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Abstract. We propose an undeniable signature scheme based on el-
liptic curve isogenies, and prove its security under certain reasonable
number-theoretic computational assumptions for which no efficient quan-
tum algorithms are known. Our proposal represents only the second
known quantum-resistant undeniable signature scheme, and the first such
scheme secure under a number-theoretic complexity assumption.
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1 Introduction

Many current cryptographic schemes are based on mathematical problems that
are considered difficult with classical computers, but can easily be solved using
quantum algorithms. To prepare for the emergence of quantum computers, we
aim to design cryptographic primitives for common operations such as encryption
and authentication which resist quantum attacks. One family of such primitives,
proposed by De Feo, Jao, and Plût [13, 20], uses isogenies between supersingular
elliptic curves to construct cryptographic protocols for public-key encryption,
key exchange, and entity authentication which are believed to be quantum-
resistant. To date, however, this protocol family lacks comprehensive techniques
for achieving data authentication, although certain limited capabilities, such as
isogeny-based strong designated verifier signatures, are available [30].

In this article, we present a new construction of quantum-resistant undeniable
signatures based on the difficulty of computing isogenies between supersingular
elliptic curves. Few such constructions are known, and indeed the only other
proposed quantum-resistant undeniable signature scheme in the literature is the
code-based scheme of Aguilar-Melchor et al. [1]. Our scheme uses a completely
different approach and is based on completely different assumptions, making it a
useful alternative in the event that some breakthrough arises in the cryptanalysis
of code-based systems.

1.1 Related work

Mainstream post-quantum cryptosystems can be categorized into several broad
families: lattice-based systems [17, 25] and learning with errors [26], code-based
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systems [2, 7, 24], hash-based signatures [6, 11], and systems based on multivari-
ate polynomials [3, 34]. Isogeny-based cryptosystems represent an interesting al-
ternative to the above because they are based on a (relatively) naturally occur-
ring number-theoretic computational problem, namely, the problem of comput-
ing isogenies between elliptic curves. These systems thus constitute one of the
only families of quantum-resistant cryptosystems based on a number-theoretic
assumption (depending on whether one counts solutions to multivariate polyno-
mials as a number-theoretic problem).

Generally speaking, lattice-based systems are more naturally suited to en-
cryption, with lattice-based signature schemes being less mature than the cor-
responding encryption schemes, whereas hash functions and multivariate poly-
nomials more readily yield signature schemes compared to encryption schemes.
Isogeny-based cryptosystems to date have dealt primarily with encryption, with
the exception of the entity authentication protocol of [13, §3.1]. We remark that,
although entity authentication in the classical setting enables data authentica-
tion via the Fiat-Shamir transformation [14], the Fiat-Shamir transformation
fails against a quantum adversary [10]. This work, together with Sun et al.’s
construction of strong designated verifier signatures [30], provides some evidence
that isogenies can also be used as the basis for signatures and data authentication
in the post-quantum setting.

We emphasize again that quantum-safe undeniable signatures seem to be
difficult to construct by any means. The only known prior quantum-resistant
undeniable signature scheme is by Aguilar-Melchor et al. [1], using linear codes.

2 Background

Due to space constraints, we cannot provide here a full treatment of the necessary
background information. For further details on the mathematical foundations of
isogenies, we refer the reader to [13, 20, 28].

Given two elliptic curves E1 and E2 over some finite field Fq of cardinality
q, an isogeny φ is an algebraic morphism from E1 to E2 of the form

φ(x, y) =
(
f1(x, y)
g1(x, y)

,
f2(x, y)
g2(x, y)

)
,

such that φ(∞) =∞ (here f1, f2, g1, g2 are polynomials in two variables, and ∞
denotes the identity element on an elliptic curve). Equivalently, an isogeny is an
algebraic morphism which is a group homomorphism. The degree of φ, denoted
deg(φ), is its degree as an algebraic morphism. Two elliptic curves are isogenous
if there exists an isogeny between them.

Given an isogeny φ : E1 → E2 of degree n, there exists another isogeny
φ̂ : E2 → E1 of degree n satisfying φ ◦ φ̂ = φ̂ ◦ φ = [n] (where [n] is the multipli-
cation by n map). It follows that the relation of being isogenous is an equivalence
relation. The isogeny φ̂ is called the dual isogeny of φ. Section 6 (Remark 6.1)
describes how to compute dual isogenies in our application.
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For any natural number n, we define E[n] to be the subgroup

E[n] = {P ∈ E(F̄q) : nP =∞}.

In other words, E[n] is the kernel of the multiplication by n map over the al-
gebraic closure F̄q of Fq. The group E[n] is isomorphic to (Z/nZ)2 as a group
whenever n and q are relatively prime [28]. We define the endomorphism ring
End(E) to be the set of all isogenies from E to itself defined over the algebraic
closure F̄q of Fq. The endomorphism ring is a ring under the operations of point-
wise addition and functional composition. If dimZ(End(E)) = 2, then we say
that E is ordinary ; otherwise dimZ(End(E)) = 4 and we say that E is supersin-
gular. Two isogenous curves are either both ordinary or both supersingular. All
elliptic curves used in this work are supersingular.

