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Abstract

As distributed storage systems grow in popularity, there
is now a demand for a reliable incentive and payment
system to guarantee and reward the pristine storage of
documents. However, many existing proof-of-retrieval
and micropayment protocols are not secure in a cen-
sorship resistance setting, in which powerful adversaries
may infiltrate a system or coerce the original publisher to
remove content. Additionally, most existing censorship
resistance systems lack a rigorous game-theoretic anal-
ysis. We propose Lavinia, an audit and payment proto-
col for censorship-resistant storage. Lavinia incentivizes
document availability by providing micropayments to
participating servers in exchange for honestly storing and
serving content. Our protocol enables the implementa-
tion of a digital printing press as described in Anderson’s
Eternity Service: allowing the publisher, as opposed to
public interest or an appointed editorial board, to decide
whether a document is worth storing, and for how long.
In addition to proving the security of our protocol, we
provide an in-depth game-theoretic analysis and show
that self-interested participants of our system will faith-
fully implement the desired behaviour and continue to
store documents until their expiration date.

1 Introduction

Throughout history, the spread of information has been
assisted by technological advances, but has also faced
barriers in the form of censorship. With each new ad-
vance in technology that facilitates the spread of knowl-
edge, ideas, and social understanding, there is an increase
in the efforts of censors to limit this spread.

A popular example in the history of censorship and its
resistance is the advent of the printing press [13]. Not

∗This is an extended version of our paper published in Financial
Cryptography and Data Security 2017 [6].

only did the ability to print documents easily and effi-
ciently result in the distribution of previously guarded
works, it also led to an increase in the literacy rate of
Europe. Despite censorship attempts, printed documents
proved to be resistant to state-level attempts to remove
them. Borders were difficult to patrol thoroughly, and
the production of many copies of each text made them
almost impossible to eradicate completely. The only im-
portant impediment to using a printing press was the ac-
quisition of enough capital to purchase the requisite raw
materials and labour.

Today, worldwide use of the Internet has enabled an
even faster and further spread of ideas than the print-
ing press, and provided the means for near-instantaneous
conversations between physically and politically distant
groups. However, although the Internet has made the dis-
tribution and mirroring of content easier and more cost
effective than physical printing, it is also much easier
to censor electronic content on a large scale due to the
centralized nature of storage and routing services. For
example, the Great Firewall of China [31], capable of fil-
tering and inspecting all traffic that enters and leaves the
country, is a much more practical and scalable censorship
strategy than finding and searching the contents of every
physical document that crosses the border. In the United
States, the Digital Millennium Copyright Act (DMCA)
provides an extremely flexible and versatile tool for com-
mercial interests to target content providers and censor
digital content from the web [28].

In an attempt to decrease the centralization of today’s
Internet services and provide Internet users with the
censorship-resistant properties of the printing press, An-
derson proposed the Eternity Service [2]. The Eternity
Service is a description of an ideal digital printing press
and with it Anderson outlines a conceptual framework
for building censorship-resistant publishing systems in
the context of modern digital communications. How-
ever, despite myriad attempts to build systems that ful-
fill Anderson’s goals, many of which do provide strong
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censorship resistance [8, 9, 26, 30], we are still removed
from the model of the printing press. Existing systems
impose barriers above and beyond the publisher simply
paying for raw materials and labour, such as requiring the
publisher to stay online, take responsibility for distribut-
ing their document, or operate without the guarantee that
their document will remain in the system for the desired
amount of time.

Censorship-resistant storage relies on a large number
of geo-politically diverse participants providing band-
width and storage space. A significant barrier to the
adoption of existing systems has been the lack of incen-
tives to participate honestly in a distributed storage sys-
tem. Existing incentive models are unfit for censorship
resistance because they rely on a centralized audit and
payment system or lack a rigorous game-theoretic analy-
sis of possible attempts to subvert the system and thus
maximize earnings. Until recently, incentive systems
also lacked a candidate electronic payment system with
the security and anonymity properties necessary to pro-
vide micropayments to participant servers in exchange
for their storage space and bandwidth. However, the de-
velopment of cryptocurrencies has provided a new way
to administer electronic payments and enforce payment
contracts, similar to the original printing press.

