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ABSTRACT

The recent NSA revelations have shown that “address book™ and
“buddy list” information are routinely targeted for mass intercep-
tion. As a response to this threat, we present DPS5, a cryptographic
service that provides privacy-friendly indication of presence to sup-
port real-time communications. DPS allows clients to register and
query the online presence of their list of friends while keeping this
list secret. Besides presence, high-integrity status updates are sup-
ported, to facilitate key update and rendezvous protocols. While
infrastructure services are required for DP5 to operate, they are
designed to not require any long-term secrets and provide perfect
forward secrecy in case of compromise. We provide security argu-
ments for the indistinguishability properties of the protocol, as well
as an evaluation of its performance.

1. INTRODUCTION

“We kill people based on metadata.”
— General Michael Hayden [11]

Many organizations, from hobbyist clubs to activist groups to social
media giants, provide a mechanism for their members to engage in
real-time online communication with their friends. This is nowa-
days predominantly done using the federated XMPP [26] protocol
with either web-based or standalone clients to access services.

A crucial part of a messaging service is to provide indicators of
presence: when a person connects to the network, she would like to
be informed of which of her friends are currently online. Depend-
ing on the exact details of the communication service, she may also
wish to be informed of some extra data associated with each of her
online friends, such as the friend’s current IP address, preferred de-
vice, encryption public key, or other metadata useful for establish-
ing communication. Note that the communication itself may then
occur in a direct peer-to-peer manner, outside the scope or view of
the organization providing presence service.

A typical presence mechanism works by having each user inform
the server of who her friends are. Then, whenever those friends log
in, they are informed of the user’s state (offline or online), and if
online, the associated data. Note that the “friend” relation is not
necessarily symmetric: if Alice lists Bob as a friend, then Bob will
see Alice’s presence information, but not necessarily vice versa.

This ubiquitous and straightforward presence mechanism, how-
ever, has a significant privacy problem: the server learns the com-
plete list of who is friends with whom, and when each user is on-
line. However, we have recently observed that governments use
legal compulsion on service providers to disclose their private data,
as was the case for the Lavabit service [25]. On January 2014
the New York Times also revealed documents, leaked by Edward
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Snowden, demonstrating that online address books and buddy lists
are prime targets for extra-legal surveillance by the United States’
and United Kingdom’s signal intelligence agencies [19]. As a re-
sult, organizations providing presence service may be reluctant to
even hold this privacy-sensitive metadata.

In this work, we present DP5—the Dagstuhl Privacy Preserving
Presence Protocol P.! DP5 allows organizations to provide a service
offering presence information (and associated data) to their users,
while using strong cryptographic means to prevent the organization
itself from learning private information about its users, such as their
lists of friends.

The key contributions of this paper relate to the design and anal-
ysis of DP5, a private presence system. More specifically, we:

e Present a set of security properties, functional requirements,
and a desirable threat model for private presence. (§3)

e Describe a design, DP5, that fulfills the security requirements,
based on private information retrieval and unlinkable pseu-
donyms in consecutive epochs. (§4)

e Show that the DP5 security mechanism provides unlinkabil-
ity, and argue that it also provides forward secrecy even when
all infrastructure components are compromised. (§5)

e Evaluate the system performance of all DP5 sub-protocols.
(§6)

e Discuss design and implementation options, to strengthen the
security of DP5 notably against client compromise. (§7)

2. RELATED WORK

Presence is a fundamental component of a number of real-time
communication systems including Voice over IP and chat protocols,
such as IRC, XMPP, and MSN.

One obvious design choice to achieve private presence consists
of simply running a conventional presence system, or even a full
chat server, behind a mechanism providing client and server ano-
nymity, such as a Tor hidden service [16]. While this mechanism
may hide the identities of users behind pseudonyms, it does not
hide the relationships among their pseudonyms, and so can lead to
re-identification nonetheless [24].

Laurie’s Apres [22] was the first to suggest a privacy-friendly
protocol to achieve presence. Apres introduces the notion of epochs
(and calls them ID du jour) and the basic scheme by which pres-
ence information is unlinkable between epochs (through hashing)
to prevent traffic analysis. Apres also considers how presence is an
essential mechanism to enable further efficient communication, a
feature that DP5 aims to preserve. A specific system making use of
an Apres-like presence mechanism to facilitate real-time commu-
nication is Drac [13], which proposes a simplified presence mech-
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anism based on hashing.

DP5 provides an important additional security property com-
pared with Apres (and Drac that builds on it): it hides the topol-
ogy of the “friend” graph within each epoch. Since Apres was
proposed, a body of work has demonstrated that merely provid-
ing unlikability of identifiers between epochs does not prevent de-
anonymization of social network graphs if their topology remains
the same [24]. This is true even if graphs between epochs are not
completely isomorphic due to missing edges or vertices. The DP5
protocol eliminates this de-anonymization possibility by splitting
presence into registration and lookups—whereas Apres was con-
founding the two—and ensuring no topology information leaks.

The Tor Project is in the process of redesigning the Hidden Ser-
vices mechanism [16], which includes a few mechanisms related
to the goals of DP5. Current thinking around hidden services al-
lows for services with secret addresses. To preserve this secrecy,
queries for the hidden service to hidden directory services are ob-
scured through blinding their secret “public key”” with a key derived
from itself and an epoch. The core of this rendezvous mechanism
is similar to the goals of the DP5 protocol, and has influenced our
ideas around forward secrecy.

Presence is related to naming security. DNSSec [1] and DNS-
Curve [3] provide reliable mapping between names and low-level
Internet protocol addresses. DNSSec has been engineered to facil-
itate offline signatures, and is therefore not appropriate to translate
names to very dynamic information like presence and status. On
the other had DNSCurve does support dynamic binding of names
to addresses, through stronger channel security. While this pro-
vides privacy against network adversaries, and limited traffic anal-
ysis protection due to potential local caching, it does not provide
the strong forms of traffic analysis protection DP5 was designed
for. The GNU Name System [28] and a recent proposal by Tan
& Sherr [27] use a Distributed Hash Table that all users maintain
to mirror all peer’s name records to rendezvous. As with DNSSec,
this mechanism is ill-suited to dynamic information due to the slow
rate of DHT updates, and does not provide clear privacy guarantees.

3. DESIGN AND SECURITY GOALS

The DP5 service aims to provide a private alternative to pres-
ence systems that support real-time communications such as instant
messaging or Voice over IP (VoIP). In a nutshell, users are able to
register and revoke “friends”, and query the service to retrieve the
online status of those that listed them as friends, as well as receive
a small amount of extra information useful for bootstrapping other
security protocols. From a security perspective, subject to some
typical cryptographic assumptions, the service does not learn who
is friends with whom, the topology of the social network remains
secret, and no one is in a position to fake the status of any honest
user. This section provides details about the properties and threat
model of the DP5 design.

3.1 Presence features

DPS5 acts as a presence mechanism, but is also enriched with
features that allow it to compose well with, and provide a solid
foundation for, other secure protocols.