The isogeny φ : E1 → E2 is defined to be separable if the function field
extension Fq(E1)/φ∗(Fq(E2)) is separable. In this work, we will only consider
separable isogenies. An important property of a separable isogeny is that the
size of the kernel of that isogeny is equal to the degree of that isogeny (as an
algebraic map) [28, III.4.10(c)]. The kernel K of φ uniquely defines the isogeny
φ up to isomorphism [28, III.4.12]; for this reason, we use the notation E1/K to
denote the codomain E2 of the isogeny φ. Methods for computing and evaluating
isogenies are given in [5, 13, 20, 21, 32]. All the isogenies that we use have the
property that the kernels are cyclic groups, and knowledge of the kernel, or any
single generator of the kernel, allows for efficient evaluation of the isogeny (up
to isomorphism); conversely, the ability to evaluate the isogeny via a black box
allows for efficient determination of the kernel (cf. Remark 3.1). Thus, in our
application, the following are equivalent: knowledge of the isogeny, knowledge of
the kernel, or knowledge of any generator of the kernel.

3 Quantum-resistant elliptic curve cryptography

The term “elliptic curve cryptography” typically encompasses cryptographic
primitives and protocols whose security is based on the hardness of the discrete
logarithm problem on elliptic curves. Against quantum computers, this hard-
ness assumption is invalid [27]. Hence, traditional elliptic curve cryptography is
not a viable foundation for constructing quantum-resistant cryptosystems. As a
result, alternative elliptic curve cryptosystems based on hardness assumptions
other than discrete logarithms have been proposed for use in settings where
quantum resistance is desired. One early proposal by Stolbunov [29], based on
isogenies between ordinary elliptic curves, was subsequently shown by Childs et
al. [8] to offer only subexponential difficulty against quantum computers.3

Following these developments, De Feo et al. [13, 20] proposed a new collec-
tion of quantum-resistant public-key cryptographic protocols for entity authen-
tication, key exchange, and public-key cryptography, based on the difficulty of
3 An essentially identical scheme had also been proposed earlier by Couveignes in an

unpublished manuscript [9], although not with quantum resistance as a motivation.
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C D
Input: C,D, sID Input: D

mA, nA ∈R Z/`eA
A Z mB , nB ∈R Z/`eB

B Z
φA : E → E/〈[mA]PA + [nA]QA〉 φB : E → E/〈[mB ]PB + [nB ]QB〉

A,sID
φA(PB),
φA(QB),
EA−−−−−−→
B,sID
φB(PA),
φB(QA),
EB←−−−−−−

EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB ]φA(PB)+[nB ]φA(QB)〉

Output: j(EAB), sID Output: j(EBA), sID

Fig. 1: Key-exchange protocol using isogenies on supersingular curves.

computing isogenies between supersingular elliptic curves. We review here the
operation of the most fundamental protocol in the collection, the key exchange
protocol, since it contains several critical ideas upon which our undeniable sig-
nature scheme is based.

3.1 Parameter generation

Fix a prime p of the form `eA

A `eB

B ·f±1 where `A and `B are small primes, eA and
eB are positive integers, and f is some (typically very small) cofactor. Also, fix a
supersingular curve E defined over Fp2 such that #E(Fp2) has order divisible by
(`eA

A `eB

B )2, and bases {PA, QA} and {PB , QB} which generate E[`eA

A ] and E[`eB

B ]
respectively, so that 〈PA, QA〉 = E[`eA

A ] and 〈PB , QB〉 = E[`eB

B ]. Methods for
performing these computations are given in [13, Section 4.1].

3.2 Key exchange

Suppose Carol and Dave wish to establish a secret key. Carol chooses two random
elements mA, nA ∈R Z/`eA

A Z, not both divisible by `A. The values of mA and
nA constitute Carol’s secret information. (Since Carol and Dave’s roles might
be reversed in another session, in practice each user requires two sets of values,
one for `A and one for `B .) On input E and mA ·PA + nA ·QA, Carol computes
using the method of [13, Section 4.2.2] a curve EA and an isogeny φA : E →
EA whose kernel KA is equal to 〈[mA]PA + [nA]QA〉 (the cyclic subgroup of
E generated by mA · PA + nA · QA). Carol also computes the auxiliary points
{φA(PB), φA(QB)} ⊂ EA obtained by applying her secret isogeny φA to the
basis {PB , QB} for E[`eB

B ], and sends these points to Dave together with EA.
Similarly, Dave selects random elements mB , nB ∈R Z/`eB

B Z and computes an
isogeny φB : E → EB having kernel KB := 〈[mB ]PB + [nB ]QB〉, along with the
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auxiliary points {φB(PA), φB(QA)}. Upon receipt of EB and φB(PA), φB(QA) ∈
EB from Dave, Carol computes an isogeny φ′A : EB → EAB having kernel equal
to 〈[mA]φB(PA) + [nA]φB(QA)〉; Dave proceeds mutatis mutandis. Carol and
Dave can then use the common j-invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) = E/〈[mA]PA+[nA]QA,[mB ]PB+[nB ]QB〉

to form a secret shared key.
The full protocol is given in Figure 1. We denote by A and B the identifiers

of Carol and Dave, and use sID to denote the unique session identifier.

