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Abstract. Presence of quantum computers is a real threat against the security of currently
used public key cryptographic algorithms such as RSA and Elliptic curve cryptography. Isogeny
computation on elliptic curves is believed to be difficult even on a quantum computer, and
hence isogeny-based protocols represent one of the few truly practical approaches to constructing
quantum-resistant cryptosystems. In this paper, we investigate the efficiency of implementing a
newly proposed post-quantum key-exchange protocol on PC and ARM-powered embedded plat-
forms. Our implementations on various mass-market emerging embedded devices significantly
improve the state-of-the-art of post-quantum cryptographic computations on ARM-powered de-
vices. We provided timing results and compared them to the counterparts available in the lit-
erature. For instance, Our timing results on PC platforms are between 18–26% faster than the
previous work depending on the security level.

Keywords: Post-quantum cryptography, elliptic curve cryptography, ARM processors, Finite
field, Assembly.

1 Introduction

Classical cryptosystems like RSA and Elliptic Curve Cryptography (ECC) [1], [2], which are
based on the hardness of factoring and the elliptic curve discrete logarithm problem (ECDLP),
respectively, yet unpredictable but possibly will be threatened by quantum computers using
Shor’s algorithm [3]. Also, it has been widely accepted that relying solely on asymmetric key
cryptography dose not guarantee the required security leves in the long term. ECC and RSA
are used to protect secure Web pages, encrypted email, and many other types of data. Breaking
these would have significant ramifications for electronic privacy and security. Post-quantum
cryptography refers to research on cryptographic primitives (usually public-key cryptosystems)
that are not efficiently breakable using quantum computers more than classical computer ar-
chitectures. Therefore, post-quantum secure and practical alternatives are required to replace
these cryptosystems. There are some alternatives to be secure against quantum computers
threats like the McEliece cryptosystem, Lattice-based cryptosystems, code based cryptosys-
tem, multivariate public key cryptography, and the like. Recently, in [4], [5], [6], and [7],



efficient implementations of quantum-safe cryptosystems have been implemented on embed-
ded systems. There is another way of designing quantum-safe cryptosystems based on isogenies
which computationally constructs an algebraic map between the curves. In particular, unlike
traditional ECC, isogeny computation appears resistant to quantum attacks, and hence such
systems are good candidates for quantum-resistant cryptography [8]. Faster isogeny construc-
tions would speed up such cryptosystems, increase the viability of existing proposals, and
make new designs feasible. In [8], the use of isogenies in designing, implementing, and ana-
lyzing new and existing cryptographic protocols, with particular emphasis on designing and
analyzing quantum-resistant cryptosystems is presented. However, their implementations on
embedded devices is not investigated yet. It is expected that the use of mobile devices, such
as smartphones, tablets, and emerging embedded systems, will become further widespread in
the coming years. As their use increases, more people are using these devices for increasingly
sensitive applications such as corporate email, online banking and for the storage of confi-
dential information. As such, the deployment of practical cryptographic protocols for use on
mobile devices is of the utmost importance. Since we are faced with the possible develop-
ment of a large-scale quantum computer in the near future, it is prudent for us to focus our
efforts on the deployment of classical protocols that are resistant to attacks from such tech-
nology. In this work we present to explore further the applicability of advances in theoretical
quantum-resistant algorithms on real-world applications by several efficient implementations
on embedded systems. Isogenies over ordinary elliptic curves can be found in subexponential
time, meaning that even larger key sizes are required for quantum resistance than previously
thought. Our goal is nevertheless to improve the performance of isogeny-based cryptosystems
to the point where deployment is practical.

Our contribution: In this paper, we mainly explore the efficiency of implementing recently
proposed isogeny-based post-quantum public key cryptography of [8,9] on mobile embedded
devices operating on ARM-powered platforms. In [8,9] a quantum-resistant key-exchange pro-
tocol proposed by Jao et al. They have proposed a Diffie-Hellman type key-exchange scheme
based on computing isogenies between supersingular elliptic curves. The proposed scheme is
shown to be quantum-resistant, and the fastest known attacks are exponential time. In this
work, we present a practical implementation of the key-exchange protocol suitable for use in
mobile (and non-mobile) devices. We have done our implementations on p512, p768 and p1024
which denote the 512-bit, 768-bit and 1024-bit primes and provide 85 bits, 128 bits, and 170
bits, quantum security levels, respectively. Our implementations are primarily written in C
with hand-optimized assembly designed for use with either ARMv7 or x86-64 processors. It
uses precomputed public parameters, with all the time-consuming computations offloaded from
the device. Compared to the original implementations presented in [9], our code is between
18–26% faster depending on the security level. Moreover, on iOS and Android devices we mea-
sured running times around 0.5–1 second for a round of key exchange at the (quantum) 80-bit
security level.