It is assumed that through an “out-of-band” private channel users
have acquired a public key corresponding to each of their friends.
This can be done in practice through downloading all public keys,
using a physical anonymous mechanism for transferring the key
(such as a USB drive or smart-phone), or using a privacy-friendly
record retrieval mechanism, such as private information retrieval
(PIR).

Once users have the list of public keys of their friends they can

use DP5 to perform a number of operations:

Friend Registration. A user Alice is able to use the public key of a
user Bob to register Bob as her friend. As a result Bob is authorized
to receive Alice’s online status and other associated data.

Presence Registration. Alice can register her online status at a
particular time period (epoch), along with a small amount of as-
sociated data for that time period. The system should eventually
detect Alice going offline at a later period and change her status
automatically.

Presence Status Query. A user Bob should be able to query the
system and retrieve the online status of those users that have regis-
tered him as a friend at a particular time period (epoch). In partic-
ular we note that both Alice must have registered Bob as a friend,
and Bob must issue a query for Alice’s status, in order for Alice’s
status to be provided to Bob. As part of the response to the query,
the presence-associated data of Alice is provided to Bob if she is
online.

Friend Suspension or Revocation. Finally, Alice or Bob may de-
cide that they wish to not be friends any more. Alice can thus chose
to remove Bob from her friends and not advertise to him her pres-
ence, and Bob may chose to not query for Alice’s presence or as-
sociated data. If they only do this temporarily we call the action
a presence “‘suspension”, and in the long term call this a presence
“revocation”.

3.2 Threat model and security assumptions

The DPS5 design ensures some security properties for presence
subject to some system and cryptographic security assumptions, as
well as some limitations on the parties an adversary can control
or corrupt. However, the DP5 protocol is extremely robust against
passive or active network adversaries. More precisely the security
of DPS rests on the following threat model:

Secure end-user hosts. Throughout this work it is assumed that
honest users’ end systems are secure. In particular DP5 makes use
of public-key encryption, for which the long-term private keys must
remain confidential. Furthermore, the long-term public keys of a
user’s friends identify the social network that DP5 aims to protect,
and thus, must be stored securely on a user device. The security of
end hosts is an orthogonal problem to the one DP5 aims to solve.
However, we discuss in Section 7.3 how to best partition an im-
plementation of the DP5 protocol to store any long term keys into
secure hardware to protect against some software attacks. Simi-
larly it is assumed that honest services run on secure end systems
that can maintain secrecy and integrity as necessary. Servers are
engineered to not require long-term secrets, and provide forward
secrecy, to mitigate any compromises.

Computational cryptography assumptions. DP5 makes use of a
number of cryptographic techniques, and thus assumes that the ad-
versary has not made cryptographic breakthroughs allowing him to
bypass them. In particular we assume that the secure channels be-
tween honest users and honest infrastructure services provide the
necessary authenticity, integrity and confidentiality. We also as-
sume an adversary is not able to violate the properties of a se-
cure pseudo-random function (PRF-IND), secure encryption (IND-
CPA) or violate the Decisional Diffie-Hellman (DDH) assumptions
or the co-DHP assumption for bilinear groups. (We elaborate on a
variant that does not rely on pairing-friendly elliptic curves in Ap-
pendix A, at the cost of some extra server-side computation and
storage.)

Ubiquitous passive network observer and dishonest users. We
assume an adversary can observe all the information that is in tran-



sit between all honest and dishonest participants in the protocols.
All security properties should hold even for an adversary with a
full record of all network communications between all parties. An
adversary can also make use of the presence system both by regis-
tering the presence of malicious users, as well as by querying it in
any manner.

Threshold of honest infrastructure servers. The DP5 protocol
uses a coalition of infrastructure servers to achieve its goals. It is
assumed that at least one of those servers does not collude with the
others to violate any security properties and executes the protocol
correctly. Other servers may be passively dishonest: in such a case
they follow the protocol, but share their internal state and secrets
with the adversary. The DP5 protocol is designed to maintain all
its security properties against such adversaries. It may be the case
that some other servers are actively malicious, and do not follow
the DP5 protocol. In such a case the DP5 protocol maintains its
confidentiality and integrity properties, but may not provide some
of its functionality—namely, it may suffer from denial of service.
We discuss how to ameliorate this issue in Section 7.4.

Security in the covert model. Finally, some availability aspects of
the protocol rely on the “covert security” model, namely that ad-
versaries follow the protocol if deviations would be detected with
some non-negligible probability. Specifically, we rely on this model
to argue that registration servers would not remove presence entries
without due authority.

3.3 Security goals

In this section we present the security goals of the DPS5 service. It
is worth noting that the security properties described are in relation
to the additional information that could be leaked by the presence
protocol and not the communication channels used.

e Privacy of presence. Only friends of Alice are able to detect
whether Alice is or is not online. More formally, an adver-
sary with a transcript of the contents of DP5 protocol interac-
tions cannot distinguish whether Alice was one of the honest
participants or not.

o Integrity of presence. Only Alice can convince one of her
friends that she is online. More formally, if an honest friend
of Alice becomes convinced that Alice is online at a partic-
ular epoch, it must be the case that Alice has performed the
presence registration protocol for that epoch.

e Privacy for social network. Either Alice registering friends
or her presence, or Bob querying for the presence of his
friends, should reveal no information about who their friends
are. Given any two lists of friends (up to a public maxi-
mum length) for any honest participant in the DP5 protocol,
it is indistinguishable to the adversary which of the two lists
was used. This holds for all parts of the protocol, including
friend registration, presence registration, presence querying,
the storage or retrieval of associated data.

e Unlinkablity between epochs. User actions are not linkable
across epochs to an adversary that is not their friend. Specifi-
cally, given a transcript of the DP5 protocol for a specific user
at an epoch, and a transcript at a subsequent epoch, an adver-
sary cannot distinguish if the transcripts originated from the
same user or different users.

e Privacy of associated data. Only friends can recover the
plaintext of a user’s associated presence data. If the adver-
sary submits to the user two candidate plaintexts, and the user
chooses one as their associated data for a specific epoch, the
adversary cannot efficiently distinguish which of the two was
chosen.

o Integrity of associated data. If an honest friend of Alice

recovers a plaintext of associated data it must be the case
that Alice ran the associated data registration protocol at that
epoch, with that plaintext as input.

o Indistinguishably of offline status, suspension and revo-
cation. A user Bob—even if Alice had registered him as a
friend in the past—cannot distinguish whether Alice is of-
fline, has suspended him, or has revoked him as a friend.

o Auditability of infrastructure. All actions that the central-
ized registration services perform should be publically veri-
fiable. In particular a public append-only log of all actions
of registration servers should not violate any security proper-
ties.

e Forward and backward secrecy of infrastructure. An ad-
versary with the power to extract cryptographic keys from
infrastructure servers at some point in time, cannot compro-
mise the security of any past epochs. Once fresh authentica-
tion keys are generated future uses of DP5 are also safe.

e Optional support for anonymous channels. The DP5 pro-
tocol does not leak any additional information about the iden-
tity of clients than do the underlying communications chan-
nels. In particular, if the communication channels leak no
identity, neither does DP5.