Remark 3.1. Carol’s auxiliary points {φA(PB), φA(QB)} allow Dave (or any
eavesdropper) to compute Carol’s isogeny φA on any point in E[`eB

B ]. This ability
is necessary in order for the scheme to function, since Dave needs to compute
φA(KB) as part of the scheme. However, Carol must never disclose φA(PA) or
φA(QA) (or more generally any information that allows an adversary to evalu-
ate φA on E[`eA

A ]), since disclosing this information would allow the adversary
to solve a system of discrete logarithms in E[`eA

A ] (which are easy since E[`eA

A ]
has smooth order) to recover KA.

4 Undeniable signatures from isogenies

In this section, we present a new construction of an undeniable signature scheme
from isogenies. An undeniable signature can be verified by any party, but verifica-
tion requires interaction with the signer. To distinguish between invalid (forged)
signatures and valid signatures that the verifier refuses to verify, an undeniable
signature scheme also includes a mechanism for the signer to prove (interactively)
that an invalid signature is forged. Our construction uses a three-prime variant
of the original two-prime protocol given in Section 3.2. As a consequence, the re-
sulting commutative diagrams for zero-knowledge proofs become 3-dimensional
rather than 2-dimensional.

4.1 Definition

We were unable to find any prior publications containing a definition and security
model for undeniable signatures incorporating quantum computation. For this
reason, we make a first attempt at addressing this gap in this section. Our
definition of an undeniable signature scheme is the same as that of Kurosawa
and Furukawa [22], except for those changes necessary for achieving security in
the quantum setting. We caution that our proposed security model is preliminary
and may not represent a perfect resolution for this issue.

An undeniable signature scheme [22] consists of a key generation algorithm,
a signing algorithm, a validity check, a signature simulator, a confirmation pro-
tocol πcon and a disavowal protocol πdis. The role of the confirmation protocol
πcon is for the signer to prove to the verifier that the signature is valid. The role
of the disavowal protocol πdis is for a valid signer to be able to prove to the
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verifier that the signature that the verifier has received is not valid. Quantum
(entangled) information may be transmitted between any two parties which are
both capable of quantum computation, or within a single quantum computa-
tion, but not between two classical-only parties, or a classical-only party and a
quantum-capable party.

In what follows, we make the simplifying assumption that all parties except
possibly the adversary are limited to classical computation only; the adversary
is permitted to perform quantum computation. This assumption is not part of
our security definition; rather, it is merely a simplifying assumption to make our
task of analyzing our scheme easier.

Unforgeability is defined using the following game between a challenger and
an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. For i = 1, 2, . . . , qs for some qs, A queries the signing oracle adaptively with
a message mi and receives a signature σi.

3. Eventually, A outputs a forgery (m∗, σ∗).

We allow the adversary A to submit pairs (mj , σj) to the confirmation/disavowal
oracle adaptively in step 2, where the confirmation/disavowal oracle responds as
follows:

– If (mj , σj) is a valid pair, then the oracle returns a bit µ = 1 and proceeds
with the execution of the confirmation protocol πcon with A.

– Otherwise, the oracle returns a bit µ = 0 and proceeds with the execution
of the disavowal protocol πdis with A.

We say that A succeeds in producing a strong forgery if (m∗, σ∗) is valid and
(m∗, σ∗) is not among the pairs (mi, σi) generated during the signing queries.
The signature scheme is strongly unforgeable if the probability that A succeeds
in producing a strong forgery is negligible for any PPT adversary A in the above
game.

Invisibility is defined using the following game between a challenger and an
adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. A is permitted to issue a series of signing queries mi to the signing oracle
adaptively and receive a signature σi.

3. At some point, A chooses a message m∗ and sends it to the challenger.
4. The challenger chooses a random bit b. If b = 1, then he computes the real

signature for m∗ using sk and sets it to be σ∗. Otherwise he computes a fake
signature m∗ using vk and sets it to be σ∗. He sends σ∗ to A.

5. A performs some signing queries again.
6. At the end of this game, A outputs a guess b′.
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We allow the adversary A to submit pairs (mj , σj) to the confirmation/disavowal
oracle adaptively in step 2 and in step 5. However, A is not allowed to submit
the challenge (m∗, σ∗) to the confirmation/disavowal oracle in step 5. Also, A
is not allowed to submit m∗ to the signing oracle. We say that the signature
scheme is invisible if no PPT adversary A has non-negligible advantage in this
game.

For an undeniable signature scheme to be secure, it must satisfy unforge-
ability and invisibility. In addition, the confirmation πcon and disavowal πdis

protocols must be complete, sound, and zero-knowledge.

4.2 Protocol

Let p be a prime of the form `eA

A `eM

M `eC

C · f ± 1, and fix a supersingular curve
E over Fp2 such that #E(Fp2) is divisible by (`eA

A `eM

M `eC

C )2, together with bases
{PA, QA}, {PM , QM} and {PC , QC} of E[`eA

A ], E[`eM

M ] and E[`eC

C ] respectively.
The design of the protocol is such that, generally speaking, points in 〈PA, QA〉
are used for key material, points in 〈PM , QM 〉 are used for message data, and
points in 〈PC , QC〉 correspond to commitment data.