In this paper, we propose Lavinia: a distributed au-
dit and payment protocol for censorship-resistant storage
in which publishers pay for the storage and bandwidth
costs associated with distributing content securely in the
presence of powerful censoring adversaries, and receive
in return strong guarantees that their content will remain
available for the specified amount of time. We give an ex-
tensive game-theoretic analysis of our protocol and show
that rational, self-interested parties will implement our
protocol faithfully, behaving no differently from an hon-
est, altruistic, participant.

In Section 2, we discuss related work on distributed
audit and payment protocols. We then give the models
and definitions for censorship-resistant storage and pay-
ment contracts in Section 3. In Section 4 we describe
the Lavinia protocol, and we show that self-interest re-
sults in honest participation in the protocol in Section 5.
We give a security analysis in Section 6, and conclude in
Section 7.

2 Related Work

Anderson first proposed a digital version of the printing
press 20 years ago [2]. The Eternity Service is an ideal
(yet unrealized) censorship-resistant publishing system
that comprises properties such as plausible deniability
for participating servers, anonymity for publishing au-
thors, and notably a payment system to mimic the model
of the printing press where a publisher pays to have her

work replicated and distributed to readers in a way that
is difficult for authorities to track and prevent.

Many existing censorship-resistant publishing systems
rely on in-kind payments and reputation-management
protocols to incentivize honest participation and to limit
the effects of a storage-based denial-of-service attack, in
which an adversary prevents the publication of new doc-
uments by filling up all available space. Tangler [30]
assigns storage credits to participating servers, allow-
ing them to store a set amount of content proportional to
their own donated capacity. This gives them the option to
“rent out” or donate their storage credits at their own dis-
cretion. However, Tangler does not provide a protocol
for credit rentals or donations, leaving servers to adopt
insecure or biased methods of collecting remuneration
for their services. Furthermore, there is no audit pro-
cess to guarantee that servers continue to store and serve
uncorrupted documents over time. While Tangler does
use a comparison of messages to inform other participat-
ing servers of nearby malicious servers, such a reputation
system is not secure against a large number of colluding
servers.

Free Haven [11] employs a more complex reputation
management system in which servers assign a reputation
and credibility value to all other known servers. Each of
these two values is also accompanied by a confidence rat-
ing that reflects the depth of knowledge about the server
in question. Servers broadcast referrals that contain sug-
gestions for these values in the event of honest, mali-
cious, or suspicious behaviour. Although such a system
can pinpoint malicious servers, it does not defend against
more complicated game-theoretic attacks in which an ad-
versary behaves honestly but suspiciously in order to bait
other servers into giving false reports.

Vasserman et al.’s one-way indexing scheme [29]
solves the complexity of distributed trust assignments
by using a centralized editorial board to curate content
and defends against denial-of-service attacks by deleting
unimportant documents from the system. This central-
ized design is not ideal for censorship resistance as users
cannot store content that the editorial board deems to be
uninteresting or offensive, unless it is also popular.

Although the development of an electronic payment
protocol to incentivize censorship-resistant publishing is
novel, it builds on related work in the area of distributed
data storage and retrieval. A key problem in distributed
storage is that once a document is stored, the server re-
sponsible for it may decide to discard the data or leave
the storage network. Payment at the time of storage is
therefore ineffective, and incremental payments require
careful management of server reputations. There is a
large body of work that addresses the problem of dis-
tributed payment in peer-to-peer systems through the use
of micropayments, audits, and escrow services. Most
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early systems relied on a centralized payment system or
suffered from problems in scalability or anonymity [10],
which render them unsuitable for censorship resistance.
More recent systems tend to rely on escrow payments
to incentivize storage, but still require centralized au-
dits [15] or in-kind payments where publishers pay by
offering access to unused CPU cycles or bandwidth [22].
These features are undesirable for censorship resistance,
where centralized third parties are vulnerable to attack
and publishers (e.g., political dissidents) should be al-
lowed to cease interaction with the system after publica-
tion.