We note that the integrity of presence property is enforced by
an auditing mechanism, and that the integrity of associated data
requires either the mechanism described in Sect. A or the use of
digital signatures.

4. THE DPS PRESENCE PROTOCOL

4.1 Protocol description

The objective of the DP5 protocol is, broadly, for users to ad-
vertise their presence status to their friends only, without revealing
their social network to any single third party. The protocol assumes
a number of participants collaborate to achieve this: users, one of
which we call by convention Alice, register their presence in the
system to a registration service; users, such as one called Bob, can
then query the service to retrieve the status of users for whom they
are friends. The service is composed of a registration server, han-
dling the user registration side of the protocol, and a number of
private information retrieval (PIR) authorities handling the query
side of the protocol.

For clarity of presentation we will pin Alice’s role as wishing to
advertise her presence to her friend Bob, while Bob only queries
the system for Alice’s presence. Of course, in practice, all parties
partake in both the registration and query protocols, and have mul-
tiple friends.

4.2 DPS setup

The DP5 protocol assumes that Alice and Bob share a crypto-
graphically strong symmetric secret keys K, (we note that these
keys have a “direction”, thus the key K3, is also shared but dif-
ferent from K,;). This key can be computed through Alice and
Bob generating a public-private key pair using a group G, gener-
ated by element g, in which the Decisional Diffie-Hellman prob-
lem is believed to be hard (such as the Elliptic curve group of
Curve25519 [2]), and securely exchanging the corresponding pub-
lic keys. An appropriate key derivation function can be used to ex-
tract K45 and a different K3,. The DP5 protocol does not require
this shared key to be stable in the long term; thus, it is also possi-
ble for Alice and Bob to use a mechanism offering perfect forward
secrecy to derive the shared key periodically.

The DPS5 protocol divides time into short-term epochs, meant
to last on the order of a few minutes, and long-term epochs, on



the order of a day. Clients and infrastructure are assumed to have
loosely synchronized clocks.

All parties to the DP5 protocol share a common set of crypto-
graphic primitive: three families of keyed pseudo-random func-
tions (PRFY% (m), £ € {1,2, 3}, implemented using SHA-256 [17]);
an authenticated encryption primitive (AEADYY (h; m))* (such as
AES [12] in GCM mode [23]); and access to secure channels be-
tween clients and infrastructure (using TLS [15]).

Furthermore, DP5 makes use of three generators g1, g2 and g7 of
groups G1, G2 and Gt respectively for which an efficiently com-
putable asymmetric pairing function e(G1,G2) — Gr is known,
such that e(g{, g5) = g%®. The Decisional Diffie-Hellman prob-
lem is assumed to be hard in each of these groups (so that a “type
3” pairing [18], without an efficiently computable isomorphism
from GG to GG1 or the reverse, is in use), as well as the Co-DHP
(aka Co-CDH) [5] problem for G; and G2. An efficiently com-
putable hash function Hy : Gr — {0,1}" from elements of G
to n-bit strings is known by all (n is the length of an identifier).
Everyone also knows two efficiently computable hash functions
Hy : T — G2 (where T is the set of valid epoch timestamps)
and H3 : G1 — {0,1}” (where v is the key size of the PRF?
function).

Finally, all users share some global parameters, such as a max-
imum number of friends Nimax, the number Npimax of PIR servers
and their IP addresses, the sequence number and duration of short-
term (¢;) and long-term (77) epochs, and the byte size of all inputs
and outputs of the cryptographic primitives.

4.3 PIR sub-protocol

DPS5 uses private information retrieval (PIR) in order to allow
clients to retrieve presence information from DPS5 servers without
revealing to the servers what information is being requested.

A basic PIR primitive is to consider a database of r blocks, each
b bits in size, where the client knows the exact index of the block
she wishes to retrieve. In DP5, we use information-theoretic PIR,
in which multiple (non-colluding) PIR servers are employed. The
client information-theoretically splits her query across the set of
Npirmax servers, and combines their responses in order to reconstruct
the data in question. A non-triviality requirement is that the amount
of data transferred in the protocol is sublinear in the total size of the
database (7b bits).

Probably the simplest such scheme is due to Chor et al. [10]. This
simple scheme sends r bits to, and receives b bits from, each server,
for a total communication cost of Nyimax - (7 + b) bits. However,
this scheme is not robust: if one of the servers fails to respond,
or responds incorrectly, the client will fail to reconstruct her data,
and indeed will be unable to identify the server(s) that responded
incorrectly.

Goldberg [20] demonstrated a PIR protocol with only marginally
larger communication costs: Npimax - (rw + b) bits, where w is the
bitlength of the underlying finite field (typically w = 8). This
protocol, however, is able to handle offline and malicious servers.
Devet et al. [14] recently further extended the robustness of this
protocol, enabling reconstruction of the requested data, and iden-
tification of the misbehaving servers, when only ¢ + 2 servers are
behaving honestly. Here, ¢ is the privacy level: any collusion of up
to t servers learns no information about the query. This protocol
is implemented in the open-source Percy++ library [21], which we
use in our implementation of DP5.

Our situation is not quite as simple as the above protocols pro-

“We omit h when the AEAD mode is not used to provide integrity
over any cleartext data (what the AEAD calls “associated data”—
not to be confused with the DP5 associated data).

vide for, however. Our databases consist of a collection of (key,value)
pairs, and our goal is to retrieve the value corresponding to a given
database key, rather than a particular block index. To do this, we
build upon the block-retrieval PIR primitive above, using an exten-
sion to Chor et al.’s hash-based PERIKY protocol [9, §5.3]. This
extension works as follows: Let s be the (fixed) size (in bytes, as
we use w = &) of the (key,value) pair, and let there be n such
pairs ready to be inserted into a database at the start of a short-
term or long-term epoch. The high-level idea is that we will create
r = [y/ns] buckets, and use a hash function on the keys to hash the
(key,value) pairs into the buckets. The expected size of each bucket
is then % data items, or s bytes, and using Chernoff bounds, it is
easy to see that the probability of one bucket containing more than
T+ \/§ data items is negligible. In practice, we select the hash
function by picking ten random PRF keys for a PRF with codomain
{1,...,7}, using each to hash all n keys in the database, and find
the largest number of records hashed into any one bucket. We then
keep the PRF key that yielded the smallest such largest bucket. That
PRF key is made available to DP5 clients when they contact the PIR
database servers.

This hash variant is more suitable for our purposes than the per-
fect hash in PERIKY, as our (key,value) records are small in com-
parison to the number of such records, so we want to have many
records in a single PIR database block in order to balance the send-
ing and receiving communication cost. PERK), on the other
hand, uses perfect hashing to put zero or one keys (they do not
consider associated values, but this is a trivial extension) into each
PIR block, and uses n? blocks of size s bytes to accomplish this,
while we use r &~ \/ns blocks of size about (£ + /%) - s =~

/s + v/ns3 bytes. As the underlying PIR protocol we use trans-
mits a number of bytes equal to the number of records plus the
size of each record, and the computation cost is proportional to the
number of records times the size of each record, our hash-based
protocol is preferable to that of PERKY in our environment.