To generate such primes p, fix a choice of `eA

A , `eM

M , and `eC

C , and test random
values of f until a value is found for which `eA

A `eM

M `eC

C · f ±1 is prime. The prime
number theorem in arithmetic progressions (specifically, the effective version of
Lagarias and Odlyzko [23]) guarantees that only O(log p) trials are needed in ex-
pectation before a suitable prime is found. For any prime p, Bröker’s algorithm
for constructing supersingular curves [4] can efficiently produce a supersingular
curve E over Fp2 having any admissible cardinality, namely any cardinality of
the form p2 + 1− t where t satisfies the Hasse-Weil bound t ≤ 2p and the super-
singularity condition t ≡ 0 (mod p). If we take the admissible value t = ±2p in
Bröker’s algorithm, then we obtain a supersingular elliptic curve of cardinality
(p∓ 1)2 = (`eA

A `eM

M `eC

C · f)2, as desired. We remark that in the event E happens
to be defined over Fp, the cardinality of E over Fp2 is necessarily (p+ 1)2.

The signer generates two secret random integers mA, nA ∈ Z/`eA

A Z, obtains
KA = [mA]PA + [nA]QA and computes EA = E/〈KA〉. Let φA be an isogeny
from E to EA.

Public parameters: p,E, {PA, QA}, {PM , QM}, {PC , QC}, and a hash func-
tion H : {0, 1}∗ → Z.

Public key: EA, φA(PC), φA(QC).
Private key: mA, nA.

To sign a message M , we compute the hash h = H(M). Let KM = PM +
[h]QM . Then the signer computes the isogenies

– φM : E → EM = E/〈KM 〉
– φM,AM : EM → EAM = EM/〈φM (KA)〉
– φA,AM : EA → EAM = EA/〈φA(KM )〉
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EA

E

EAM

EM

φA,AM

φA

φM

φM,AM

Fig. 2: Signature generation.

EA EAC

E EC

EAM EAMC

EM EMC

φA,AC

φA,AM

φAC,AMC

φA

φC

φM φAM,AMC

φM,AM

φM,MC

φMC,AMC

φC,MC

φC,AC

Fig. 3: Confirmation protocol.

along with the auxiliary points φM,AM (φM (PC)) and φM,AM (φM (QC)). The
signer then presents these two auxiliary points along with EAM as the signature.
(See Figure 2.)

The confirmation protocol proceeds as follows. We must confirm EAM with-
out revealing the isogenies used to produce it. We do so by “blinding” EAM

using φC and disclosing the blinded isogenies (see Figure 3).

1. The signer secretly selects random integers mC , nC ∈ Z/`eC

C Z, and computes
the point KC = [mC ]PC + [nC ]QC together with the curves and isogenies
in Figure 3. Here EC = E/〈KC〉, EMC = EM/〈φM (KC)〉 = EC/〈φC(KM )〉,
EAC = EA/〈φA(KC)〉 = EC/〈φC(KA)〉, and EAMC = EMC/〈φC,MC(KA)〉.

2. The signer outputs EC , EAC , EMC , EAMC , and ker(φC,MC) as the commit-
ment.

3. The verifier randomly selects b ∈ {0, 1}.
4. If b = 0, the signer outputs ker(φC). Using the signer’s public key, the verifier

computes ker(φA,AC). Using knowledge of ker(φM ), the verifier computes
φM,MC . Using the auxiliary points given as part of the signature, the verifier
can compute φAM,AMC . The verifier checks that each isogeny maps between
the corresponding two curves specified in the commitment. Using knowledge
of ker(φC), the verifier also independently re-computes φC,MC and checks
that it matches the commitment.

5. If b = 1, the signer outputs ker(φC,AC). The verifier computes φMC,AMC and
φAC,AMC , and checks that each of φC,AC , φMC,AMC , and φAC,AMC maps
between the corresponding two curves specified in the commitment.

We now describe the disavowal protocol. Suppose the signer is presented
with a falsified signature (EF , FP , FQ) for a message M , where EF is the fal-
sified EAM , and {FP , FQ} are the falsified auxiliary points corresponding to
φM,AM (φM (PC)) and φM,AM (φM (QC)) respectively. We must disavow EF with-
out disclosing EAM . To do this, we blind EAM as before to obtain EAMC , and
disclose enough information to allow the verifier to compute EFC and check that
EFC 6= EAMC .

1. The signer secretly selects random integers mC , nC ∈ Z/`eC

C Z, and computes
KC = [mC ]PC + [nC ]QC along with all the curves and isogenies in Figure 4.
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2. The signer outputs EC , EAC , EMC , EAMC , and ker(φC,MC) as the commit-
ment.

3. The verifier randomly selects b ∈ {0, 1}.
4. If b = 0, the signer outputs ker(φC). The verifier computes φC , φM,MC ,
φA,AC , and φF : EF → EFC = EF /〈[mC ]FP + [nC ]FQ〉, and checks that
each isogeny maps between the corresponding two curves specified in the
commitment. The verifier independently re-computes φC,MC and checks that
it matches the commitment. The verifier also checks that EFC 6= EAMC .

5. If b = 1, the signer outputs ker(φC,AC). The verifier computes φAC,AMC and
φMC,AMC , and checks that these isogenies map to EAMC .

EA EAC

E EC

EAM EAMC EF EFC

EM EMC

φA,AC

φA,AM

φAC,AMC

φA

φC

φM φAM,AMC

φM,AM

φM,MC

φMC,AMC

φC,MC

φC,AC

φF

Fig. 4: Disavowal protocol.