The rest of this paper is organized as follows. In Section 2, we review the elliptic curves
and isogenies. In Section 3, key exchange protocol is presented. In Section 4, post-quantum
algorithms for key exchange protocol is presented. In Section 5, we presented the implementa-
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tions and timing results are compared to the counterparts available in the literature. Finally,
in Section 6 the paper is concluded.

2 Background on Isogeny-Based Cryptography

The idea of isogeny-based cryptography is proposed by J. Silverman [10] and has been inves-
tigated for quantum-resistant cryptography by Jao et al. [8,9]. Two elliptic curves over a finite
field are isogenous if and only if they have the same number of point [11]. We define an elliptic
curve over a field K as a projective nonsingular genus-1 algebraic curve E over K together
with a distinguished base point ∞ of E defined over K. When the characteristic of K does
not equal 2 or 3, which is always the case in this work, one can write E in the form

E : y2 = x3 + ax+ b.

Points on an elliptic curve form a group with an efficiently computable group law, with identity
element∞. An elliptic curve E is determined up to isomorphism by its j-invariant, defined by

j(E) = 1728
4a3

4a3 + 27b2
.

For any positive integer n, the n-torsion group E[n] is defined to be the set of all points P in
E defined over the algebraic closure K of K such that n times P is the identity:

E[n] = {P ∈ E(K) : nP =∞}.

As a group, E[n] has Z-rank equal to 2 provided that the characteristic of K does not divide
n, and thus when viewed as a module over Z/nZ it admits a basis of two elements. Therefore
an isogeny

φ : E → E′,

is defined to be an algebraic map satisfying the property that φ is a group homomorphism.
The degree of φ, denoted deg φ, is its degree as an algebraic map. An isogeny is separable if it
is separable as an algebraic map. We are interested in separable isogenies defined over finite
fields. Assume E and E′ are elliptic curves defined over a finite field Fq. In this case, isogenies
are determined up to isomorphism by their kernels. Any finite subgroup H of E induces an
isogeny E → E/H; conversely, for any isogeny φ, the group kerφ is a finite subgroup of E.
Finite subgroups of E in turn can be specified by identifying a set of generators. Given such
a set of generators, the corresponding isogeny can be computed by using Vélu’s formulas [12].
Additionally, every isogeny of degree greater than 1 can be factored into a composition of
isogenies of prime degree over Fq [13]. Two curves E and E′ are said to be isogenous over Fq

if there exists an isogeny φ : E → E′ defined over Fq. A theorem of Tate states that E and E′

are isogenous over Fq if and only if the number points on both curves are the same [11]. Let φ
have degree `. Then φ has a dual isogeny φ̂ [10] such that φ ◦ φ̂ = [`]. The property of being
isogenous over Fq is an equivalence relation on the set of Fq-isomorphism classes of elliptic
curves defined over Fq. Thus, we define an isogeny class to be an equivalence class under this
equivalence relation. The key-exchange scheme uses isogenies between supersingular elliptic
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curves. An elliptic curve is supersingular if its endomorphism ring (defined as the ring of all
isogenies from a curve to itself, under the operations of pointwise addition and functional
composition) has Z-rank equal to 4. An elliptic curve is ordinary if its endomorphishm ring
does not have Z-rank equal to 4 (in this case its endomorphism risk will have Z-rank equal to
1 or 2). Curves in the same isogeny class are either all supersingular or all ordinary.

3 Key Exchange Protocol

Fix a prime p of the form `aA`
b
B · f ± 1 where `A and `B are small primes, a and b are positive

integers, and f is some (typically very small) cofactor. Let E be a supersingular elliptic curve
defined over Fq = Fp2 . Fix a basis {PA, QA} of E[`aA] over Z/`aAZ and a basis {PB, QB} of
E[`bB] over Z/`bBZ. All of these parameters are public. The idea of this protocol is a variation of
Diffie-Hellman of the commutative diagram shown in Fig. 1, where φ and ψ are random walks
in the graphs of isogenies of degree `A and`B respectively. The security of the key exchange
is based on the difficulty of finding a path connecting two specified vertices in a graph of
supersingular isogenies. We refer the reader to [8,9] for a detailed discussion on the security
of the protocol. To have the paper self-contained, the key exchange protocol presented here as
follows.

