentials and the SPs must trust the GM to not do this. Therefore,

the SP can outsource verification to the GM without introducing
any new trust assumptions. The latter observation implies that our
BLACRONYM protocols could be used in the framework of a fed-
erated identity system, such as OpenID7, to obtain strong anonymity
guarantees. The OpenID Provider (OP) could be the GM and each
Relying Party (RP) an SP. The GM would then check (on behalf
of each SP) the zero-knowledge proofs in the authentication proto-
col and provide a signed token for the SP (including the associated
ticket and blacklist version) provided the verification succeeds.

3.2 Vanilla BLACRONYM
The first black box that we redesign comes from the authentica-

tion protocol in vanilla BLAC; that is, we provide an alternative
instantiation for the protocol that Tsang et al. label SPK2 [39, §5.4
and §6.1]. That protocol is itself a composition of two subprotocols:

SPK4 proves knowledge of x such that (i) the user holds a valid cre-
dential C(x) with secret key x and (ii) the second component
in the user’s ticket Γ = (z0,H0) has the form H0 = H (z0‖s)x
for that same x and the SP’s canonical name s, and

SPK5 proves that loghi
Hi , logh0

H0 for each i ∈ [1,n], where
B = {(z1,H1), . . . , (zn ,Hn )} is the SP’s blacklist and where
hi = H (zi ‖s) for each i = 0, . . . ,n.

The cost of SPK4 is independent of n and its implementation details
depend on the particular choice of anonymous credential system;
thus, we focus our attention on the more costly (and credential-
agnostic) SPK5 subprotocol.

An alternative instantiation for SPK5 in vanilla BLAC
The user (playing the role of the prover) and the SP (playing the role
of the verifier) in this subprotocol take as common input n + 1 pairs
of group elements (h0,H0), . . . , (hn ,Hn ) ∈ G∗ × G∗ . The goal is
for the user to prove that loghi

Hi , logh0
H0 for every i ∈ [1,n].

For vanilla BLAC, Tsang et al. suggest instantiating SPK5 with a
textbook n-fold parallel composition of the following protocol for
the special “n = 1” case.

Special case: Inequality of two discrete logarithms. Suppose that
prover P and verifier V take as common input two pairs of group
elements (h0,H0), (h1,H1) ∈ G∗ × G∗ . Protocol 1 implements a
system for “special honest-verifier” perfect zero-knowledge proofs
of knowledge8 in which P demonstrates knowledge of an exponent
x ∈ Zq∗ such that logh0

H0 = x and logh1
H1 , x. We typically

assume that y = logh1
H1 is unknown to P, although the proof is

still sound when this is not the case. The protocol is due to Ca-
menisch and Shoup [11, §6] and we denote it in Camenisch-Stadler
notation [12, §4] by PK{ x : H0 = h0

x
∧ H1 , h1

x
}.

Protocol 1 (Inequality of two DLs).
Common input : (h0,H0), (h1,H1) ∈ G∗ × G∗

Prover’s input : x = logh0
H0

1. P chooses a blinding factor r ∈R Zq
∗ , and then it computes the

auxiliary commitment C1 = (h1
x
/ H1)r and sends C1 to V.

2. P engages V in PK{(α, β) : 1 = h0
αH0

β
∧ C1 = h1

αH1
β
} using

α = xr mod q and β = −r mod q:

(a) P chooses blinding factors s1, s2 ∈R Zq
∗ , and then it computes

R0 = h0
s1 H0

s2 and R1 = h1
s1 H1

s2 , and sends (R0,R1) to V.

7https://openid.net/
8An interactive proof is special honest-verifier zero-knowledge [15, Definition 1]
if a PPT simulator can, given as input a challenge c, output transcripts from
the same distribution that arises when the honest-verifier issues challenge c to
an honest prover. This “special” honest-verifier zero-knowledge property is a
necessary condition for Cramer, Damgård, and Schoenmakers’ proofs of partial
knowledge framework [14].

https://openid.net/


(b) V picks a challenge c ∈R Zq and sends it to P.
(c) P computes the responses u1 = s1 − cxr mod q and u2 =

s2 + cr mod q, and sends (u1,u2) to V.
(d) V accepts if R0 = h0

u1 H0
u2 and R1 = h1

u1 H1
u2 C1

c ; otherwise,
V rejects.

3. V accepts if C1 , 1 and if it accepts in Step 2(d); otherwise, V
rejects. �

The subprotocol in Step 2 assures honest V that, with a prob-
ability overwhelming in τ, P knows exponents (α, β) satisfying
1 = h0

αH0
β and C1 = h1

αH1
β . From the first expression, we ob-

tain α = −β logh0
H0. Substituting for α in the second expression

yields C1 = (h1
− logh0

H0 H1)β , which, as V accepts in Step 3 only
when C1 , 1, implies that logh0

H0 , logh1
H1.

Note that P may send the auxiliary commitment C1 as part of
Step 2(a) and that V may verify that C1 , 1 as part of Step 2(d);
thus, Protocol 1 is in fact a three-message sigma protocol [15, Def-
inition 1]. Regarding efficiency, we see by inspection that P sends
three elements of G and two elements of Zq to V, and that V sends
just one element of Zq to P. Likewise, the expected number of
multiplications in G for P to compute is

ExpCost2
G((2,2τ)) + ExpCostG((2,2τ)) ≤ 12τ,

and for V it is

ExpCostG((2,2τ)) + ExpCostG((3,2τ)) ≤ 9τ.

General case: Inequality of one discrete logarithm with several
others. In the textbook parallelization of Protocol 1 mentioned
above, P chooses fresh blinding factors r, s1, s2 ∈R Zq

∗ for each of the
n component instances, while V picks a single challenge c ∈R Zq
to which P must issue an n-fold response. As an optimization, P
may reuse a single set of blinding factors across all instances, thus
eliminating the need to compute and send n−1 commitments fromG
(since R0 will be identical across all instances) and 2n− 2 responses
from Zq (since u1,u2 will be identical across all instances). We note
that such reuse of randomness in a zero-knowledge proof warrants
extreme caution; indeed, the resulting protocol is emphatically not
perfect zero-knowledge when considered in isolation.9 We believe
that one could prove it is computational zero-knowledge under the
DDH assumption, though we have not attempted to do so.

Instead, we recall that SPK5 is just one of two subprotocols com-
prising SPK2 and that, in the other subprotocol, SPK4, the user (hold-
ing the unconditionally hiding credential C(x)) computes H0 = h0

x

and then proves in (perfect) zero-knowledge that the secret exponent
x is consistent with C(x). Therefore, a simulator for the composed
protocol can simply (i) choose a ‘fake’ exponent y ∈R Zq

∗ arbitrarily,
(ii) output H0 = h0

y , (iii) perfectly simulate a proof of correctness
for H0 = h0

y with respect to C(x), and then (iv) follow the above-
optimized inequality of DLs proof honestly to complete the simula-
tion. (If loghi

Hi equals the chosen y for some i ∈ [1,n], an event
that only occurs with probability negligible in τ when n ∈ poly(τ),
the simulator just selects a new y ∈R Zq

∗ and restarts.) Since the first
part of the simulation is perfect by assumption, and the second part
is perfect by definition, it follows that the entire simulation is in fact
perfect. In other words, the above simulation strategy establishes
that, if SPK4 is honest-verifier perfect zero-knowledge, then so is
all of SPK2, even when the user reuses its blinding factors across all
parallel instances in SPK5.