5 Complexity assumptions

As before, let p be a prime of the form `eA

A `eB

B `eC

C · f ± 1, and fix a supersingular
curve E over Fp2 together with bases {PA, QA}, {PB , QB}, and {PC , QC} of
E[`eA

A ], E[`eB

B ], and E[`eB

B ] respectively. In analogy with [13, 20], we define the
following computational problems, which we assume are quantum-infeasible:

Problem 5.1 (Decisional Supersingular Isogeny (DSSI) problem).
Let EA be another supersingular curve defined over Fp2 . Decide whether EA is
`eA

A -isogenous to E.

Problem 5.2 (Computational Supersingular Isogeny (CSSI) problem).
Let φA : E → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉, where mA

and nA are chosen at random from Z/`eA

A Z and not both divisible by `A. Given
EA and the values φA(PB), φA(QB), find a generator RA of 〈[mA]PA + [nA]QA〉.

We remark that given a generator RA = [mA]PA +[nA]QA, it is easy to solve
for (mA, nA), since E has smooth order and thus extended discrete logarithms
are easy in E [31].

Problem 5.3 (Supersingular Computational Diffie-Hellman (SSCDH) problem).
Let φA : E → EA be an isogeny whose kernel is equal to 〈[mA]PA + [nA]QA〉,
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and let φB : E → EB be an isogeny whose kernel is 〈[mB ]PB + [nB ]QB〉, where
mA, nA (respectively mB , nB) are chosen at random from Z/`eA

A Z (respectively
Z/`eB

B Z) and not both divisible by `A (respectively `B). Given the curves EA,
EB and the points φA(PB), φA(QB), φB(PA), φB(QA), find the j-invariant of

E/〈[mA]PA + [nA]QA, [mB ]PB + [nB ]QB〉.

Problem 5.4 (Supersingular Decision Diffie-Hellman (SSDDH) problem).
Given a tuple sampled with probability 1/2 from one of the following two dis-
tributions:

– (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EAB), where EA, EB , φA(PB),
φA(QB), φB(PA), and φB(QA) are as in the SSCDH problem and

EAB
∼= E/〈[mA]PA + [nA]QA, [mB ]PB + [nB ]QB〉,

– (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EC), where EA, EB , φA(PB),
φA(QB), φB(PA), and φB(QA) are as in the SSCDH problem and

EC
∼= E/〈[m′A]PA + [n′A]QA, [m′B ]PB + [n′B ]QB〉,

where m′A, n
′
A (respectively m′B , n

′
B) are chosen at random from Z/`eA

A Z
(respectively Z/`eB

B Z) and not both divisible by `A (respectively `B),

determine from which distribution the tuple is sampled.

Problem 5.5 (Decisional Supersingular Product (DSSP) problem).
Given an isogeny φ : E → E3 of degree `eA

A and a tuple sampled with probability
1/2 from one of the following two distributions:

– (E1, E2, φ
′), where the product E1 × E2 is chosen at random among those

`eB

B -isogenous to E × E3, and where φ′ : E1 → E2 is an isogeny of degree
`eA

A , and
– (E1, E2, φ

′), where E1 is chosen at random among the curves having the
same cardinality as E, and φ′ : E1 → E2 is a random isogeny of degree `eA

A ,

determine from which distribution the tuple is sampled.

Our security proofs also make use of the following additional modified as-
sumptions not stated in [13, 20].

Problem 5.6 (Modified Supersingular Computational Diffie-Hellman (MSSCDH)
problem). With notation as in the SSDDH problem, given EA, EB , and ker(φB),
determine EAB . Note that no auxiliary points for φA are given.

An equivalent formulation of the MSSCDH problem is: Given EA, mB , and
nB , determine EAB .

Problem 5.7 (Modified Supersingular Decision Diffie-Hellman (MSSDDH) prob-
lem). With notation as in the SSDDH problem, given EA, EB , EC , and ker(φB),
determine whether EC = EAB . Note that no auxiliary points for φA are given.
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Problem 5.8 (One-sided Modified Supersingular Computational Diffie-Hellman
problem (OMSSCDH)). For fixed EA and EB , given an oracle to solve MSSCDH
for any EA, EB′ , ker(φB′) where EB′ 6∼= EB , solve MSSCDH for EA, EB , and
ker(φB).

Problem 5.9 (One-sided Modified Supersingular Decision Diffie-Hellman prob-
lem (OMSSDDH)). For fixed EA, EB , and EC , given an oracle to solve MSS-
CDH for any EA, EB′ , ker(φB′) where EB′ 6∼= EB , solve MSSDDH for EA, EB ,
EC , and ker(φB).

We conjecture that these problems are computationally infeasible, in the
sense that for any polynomial-time solver algorithm, the advantage of the al-
gorithm is a negligible function of the security parameter log p. The resulting
security assumptions are referred to as the DSSI assumption, CSSI assumption,
etc.

We also need a heuristic assumption concerning the distribution of blinded
false signatures:

Assumption 5.10 Fix a supersingular elliptic curve E, an `eA

A -isogeny φA, an
`eB

B -isogeny φB, and a curve EF , not isomorphic to EAB. For any pair of points
{FP , FQ} in EF , only a negligibly small fraction of integer pairs mC , nC satisfy
EF /〈mCFP + nCFQ〉 = EAB/〈φB,AB(φB(mCPC + nCQC))〉.