The proposed storage system most similar to our
own [20] is fully distributed and provides micropayments
in return for the periodic verification of storage. How-
ever, the proof of retrieval technique used to audit doc-
ument availability allows servers to distinguish between
auditors and regular users. This knowledge allows them
to maximize profits by refusing to serve content to any-
one but an auditor. While this model is appropriate for
storing documents that are meant to be accessible by a
single user, it does not fit the needs of a censorship-
resistant publishing system in which content is meant
to be accessed by many users, and serving content is
equally as important as storing it. For this reason, our
proposed solution will make users indistinguishable from
auditors, forcing servers to deliver content for every ac-
cess. We utilize a novel micropayment system in our pro-
tocol, similar to existing work, but with additional fea-
tures that ensure suitability for censorship-resistant pub-
lication, storage, and retrieval.

3 Models and Definitions

3.1 Censorship-Resistant Storage
The structure of censorship-resistant publishing sys-
tems differs from that of traditional storage schemes.
Censorship-resistant storage is largely decentralized and
dynamic, involving a diverse and constantly changing
set of servers. As with traditional printed documents,
wide dispersal and redundancy are essential for increas-
ing the likelihood of a document’s continued existence
over time in a digital setting. The dispersal of sensi-
tive documents across multiple jurisdictions has impor-
tant advantages: state-sponsored attempts to remove in-
formation from the system will not be able to reach a sig-
nificant subset of servers, and a single entity’s attempts
to compromise each machine will not scale to physically
separate servers.

Our payment and audit protocol will work with a
wide variety of storage schemes, including many exist-
ing censorship-resistant publishing systems. We base our
security and game-theoretic analysis on a general model

of storage. Here we briefly describe existing censorship-
resistant storage systems and define our general model.

File retrieval: Documents should be encrypted and
split into multiple retrievable pieces using a threshold
scheme [23]. The act of secret sharing provides hon-
est servers with plausible deniability about what they
are hosting, and encryption adds an extra layer of pro-
tection, preventing servers that have acquired multiple
shares from using existing techniques to reconstruct the
document. In some jurisdictions, this may afford them
legal protections. We refer to a single document piece as
a file f .

Many existing systems are built as overlays on top
of structured peer-to-peer (P2P) networks such as dis-
tributed hash tables (DHTs1) [18, 21, 25]. Each file f is
associated with a keyword, and the space of all keywords
is partitioned among partipant servers to allow for effi-
cient document storage and retrieval. BitTorrent [1] and
Freenet [9] are examples of unstructured P2P systems.
Rather than deterministically partitioning the keyspace
among participant servers, documents are initially stored
at one location, and then cached by additional servers
when they are retrieved from the system.

In our model, each file f is stored in the system under a
lookup key denoted lookup( f ). Performing a lookup for
this key will return the server that is currently responsible
for hosting that file. We assume that a lookup will be
routed through, on average, a set of k > 1 servers on its
way to the correct host. Additionally, we assume that
given lookup( f ), a user is unable to discover all lookup
keys necessary to reconstruct the entire document as in
the one-way indexing technique [29]. This will provide
servers and auditors with additional plausible deniability.

Redundancy: In the presence of an active censor,
a high degree of redundancy ensures that a document
does not become lost if some servers leave the system
or refuse to serve content. We assume that the underly-
ing storage scheme mirrors each file f on a set of n ≥ 2
servers server f 1,server f 2, . . . ,server f n. We also assume
that the server responsible for the main copy of the file
f (i.e., the server that is targeted by performing a lookup
on key lookup( f )) has a way of contacting the mirroring
servers.