Alice chooses two secret, random elementsmA, nA ∈R Z/`aAZ, not both divisible by `A, and
computes an isogeny φA : E → EA with kernel KA := 〈[mA]PA+[nA]QA〉. Alice computes the
image {φA(PB), φA(QB)} ⊂ EA of the basis {PB, QB} for E[`bB] under her secret isogeny φA.
She sends these points to Bob together with EA. Similarly, Bob selects secret, random elements
mB, nB ∈R Z/`bBZ, not both divisible by `B and computes an isogeny φB : E → EB having
kernelKB := 〈[mB]PB+[nB]QB〉. Bob then computes {φB(PA), φB(QA)} and sends the values
to Alice along with EB. With this information, Alice computes an isogeny φ′A : EB → EAB

having kernel equal to {[mA]φB(PA), [nA]φB(QA)}. Bob proceeds mutatis mutandis. Alice and
Bob can then use the common j-invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) =

= E/{[mA]PA + [nA]QA, [mB]PB + [nB]QB},

as their shared secret key.

4 Algorithmics

4.1 Parameter Generation

The common system parameters for isogeny-based cryptosystem are `A = 2 and `B = 3,
the original implementation performs most of the key exchange protocol in C (as opposed to
Cython) making it more efficient. However, even in this case, parts of the key-exchange protocol
are done in Cython. Our modifications only concern themselves with the case `A = 2 and
`B = 3 and we assume those parameter values for the remainder of the section. For any fixed
choice of a and b one can choose random values of f until one of p = `aA`

b
B ·f+1 or p = `aA`

b
B ·f−1
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E

E/〈RA〉
φA(PB)

φA(QB)

E/〈RB〉
φB(PA)

φB(QA)

E/〈RA〉
φA(RB)

≃ E/〈RA,RB〉 ≃ E/〈RB〉
φB(RA)

φA φB

ψA ψB

φA(RB) φB(RA)

Fig. 1. Key-exchange protocol using isogeneies on supersingular curves. Note that E[`aA] = 〈PB , QB〉 and
E[`bB ] = 〈PA, QA〉. Secret data are RA = mAPA + nAQA and RB = mBPB + nBQB . Public data are
E/ 〈RA〉 , φA(PB), φA(QB) and E/ 〈RB〉 , φB(QA), φB(QA).

is prime. An effective version of the prime number theorem in arithmetic progressions by
Lagarias and Odlyzko [14] guarantees that the density of such primes is sufficient. Fixing
a prime p = `aA`

b
B · f ± 1 we now need a supersingular curve E0. A result by Broker [15]

recommends that it is computationally easy to find a supersingular curve E over Fp2 with
cardinality (p∓1)2 = (`aA`

b
B ·f)2. One can either chose E0 = E or construct the isogeny graph

consisting of all supersingular curves defined over Fp2 and choose E0 via random walks on
said isogeny graph. Using either method, we obtain E0 with group structure (Z/(p ∓ 1)Z)2.
To obtain a basis for the torsion group E0[`

a
A], choose a random point P ∈R E0(Fp2) and set

P ′ = (`bB · f)2P so that P ′ has order dividing `aA. One checks whether P ′ has order exactly
equal to `aA by multiplying P ′ by powers of `A. If this check succeeds (which it will with
high probability) then we set PA = P ′. We choose a second point of order `aA, QA, in the
same way. One must check that PA and QA are independent and this is done by computing
the Weil pairing e(PA, QA) in E0[`

a
A] and checking that the result has order `aA via repeated

multiplications of `A. If this fails we can simply chose another point QA and try again.

4.2 Key Exchange

The key exchange is performed in two rounds and in each round Alice and Bob proceed as
follows:

1. Compute 〈R〉 = 〈[m]P + [n]Q〉 for points P , Q;
2. Compute the isogeny φ : E → E/〈R〉 for a supersingular curve E;
3. In only the first round, compute φ(R) and φ(S) for some points R, S;

where E, P , Q, R and S depend on both the round and the player. We now discuss how
to implement these three steps.