4.4 DPS registration

Alice registers her presence and associated data for each epoch,
by updating a number of databases at epoch ¢;_1 and T} _1, that are
made available for all to query at epoch ¢; and 7).

Long-term epoch friendship database. Once per long-term epoch
T -1, Alice updates the long-term epoch friendship database for
the next long-term epoch T); with a record for each of the friends
she wishes to advertise her presence. The database is an oblivious
repository of records for each directed friend link in the system;
however, note carefully that this database does not leak informa-
tion about the actual friendships to those without the appropriate
secret keys. To perform this update, Alice picks a random private
key © €r |G|, and derives a fresh public key P/ = gf. Then
for each of her friends she derives the shared key for the long-term
epoch, and encodes a database entry comprising an identifier, and
a ciphertext of her fresh public key.

For instance, Alice encodes an entry for Bob using their shared
key K, for long-term epoch 7 as follows. She first derives an
epoch key using a pseudo-random function and the identifier for
the long-term epoch: K7, = PRFy_ (T}). She then creates a

public identifier for the key as ID?, = PRF%{QE (T}), and encrypts
her public key as Cib = AEAD; i (IDflb; P?). The resulting entry
is (ID,, C7,).

Alice encodes an entry for each of her friends, and then pads
the list of entries with random entries up to a maximum number of

friends Nimax. Those random entries are generated by Alice per-
forming the encoding process above using a randomly chosen fresh



shared key. She then sends the fixed-size list of entries to the regis-
tration server, which stores it. Alice stores the fresh private-public
key pair (x, P?) until a new one is generated. We call the public
component P? the ephemeral epoch key of Alice.

Short-term epoch user and signature database. Once per short-
term epoch ¢;_1, Alice updates the short-term epoch user database
for epoch ¢; with a single entry, denoting she is online, and some
associated data m,. Alice first derives s’ = H;(t;)*, which rep-
resents an unforgeable signature that Alice is online. Furthermore,
Alice encrypts her associated data as ¢, = AEAD}(}»z (mq). where

K = PRF3H3<P2)(751'). She then sends the record (s?, c}) to the

registration server.

The registration server, upon receiving an entry (s%, c’) from
Alice, first derives an identifier ID; = Ho(e(g1, s%)). Then the
server updates two parallel databases: the entry (ID%, c%) is added
to the short-term epoch user database for ¢;, and the entry (IDf“ sfl)
is added to the short-term epoch signature database.

4.5 DPS query

At the beginning of epoch T the registration service makes pub-
lic the full long-term epoch friendship database with all entries
received during epoch 7%_1. Similarly, at the beginning of each
short-term epoch ¢;, the registration server makes available the sep-
arate short term user and signature databases with collected during
epoch ¢;_1. All PIR servers download all databases as soon as they
become available.

Furthermore, each PIR server audits at the start of ¢; the user
database using the entries in the signature database: each entry
(ID%, ¢%) in the user database corresponds to an entry (ID%, s%) in
the signature database, such that ID}, = Ho(e(g1, s2)). If the audit
succeeds the PIR server proceeds to answer requests for entries in
the databases.

Once per long-term epoch T); Bob queries the long-term friend-
ship database for entries corresponding to each of his friends. First,
he reconstructs for all his friends a shared identifier; e.g., for Alice
he computes the identifier IDY, = PRF%_, (T}). He then pads this
list of friend identifiers with a number of random identifiers, up to
a maximum number of friends Ngmax. Finally, using a PIR protocol,
he queries the long-term friendship database for the fixed-length list
of identifiers. As a result, he receives a list of identifier and cipher-
text entries (1D%,,C%,), one for each of his friends f who regis-
tered in epoch 7. For ¢ach of those entries, for example Alice’s,
he decrypts ciphertext C?, using key K7, = PRFf_ (T}) to yield
plaintext PJ. Upon valid decryption he updates his knowledge of
the public key of Alice with the ephemeral epoch key decrypted,
namely P?.

Up to once per short-term epoch ¢;, Bob may wish to refresh
the status information of his friends including Alice. As a first
step, Bob reconstructs the identifier of Alice using the latest pub-
lic key P? available for her. To this end he computes ID!, =
Ho(e(P?, Hy(t;))) for Alice, and similarly an ID for each of his
other friends. He then privately queries the PIR servers for a list of
those identifiers, padded with random string to a maximal length of
Nimax. Upon completion of the retrieval protocol, Bob decrypts
each returned ciphertext entry with a symmetric key derived as
K = PRF?}’IS( PJ-)(ti). If the decryption succeeds the status of
the friend is set asa“online”, and the associated data m,, is returned.
Otherwise the friend’s status is set as “offline”, and no associated
data is returned.

4.6 Usage notes

Epoch lengths. The presence mechanism is divided into long-term

epochs and short-term epochss, with different performance char-
acteristics. In the long-term epoch the registration phase has a
space complexity of O(fmax), where fmax is the maximal num-
ber of friends. However, in the short-term epoch the registration
space complexity is merely O(1), making short-term updates ex-
tremely efficient. Both mechanisms require O(fmax) queries to
the database, through the PIR mechanism. However, the size of
the database is different in each case: the long term database is
larger and contains O(N - fmax) entries, where IV is the number
of distinct registered clients, whereas the short-term database only
contains O(N) entries making queries cheaper.

Skipping short-term epochs. A deployment can leverage this
asymmetry to provide extremely timely updates. The long-term
epoch can be set at the granularity of a day, while the short-term
epoch can in the order of magnitude of minutes. Clients register
their presence in the long-term epoch, and also at regular intervals
in the short-term database. To detect presence it is imperative that
all clients have an up-to-date view of their friends’ entries from
the long-term database, since this enables them to use the short-
term update mechanism. This is relatively infrequent, and therefore
cheap in terms of processing and bandwidth costs.

Clients can choose, according to available resources, how often
they wish to query the short-term database. Short-term queries can
be scheduled either for each short-term epoch, periodically but less
frequently than the short-term epoch interval, or on-demand when
a high-level (observable) action that requires presence information
is undertaken. The frequency of updates may depend on load, net-
work availability, or any other non-sensitive information but must
not be dependent or adapt to the actual presence information re-
trieved in previous epochs. Such adaptive strategies create a timing
side-channel that the adversary could use to infer the friends of a
client—which is exactly what DP5 attempts to obscure.

Suspending presence and revocation. The cost of longer long-
term epoch is in terms of inflexibility of suspension or revocation
of presence. In order for Alice to selectively revoke a friend Bob,
she must not use his Diffie-Hellman public-key when she registers
with the long-term friendship database, and also change her short-
term public key. Any updates to the long-term friendship database
can only take place once the long-term epoch changes, and thus
the immediacy of revocation depends on this period being short.
Similarly, adding a new friend only fully takes place at the next
long-term epoch. However, adding someone can be very fast when
an out-of-band channel is available: Alice can exchange with them
not only her Diffie-Hellman key but also her public key P? for the
current long-term epoch, so they can immediately start querying
the short-term user database.