9Perfectly simulating the case where n = 1 is easy, since the prover draws the
auxiliary commitment C1 = (h1

x
/H1)r from a distribution that does not depend

on (h0, H0). The n > 1 cases are trickier to handle because the distribution from
which the prover draws (C1, . . . ,Cn ) depends on x = logh0

H0.

General case with batch verification. We can, in fact, do much
better by incorporating ideas from batch testing. For example, V
can employ Bellare et al.’s small-exponent batch test [5, §3.3] to
check all verification equations in Step 2(d) of the composed proto-
col simultaneously using a single 3-base multiexponentiation in G
with exponents from Zq , plus three (n + 1)-base multiexponentia-
tions and one n-base multiexponentiation in G with exponents from
[0,2λ − 1]. (With small-exponents batching, the n + 1 verification
equations, R0

?
= h0

u1 H0
u2 and Ri

?
= hi

u1 Hi
u2 Ci

c for i = 1, . . . ,n, re-
duce to a single equation

∏n
i=0 Rai

i

?
= (
∏n

i=0 hi
ai )u1 (

∏n
i=0 Hi

ai )u2 ·

(
∏n

i=1 Ci
ai )c , where V selects the exponent ai ∈R [0,2λ −1] at ran-

dom for each i = 0, . . . ,n.) The expected number of multiplications
for V to compute in G therefore reduces from

ExpCostG((2,2τ))
+ n ExpCostG((3,2τ)) ≤ (5n + 4)τ

to just

3 ExpCostG((n + 1, λ))
+ ExpCostG((n, λ))
+ ExpCostG((3,2τ)) ≤ 5τ + (2n + 5.5)λ.

(Recall that λ is V’s soundness parameter and that λ � τ.) Note
that V can use small-exponent batching to substantially reduce its
verification cost, even without P’s knowledge or cooperation. The
resulting protocol is still special honest-verifier perfect zero-know-
ledge and a standard argument [5, §3.3] gives a (fairly loose) upper
bound of 1 / 2λ for its knowledge error.

Batch protocol for vanilla BLAC.
Protocol 2 extends the above idea by applying small-exponent

batch testing before parallelizing the subprotocol in Step 2 of Pro-
tocol 1: upon receiving the auxiliary commitments C1, . . . ,Cn from
P, V selects a list of n random scalars a1, . . . ,an ∈R [1,2λ − 1],
and then both parties use the ai to compute the two bases h =∏n

i=1 hi
ai and H =

∏n
i=1 Hi

ai . The subprotocol in Step 2 becomes
PK{(α, β) : 1 = hα0 H β

0 ∧ C1 = h1
αH1

β
∧ C = hαH β }, where

α = r x mod q, β = −r mod q, and C =
∏n

i=1 Ci
ai . Note that, as

seen in §2.2, h, H , and C each require about nλ/2 multiplications
in G to compute; however, the resulting Step 2 subprotocol has cost
independent of n. Thus, although the batch protocol requires an addi-
tional round of interaction (and, hence, P’s cooperation), it provides
P with computational savings comparable to V’s, and it significantly
reduces bidirectional communication cost of the protocol.

Note that Protocol 2 below differs from the protocol in the short
version of this paper [23, Protocol 2]. In that version of the protocol,
P does not prove that C1 = hα1 H β

1 . Both versions are complete by
inspection and both are easily seen to be special honest-verifier per-
fect zero-knowledge using the simulator construction we presented
for our first (non-batched) optimization. We added the additional
proof that C1 = hα1 H1 β to the Protocol because, without it, the ex-
pression 1 = hα0 H β

0 leaves β undetermined, so that there always
exists β (and α = −βx) to satisfy the expression C = hαH β . (If
Ci , hαi H β

i for some i ∈ [1,n], then it would appear difficult
for P to compute the required (α, β), given that pairwise discrete
logarithms among the hi are unknown to the prover by assump-
tion; however, the mere existence of such (α, β) when Ci , hαi H β

i

complicates the security analysis.) If P proves that 1 = hα0 H β

0 and
C1 = hα1 H β

1 , then this implies that P chose (α, β) before V chose
a1, . . . ,an ∈R [0,2λ − 1]; that is, it proves that α and β are con-
stants that do not depend on the ai . We may then rewrite the expres-
sion C = hαH β as

∏n
i=1 Cai

i =
∏n

i=1(hαi H β

i )ai for a1, . . . ,an ∈R



[0,2λ − 1] and use a standard argument (see, for example, Lemma 3
in our paper on batch proofs of partial knowledge [22]) to conclude
that Ci = hαi H β

i for each i = 1, . . . ,n, except with probability at
most 2−λ . It then follows (via repeated application of the argument
provided for the soundness of Protocol 1) that Protocol 2 imple-
ments a system for special honest-verifier perfect zero-knowledge
proofs of knowledge of x such that H0 = hx

0 and Hi , hx
i for each

i = 1, . . . ,n (with knowledge error at most 2−λ ). We denote the
new protocol by BPK{ x : H0 = h0

x
∧ (
∧n

i=1 Hi , hi
x ) }.

Protocol 2 (Batched inequality of one DL with several others).
Common input : (h0,H0), . . . , (hn ,Hn ) ∈ G∗ × G∗

Prover’s input : x = logh0
H0

1. P chooses a blinding factor r ∈R Zq
∗ , and then it computes the

auxiliary commitments Ci = (hi
x
/ Hi )r for each i = 1, . . . ,n

and sends (C1, . . . ,Cn ) to V.
2. V picks scalars a1, . . . ,an ∈R [0,2λ − 1] and sends them to P.
3. P and V each compute h =

∏n
i=1 hi

ai and H =
∏n

i=1 Hi
ai , and

V computes C =
∏n

i=1 Ci
ai .

4. P engages V in PK{(α, β) : 1 = h0
αH0

β
∧ C1 = h1

αH1
β
∧ C =

hαH β }, using α = xr mod q and β = −r mod q:

(a) P chooses blinding factors s1, s2 ∈R Zq
∗ , and then it computes

R = h0
s1 H0

s2 , S = h1
s1 H1

s2 , and T = hs1 H s2 . P and sends
(R,S,T ) to V.

(b) V picks a challenge c ∈R Zq and sends it to P.
(c) P computes the responses u1 = s1 − cxr mod q and u2 =

s2 + cr mod q, and sends (u1,u2) to V.
(d) V accepts if R = h0

u1 H0
u2 , if S = h1

u1 H1
u2 C1

c , and if T =
hu1 Hu2 Cc ; otherwise, V rejects.

5. V accepts if Ci , 1 for each i = 1, . . . ,n and if it accepts in
Step 4(d); otherwise, V rejects. �

The computation cost for V is little changed from that given in
the above analysis with batch verification; however, the bidirec-
tional communication cost and P’s computation cost are both much
improved. In particular, while V must now send nλ extra bits to P
(i.e., the small exponents a1, . . . ,an), P only sends n + 3 elements
ofG (i.e., the auxiliary commitments C1, . . . ,Cn in addition to R, S,
and T) and two elements of Zq∗ (i.e., the responses u1 and u2) to V.
(The naive instantiation requires P to send 3n elements of G and 2n
elements of Zq .) Similarly, although P must still compute n + 3 two-
base multiexponentiations in G with exponents from Zq∗ (to produce
C1, . . . ,Cn , R, S, and T ), the expected number of multiplications in
G for P (to set up and then execute the subprotocol) reduces from

(n + 1) ExpCostG((2,2τ)) ≤ (4n + 4)τ

in the naive instantiation to just

2 ExpCostG((n, λ))
+ 3 ExpCostG((2,2τ)) ≤ 12τ + (n + 2)λ.

Likewise, the expected number of multiplications for V to compute
in G (during the entire protocol) reduces from

n (ExpCostG((2,2τ))
+ ExpCostG((3,2τ))) ≤ 9nτ

in the “textbook” instantiation to just

ExpCostG((2,2τ))
+ 2 ExpCostG((3,2τ))

+ 3 ExpCostG((n, λ)) ≤ 14τ + 3
2 (n + 2)λ.