There are many classical techniques for computing 〈[m]P + [n]Q〉. In [8], and efficient
method for the computation of double point multiplication is presented which is not vulnerable
to simple power analysis (SPA) attacks and is employed in this work.
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and R0 = R, and define

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri).

R0

R1

R2

R3

R4

R5

[`1]R

[`2]R

[`3]R

[`4]R

[`5]R

φ0

φ0

φ0

φ0

φ0

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ3

φ3 φ4

[`]

[`]

[`]

[`]

[`]

[`4]R1 [`3]R2 [`2]R3 [`1]R4

•

• •

• • •

• • • •

• • • • •

• • • • • •

Figure 2.2: Diagram of isogeny computation.

Figure 2.2 shows the computational structure of computing isogenies for c = 6. The
bold dots represent points on E. Points on the same left diagonal belong to the same curve
and points of the same height on the diagram represent points of the same order. Leftward
dashed edges refer to multiplication by `, while rightward dashed edges refer to evaluation
of isogenies of degree `. At the beginning of the algorithm, only R0 is known. In order
to compute φ, we must compute all the elements at the bottom row of Figure 2.2. Using
[`e−i−1]Ri we can compute the kernel of φi via O(`) point additions. We can then apply
Vélu’s formulas to compute φi and Ei+1. Since evaluating degree ` isogenies is generally
twice as expensive as multiplications by `, determining the best approach is a non-trivial
combinatorial problem.

We will now formalize the picture in Figure 2.2 and then discuss an algorithm to
optimally compute φ.

Definition 2.1. Let Tn be the portion of the unit triangular equilateral lattice contained
between the x-axis, the line y =

√
3x and the line y = −

√
3(x − n + 1). Tn is called the

discrete equilateral triangle (DET) of side n.

9

Fig. 2. Diagram of isogeny computation [8].

4.3 Computing Isogenies

Computing the isogenies in the protocol can be accomplished via an iterative process. Given
an elliptic curve E and a point R of order `e, we compute φ : E → E/〈R〉 by decomposing φ
into a chain of degree ` isogenies, φ = φe−1 ◦ · · · ◦φ0, as follows. Set E0 = E and R0 = R, and
define

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri).

In Fig. 2, the computational structure of computing isogenies for c = 6 is illustrated. The
bold dots represent points on E. Points on the same left diagonal belong to the same curve and
points of the same height on the diagram represent points of the same order. Leftward dashed
edges refer to multiplication by `, while rightward dashed edges refer to evaluation of isogenies
of degree `. At the beginning of the algorithm, only R0 is known. In order to compute φ, we
must compute all the elements at the bottom row of Fig. 2. Using [`e−i−1]Ri we can compute
the kernel of φi via O(`) point additions. We can then apply Vélu’s formulas to compute φi
and Ei+1. Since evaluating degree ` isogenies is generally twice as expensive as multiplications
by `, determining the best approach is a non-trivial combinatorial problem.

An edge is a segment of unit length directed towards the x-axis connecting two points in
Tn. A left edge is an edge with positive slope. It is called a right edge otherwise. Directing
the edges as such imparts a directed acyclic graph structure on Tn. We equip the points
of Tn with the ordering → defined by x → y if and only if there exists a path in Tn from
x to y. The leaves and root of Tn are the final and initial point(s) respectively. For any
two points y, y′ of Tn, there is at most one point x such that x→ y and x→ y′. We write
x = y ∧ y′. A strategy S is a sub-graph of Tn having a unique root. We call a strategy full
if it contains all the leaves of Tn. In this case we must have that the root of S is the same
as Tn.

One should first note that any full strategy yields a valid algorithm to compute the
isogeny φ. One travels the graph in depth-first left-first oder. Each time the bottom
(x-axis) is hit, one apply’s Vélu’s formulas before proceeding.

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure 2.3: Two ill-formed strategies.

One should note that there are certain types of strategies which cannot be optimal. A
strategy with more than one edge passing through a point is not optimal as one of those
edges is clearly useless. Furthermore, a strategy that has a leaf different from the leaves
of Tn is not optimal as that particular leaf will be immaterial to the isogeny computation.
We define a well-formed strategy to be one that has neither of the preceding flaws. We
call a strategy that is not well-formed, ill-formed.