5.1 Hardness of the underlying assumptions

All of our unmodified complexity assumptions (those not containing “Modified”
in the name) are identical to the corresponding assumptions from [13, 20], except
that our assumptions are formulated using primes of the form p = `eA

A `eB

B `eC

C ·
f ± 1, rather than primes of the form p = `eA

A `eB

B · f ± 1. We have no reason
to believe that this alteration would affect the validity of these assumptions. A
close analogy to this situation is the comparison between three-prime RSA and
two-prime RSA.

Our modified assumptions are needed in order to prove the security of our un-
deniable signature scheme. The MSSCDH and MSSDDH assumptions are com-
plementary to the SSCDH and SSDDH assumptions, with the main difference
being that the input consists of a kernel but not two pairs of auxiliary points
(rather than the other way around). The standard algorithm for computing the
commuting isogeny from EB to EAB requires knowing both the values of the
kernel of φB and the auxiliary points for φA. Similarly, the standard algorithm
for computing the commuting isogeny from EA to EAB requires knowing both
the values of the kernel of φA and the auxiliary points for φB . In SSCDH (say),
the two sets of auxiliary points are known, but the kernels are not known. In
MSSCDH, we break the symmetry, giving the attacker the kernel (and hence
also the auxiliary points) for φB , but no secret information about φA. This kind
of asymmetry is unavoidably necessary for any sort of isogeny-based signature
scheme, since one isogeny somewhere will invariably be message-based, and this
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isogeny can have no secrets. Nevertheless, it is clear that the standard algo-
rithm is not able to solve the modified problems, and we are not aware of any
alternative algorithm which would be able to solve the modified problems using
only the information given. Indeed, despite extensive study of these problems,
we have not managed to devise any plausible approach to these problems other
than the claw-finding attack against CSSI originally proposed in [13, Section
5.1]. This attack does not utilize the auxiliary points, and hence works equally
well against our modified assumptions, with a running time of 4

√
p (respectively

6
√
p) on a classical (respectively quantum) computer. Other potential strategies

discussed in [13, Section 5.1], such as algebraic approaches based on ideal classes
in the endomorphism rings, fail in this setting for the same reasons as in [13].
Based on these considerations, we feel that some confidence can be ascribed
to the MSSCDH and MSSDDH assumptions. The OMSSCDH and OMSSDDH
assumptions are somewhat more artificial, and more study will be needed to jus-
tify confidence in them. They arise naturally in the analysis of our undeniable
signature scheme.

Our heuristic assumption (Assumption 5.10) seems quite natural, and we
have conducted numerous empirical experiments for random choices of triplets
(EF , FP , FQ) without finding any violations at cryptographic parameter sizes.
For artificially small parameter sizes, our experiments found that for any fixed
choice of (E, φA, φB , EF , FP , FQ), equality occurs with probability around 1/N
over all pairs of integers (mC , nC), where N = p+1

12 + O(1) is the number of
isomorphism classes of supersingular curves in characteristic p. Based on these
experiments, we have no reason to suspect that the assumption would fail to
hold. However, we have not yet succeeded in finding a proof of the assumption.

6 Security proofs

To prove the security of our scheme, we must show that the confirmation and
disavowal protocols are complete, sound and zero-knowledge, and that the over-
all scheme satisfies the unforgeability and invisibility properties. In this section
we consider a classical adversary; the case of quantum adversaries will be con-
sidered in Section 7.

The basic principle behind the proofs is that, as was the case in the basic key-
exchange protocol (Section 3.2), knowledge of (the kernels of) any two opposite-
side isogenies lying in a given cube face reveals no information about the other
edges in the cube, by the DSSI and DSSP assumptions. On the other hand,
knowledge of any two adjacent isogenies in a given commutative square yields
full information about all the isogenies in the square. It does not matter which
direction the arrows point, since one can reverse the direction of any arrow using
dual isogenies (Section 2).

Remark 6.1. To compute the dual isogeny of an isogeny φ : E → EA = E/〈A〉
whose kernel is generated by a point A, pick any point B ∈ E \ 〈A〉, and com-
pute φ(B). Then φ(B) generates a kernel subgroup whose corresponding isogeny
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φ′ : EA → E = EA/〈φ(B)〉 is isomorphic to the dual isogeny φ̂. In general,
EA/〈φ(B)〉 is isomorphic but not equal to E, so we also need to compute the
appropriate isomorphism, but computing isomorphisms in general is known to
be easy [16].

EA EAC

E EC

EAM EAMC

EM EMC

φA,AC

φAC,AMCφC

φM φAM,AMC

φM,MC

φMC,AMC

φC,MC

φC,AC

Fig. 5: Proof of soundness (confirma-
tion)

EA EAC

E EC

EAM EAMC

EM EMC

φA,AC

φAC,AMC

φF

φC

φM

φM,MC

φMC,AMC

φC,MC

φC,AC

Fig. 6: Proof of soundness (disavowal)

EA EAC

E EC

EAM EAMC

EM EMC

φA,AC

φC

φM φAM,AMC

φM,MC

φC,MC

Fig. 7: Confirmation (b = 0 case)

EA EAC

E EC

EAM EAMC

EM EMC

φAC,AMC

φM

φMC,AMC

φC,MC

φC,AC

Fig. 8: Confirmation (b = 1 case)

EA EAC

E EC

EAM EAMC

EM EMC

φA,AC

φC

φM φAM,AMC

φM,MC

φC,MC

Fig. 9: Disavowal (b = 0 case)

EA EAC

E EC

EAMC

EM EMC

φAC,AMC

φM

φMC,AMC

φC,MC

φC,AC

Fig. 10: Disavowal (b = 1 case)
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6.1 Confirmation protocol

We need to prove three things: completeness, soundness and zero-knowledge. We
apply classical techniques from [12, 18].