Comparison with vanilla BLAC.
In vanilla BLAC’s default SPK5 instantiation, the user sends 3n

elements from G and 2n elements from Zq to the SP; thus, our
optimizations reduce the communication cost by about 75%.10 (Us-
ing point compression for the elements of G, the communication
savings increase to about 80% at the cost of some additional compu-
tation overhead for point decompression.) The computational sav-
ings are similar: the user and the SP compute, respectively, about
(4τ + λ) / 12τ and λ / 6τ times as many multiplications in G. For
the (perfectly reasonable) parameter choices λ = 40 and τ = 128,
this is about a 64% cost reduction for the user and about a 95%
cost reduction for the SP. Furthermore, most of the user’s remaining
computation cost arises from computing the auxiliary commitments
C1, . . . ,Cn , which are readily precomputable [39, §7.1]. (If the user
precomputes the Ci , then its online computation cost is only about
λ / 12τ times the cost of the naive protocol with precomputation.)
Moreover, once it has computed Ci = (hi

x
/ Hi )r to use in one pro-

tocol run, the user can choose a new blinding factor r ′ ∈R Zq
∗ and

reblind Ci as Ci
r ′ = (hi

x
/ Hi )r ·r ′ to use in a subsequent protocol

run. Such reblinding requires just ExpCostG(2τ) ≤ 2.4τ multiplica-
tions inG, which is a little over half of what is required to compute a
new Ci from scratch. One further (albeit slight) optimization to Pro-
tocol 2 involves batching the proof that 1 = h0

αH0
β together with the

other proofs by (i) setting h =
∏n

i=0 hai

i and H =
∏n

i=0 Hai

i (note
that the products now begin at i = 0), and then (ii) omitting the first
verification equation; in fact, it is simple to show that this optimiza-
tion is still sound even with a0 fixed as 1. We opted not to batch the
proof that 1 = h0

αH0
β in this paper for clarity of presentation.

3.3 BLACRONYM with d-strikes-out
The second black box that we redesign comes from the authenti-

cation protocol in d-BLAC; that is, we provide an alternative instan-
tiation for the protocol that Tsang et al. label SPK3 [39, §5.5 and
§6.1]. As with SPK2, two subprotocols comprise SPK3:

SPK4 again proves knowledge of x such that (i) the user holds
a valid credential C(x) encoding x and (ii) the second com-
ponent in the user’s ticket Γ = (z0,H0) has the form H0 =

H (z0‖s)x for that same x and the SP’s canonical name s, and

SPK5 proves that there is a set S′ ⊆ [1,n] of size at least n −
d + 1 such that loghi

Hi , logh0
H0 for any i ∈ S′, where

B = {(z1,H1), . . . (zn ,Hn )} is the SP’s blacklist and where
hi = H (zi ‖s) for i = 0, . . . ,n.

We note that having the hi be output by the random oracle H en-
sures, under the DDH assumption, that neither the user nor the SP
knows logg hi for any i ∈ [1,n] nor loghi

h j for any zi , z j , except
perhaps with probability negligible in τ. (In what follows, we as-
sume that the zi are all pairwise distinct—which is trivial to check—
so that neither party knows loghi

h j for any i , j.) Again, we focus
our attention exclusively on improving SPK5, the expensive (and
credential-agnostic) protocol.

Building block: All-but-k mercurial commitments. Our protocol
uses a recently proposed all-but-k variant of mercurial vector com-
mitments [21]. In that scheme, a trusted initializer prepares a public
reference string ABK(N) comprising N + 1 elements from a finite
group G̃ equipped with an admissible bilinear map e : G̃ × G̃→ GT.
(Note that G̃ is not the same as the DDH-hard group G; in fact,
G̃ need not have the same order as G.) In the BLACRONYM set-

10We arrive at this estimate by assuming (i) thatG is an elliptic curve group whose
elements are about twice the bit length of elements from Zq , and (ii) that imple-
mentations use Fiat and Shamir’s heuristic [18] to make SPK5 noninteractive
in the random oracle model so that, rather than the SP sending a2, . . . , an to
the user, the user and the SP each compute the ai locally as the output of some
cryptographically secure hash function.



ting, the trusted initializer would be the GM and the reference string
would be part of the GM’s public key.11 Given ABK(N), a user can
commit to an arbitrary subsequence of values (ci )i∈S indexed by
S ⊆ [1,N] and later open that commitment to any “fully specified”
super-sequence (ci )Ni=1 that is consistent with the original commit-
ment. The recipient learns nothing about S, except for a prover-
specified upper bound k ≥ N − |S | on the number of terms in
(ci )Ni=1 that were not specified in the initial subsequence. (Note that
a user can also commit to subsequences of a shorter sequence (ci )ni=1
for any positive n < N by setting ci = 0 for i = n + 1, . . . ,N and
revealing the length n as part of the initial commitment.) We use the
following abridged notation for the all-but-k protocols:
• ABK-Commit(S, (ci )i∈S) outputs a commitment C to (ci )i∈S ,

• ABK-Open(C , k, (ci )i∈[1,N ]\S) for any k ≥ N − |S | outputs a
witness w , and

• ABK-Verify(C ,w , k, (ci )Ni=1) verifies that w witnesses the valid
opening (k, (ci )Ni=1) of C .

An alternative instantiation for SPK5 in d-BLAC
The user and the SP in this subprotocol have as common input n + 1
pairs of group elements (h0,H0), . . . , (hn ,Hn ) ∈ G∗ × G∗ such
that logg hi is unknown for all i ∈ [1,n] and loghi

h j is unknown
whenever i , j. Let S ⊆ [1,n] be the set of indices for which
loghi

Hi = logh0
H0 and let S′ = [1,n] \ S. The goal is for the

user to prove that |S | < d or, equivalently, that |S′ | > n − d. The
most standard instantiation for this proof follows by using Cramer
et al.’s method [14] to parallelize Protocol 1 into a proof of partial
knowledge for the latter, monotone statement; in our case, we opt to
prove the former, non-monotone statement. We begin with a simpler
protocol that proves |S | = d−1 exactly (that is, the simpler protocol
explicitly leaks |S |); then we extend it to handle the general |S | < d
case without leaking additional information about |S |. Our protocol
uses the following batch proof of knowledge of a subset of DLs as
a subroutine.