Missing the long-term epoch update. While long-term epochs
should be long enough to provide a good window of opportunity
for Alice to register, she might occasionally not be able to. In
those cases, by convention, her friend may still seek her presence in
the short-term database by using her last known ephemeral epoch
key. Alice, aware that she missed a long-term update, may reuse
her previous fresh public key for one or more additional long-term
epochs until she is able to register again in the long-term friendship
database. Note that both Alice and her friends can determine which
was the last registered public key, through querying past epochs of
the friendship database.

Users of the system may be tempted to skip looking up past long-
term updates for specific friends, and use the above mechanism as
long as there is no change in Alice’s list of friends. While this does
not lead to any immediate security breach, it is discouraged.

Filling in long-term updates. Alice’s friends may also be offline



long enough to miss a particular long-term epoch update. The DP5
protocol assumes that all clients check for their friends’ presence
each long-term epoch. Therefore it is necessary to request, using
the full PIR mechanism, all epochs that have been missed sequen-
tially. Clients may be tempted to only query a subset of recent
epochs, until they have identified the latest long-term update for all
their friends. While this may be cheaper than requesting all up-
dates, the stopping rule depends on the secret list of friends of a
client, resulting in an observer receiving information about the list
of friends by observing the number of requests. Consequently we
require all clients to sequentially query all long-term epochs, even
though this may leak to the adversary how long they have been
offline.

Self-checking our own entries. A partial auditing mechanism is
included in DP5 through PIR servers checking signatures on the
database of entries. However, this only guarantees that malicious
misleading entires are not included in the databases, but not that
the registration server does not drop valid entries. Each client can
perform some limited checks to reduce the likelihood of a malicious
registration server not serving the full database. A client can query
the database for keys that it registered corresponding to some of its
friends, to check they are included and served correctly. The DP5
protocol may be extended with the registration servers providing
a signed receipt upon each registration, to allow non-inclusion of
records to be verified by third parties.

This auditing mechanism is quite robust: once the databases are
provided to the lookup servers selective denial of service by the
registration server is no longer possible. Furthermore, the privacy
properties of PIR ensure that the queries to the known entries are
perfectly private and do not leak any information about the identity
or any other secret of the client. Since DPS5 requires clients to query
a maximum number of entries this audit process can consume un-
used slots and does not add any extra cost, as long as the clients
have fewer friends than the maximum allowed.

S. SECURITY ARGUMENT

We present an analysis of the security properties of DPS5.

e Privacy of presence. The long-term protocol uses shared
keys that are derived via Diffie-Hellman key agreement; an
adversary without access to the private keys cannot associate
the shared key with a user. In the short-term protocol, Al-
ice’s so-called public key, g7, is revealed only to her friends
(via the long-term protocol), and thus a registration using the
corresponding private key cannot be tied to Alice.

o Integrity of presence. In the long-term protocol, presence
information is authenticated using AEAD with a shared key.
In the short-term protocol, a presence registration requires
H(t;)*, which is a BLS signature [6] on the epoch number
tj. The security of BLS for Type-3 curves was proven by
Chatterjee et al. under an assumption they call Co-DHP#*,
which they show to be equivalent to Co-DHP [5] under a
uniform generator assumption [8]. Because this signature is
not included in the PIR database, a corrupt registration server
collaborating with one of Alice’s friends could convince her
other friends that she is online, but this will be caught by the
PIR servers using the partial auditing mechanism.

e Privacy for social network. Just as the long-term registra-
tion protocol does not reveal Alice’s identity, it likewise hides
the identities of her contacts. On the query side, the privacy
of the social network is preserved through the PIR subproto-
col.

e Unlinkability between epochs. The proof of this property

is given in Appendix B.

e Privacy and integrity of associated data. This is ensured
by the AEAD algorithm. Note that in the short-term proto-
col, the AEAD key is known to all of Alice’s friends, and so
one friend, collaborating with the registration server, could
supply incorrect associated data for the registration. Unlike
presence integrity, this will not be caught by the PIR servers’
audit. This could be remedied by generating an additional
signature on the associated data, at the cost of significantly
increasing the size of the short-term database.

Indistinguishability of offline status, suspension, and re-
vocation. To revoke or suspend Bob’s access, Alice chooses
a new public key P? and does not share it to Bob. To main-
tain indistinguishability, Alice may generate a separate key

PJ and share it with Bob through the long-term database.
Alice can use P? in the short-term registration protocol, but
from Bob’s point of view, Alice will always appear as offline,
as a consequence of the privacy of presence property.

o Auditability of infrastructure. The above privacy proper-
ties do not rely on the registration server maintaining any se-
crets and so a public audit log of registration messages will
not violate any security properties.

e Forward secrecy of infrastructure. The long-term secrets

of the PIR servers are used only for establishing TLS connec-

tions. Assuming that TLS is used in forward-secure mode,
their compromise does not reveal any information about past
registrations. (The servers should take care, however, not to
store the plaintext PIR requests or responses after their use.)

A compromise of the long-term secrets of the registration

server can affect integrity only, and thus do not enable the

compromise of past information.

Optional support for anonymous channels. Alice’s iden-

tity is not revealed in the registration protocol, as guaranteed

by the privacy of presence and unlinkability between epochs
properties. The use of PIR in the query protocol, in turn,
fully hides the identity of the querier.

6. EVALUATION

6.1 Implementation

We implemented the DP5 protocol as a set of libraries, as well
as clients and servers using those libraries. The cryptographic core
relies on OpenSSL for AES and hash operations, as well as the
TLS channels between clients and servers (using self-signed cer-
tificates). The AEAD function is instantiated with 128-bit AES in
Galois Counter Mode (GCM) and an all-zero IV (since all keys
used are fresh). Pairing-friendly curves are provided by the RELIC
library, and we use the Percy++ library [21] for the robust PIR
functions. The DPS library is implemented in C++ (1000 lines
of .h files, and 4800 lines of .cpp files), and the network code in
Python 2.7 (2700 lines of .py files). These include unit test code,
functional test code, integration tests, and experimental setup code.
All client-server interactions are encoded as web requests using the
lightweight Cherrypy framework, and both clients and servers are
build around the Twisted non-blocking network libraries. The core
library interfaces with the high-level network code using both na-
tive bindings and the CFFI foreign call interface for Python. We
will be releasing our code under an open-source license.

6.2 Performance

To evaluate the performance of DP5, we ran 960 simultaneous
clients accessing the DP5 infrastructure. The clients were run-
ning on an 80-core Xeon 2.4 GHz server with 1 TB of RAM. For
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Figure 1: An execution trace of 960 clients.

Table 1: Data sizes

Long-term Short-term
Req | Resp Req | Resp
DB size 12 MiB 80 KiB
Registration || 9004 B 5B 164B 5B
Lookup 300KiB | 500KiB 5B | 80 KiB®

each of the short-term and long-term protocols, we used one server
for registration and three servers supporting PIR (8 servers total).
Each server was running on a 16-core Xeon 2.0 GHz machine with
256 GB of RAM. The machines were interconnected using 1 Gbps
Ethernet.