·· ·· · ·· · · ·

·· ·· · ·· · · ·

·· ·· · ·· · · ·

·· ·· · ·· · · ·

·· ·· · ·· · · ·

·· ·· · ·· · · ·

·· ·· · ·· · · ·

Figure 2.4: The seven well-formed full strategies for n = 4. Notice that the three middle
strategies share the same binary tree topology and the middle one is the canonical strategy.

We are interested in computing the “optimal” full strategy, according to some measure
of computational effort. We first note that any well-formed strategy has a particular
binary tree topology obtained by discarding the internal nodes of out-degree less than 2
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Fig. 3. The seven well-formed full strategies for n = 4. Notice that the three middle strategies share the same
binary tree topology and the middle one is the canonical strategy.

We are interested in computing the “optimal” full strategy, according to some measure
of computational effort. We first note that any well-formed (as shown in Fig. ??) strategy
has a particular binary tree topology obtained by discarding the internal nodes of out-degree
less than 2 and preserving the same connectivity structure. Since the optimal strategy can be
computed off the device and loaded onto the device as a precomputed parameter, one dose
not need to be very concerned with efficiency of the algorithm.1

1 Optimal strategies can be mathematically characterized, though the dynamic programming algorithm is
satisfactory from an implementation perspective. See [8,9].
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We realized that a straightforward Python implementation computes the optimal strategies
for n = 1024 in under one second.

4.4 Choice of Models

Or models for the curves and the parameters that have been set in this work are as follow. All
the curves employed in this work have group structure of (Z/(p∓ 1)Z)2. This results to have
either the curve itself or its twist to have a point of order 4. In [16], Bernstein et al. prove
that any elliptic curve having a point of order 4 is isomorphic to a twisted Edwards curve.
They further showed that any twisted Edwards curve is isomorphic to a Montgomery curve
[16]. Therefore, over a quadratic extension field, an elliptic curve is isomorphic to its quadratic
twist and hence all curves we are concerned with will be isomorphic to a Montgomery curve.
To estimate efficiency we count the number of elementary operations in Fp2 . We denote I, M ,
S for the costs of an inversion, a multiplication and a squaring, respectively. We make the
assumption that S ≤ M ≤ I. We ignore additions, subtractions and comparisons as they are
significantly faster than the operations we include in our estimate. We use the Explicit For-
mulas Database (EFD) [17] for operation counts on elliptic curves. However, unlike the EFD,
we count multiplications by constants (other than small integers) as ordinary multiplications.
Montgomery curves [18] have equation as

MB,A : By2 = x3 +Ax2 + x. (1)

One can represent points on MB,A by coordinates (X : Z) where x = X/Z. This is known
as a Kummer representation. One refers to performing operations on a curve with such a
representation as performing operations on the curve’s Kummer line. Such a representation
has the disadvantage of identifying P with −P since the negative of a point only differs in the
Y coordinate. However, Montgomery curves have very efficient arithmetic on their Kummer
line. The cost of doubling a point is 3M + 2S (or 2M + 2S when it is scaled to have Z-
coordinate equal to 1). Since P is identified with −P , it is not possible to add two distinct
points. However, if P − Q is known, one can compute P + Q via differential addition. One
differential addition has a cost of 4M + 2S (or 3M + 2S when P − Q is scaled to have Z
coordinate equal to 1). Through the use of a Montgomery ladder, along with doublings and
differential additions, one can compute any scalar multiplication for a given point P [18].
Since P and −P generate the same subgroup of a group of points on an elliptic curve, and an
isogeny can be uniquely identified with such a subgroup, we see that isogenies can be defined
and evaluated correctly on the Kummer line.

Isogenies of Montgomery Curves In [8,9], Jao et al. give explicit formulas for isogenies of
Montgomery curves and optimize the degree 2 and 3 case. We will not derive those formulas
here but instead refer the reader to the original paper for those details. Jao et al.’s original
implementation of the key-exchange is suitable when `A and `B are arbitrary small primes.
However, our implementation is only suitable for `A = 2 and `B = 3. As in Section 4.3,
isogenies of composite smooth degree are computed by composing isogenies of prime degree.
In the degree 3e case, this is done by simply composing degree 3 isogenies. Let e ≥ 3. In the
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degree 2e case, one needs knowledge of a point of order 8 in order to determine the curve F2

[8,9]. Thus, one cannot simply chain together multiple isogenies of degree 2. This problem is
solved by chaining together e− 2 isogenies of degree 2 followed by an isogeny of degree 4.