Building block: Proof of knowledge of a subset of discrete loga-
rithms. Suppose prover P and verifier V take as common input a col-
lection of n pairwise distinct group elements C1, . . . ,Cn ∈ G

∗ (say,
the auxiliary commitments in Protocol 2). Protocol 3 implements a
system for special honest-verifier batch perfect zero-knowledge ar-
guments of knowledge in which P demonstrates knowledge of an in-
dex set S ⊆d−1 [1,n] and corresponding exponents γ1, . . . , γd−1 ∈

Zq∗ such that CS j
= gγ j for each j = 1, . . . ,d − 1. Such a proof

would typically be instantiated by applying Cramer et al.’s method
for proofs of partial knowledge [14] to Schnorr’s proof of knowl-
edge of a DL [34], the latter protocol being perhaps the best-known
example of a zero-knowledge proof in the literature. Our Protocol 3
is similar to that instantiation, but it is more efficient. Although tech-
nically new, the protocol is (essentially) just a simplified version of a
recently proposed batch proof of knowledge and equality of (d −1)-
out-of-n DL pairs [22, Protocol 2], which also relies on all-but-k
mercurial commitments for its soundness. We denote Protocol 3 by
BPK{(S, γ1, . . . , γd−1) : S ⊆d−1 [1,n] ∧ (

∧
j∈[1,d−1] CS j

= gγ j )}.
Prior to executing Protocol 3, V must specify a public (long-term)
all-but-k reference string ABK(N) for some N ≥ n and an arbitrary
λ-bit prime p. (Recall again that λ is the soundness parameter and
that λ � lg q.) We assume the common inputs C1, . . . ,Cn are each
valid group elements; in cases where P generates the Ci (such as in
our use of the protocol below), V should check that indeed Ci ∈ G

∗

11Alternatively, each SP could generate its own all-but-k reference string—the
recipients of a commitment (i.e., the SPs) must trust the initializer in order for
commitments to be binding, but the committers (i.e., the users) need not trust
the initializer in order for commitments to be hiding.

for i = 1, . . . ,n. Fortunately, such group membership tests are inex-
pensive when G is an elliptic curve group, such as would likely be
the case in a real-world BLACRONYM deployment.

Protocol 3 (Batched knowledge of a size-(d−1) subset of DLs).
Common input : C1, . . . ,Cn ∈ G

∗ , a λ-bit prime p, gener-
ators g, ĝ ∈ G, and an all-but-k public reference string
ABK(N) for some N ≥ n

Prover’s input : S ⊆d−1 [1,n] and r j = logg CS j
for each

j ∈ [1,d − 1]
1. Set S′ = [1,n] \ S. P chooses a challenge ci ∈R [0,p − 1] for

each i ∈ S′, and then it computes the all-but-k commitment
C ← ABK-Commit(S′, (ci )i∈S′ ) and sends C to V.

2. V picks scalars b1, . . . ,bn ∈R [0,2λ − 1] and sends them to P.
3. P chooses a blinding factor r0 ∈R Zq

∗ , and then it sets ai = (bi +
ci ) mod 2λ for each i ∈ S′, computes C′ = gr0 (

∏
i∈S′ Ci

ai ),
and P sends C′ to V.

4. V picks a challenge c ∈R Zp and sends it to P.
5. P solves for the degree-(n − d + 1) polynomial f ∈ Zp[x]

satisfying f (0) = c and f (i) = ci for each i ∈ S′, and then
it sets ci = f (i) mod p and ai = (bi + ci ) mod 2λ for each
i ∈ S. P computes the response v = r0 −

∑
i∈S airi mod q

and the witness w ← ABK-Open(C ,d − 1, (ci )i∈S), and sends
( f (x),v,w ) to V.

6. V computes ci = f (i) mod p and ai = (bi + ci ) mod 2λ for
each i ∈ [1,n]. V accepts if deg f ≤ n − d + 1 with f (0) = c,
if C′ = gv (

∏n
i=1 Ci

ai ), and if ABK-Verify(C ,w ,d, (ci )ni=1);
otherwise, V rejects. �

Protocol 3 is complete by inspection. Given an arbitrary chal-
lenge c ∈ Zp , a simulator for the honest verifier chooses a poly-
nomial f ∈R Zp[x] with f (0) = c and deg f = n − d + 1, ran-
dom exponents b1, . . . ,bn ∈R [0,2λ − 1], and a response v ∈R

Zq , and then it computes the commitment C′ = gv
∏n

i=1 Cai

i , as
well as the all-but-k values C ← ABK-Commit([1,n], (ci )ni=1)
and w ← ABK-Open(C ,d − 1, (ci )i∈[1,n]). It is trivial to ver-
ify that simulated transcripts (C ,b1, . . . ,bn ,C′, f (x),v,w ) follow
the same distribution as genuine transcripts of interactions between
an honest prover and the honest verifier; thus, Protocol 3 is spe-
cial honest-verifier perfect zero-knowledge. Now, given just two
distinct challenge-response pairs (c, f ,v) and (c′, f ′,v′), an ex-
tractor can easily compute S = {i ∈ [1,n] | f (i) , f ′(i)};
moreover, the verification equation implies that gv

∏n
i=1 C f (i)+bi

i =

gv′
∏n

i=1 C f ′ (i)+bi

i so that gv′−v =
∏

i∈S C f (i)− f ′ (i)
i and, therefore,

v′ − v =
∑

i∈S ( f (i) − f ′(i)) logg Ci . Additionally, the all-but-k
binding properties ensures, with probability overwhelming in τ, that
|S | ≤ d − 1 and that S does not depend on the extractor’s choices
for (c,c′). Hence, rewinding poly(d − 1) times is sufficient to
yield a linearly independent set of d − 1 such equations in d − 1 un-
knowns, allowing the extractor to solve for each γi = logg Ci . This
completes the proof that Protocol 3 is an honest-verifier perfect zero-
knowledge argument of knowledge of an index set S ⊆d−1 [1,n] and
corresponding exponents γ1, . . . , γd−1 ∈ Zq

∗ such that CS j
= gγ j for

each j = 1, . . . ,d − 1. We note that, although Protocol 3 is not a
special sound with respect to γ1, . . . , γd−1, it is special sound with
respect to knowledge of S.

In the protocol, P sends just one element from G (i.e., the com-
mitment C′), one element from Zq (i.e., the response v), n − d + 1
coefficients12 from Zp (i.e., the nonconstant coefficients of f ), and

12P sends just n − d + 1 coefficients from Zp as the constant term f (0) = c
is already known to V. (Hence, having V check that f (0) = c in Step 5 is
redundant.)



the all-but-k commitment-witness pair (C ,w ) to V; V sends n
scalars from [0,2λ − 1] (i.e., the short exponents bi ) and one chal-
lenge (i.e., c) from Zp to P. (The standard instantiation requires P
to send n elements of G and 2n − d + 1 elements of Zq , though it
only requires V to send one element of Zq .) In addition to the cost
of the all-but-k protocols (which we count in §4 and summarize in
Table 1), P computes about

ExpCostG((1,2τ), (n − d + 1, λ)) ≤ 3τ + 1
2 (n − d + 1)λ

multiplications in G and V computes about

ExpCostG((1,2τ), (n, λ)) ≤ 3τ +
1
2 nλ

multiplications in G. (In the standard instantiation, both P and V
compute about 3nτ multiplications inG.) The following observation
about Protocol 3 is crucial to our new SPK5 construction.

Observation. If C′ is output by P in Step 3 of an accepting run of
Protocol 3 with honest V, then, with probability overwhelming in λ,
P knows r0 = v +

∑
i∈S airi mod q and S′ = [1,n] \ S such that

C′ = gr0 (
∏

i∈S′ Ci
ai ).