Proof (Proof of completeness). Completeness for this protocol is obvious. Us-
ing the algorithm presented in Section 4.2, the signer can always compute the
diagram in Figure 3 and make the verifier accept.

Proof (Proof of soundness). Let Charles be a cheating prover that is able to
convince the verifier to accept an invalid signature with non-negligible probabil-
ity. In order for Charles to be able to provide correct answers to both possible
challenges in the confirmation protocol, there must exist a commutative diagram
as in Figure 5 with all the edges filled in with actual isogenies. However, the ex-
istence of even a single such diagram implies that the signature must actually
have been valid, since any three edges of a cube face determine the fourth edge.
It follows that isogenies exist between E,EA, EM , and EAM to fill in the left face
of the cube, rendering the signature valid. Hence soundness holds even against
an infinitely powerful malicious prover.

Proof (Proof of zero-knowledge). To prove that this scheme is zero knowledge we
construct a simulator. Our simulator S makes uniformly random guesses about
what the verifier’s challenge will be. Regardless of the guess, S chooses random
integers mC , nC ∈ Z/`eC

C Z and computes

φC : E → EC = E/〈mCPC + nCQC〉.

If S guesses b = 0, it computes the diagram given in Figure 7. The simulator
can now answer any cheating verifier’s challenge in the case b = 0. The simula-
tor’s response is indistinguishable from, and indeed identical to, that of the real
prover.

If S guesses b = 1, it chooses some random isogeny φC,AC : EC → EAC ,
and computes the diagram given in Figure 8. The simulator uses this diagram
to answer the cheating verifier’s challenge in the case b = 1. In this diagram,
the curves EC and EMC are genuine, and the curves EAC and EAMC are fake.
However, the cheating verifier cannot tell that these curves are fake, or else one
would be able to solve DSSP for the top face of the cube. Hence the simulator’s
response is indistinguishable from that of the real prover.

Remark 6.2. The indistinguishability portion of the above proof of the zero-
knowledge property holds in the quantum setting as well as in the classical
setting. Specifically, if we presume the existence of some quantum cheating ver-
ifier (CV) which can perform some quantum computation to distinguish the
real transcript from the simulated transcript, then one could use this quantum
cheating verifier to obtain a quantum algorithm for solving DSSP simply by
alternately supplying the CV with either real curves EAC and EAMC (i.e. the
real transcript), or with falsified curves EAC and EAMC (i.e. the simulated tran-
script), and seeing whether the CV’s desired computation performs differently
in the two cases.
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6.2 Disavowal protocol

As before, we prove completeness, soundness and zero-knowledge.

Proof (Proof of completeness). Suppose first that EF is not equal to EAM . Us-
ing the algorithm presented in Section 4.2, the signer can always compute the
diagram in Figure 3 and make the verifier accept. Assumption 5.10 guarantees
that the verifier will always accept except with negligible probability. Note that
the assumption is formulated without regard to whether the putative auxiliary
points FP and FQ are compatible with EF or not.

Now suppose that EF is equal to EAM . In this case, completeness can only fail
if EF = EAM contains two distinct cyclic subgroups K1 = 〈mCP + nCQ〉 and
K2 = 〈φB,AB(φB(mCPC + nCQC))〉 of cardinality `eC

C in EAB [`eC

C ] such that
EAM/K1 = EAM/K2. But then EAM would be a branch point in the covering
space of the modular curve X0(`eC

C ) over the upper half plane, and the only such
non-cusp branch points are the elliptic curves of j-invariant equal to 0 or 1728.
The chance of EAM being equal to such a curve is negligibly small. Indeed, there
are only two problematic j-invariants, and there are cryptographically many (e.g.
2768) non-problematic j-invariants. A failure probability of 2 in 2768 represents
no cause for concern, since an adversary could simply guess the private key by
brute force with higher success probability. Note that the j-invariant of EAM

is determined by a combination of A’s public key and the value of the hash
h = H(M) of the message M , and this value is never at any point under the
control of an adversary. Likewise, the honest user has no control over EAM—its
value is completely determined from the user’s public key and the message.

Proof (Proof of soundness). Let Charles be a cheating prover that is able to
convince the verifier with non-negligible probability that a valid signature is
invalid. In order for Charles to be able to provide correct answers to both possible
challenges in the confirmation protocol, there must exist a commutative diagram
as in Figure 6 with all the edges filled in with actual isogenies. However, in
this case, the forged isogeny φF is computed using exactly the same inputs as
the corresponding isogeny φAM,AMC for the valid signature in the confirmation
protocol, and hence necessarily has codomain EF equal to EAMC . Equality of
EF and EAMC causes the disavowal protocol to fail. Hence soundness holds even
against an infinitely powerful malicious prover.

Proof (Proof of zero-knowledge). To prove that this scheme is zero knowledge
we construct a simulator. The simulator S makes uniformly random guesses
about what the verifier’s challenge will be. The simulator S first chooses random
integers mC , nC ∈ Z/`eC

C Z and computes

φM,MC : EM → EMC = EM/〈mCφM (PC) + nCφM (QC)〉.