In [8,9], Jao et al. suggested that there may be a small speed advantage in using chains
of degree 4-isogenies instead. From Table 1, this certainly appears plausible. However, after
further investigation, we found that using 4-isogenies seems to be slightly less efficient in
practice (< 1% disadvantage compared to chains of 2-isogenies). Table 1 compares the cost of
isogeny evaluations and scalar multiplications for isogenies of degree 2, 3 and 4. We also report
the cost obtained by setting S = 0.8M . This figure is roughly based on the fact that squaring
in Fp2 requires 2 multiplications (as oppose to 3 for field multiplication). These figures assume
certain expressions have been precomputed, and common subexpressions shared. Table 2 lists
the total cost of isogeny evaluations and scalar multiplications for an optimal strategy.

Table 1. Comparative costs for multiplication and isogeny evaluation in projective Kummer coordinates, in
number of multiplications and squarings, and assuming S = 0.8M .

` 2 3 4

Isogenies 2M + S 4M + 2S 6M + S
2.8 5.6 6.8

Multiplication 3M + 2S 7M + 4S 6M + 4S
4.6 10.2 9.2

Table 2. Comparative costs of the optimal strategy for computing a degree 2514 (` = 2, 4) or 3323 (` = 3)
isogeny, assuming S = 0.8M .

`
Optimal Strategy
2 3 4

Isogenies 2741 1610 1166
Multiplications 1995 1151 921

Total cost 16852 20756 16402

5 Implementations

In this section, we discuss the techniques that are employed for the implementations of the
the isogeny-based quantum resistant protocol presented in the previous sections. Our imple-
mentations are done on both ARM powered embedded systems as well as PC platforms.

The original implementation from [8] uses a mixed C/Cython/Python/Sage architecture.
Parameter generation is done in Sage, and the computation of the optimal strategy for com-
puting isogenies is done in Python using the dynamic programming algorithm discussed in
Section 4.3. Arithmetic in Fp2 is written using C, using GMP to support arithmetic modulo
p. Elliptic curve arithmetic is implemented in Cython. In the special case `A = 2 and `B = 3,
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the key exchange uses a combination of C and Cython, with the most critical parts done in C.
The fact that elliptic curves are implemented using Cython prevents a pure C implementation.
For all other values of `A and `B, the key exchange is done in Cython.

5.1 Optimizations to the Key-Exchange

In this section we describe the optimizations we made to the key-exchange protocol described
in [8,9]. We first describe optimizations made to the C/Cython portion of the program and
then discuss our assembly optimizations.

Porting into C The original implementation of the key-exchange has elliptic curves imple-
mented in Cython. Cython is designed to provide an interface between C and Python code so
that both can be used in the same software. This allows for the convenience of Python while
still implementing critical portions in C. However, a pure C implementation is generally more
efficient. We created a C-implementation of elliptic curves and re-wrote the key-exchange in
pure C for the `A = 2 and `B = 3 cases. In the original implementation, public parameters are
generated immediately before the key-exchange is executed. This is impractical as these com-
putations are done in Sage and are time-consuming. Furthermore, it is not necessary to have
new public parameters for each run of the key-exchange. We separated parameter generation
from the actual execution of the key-exchange. Parameter generation is done in Sage and the
output is written to a text file. This allows parameter generation to be done on a different
device than the key-exchange protocol. The pure C implementation of the key-exchange takes
the text file as input.

Assembly Optimizations Assembly languages are low-level programming languages in
which there is a strong correspondence between the language and the architecture’s machine
code instructions. Our ARM assembly code modifications are designed to work with ARMv7
instruction set with a 32-bit word size. The word size refers to the register size. The ARMv7
instruction set has 16 registers r0,. . . ,r15. The registers r13, r14 and r15 are referred to
as the stack pointer, link register and program counter, respectively. They have each have a
specific purpose and should not used for general-purpose calculations by the user. However,
registers r0 to r12 can be used freely by the user. Similarly, our x86-64 assembly code mod-
ifications are designed to work with the x86-64 architecture. This architecture offers sixteen
64-bit registers r8,. . . ,r15, rax, rcx, rdx, rbx, rsp, rbp, rsi and rdi. The registers
rbp and rsp are called the base pointer and stack pointer respectively. They should not be
used for general-purpose calculations by the user.