Special case: Exactly d−1 discrete logarithms are equal. We are
now ready to present our new protocol for the special case in which
the user has exactly d − 1 tickets on the blacklist (and is willing
to reveal this fact). Let S = {i ∈ [1,n] | logh0

H0 = loghi
Hi }

and let S′ = [1,n] \ S. Also, let ĝ be a generator of G with logg ĝ
unknown. As in Protocol 2, the user chooses r ∈R Zq

∗ and, for
each i ∈ S′, computes the auxiliary commitment Ci = (hi

x
/ Hi )r ;

then, for each j ∈ S, the user chooses r j ∈R Zq
∗ and computes

Cj = gr j . This ensures that Ci , 1 for any i ∈ [1,n], notably
for i ∈ S. The user employs Protocol 3 to prove knowledge of
a size-(d − 1) subset S of DLs with respect to g among the Ci

and a modified Protocol 2 to prove that loghi
Hi = logh0

H0 only
for the indices in S′ = [1,n] \ S. We leverage the observation
following Protocol 3 to facilitate the latter proof; in particular, we
treat the commitment C′ = gr0 (

∏
i∈S′ Ci

ai ) as a blinded alternative
to C =

∏
i∈S′ Ci

ai that hides which subset S′ of indices the product
of powers is taken over. Note that having loghi

h j unknown when
i , j prevents V from attempting to link an authenticating user to a
ticket (hi ,Hi ) from a prior session by, for example, also including
(h j ,H j ) = (hi

s ,Hi
s ) on the blacklist for some s ∈ Zq∗ and noting

that Ci
s = Cj if and—with all but negligible probability in τ—only

if the currently authenticating user has a secret key that is not equal
to loghi

Hi .
We denote Protocol 4 by BPK{(S, x) : S ⊆d−1 [1,n] ∧ H0 =

h0
x
∧ (
∧

i∈S Hi = hi
x ) ∧ (

∧
i∈[1,n]\S Hi , hi

x )}. As in Proto-
col 3, the verifier must specify an all-but-k reference string ABK(N)
for some N ≥ n and an arbitrary λ-bit prime p, where λ is the
soundness parameter.

Protocol 4 (Batched inequality of one DL with all-but-d others).

Common input : (h0,H0), . . . , (hn ,Hn ) ∈ G∗ × G∗ , a λ-bit
prime p, all-but-k public parameters ABK(N) for some N ≥
n, and a d-strikes-out bound d ∈ [1,n]

Prover’s input : x = logh0
H0 and S ⊆d−1 [1,n] such that

loghi
Hi = x if and only if i ∈ S.

1. Set S′ = [1,n] \ S. P chooses blinding factors r ∈R Zq
∗ and

ri ∈R Zq
∗ for each i ∈ S, and then it computes the commitment

B = (ĝx/g)r and, for each i ∈ [1,n], it computes the auxiliary
commitment

Ci =


gri if i ∈ S, and

(hi
x
/ Hi )r if i ∈ S′.

P sends (B,C1, . . . ,Cn ) to V.
2. P engages V in BPK{(S, γ1, . . . , γd−1) : S ⊆d−1 [1,n] ∧

(
∧

j∈[1,d−1] CS j
= gγ j )}, using γi = rSi

. Referring to Pro-
tocol 3, let C′ be P’s output in Step 3, let a1, . . . ,an be as V
computes them in Step 6, and let r0 = v +

∑
i∈S riai mod q

using P’s response v in Step 5.
3. P and V each compute h =

∏n
i=1 hi

ai and H =
∏n

i=1 Hi
ai .

4. P engages V in PK{(α, β,γ) : 1 = h0
αH0

β
∧ B = gαGβ ∧

C′ = gγhαH β }, using α = xr mod q, β = −r mod q, and
γ = r0 mod q.

5. V accepts if Ci , 1 for each i = 1, . . . ,n and if it accepts in
Steps 2 and 4; otherwise, V rejects. �

Note that h and H are products of powers of the hi and Hi , re-
spectively, with indices ranging over [1,n], whereas C′ is a product
of powers of g and the Ci with indices ranging only over the proper
subset S′ ⊂ [1,n], which is unknown to V. (Since, for each i ∈ S′,
Ci is also a product of powers of hi and Hi , we have that C′ is in
fact a product of powers of g and the hi and Hi with indices i ∈ S′.)
When P is honest, the pairs (hi ,Hi ) with indices in S are precisely
those pairs for which loghi

Hi = logh0
H0 so that hi

αHi
β = 1; thus,

gγhαH β = gγ (
∏n

i=1hi
ai )α (

∏n
i=1Hi

ai )β

= gγ
∏n

i=1(hi
αHi

β)ai

= gγ
∏

i∈S (hi
αHi

β)ai
∏

i∈S′ (hi
αHi

β)ai

= gγ
∏

i∈S′ (hi
αHi

β)ai

= gγ
∏

i∈S′Ci
ai

= C′ .

From here it is easy to verify that the protocol is complete. It is a
special sound argument of knowledge of (S′, x) such that H0 = hx

0
because the subprotocol in Step 2 is itself a special sound argument
of knowledge of S′ = [1,n] \ {S} and the subprotocol in Step 4
is a special sound proof of knowledge of the triple (α, β,γ) such
that x = − α

β
. The commitment B = (ĝx/g)r and associated proof

are included for the same reason that we included the proof that
Ci = h1

αH1
β in Protocol 2. (Note that we cannot require the prover

to show that Ci = hi
αHi

β for any individual index i, as Ci , hi
αHi

β

whenever i ∈ S; thus we introduce B as a commitment to the desired
(α, β).) To prove that loghi

Hi = logh0
H0 if and only if i ∈ S, we

note that if P behaves dishonestly (by trying to use the incorrect S
and S′), V will detect this: if P omits an index i from S for which
loghi

Hi = logh0
H0, then Ci = 1 and V will reject in Step 5; if it

instead includes an extra index i in S for which loghi
Hi , logh0

H0,
then the above cancellation will fail and this time V will reject in
Step 4. Now, since logg hi is unknown (by assumption) for each i ∈
[1,n] and since Step 2 proves that, with overwhelming probability
in λ, P knows at least d − 1 DLs among the Ci with respect to
base g, V is convinced that there exists some size-(d − 1) subset
S of indices such that Ci , hi

αHi
β for any i ∈ S; furthermore,

Step 4 convinces V that 1 = h0
αH0

β and that Ci = hi
αHi

β for each
index i ∈ [1,n] \ S. Therefore, V is convinced that exactly d − 1
pairs (hi ,Hi ) have loghi

Hi = logh0
H0. A simulator for the honest

verifier just invokes the simulators for the subprotocols in Steps 2
and 4 and concatenates the transcripts; hence, Protocol 4 is a special
honest-verifier argument of knowledge x and S such that H0 = h0

x ,
S ⊆d−1 [1,n], and Hi =x

i if and only if i ∈ S.
Regarding efficiency, we see by inspection that, in addition to

what it sends in the subprotocol in Step 2 (that is, in addition to
executing Protocol 3), P sends just four elements from G (i.e., the
commitments in Step 4) and three responses from Zq (i.e., the re-
sponses in Step 4); V, likewise, sends just one additional challenge



from Zq (i.e., the challenge in Step 4). Computationally, P must
compute

2 ExpCostG((n, λ))
+ 3 ExpCostG((2,2τ))

+ ExpCostG(3,2τ) ≤ 17τ + (n + 2)λ

multiplications in G beyond what it computes in Protocol 3 (and not
including the precomputable values C1, . . . ,Cn); likewise, V must
compute

2 ExpCostG((n, λ))
+ ExpCostG((2,2τ))

+ ExpCostG((2,2τ), (1, λ))
+ ExpCostG((3,2τ), (1, λ)) ≤ 13τ + λ

multiplications in G beyond it compute in Protocol 3.