Figure 1 shows the trace for 30 minutes of execution. Each point
corresponds to a completed operation, with the x-coordinate rep-
resenting the time of completion and the y-coordinate the latency
from the time the operation was started. To better understand the
impact of both short- and long-term epoch changes, we set their
length to be 1 and 10 minutes, respectively. Clients are roughly
synchronized and begin registration and lookup requests at the be-
ginning of each epoch, which results in a roughly linear pattern of
responses observed in the graph. The performance is somewhat
worse in the first epoch as new TLS connections must be estab-
lished to the servers; the connections are reused for future queries.
Note that when a long-term epoch changes, clients are unable to
issue meaningful PIR requests to the short-term database until they
have received the (potentially) updated keys from the long-term
database; this can be seen in the smaller number of short-term
lookup requests every 10 minutes (Figure 1d). A more realistic
value for the long-term epoch would be 24 hours, minimizing the
impact of this problem. Further, clients could optimistically use
previous keys in lookups, failing only in cases of key change.

Figure 2 summarizes the user-facing latency of the operations
over a 5-hour execution. The box plot depicts the interquartile
range, with a line representing the median, and the range of 99% of
the points, with outliers plotted as individual points. We emphasize
that these delays are a consequence of the synchronized behavior
of the clients. For the short-term epoch, we expect this to represent
real-world behavior, but for the long-term epoch, clients will come
online during different parts of an epoch and thus experience lower
delays. Monitoring the behavior of the servers, the PIR servers for
the long-term database had high CPU utilization for the approxi-
mately 90 seconds following an epoch change; other servers were
minimally utilized and thus appear to be able to support signifi-
cantly larger numbers of clients.

Table 1 lists the sizes of the requests and responses in our proto-
col, excluding the overhead from the HTTP and TLS protocols.

6.3 Scaling

The bottleneck server-side lookup operations involved in DP5
are easily parallelizable and thus more resources can be deployed
to support larger user populations. As the number of users grows,
the database size will grow linearly with the number of users. Our
PIR implementation uses bandwidth that grows as ©(n'/?) with
respect to the size of the database and thus remains practical for
significantly larger user populations. The per-user server-side com-
putation for PIR, however, is linear in the database size.

The long-term PIR server is the most resource-intensive compo-

30ur implementation automatically selected the trivial PIR proto-
col (i.e., downloaded the entire database) for the short-term proto-
col as this was more bandwidth efficient than PIR for this size of
database.
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Figure 3: Per-user cost for the bandwidth and CPU associated with
running a long-term PIR server with a 24-hour epoch.

nent of DP5. In our experiments it used about 15 CPU-minutes and
1 GB of bandwidth per epoch. Figure 3 plots an estimate of the
cost of running such a PIR server, using $0.10 as the cost of one
CPU-hour and 1 GB of data transfer*, and a 24-hour epoch. A user
population of 1000 can easily be supported even with volunteer re-
sources, whereas a subscription service can support as many as 10
million users at a per-user cost of less than $10/month.

7. DISCUSSION

7.1 Channel anonymity

The DP5 design allows clients to access presence services through
anonymous, pseudonymous or authenticated channels. The pres-
ence service is guaranteed to preserve the properties of the channel
and leak no more information about the identity of the clients, and
their friends, than the channel already would allow an adversary to
infer.

For clients that use DPS over authenticated or pseudonymous
channels, it provides relationship anonymity only. An adversary
does not learn the friends of any clients but can observe a spe-

*This cost is arrived at by rounding up Amazon’s EC2 prices
(https://aws.amazon.com/ec2/pricing/). We note
that cloud-computing providers are not an ideal site for a PIR
server, as the provider could not necessarily be trusted to remain
honest and preserve users’ privacy, but they do provide a useful
baseline for estimating the costs of computing resources.

cific client or pseudonym being online / offline. This information
is leaked by the channel, not the presence service.

Using the DP5 services over an anonymous channel provides
both relationship anonymity, and unlinkability across long-term and
short-term epochs, vis-a-vis the presence service. However, most
deployed anonymity systems do not provide full unobservability,
and therefore do leak when a network end-point is using the ano-
nymity network and when it is out of it. Therefore, despite an ad-
versary observing the DP5 infrastructure not being able to infer the
online / offline profile of a client, it might be able to do so if the
client is under direct observation. Channels that offer unobservable
access to anonymity networks may mitigate against this attack.

7.2 Suspension, revocation, and pseudonyms

We divide time into short-term and long-term epochs in order to
balance up-to-date presence with timely revocation. For Alice to
revoke Bob she removes his public key from the long-term update
mechanism, and refreshes her short-term public key. This results
in Bob not being able to retrieve the next fresh short-term public
key for Alice, and so he cannot query her short-term presence or
associated data.

Alice may selectively allow Bob to query her presence in specific
epochs. However, once Bob has access to her key for a specific
long-term epochs, the presence mechanism is all-or-nothing: either
all friends, including Bob, get updated or none does.

To achieve finer temporal control over which friends can or can-
not see updates from Alice, she has to use multiple pseudonyms.
This can be achieved by dividing her friends into a mutually exclu-
sive sets, and providing each set with a different fresh short-term
public key. During any short-term epoch Alice can register with all,
or any subset of the ephemeral public keys to advertise her presence
to different sets of friends. However, registering multiple pseudo-
nyms during a short-term update is susceptible to traffic analysis.
An adversary can observe the number of short-term updates orig-
inating from Alice to infer the number of sets of friends she ad-
vertises to, whether she is not advertising to some sets, and even
to identify her between different short-term or long-term epochs if
the number of pseudonyms is atypical. For this reason advertising
multiple pseudonyms is best done when using anonymous chan-
nels, by repeating the full short-term registration protocol once for
each pseudonym.

7.3 Forward secrecy and hardware stores

Various parts of the DP5 protocol have been designed, or can
be easily altered, to provide stronger guarantees against end-point
compromise. Purely cryptographic mechanisms can provide forms
of forward secrecy, preventing retrospective privacy violations in
case keys are compromised. Hardware modules with a narrow in-
terface can be used to prevent long-term secrets being extracted in
case the software stack of clients is compromised, as was the case
in the recent Heartbleed attacks against OpenSSL.

By design, long-term epoch registration relies on a derived key
K,p that is the result of a Diffie-Hellman exchange. Once this
shared key between Alice and Bob is derived there is no need to
store the public or private keys that were used for the derivation
any more. Simply using fresh key pairs with different friends, and
deleting them after the first key derivation has taken place, is good
practice. ,

In the DP5 design subsequent long-term epoch keys, K7, are
derived using the master shared key K, and the epoch identifier
T}. This enables the storage of long term shared keys into a hard-
ware security module that only exports epoch key K7, . As a result,
if a client is compromised, only the keys relating to the current



long-term epoch are accessible. Once the intrusion has been de-
tected, subsequent keys should still be safe. It is important to note
that even this limited compromise has profound consequences that
are not limited in time: once an adversary has access to Alice’s se-
crets for one epoch, they can determine who her friends are. Thus
this mechanism only protects future updates of Alice’s friends list.