We used assembly code to speedup multi-precision integer arithmetic in Fq = Fp2 . Multi-
precision integers are integers that are larger than a given machine’s word-size. The majority
of programming languages do not provide direct support for multi-precision numbers. One
generally needs to use a specific software package, such as GMP, in order to use them ef-
ficiently. However, if one knows the approximate size of the number in advance, one can
sometimes design hand-optimized assembly routines that are more efficient than routines in
these software packages. The disadvantage of this approach is that hand-optimized assembly
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code is platform-specific and non-portable. We employ the following techniques to optimize
our assembly implementation:

– Loop Unrolling: Since we know the maximal size in bits of the operands, we can unroll
all loops. This gives us the ability to avoid conditional branches.

– Instruction re-ordering: Often times instructions can compete for the same processor
and data resources, causing the code to be slower. By re-ordering non-dependent instruc-
tions we can allow for a more optimal scheduling of the instructions in the microprocessor’s
pipeline. For example, for integer multiplication, loop unrolling makes it possible to load
the data required for the next multiplication while the processor is performing the current
one.

– Register Allocation: All available registers were used in order to minimize moving data
from memory to registers.

– Multiple stores: ARM processors are capable of loading and storing multiple words from
or to the memory by one instruction. By storing the final result at once instead of writing
a word back to memory each time when a new result is ready, we minimize the number
of memory access instructions. Also, we do some register clean-ups (cost-free) when the
pipeline is performing the multiple store instruction. It is worth mentioning that while
it was possible to write 8 words at once, only 4 words are written to memory at each
time because the available non-dependent instructions to re-order after the multiple store
instruction are limited.

The key-exchange software uses GMP as an arithmetic backend. GMP stores numbers in con-
secutive memory locations and uses the little endian method which stores the least-significant
word at the smallest memory address. We implemented field addition in ARMv7 assembly
language and implemented both field addition and field multiplication in x86-64 assembly
language. Field multiplication for Fq requires several additions, 3 integer multiplications and
two modular reductions for which Barrett reduction was used. We present details of these
implementations below. We will not attempt to explain each assembly instruction in detail
but rather try to present the idea of each algorithm we discuss.

Field Addition: 512-bit Fq addition was implemented on ARMv7 platform and 768-bit Fq

addition was implemented on the x86-64 platform. When passing three or fewer parameters
to a function, the function will place those parameters in registers r1 − r3 and expect to
receive any possible output at the memory address in register r0. Our implementation of 768-
bit field addition on the x86-64 platform is much simpler. It was found that is was just as
efficient to use the built-in GMP function mpz_add to add the two numbers rather than using
an assembly routine. This is likely due to mpz_add being coded in assembly for the ARMv7
platform. After adding the two numbers, we then check to see if a subtraction is required by
using mpz_cmp to compare the size of the result to the prime order of the underlying field. If
a subtraction is required, it is done using an assembly routine to subtract the prime from the
result. This routine essentially consists of the SUB instruction followed by several SBB instruc-
tions to subtract the correct pieces of the prime from the result and adjust for any borrow flags.

Integer Multiplication: 768-bit field multiplication was implemented on the x86-64 plat-
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form. The technique we use is known as column-wise multiplication and is analogous to the
method school-book multiplication taught to young children. First, the MUL instruction takes
one register operand and multiplies the value of that operand by the value of the number in
register rax. It stores the double-word result of this multiplication in the registers rax (low-
est word) and rdx (highest word). Second, register labels are preceded by the % character.
Third the MOV instruction moves data between different data-storage locations. MOV is much
like ARMv7’s LDR and STR instructions.

Barrett Reduction: 768-bit Barrett reduction was implemented on the x86-64 platform for
use in Fq multiplication. The algorithm is implemented using a combination of C and assembly
with the aspects that control the flow of the algorithm implemented in C and the arithmetic
portions implemented in assembly. In 1986, P. D. Barrett introduced Barrett reduction to com-
pute c = a (mod n) [19]. Barrett is an improvement on naive division algorithms and works
assuming that a < n2. The main idea is to replace expensive divisions by multiplications that
can be performed much cheaper. We use Barrett reduction to compute c = a (mod p) where
Fq = Fp2 . We are able to make several pre-computations at the parameter generation stage
before the key-exchange is executed and stored in the same text file containing the public
parameters for the encryption system. First we compute the minimal k such that 2k > p and
then m such that m =

⌊
4k/p

⌋
.