Batch protocol for d-BLAC.
Extending Protocol 4 to the general |S | < d case is simple: the

user forms a “new” problem instance by sending d − 1 “ephemeral”
pairs (hn+1,Hn+1), . . . , (hn+d−1,Hn+d−1) and corresponding Cn+1,
. . . ,Cn+d−1 such that exactly d − |S | − 1 of the ephemeral pairs
satisfy loghi

Hi = logh0
H0. This ensures that exactly d − 1 pairs

in the “augmented” problem instance satisfy loghi
Hi = logh0

H0,
regardless of the value of |S |, so long as it is less than d. From
here, the user and the SP follow the protocol exactly as above, thus
proving that at most d − 1 of the (hi ,Hi ) pairs on the original list
satisfy loghi

Hi = logh0
H0. For soundness, we also need to en-

sure that the user knows loghn+i
Hn+i for each i = 1, . . . ,d − 1 so

that the user knows the DL of hn+i
yi / Hi with respect to base hn+i

and, therefore, not with respect to base g for each i = 1, . . . ,d − 1.
To accomplish this efficiently, the user can compute each hn+i as
a random power of h0 and then invoke the protocol denoted by
BPK{(α1, β1, . . . ,αd−1, βd−1) :

∧d−1
i=1 αi = logh0

hn+i ∧ βi =

logh0
Hn+i }. This increases the communication cost and computa-

tion cost of the protocol only slightly if we assume that d is constant
(and small relative to n), as one would expect it to be in practice.

Comparison with d-BLAC.
In d-BLAC’s default SPK5 instantiation, the user sends about 3n

elements from G and 2n elements from Zq to the SP; thus, our
optimizations again reduce the communication cost by about 75%
without precomputation, assuming that the SP’s challenges are out-
put by a cryptographically secure hash function. The computational
savings are also similar: the user and the SP compute, respectively,
about (4τ + λ) / 12τ and λ / 6τ times as many multiplications in
G, as was the case before for vanilla BLAC. Similar remarks as
before apply with regards to point compression and with regards to
precomputing and reblinding the auxiliary commitments Ci . When
precomputation is used, the user’s online computation cost is similar
to the SP’s computation cost.

3.4 BLACRONYM with reputation
The third and final black box that we redesign comes from the

authentication protocol in BLACR; that is, we provide an alternative
instantiation for a simplified version of the protocol that Au et al.
labelSWS-Adj [2, §4.3]. (Our protocol is “simplified” in that it only
deals with the “unweighted” version of BLACR. In the weighted ver-
sion, SPs can specify adjusting factors to weight scores differently
depending on how many times the user has engaged in a particular
kind of (either positive or negative) behaviour. It is not immediately
clear that such functionality is even possible within the framework

we use for our batch protocols; we therefore leave further investi-
gation along those lines to future work.) TheSWS-Adj protocol plays
an analogous role to that of SPK5 in vanilla BLAC and d-BLAC:
after the user proves knowledge of x such that (i) the user holds a
valid credential C(x) encoding x and (ii) the second component in
the user’s ticket Γ = (z0,H0) has the form H0 = H (z0‖s)x for
that same x and the SP’s canonical name s, it outputs a Pedersen
commitment D = ĝς (x )gσ , where ĝ is a generator of G with logg ĝ
unknown and where ς (x) denotes the user’s aggregate score on the
SP’s blacklist. The user then engages inSWS-Adj with the SP to prove
that the aggregate score ς (x) committed to by D is the correct ag-
gregate score for its secret key x. Note that the correct aggregate
score is ς (x) =

∑
i∈S ςi for S = {i ∈ [1,n] | loghi

Hi = x}, where
ςi is the score associated with ticket Γi = (zi ,Hi ) in B ; thus, P can
prove the correctness of D by (i) outputting a Pedersen commitment
Di for each i = 1, . . . ,n that commits to ςi if i ∈ S and to 0 if
i ∈ [1,n] \ S, (ii) proving that each such Di commits to the correct
value, and then (iii) using D =

∏n
i=1 Di as the commitment to ς (x).

An alternative instantiation for SWS-Adj in BLACR.
Building block: Proof of knowledge of one DL in each of several
pairs. Suppose that prover P and verifier V take as common input
a collection of n pairs of group elements (C1,D1), . . . , (Cn ,Dn ) ∈
G∗ × G∗ with the goal being for P to prove knowledge of exponents
γ1, . . . , γn ∈ Zq

∗ such that, for each i = 1, . . . ,n, either Ci = gγi

or Di = gγi . A direct analogue of Protocol 3 implements a system
for special honest-verifier batch perfect zero-knowledge proofs of
knowledge for this claim. In particular, P engages V in two parallel
instances of a relaxed Protocol 3: in one instance, P proves knowl-
edge of an (arbitrary sized) index set S ⊆ [1,n] and to ri = logg Ci

for each i ∈ S; in the other instance, P proves knowledge of an (also
arbitrary sized) index sets S′ ⊆ [1,n] and to ri = logg Di for each
i ∈ S′. (Thus, V does not require the challenges within each paral-
lel instance to satisfy any particular constraints; in fact, it must be
possible for P to make V accept even if S = ∅ or S′ = ∅.) Of course,
to prove the desired claim P must convince V that S′ = [1,n] \ S,
which we accomplish by having P all-but-k commit to n compo-
nents of a length-2n vector of challenges 〈c1, . . . ,cn ,d1, . . . ,dn〉,
where ci will be the challenge for the claim Ci = gri and di will be
the challenge for the claim Di = gri . For each i = 1, . . . ,n, V will
check if ci + di ≡ c mod 2λ , where c is the verifier-chosen chal-
lenge; if so, then V is assured (with overwhelming probability in λ)
that, prior to receiving c from V, P chose at most one of ci or di for
each i ∈ [1,n]. To protect against algebraic attacks by dishonest P,
V insists that P uses k = n in the all-but-k opening, thus proving
that P in fact chose exactly one of ci or di for each i ∈ [1,n] and,
therefore, that the other was uniquely determined by the challenge
c. We denote the resulting protocol by BPK{(S, γ1, . . . , γn) : S ⊆
[1,n] ∧ (

∧
i∈S Ci = gγ1 ) ∧ (

∧
i∈[1,n]\S Di = gγi )}.

Protocol 5 (Batched knowledge of one-out-of-two DLs).
Common input : (C1,D1), . . . , (Cn ,Dn ) ∈ G∗ × G∗ , g ∈ G,

and an all-but-k reference string ABK(N) for some N ≥ 2n
Prover’s input : S ⊆ [1,n] and ri = logg Ci for each i ∈ S

and ri = logg Di for i ∈ [1,n] \ S

1. Set S′ = [1,n]\S and S̄ = S∪{i +n | i ∈ S′}. P chooses a chal-
lenge ci ∈R [0,2λ − 1] for each i ∈ S′ and di ∈R [0,2λ − 1] for
each i ∈ S, and then it computes C ← ABK-Commit(S̄, (ei )i∈ S̄ ),
where ei = ci for each i ∈ S and ei+n = di for each i ∈ S′. P
sends C to V.