If S guesses b = 0, it computes the diagram given in Figure 9. Here the curves
EC , EMC , and EAC are genuine, and the curves EAM and EAMC are fake. The
simulator uses the diagram to answer the cheating verifier’s challenge in the case
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b = 0. The simulator’s response is indistinguishable from the real prover, since
otherwise one could solve DSSP for the bottom face of the cube.

If S guesses b = 1, it chooses some random isogeny φC,AC : EC → EAC ,
and computes the diagram given in Figure 10. The simulator uses this diagram
to answer the cheating verifier’s challenge in the case b = 1. In this diagram,
the curves EC and EMC are genuine, and the curves EAC and EAMC are fake.
However, the cheating verifier cannot tell that these curves are fake, or else one
would be able to solve DSSP for the top face of the cube. Hence the simulator’s
response is indistinguishable from that of the real prover.

Remark 6.3. The indistinguishability portion of the above proof of the zero-
knowledge property holds in the quantum setting as well as in the classical
setting. Specifically, if we presume the existence of some quantum cheating ver-
ifier (CV) which can perform some quantum computation to distinguish the
real transcript from the simulated transcript, then one could use this quantum
cheating verifier to obtain a quantum algorithm for solving DSSP simply by
alternately supplying the CV with either real curves EAC and EAMC (i.e. the
real transcript), or with falsified curves EAC and EAMC (i.e. the simulated tran-
script), and seeing whether the CV’s desired computation performs differently
in the two cases.

6.3 Unforgeability and invisibility

Finally, we prove that the protocol satisfies the unforgeability and invisibility
properties from Section 4.1.

Proof (Proof of unforgeability). To prove unforgeability, we must show that after
making a polynomial number of queries to a signing oracle, an adversary is
still unable to generate a valid signature. Note that we have shown that the
confirmation and disavowal protocols are zero-knowledge. Forging signatures is
then equivalent to solving OMSSCDH.

Proof (Proof of invisibility). To prove invisibility, we must show that after mak-
ing a polynomial number of queries to a signing oracle, an adversary will still be
unable to decide whether a given signature is valid. This problem is equivalent
to OMSSDDH.

7 Quantum-resistant undeniable signatures

Under our simplifying assumption from Section 4.1, all parties except possibly
the adversary are restricted to classical computation only. In this setting, all the
security proofs in Section 6 other than those for the zero-knowledge proofs hold
without modification, since none of these proofs ever at any point involves two
quantum parties, and hence we do not need to consider quantum interactions.

By contrast, for zero-knowledge proofs, a classical security proof is not always
automatically valid against quantum attacks, since there is the possibility of a
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nontrivial quantum interaction: a quantum cheating verifier could conceivably
perform some quantum computation on an auxiliary input containing entangled
state which is not accessible to the verifier or simulator [33]. Nevertheless, by
Hallgren et al. [19], any classical zero-knowledge proof secure against classical
honest verifiers can be transformed into a classical zero knowledge proof se-
cure against quantum cheating verifiers at the cost of doubling the number of
messages, under the mild condition that the real message transcripts are quan-
tum computationally indistinguishable from the simulated message transcripts.
By Remarks 6.2 and 6.3, the real message transcripts are quantum computa-
tionally indistinguishable from the simulated message transcripts, for both the
confirmation and disavowal protocols, under the assumption that the various
computational problems of Section 5 are infeasible on a quantum computer.
Therefore the Hallgren et al. transformation can be applied to our confirmation
and disavowal protocols to obtain protocols which are zero-knowledge against
quantum cheating verifiers. We remark that the prior work of Aguilar-Melchor
et al. [1] does not specifically discuss the case of quantum adversaries, and may
also require this transformation in order to achieve security against quantum
adversaries.

8 Parameter sizes

As stated in [13, 20], the fastest known quantum isogeny finding algorithms in
our setting require O(n1/3) running time, where n is the size of the kernel. Based
on this figure, we obtain the following parameter sizes and signature sizes for
various levels of security:

Security level log2 p Signature size
80 bits 720 5760 bits
112 bits 1008 8064 bits
128 bits 1152 9216 bits

These numbers compare favorably with those of the only other prior quantum-
resistant undeniable signature scheme, that of Aguilar-Melchor et al. [1]. For
example, at the 128-bit security level, the scheme of [1] requires a signature size
of 5000 bits for the code-based portion plus an additional “roughly 40k Bytes” [1,
p. 116] for the conventional digital signature portion.

Regarding performance, a comparison is difficult because [1] does not pro-
vide any performance numbers. For isogeny computations, recent implementa-
tion work of De Feo et al. [13, Table 3] and Fishbein [15, Figure 4.1] demonstrates
that a single 1024-bit isogeny computation can be performed in 120 ms on a desk-
top PC, and in under 1 second on an Android device. Our protocol requires three
such computations for signing, up to eight for confirmation, and up to nine for
disavowal.
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9 Conclusion

In this paper we present a quantum-resistant undeniable signature scheme based
on the hardness of computing isogenies between supersingular elliptic curves. Our
scheme represents the first quantum-resistant undeniable signature scheme based
on a number-theoretic computational assumption, and compares well with the
only prior undeniable quantum-resistant signature scheme (a code-based scheme)
in terms of performance and bandwidth. Future work may entail developing new
protocols such as digital signature schemes or more efficient schemes based on
weaker assumptions.
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