Another option provides some limited form of forward secrecy:
we can modify the key derivation for long-term epochs to be K7, =
PRFllKjb,1 (7). Since the long-term epoch shared key now only
depen&s on the previous long-term epoch keys, previous keys can
be securely deleted. This means that past databases cannot be ana-
lyzed by an adversary who compromises the keys. This mechanism
does not protect future updates once keys are compromised.

Importantly, despite hardware storage of keys or the alternate
derivation of keys, a compromise not only leaks the presence and
status of Alice for some epochs but also of all of her friends who
have authorized her to read their status. This, we believe, is a funda-
mental limitation of any private presence protocol: in case a user is
compromised the presence of all information they were authorized
to read, including the presence and status of their friends, is com-
promised. Thus, presence privacy seems inevitably more fragile
than end-to-end encryption for which perfect forward secrecy can
be achieved, but rather similar to group private communications, or
long-term informational leakage on social networks.

7.4 Protecting Availability

Ensuring availability against malicious clients, servers and third
parties is especially important for protocols supporting privacy, as
traditional approaches, such as logging, blacklisting or auditing
may not be applicable.

The first challenge is to ensure the presence database remains
small, by preventing malicious clients from adding a large number
of entries. If the channels are authenticated, only the confidential-
ity of who is friends with whom is maintained (but not the privacy
of when Alice is online). In that case, traditional authentication
can be used to ensure Alice only updates once per long-term and
short-term epoch. In case Alice uses an anonymous channel, re-
quiring authentication would compromise anonymity. In this case,
an n-periodic anonymous ticketing scheme, such as the one pro-
posed by Camenisch et al. [7] may be used to anonymously limit
registrations per user.

A second challenge is to ensure that the registration servers do
not drop entries. To ensure that Alice’s entries have been added to
an epoch Alice may add herself to her friend list, and check that
her record is correctly returned by the servers. We note that due
to the cryptographic properties of our scheme it is infeasible for
the registration service or the lookup services to selectively drop
entries for specific friends of Alice’s, since they are indistinguish-
able. This mechanism may be turned into a robust auditing frame-
work by requesting signed receipts from servers for registration and
lookups—since the database is public, this allows any third party
to verify a claim that they did not include or serve a specific chal-
lenge record. Finally, lookup servers may modify the database to
drop records. We use robust PIR [14] that ensures that a malicious
server would be detected. Preventing DoS requires at least ¢ + 2
honest servers, where ¢ is the maximum number of servers that the
threat model allows to collude to determine the query.

7.5 Implementation lessons

Implementing and measuring the DP5 protocols provides us with
some insights on how to improve this type of protocol in the future;
we attempt to share these insights in this section.

The DPS5 design assumes that a different ephemeral key is gener-

ated and communicated between friends at each long-term epoch.
While this provides forward secrecy, is also creates a sequential de-
pendency between the long-term protocols and the short-term pro-
tocols. As a result, all on-line clients must successfully query the
long-term friendship database before even attempting to query the
first epoch of short-term epoch database. This creates a significant
amount of congestion and delay. It is preferable to only require
the long-term friendship database to be updated when the friend-
ship graph changes, and provide a mechanism for clients to only
retrieve the differences, which should be small (we call this design
a delta database, but do not explore it further in this work).

Congestion becomes a problem in protocols that require each
client to query each of the epochs at least once, as the number of
clients increases. The current design of DP5 is not responsive to
such congestion, and clients will keep retrying to query overloaded
servers effectively performing an unwitting Denial of Service at-
tack. It is clear that a control loop is necessary to regulate the
length of an epoch, given the degree of congestion experienced by
the lookup servers—the most loaded in the design. There is surpris-
ingly little prior work on how to design secure control loops: If an
adversary is able to modulate the load on the servers by performing
multiple queries, or simply lying about their load, a naive control
loop would increase the epoch length and as a result degrade for-
ward secrecy properties or increase the latency of revocation events.
Thus secure load monitoring would be needed to implement secure
control loops, which is beyond the scope of DP5.

8. CONCLUSION

We present DP3, the first private presence mechanism to leak no
information about the topology of a contact list network. We show
that the service can be realized while relying only on ephemeral
secrets on a set of distributed infrastructure servers. Thus, query-
ing the status of friends cannot be used in the future to trace them
or de-anonymize the users. Furthermore, care has been taken to
design a protocol that may be used when users are known to the in-
frastructure, but also when users are anonymous—without leaking
any additional information about their identity.

Overall, the protocols are scalable to small deployments of a few
thousands, to tens of thousands of concurrent clients, a size suitable
for small NGO or cooperative ISP. The key scalability bottle neck
is the private information retrieval scheme, and any improvement in
PIR would directly translate to an improvement in the performance
and scalability of DP5.

Finally, DP5 supports real-time presence, but its latency is deter-
mined by the length of the short-term epochs. It is an open prob-
lem, and a challenge to the research community, to devise protocols
that could reduce this latency radically, while requiring overall low
bandwidth.
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APPENDIX
A. DPS WITHOUT PAIRINGS

The short-term DP5 registration and update protocols make use
of public key primitives over pairing-friendly curves. This is nec-
essary for Alice and Bob to compute a signed short-term epoch
dependent tag to detect Alice’s presence and data. The signature
prevents any third party, or even friend of Alice, from forging her
presence status. Daniel J. Bernstein noted that these properties can
be achieved without the use of pairing-friendly curves, but instead
conventional elliptic curves that support secure digital signatures
such as Ed25519 [4], as described next.

As part of the long-term registration, Alice stores in her status
associated data a public key P/ = g¢“ that is a point on an ap-
propriate elliptic curve. During short-term epoch ¢ each friend of
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Alice derives a variant of the public key as PJ* = PJ . gH4(P5 o),
where Hy is a secure hash function. Only Alice and friends of Al-
ice can derive this public key since it requires knowledge of the
public key PZ; furthermore, those public keys are unlikable across
short-term epochs. Furthermore, Alice can construct the private
key corresponding to this public key which is z; = a + Ha(PJ||3).
Both Alice and her friends can also derive a symmetric key K =
Hs(P]]4) to protect the confidentiality of associated data.

To perform the short-term registration protocol, Alice stores in
the database the tuple (P2, AEAD}?I (mq)). Furthermore, Alice

sends to the registration server a signature of the tuple under the
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Figure 4: Computing the challenge message for contact b5 in successive games for the long-term protocol. 7 here is the length of the public

identifier.

key z;. The registration server checks that the signature verifies
under the verification key included as the first element of the tuple,
and then includes the tuple in the database. The full list of tuples
and signatures is made available to the lookup servers for auditing
purposes.

Finally, Bob can use the short-term epoch public keys of his
friends—P2 in the case of Alice—to look up their records in the
database. The associated data can be decrypted using the symmet-
ric key K.