2. V picks scalars b1, . . . ,bn ∈R [0,2λ − 1] and sends them to P.
3. P chooses blinding factors s0, s1 ∈R Zq

∗ . P sets a′i = (bi +
di ) mod 2λ for each i ∈ S and ai = (bi + ci ) mod 2λ for



each i ∈ S′, and then it computes D′ = gs0 (
∏

i∈S Di
d′i ) and

C′ = gs1 (
∏

i∈S′ Ci
ai ). P sends (C′,D′) to V.

4. V picks a challenge c ∈R [0,2λ − 1] and sends it to P.
5. P computes ci = (c − a′i ) mod 2λ and ai = (bi + ci ) mod 2λ

for each i ∈ S, and it computes di = (c − ci ) mod 2λ and a′i =
(bi + di ) mod 2λ for each i ∈ S′. P computes the responses
v0 = s0 −

∑
i∈S airi mod q and v1 = s1 −

∑
i∈S′ a′iri mod q,

and the witness w ← ABK-Open(C ,n, (ei )i∈[1,2n]\S̄ ), where
ei = ci for i ∈ S′ and ei+n = di for i ∈ S. P sends ((ci )ni=1,v0,
v1,w ) to V.

6. V computes di = (c − ci ) mod 2λ , ai = (ci + bi ) mod 2λ ,
and a′i = (ci + di ) mod 2λ for each i ∈ [1,n]. V accepts if
ABK-Verify(C ,w ,n, (ei )2n

i=1), where ei = ai and en+i = di

for each i ∈ [1,n], and if C′ = gv0 (
∏n

i=1 Ci
ai ) and D′ =

gv1 (
∏n

i=1 Di
a′i ). �

Similar to with Protocol 3, if honest V accepts in the above proof,
then, with probability overwhelming in λ, P must know s0 = v0 +∑

i∈S aiγi mod q and S′ = [1,n]\ S such that C′ = gs0
∏

i∈S′ Cai

i ,
where C′ is the commitment output by P to prove knowledge of
γi = logg Ci for each i ∈ S. (The only difference here from the
observation following Protocol 3 is that the product is over a set S′
of unknown size, which turns out to be inconsequential in our use of
the observation.)

Batch protocol for BLACR.
Given Protocol 5 above, we are now ready to present our protocol

for proving the correctness of the aggregate score ς (x) commit-
ted to by D = ĝς (x )gσ . The user and the SP in this subprotocol
have common inputs two generators g, ĝ ∈ G∗ , a commitment
D ∈ G∗ and pair (h0,H0) ∈ G∗ × G∗ , and a set of n triples
(h1,H1, ς1), . . . , (hn ,Hn , ςn ) ∈ G∗ × G∗ × Z such that logg ĝ,
logg hi , and logĝ hi for i ∈ [1,n], and loghi

h j for i , j are all
unknown. The goal is for the user to prove knowledge of S ⊆ [1,n]
and σ ∈ Zq such that S = {i ∈ [1,n] | logh0

H0 = loghi
Hi } and

D = ĝ
∑

i∈S ςigσ .
As in Protocol 4, the user computes auxiliary commitments Ci

as Ci = (hi
x
/ Hi )r for i ∈ S′ and Ci = gri for i ∈ S, where

r ∈R Zq
∗ and ri ∈R Zq

∗ for all i ∈ S. The user also computes
Pedersen commitments Di = ĝςigti for i ∈ S and Di = gti for
i ∈ S′, where ti ∈R Zq

∗ for all i ∈ [1,n]. Let D′i = Di / ĝςi and note
that if the user computes the Ci and Di honestly, then (i) P knows
ri = logg Ci and ti = logg D′i (but not logg Di ) whenever i ∈ S,
(ii) P knows ti = logg Di (but not logg Ci or logg D′i ) whenever
i ∈ S′, and (iii)

∏n
i=1 Di = ĝς (x )g

∑n
i=1 ti . In particular, if P proves

that it indeed knows logg D′i if and only if it knows logg Ci , and that
it knows logg Ci if and only if x = loghi

Hi , then it follows that
D =

∏n
i=1 Di is a Pedersen commitment to (honestly computed)

ς (x). The proof of these claims is very similar to Protocol 4, but
with Protocol 3 replaced by its above-described variant.

Protocol 6 (Sum of reputation scores for equal DLs).
Common input : (h1,H1, ς1), . . . ,(hn,Hn, ςn ) ∈G∗ ×G∗ × Z,

(h0,H0,D) ∈ G∗ × G∗ × G∗ , g, ĝ ∈ G∗ , and an all-but-k
reference string ABK(N) for some N ≥ 2n

Prover’s input : x = logh0
H0 and (s, t) ∈ Zq × Zq such that

D = ĝsgt ,
1. Set S = {i ∈ [1,n] | loghi

Hi = x} and S′ = [1,n] \ S and let
m = |S |. P chooses blinding factors r ∈R Zq

∗ , ri ∈R Zq
∗ for i ∈ S,

and t1, . . . , tn ∈R Zq
∗ , and then it computes the commitment

B = (ĝx/g)r and, for each i ∈ [1,n], it computes the auxiliary

commitments

Ci =


gri if i ∈ S, and

(hi
x
/ Hi )r if i ∈ S′.

and

Di =


ĝςigti if i ∈ S, and
gti if i ∈ S′.

P sends (B,C1,D1, . . . ,Cn ,Dn ) to V.
2. P engages V in BPK{(S,m,r1, . . . ,rn , t1, . . . , tm) : S ⊆m [1,n]∧

(
∧m

i=1 CSi
= grSi ∧(DSi

/ĝςSi ) = gti )∧(
∧

i∈[1,n]\S Di = gri )}.
Referring to Protocol 5, let C′ be as in P’s output in Step 3, let
a1, . . . ,an be as V computes them in Step 6, and let v0 be as in
P’s response in Step 5.

3. P and V each compute h =
∏n

i=1 hi
ai and H =

∏n
i=1 Hi

ai .
4. P engages V in PK{(α, β,γ) : 1 = h0

αH0
β
∧ B = ĝαgβ ∧

C′ = gγhαH β }, using α = xr mod q, β = −r mod q, and
γ = r0 mod q.

5. V accepts if Ci , 1 for each i = 1, . . . ,n and if it accepts in
Steps 2 and 5; otherwise, V rejects. �

The protocol is once again complete by inspection and it is special
honest-verifier zero-knowledge because a simulator for the honest
verifier can simply invoke the simulators for the subprotocols in
Steps 2 and 4 to construct a perfect simulation. The extractor for
Protocol 6 similarly invokes the extractors for the subprotocols to
obtain x = − α

β
, s =

∑
i∈S ςi , and t =

∑
i∈S ti . (Note that the

extractor can compute both x and s after a single rewind: the Step 4
subprotocol is special sound with respect to x, while the Step 2 sub-
protocol is special sound with respect to S. Since the ςi are public,
knowledge of S is sufficient to compute ς (x). The justification pro-
vided before the protocol establishes that it is sound with respect to
the claim s = ς (x).