5.2 Implementation Results and Comparisons

The original implementations of the computations of post-quantum cryptography presented
in [8], is only for PC platforms for 85, 128, and 170 bits security levels. The timing results for
our pure C implementation are presented in Table 3. Notice that our pure C implementation
is approximately 20% faster than the original implementations on the Mac OS platform. Due
to the variety of software packages required, the original implementations presented in [8] was
not suitable to run on the iOS or Android platform. Thus, a comparison of running times
cannot be made on these platforms, even though our implementations support them.

Let p512, p768 and p1024 denote the 512-bit, 768-bit and 1024-bit primes (respectively) that
we use to compute running times. They are defined as follows:

p512 = 186 · (22583161)− 1,

p768 = 2 · (23863242)− 1,

p1024 = 353 · (25143323)− 1.

For pure C implementations, our results are 18%, 26%, and 19% faster than the previous
work presented in [8], for 85, 128, and 170 bits security levels, respectively. Implementing field
addition in x86-64 assembly gives a speedup of 4% (in comparison to our pure C implemen-
tations) on the Mac OS X platform for 768-bit values of p (128-bit security level). Also, our
assembly result is 28% faster than the the one presented in [8] as one can see in Table 3.

For targeting embedded devices, we implement the post-quantum algorithms on iOS2 iPad
2 ARM Cortex-A9 operating at 1 GHz and Arndale ARM Cortex-A15 operating at 1.7 GHz.
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The timing results for various security levels are reported in Table [8]. Pure C timing imple-
mentations on ARM Cortex-A15 are 0.629s, 1.77s, and 3.81s on 85, 128, and 170 bits security
levels. Having only addition implemented in assembly gives us an speed up of 1.4% in com-
parison to the pure C implementations. The assembly results are primarily done using inline
assembly which allows assembly code to be written in the same file as regular C code. Al-
though not readily apparent, this method is prone to bugs and inherent inefficiencies. A better
approach would be to write separate files containing the assembly code and link them to the
C program.

There are few research work that have considered implementations of post-quantum cryp-
tosystems on embedded systems mainly on FPGAs and 8-bit Microcontrollers including the
ones given in [5] (lattice-based cryptography), [7] (code-based cryptography), and [4], [6]
(McEllice cryptosystems). As our implementations are mainly focused on ARM-powered em-
bedded systems and PC platforms, comparison with those works are infeasible.

Table 3. Timings for our C implementation of key exchange for `A = 2 and `B = 3.

Mac OS Macbook Pro Intel Core i5-2415M @ 2.4 GHz [8]

Field Size (Prime) p512 p768 p1024
Quantum Security 85 bits 128 bits 170 bits
Pure C Timing (s) 0.113 0.303 0.529

Mac OS Macbood Pro Intel Core i5-2415M @ 2.4 GHz [This work]
Pure C Timing (s) 0.093 (18%) 0.226 (26%) 0.429 (19%)

C with ASM (ADD/Mult) – 0.217 (28%) –

iOS2 iPad 2 ARM Cortex-A9 @ 1 GHz dual core [This work]
Pure C Timing (s) 1.06 2.68 5.30

Arndale ARM Cortex-A15 @ 1.7 GHz dual core [This work]
Pure C Timing (s) 0.629 1.77 3.81

C with ARM ASM (Add) 0.620 – –

6 Conclusion

In this paper, we find that the key-exchange protocol presented in [8] can be realistically
implemented and used on mobile communication devices at reasonable security levels. We first
describe in detail a quantum-resistent key-exchange scheme [8], based on isogeny computations
on elliptic curves. Two implementations of the scheme, one targeting PC platforms (x86-64
architecture), and the second targeting embedded devices (ARM Cortex-A9 and ARM Cortex-
A15 processors), are developed. On a PC Platform the we demonstrated the speed-ups in the
range between 18% and 26% compared to the original implementations. Our implementations
on ARM processors are the first implementations of this particular post-quantum algorithm
on embedding devices reported to date. With execution times between 1 and 5 seconds, these
implementations demonstrate the feasibility of using the scheme on portable devices, such as
smartphones and tablets, running iOS and Android.
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