This variant of the DPS protocol has the advantage that is does
not require any pairings, and thus the clients require fewer security
assumptions, and fewer dependencies on cryptographic libraries.
It also allows for the associated data to be signed by Alice, and
therefore it is unforgeable subject to the security of the auditing
mechanism. On the downside, this mechanism requires an addi-
tional signature on the data, which in the original DPS5 is integrated
with the tag generation. This overhead increases the size of the
short-term database, which linearly increases the cost of each PIR
query over it.

B. SECURITY PROOF OF
UNLINKABILITY BETWEEN EPOCHS

Registration Unlinkability of the long-term protocol. We define
the following game to represent registration unlinkability:
1. The adversary supplies the challenger with:
e Two usernames, aop and a;
e A number of friends for the registration protocol, n
o Two sets of n friends, B® = {b}7"_; and B! = {b}}7-,
e Two sets of per-user data, D° = {d9}7; and D' =
{di }ia
e Anepoch Tj

2. The challenger generates a key forall usersin U = {4, A; }U
B° U B! and sends the public keys to the adversary.

3. The challenger flips a coin to select a bit ¢ € {0, 1}.

4. The challenger creates a registration message from user A,
for epoch T7j, with contact set B¢ and per-user data set D¢
and sends it to the adversary.

5. The adversary may ask the challenger to generate keys for any
other username u ¢ U. The challenger returns a public/secret
key pair to the adversary and keeps track of these new user-
names by adding them to a set U’.

6. The adversary may then query for registration messages gen-
erated by any user u € U U U’ in an arbitrary epoch, with
arbitrary lists of contacts taken for U U U’ and per-user data,
with the restriction that users ag and a1 cannot be asked to
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register again during the epoch 7};.

7. The adversary outputs its guess for the bit c.

We will first consider the case where n = 1; i.e., the challenge
registration includes a single contact. We define the following se-
quence of games, in which the challenges changes the way that the
challenge message is computed, as illustrated in Figure 4.

e ( is the game where the challenger behaves correctly.

o In Gy, the challenger replaces the shared key K, ¢ With g°,
for a uniformly chosen z, instead of the key computed by
Diffie-Hellman. Note that any adversary A that can distin-
guish between Gy and G; with advantage e can be turned into
an adversary A’ that solves the Decisional Diffie-Hellman

problem with the same advantage: given a DDH triple (¢°, ¢¥, ¢°),

A’ runs the challenger algorithm, using g” as the public key
for a., g¥ as the public key for bf, and g~ as their shared key.
(To compute the shared secret between a. or bf and any other
contact, the challenger can make use of that contact’s secret
key.) Observe that if z = xy, this is equivalent to Gy and if z
is random, this is equivalent to G . _

e In Go, the challenger proceeds as in G1, but replaces K icbf
with R; chosen uniformly at random. Any adversary who
can distinguish G; from G, with advantage € can be turned
into an adversary who distinguishes PRF° from random with
the same advantage, since using a random function instead
of PRFSZ in G; turns it into Go. (Note that PRFSZ is only
ever evaluated in the computation of the challenge message,
except with a negligible probability.)

e In g3, we likewise replace IDicbf with R> chosen uniformly
at random. As before, an adversary who can distinguish be-
tween G3 and Ga can be transformed into an adversary who
can distinguish PRF* from random.

e In Gs, the registration message is (R2, AEAD% (Ra;d.)).
Any adversary who has advantage € in Gs can be directly
translated into an IND-CPA adversary for the AEAD func-
tion.

For n > 1, we can iterate this sequence of games n times:
Go1 = Go,---,G31 = G3,G02 = G3,1,..-,G3,2,.--,G3,n. In
a game G; ; we replace the keys / PRFs involving a. and b§ for
some b. Therefore, if the advantage of any adversary in solving
DDH, PRF-IND, or IND-CPA is always negligible, the advantage
of any adversary in the full registration unlinkability game will be
likewise negligible.

Note that the game here provides static security, with the adver-
sary declaring the users involved in the contact message ahead of
time. The proof can be extended to an adaptive adversary who de-
clares the challenge users after seeing some of the users’ public
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Figure 5: Computing the challenge registration message (/D, C') in successive games for the short-term protocol.

keys by, in each game, having the challenger guess which user will
be chosen for a./a. and b§ and aborting if the guess was wrong, at
the cost of the reduction no longer being tight.

Registration Unlinkability of short-term protocol. We define an
unlinkability game similar to the previous one.

1. The adversary supplies the challenger with:

e Two usernames, Ap and A;
e Two pieces of auxiliary data, Do, D1
e Anepoch t;

2. The challenger generates secret keys xo and x;.

. The challenger flips a coin to select a bit c € {0,1}.

4. The challenger produces a registration message (I D, C') for

user A. with data D., as shown in Figure 5, game Go.

5. The adversary may perform a polynomial number of queries
Register (z‘, D, t;), which will result in a registration message
produced by user A; with data D and epoch t}, as long as
) £t

6. The adversary outputs its guess for the bit c.

We start with G, where the challenger behaves as defined above,
and make successive modifications to the computation of the chal-
lenge message, as shown in Figure 5. In G1, we replace H3(g7¢) in
the computation of the challenge registration message with a ran-
dom number R;. Note that an adversary .4 cannot distinguish be-
tween Go and Gp unless it queries Hs with ¢g7¢ as the input. If
this happens with a non-negligible probability, we can construct an
adversary A’ that will solve the computational Co-Diffie-Hellman
(co-CDH) problem [5] with the same probability. In the co-CDH
game, we are given ha, h§ € G2 and hy € G and asked to pro-
duce h. Our adversary A’ acts as a challenger for A, by following
the game G, setting g1 = hi. Instead of choosing x. explic-
itly, it implicitly sets z. = «. During queries to the random ora-
cle Hi(t), A’ chooses a random 2, and returns Hiq(tx) = h3*.
Therefore, whenever a registration message needs to be computed
for A., A’ computes Hi(t;)" as (hs)**. Additionally, for every
query of Hs(w), A’ checks whether e(w, h2) = e(g1, h$). If so,
then w = hT = g7 and it outputs it as the solution for the co-CDH
problem.

In game G, we generate K randomly; since in G it is the out-
put of a PRF with a random key, distinguishing G, from G2 with
a non-negligible advantage produces an adversary with the same
advantage in the PRF-IND game.

In game Gs3, the challenger behaves as in G2, but always supplies
Dy to the AEAD encryption in the challenge message. Any ad-
versary that distinguishes between G3 and G with advantage € can
be turned into an adversary that wins the IND-CPA game for the
AEAD function with the same advantage.

Finally, in game G4, the challenger replaces Hi(¢;)¢ with a
random element of G>. Any adversary who can distinguish be-
tween Gz and G4 can be turned into an adversary who wins the
DDH game in G2: given a DDH triple (g5, g5, g3 ) it sets H1(t;)
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to g5 and H1(t;)"° to g5. To be able to respond to registration
queries for A, in other epochs, the challenger sets H (t;) = g5 for
some random 7, and uses (g3 )" for H (¢})%<.

Note that in game G4, the challenge message is computed inde-
pendently of ¢, and hence the adversary can guess c correctly with
probability at most 1/2.