Regarding efficiency, the user sends a total of 2n + 7 group el-
ements from G for the (Ci ,Di ) pairs and additional commitments
in Steps 2 and 4, plus an all-but-k commitment C and witness w ,
n exponents a1, . . . ,an , and 6 responses from Zq . The SP sends
(n + 1)λ bits to the user (the short exponents b1, . . . ,bn and the
challenge c). The user computes

2 ExpCostG((1,2τ), (n − m, λ))
+ ExpCostG((1,2τ), (m, λ))

+ 2 ExpCostG((n, λ))
+ 2 ExpCostG((2,2τ))

+ ExpCostG((3,2τ)) ≤ 13τ + 2(n − m/4 + 1)λ

multiplications in G, not including (C1,D1), . . . , (Cn ,Dn ) or the
all-but-k values; the SP computes

3 ExpCostG((1,2τ), (n, λ))
+ ExpCostG((2,2τ))

+ ExpCostG((2,2τ), (1, λ))
+ ExpCostG((3,2τ), (1, λ)) ≤ 19τ + (n/2 + 1)λ

multiplications in G, not including all-but-k values.

4. COST COMPARISON
Table 1 compares the (online) computation cost and proof size of

the original protocols for BLAC, d-BLAC, and BLACR with those



Legend
n = blacklist size
d = strikes-out bound
m = number of user’s tickets

on blacklist
τ = security parameter
λ = soundness parameter

User computation a

(multiplications in G)
SP computation
(multiplications in G)

Proof size b

(bits)

Original Blacronym Original Blacronym Original Blacronym

BLAC 8nτ nλ 9nτ 3nλ / 2 3n|G| + 2nτ n|G|

d-BLAC (8n + d)τ dτ + (n + d / 2)λ 9nτ 4nλ / 2 3n|G| + 3nτ n|G|

BLACR (11n + 9m)τ nτ + 2nλ 16nτ 5nλ / 2 5n|G| + 8nτ 2n|G|

Example: τ = 128, λ = 40, and d = m = 6. Savings Savings Savings

BLAC 1024n 40n 25x 1152n 60n 19x 640n 128n 5x

d-BLAC 1024n + 768 40n + 888 25x 1152n 80n 14x 768n 128n 6x

BLACR 1408n + 5760 208n 7x 2048n 100n 20x 1664n 256n 7x

Table 1: Approximate computation and communication costs, including overhead from all-but-k commitments. Cost
comparison between BLACRONYM protocols and their original BLAC, d-BLAC, and BLACR counterparts. The ‘User com-
putation’ column lists the approximate number of multiplications in G for the user to compute not including the auxiliary
commitments C1, . . . ,Cn or precomputable all-but-k commitment values. The ‘Proof size’ column lists the approximate tran-
script size (in bits) for the noninteractive form of the protocol, including n|G| bits for the auxiliary commitments C1, . . . ,Cn .
(In practice, |G| ≈ 2τ or 4τ, depending on whether or not point compression is used.) The second part of the table fixes
τ = 128, λ = 40, and d = 6 and then lists the costs for these parameters as a function of n. Many small additive terms have
been omitted from the reported costs for clarity of presentation; their contribution to the actual cost is insignificant even for
n as small as 10 or 20.
a User computation cost excludes costs for precomputable values such as C1, . . . ,Cn and the precomputable portions of the all-but-k commitments.
b Proof size includes C1, . . . ,Cn and assumes all challenge bits are output by a random oracle.

of the corresponding BLACRONYM protocols, including the non-
precomputable costs of the all-but-k protocols. The BLACRONYM
protocols handily outperform the original non-batch protocol, usu-
ally by more than an order of magnitude for reasonable parameter
choices. The computation costs listed in the table for d-BLAC and
BLACR count the computation overhead from computing and veri-
fying an all-but-k commitment. For d-BLAC, the commitment is to
all-but-(d − 1) elements of a length-n sequence: the user computes
an expected 4(d − 1)τ+ n−d+1

2 λ multiplications in G̃ and the SP an
computes expected n

2 λ multiplications in G̃. (The user can precom-
pute all but about 2(d−1)τ of the multiplications.) For BLACR, the
commitment is to all-but-n elements of a length-2n sequence: the
user computes an expected 4nτ + n

2 λ multiplications in G̃ and the
SP computes an expected nλ multiplications in G̃. (The user can
precompute all but nτ + n

2 λ multiplications.) The size of the proof
is constant-size: g |G̃| + |GT | + 6τ, where |G̃| and |GT | respectively
denote the number of bits used to represent elements of the base
group G̃ and target group GT of the bilinear pairing in ABK(N).

5. CONCLUSION
We presented the BLACRONYM suite of efficient protocols for

anonymous blacklisting without trusted third parties. Our protocols
improve on BLAC and its variants by providing comparable func-
tionality and security guarantees with substantially lower communi-
cation and computation overhead. To accomplish this, we combine
existing batch zero-knowledge techniques with a new technique for
constructing batch proofs of partial knowledge about DLs over non-
monotone access structures. We expect this latter technique will
be useful in constructing zero-knowledge protocols for other state-
ments of interest.
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APPENDIX
A. SECURITY & PRIVACY PROPERTIES

OF A SECURE BLAC CONSTRUCTION
We very briefly discuss the security and privacy properties that a

secure BLAC construction must provide. The definitions we give
here are informal; we refer the reader to Tsang et al. [39] for the
formal versions. We note that such informal definitions suffice for
our purposes, since we only modify the internals of black boxes. In
particular, the security proofs provided by Tsang et al. [39, §7.2]
for BLAC and d-BLAC and by Au, Kapadia, and Susilo [2, Ap-
pendix A] for BLACR will also prove that BLACRONYM is secure,
provided we prove that our zero-knowledge protocols securely im-
plement the black boxes we modify. (Note that we do make one mi-
nor change to the original definitions: we insist that the probability
with which dishonest users can fool an honest SP in the authentica-
tion protocol is negligible in the SP’s soundness parameter λ, rather
than in the system-wide security parameter τ.)

1. Correctness: If the GM and a given SP are both honest, and
if a given user’s entries on that SP’s blacklist do not meet its
revocation criteria, then with probability overwhelming in the
security parameter τ, the user can successfully authenticate to
the SP.

2. Misauthentication resistance: If a user successfully authenticates
to an honest SP, then with probability overwhelming in the SP’s
soundness parameter λ, that user possesses a valid credential
C(x) from the GM.

3. Blacklistability: A coalition of dishonest SPs and users holding
secret keys x1, . . . , xk can successfully authenticate to an honest
SP with blacklist B only if ρs(B , xi ) = 0 for some i ∈ [1, k],
except with probability negligible in λ.

4. Anonymity: No coalition of dishonest SPs, users, and the GM
has a computational advantage in distinguishing authentication
transcripts associated with the same honest user from those as-
sociated with different honest users. Moreover, no such coali-
tion has a computational advantage in linking any authentication
transcript with the real-world identity of the honest user that pro-
duced it.13

5. Non-frameability: No coalition of dishonest SPs, users, and the
GM can prevent an honest user from successfully authenticating
with an honest SP, except with probability negligible in τ.

13We speak of computational advantage here to emphasize that coalitions may do
better than random guessing if they utilize side channel information (e.g., times-
tamps, destination SPs, contents of posts, etc.). The usual formalization of this
idea is to require that the coalition’s guess distribution after seeing some authen-
tication transcripts from honest users should be close to its guess distribution
before seeing those transcripts.
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