Churn: Censorship-resistant storage systems are, by
their nature, dynamic. We assume that new servers may
join the system and that existing servers will leave. When
a server joins the system, she becomes responsible for
a subset of the system files. The new server may con-
tact the server(s) that were previously responsible for her
files, and any server operator may leave the system at
any time, and may contact the server(s) responsible for

1Although many DHTs are vulnerable to Eclipse [7] or Sybil at-
tacks [12], we note that securing DHT join and lookup protocols is an
active area of research [4, 7, 24] and is outside the scope of this paper.
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her files after she leaves.

3.2 Payment System
The main goal of providing compensation to partici-
pant servers in a censorship-resistant storage system is
to incentivize the storage and availability of a docu-
ment for an arbitrary amount of time. Anderson orig-
inally described an annuity that could accomplish this
goal by “following data around”, providing incremental
payments to any server currently responsible for host-
ing and serving it [2]. Past precedent indicates that even
small operators will go to great lengths to recover valu-
able missing data [16].

Recent innovations in cryptocurrencies have provided
a means to create a travelling annuity. Funds may be
transferred from a sending “wallet” to a recipient wal-
let with knowledge of the sending wallet’s private key.
This key can be easily transported along with a file or
document, thereby following it around the storage sys-
tem. In this section, we demonstrate the suitability of the
Bitcoin cryptocurrency [19] for our protocol. However,
our protocol will work with any payment system with the
following properties: (1) coercion-resistant through geo-
political distribution or anonymization, (2) redeemable
with a distributable secret, (3) time-locked where funds
can be placed in escrow until a fixed time has passed, and
(4) associated with an append-only log.

Bitcoin is coercion resistant through both geo-politcal
distribution and optional anonymous extensions. As long
as at least 50% of miners accept Lavinia transactions,
there is a high probability that they will not be dropped
from the system. Furthermore, Zerocash [5] may be
used for anonymization, eliminating the ability to link
payments with specific documents and thereby thwarting
censorship attempts.

Bitcoins are redeemable with one or more secrets. To
redeem (i.e., spend) a coin, a user must be able to sign
a transaction with the private key associated with the
coin’s wallet. It has a time-lock feature, which allows
the sender to specify a date before which the coin can-
not be redeemed. The payment blockchain doubles as an
append-only log, and the Bitcoin scripting language2 al-
lows the spender to enforce that specific values are added
to this log before a payment can be redeemed.

In our system, a publisher Alice constructs a series
of payment contracts P(X , t,S,v). Each contract places
a set of funds X in temporary wallets with private keys
si ∈ S. The funds cannot be removed until after the time t
has passed, and upon redeeming these funds, the holders
of the keys in S must publish the value v to the Bitcoin
blockchain. The set of funds, X = {s1 : x1, . . . ,sn : xn},
specifies the amount of Bitcoins xi that belongs to the

2https://bitcoin.org/

wallet with private key si. The funds may not be re-
deemed without the cooperation of all recipients.

Each recipient (i.e., holders of the private keys in S)
fulfills the contract P by having all recipients collec-
tively sign and append a transaction to the blockchain
that spends the coins to their own personal accounts and
posts the now-public value v. We denote this transaction
as T (proof(S),v). When the transactions are complete,
the funds will be divided amongst the recipients in the
amounts specified by X in the payment contract.

We can construct the payment contract

P({s1 : x1,s2 : x2}, t,{s1,s2},v)

using the Bitcoin scripting language. When a transaction
to spend a coin is processed, its input script is concate-
nated to the output script of the transaction that created
the coin. Alice commits to P by submitting a trans-
action spending coins worth a total of x1 + x2 to the
blockchain. This transaction contains the following out-
put script:

timelock: t
Output: [
{x1,

<Pubkey s1> <PubKey s2> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_v>
OP_EQUALVERIFY },

{x2,
<Pubkey s1><PubKey s2> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_v>
OP_EQUALVERIFY }]

It requires a proof of knowledge of the secrets s1 and s2
in the form of signatures on the subsequent spend trans-
action. It also requires the next spend transaction to in-
clude the value v in its input script. It verifies this value
by ensuring that it hashes to hash of v. The time lock
ensures that the next spend transaction will not be sub-
mitted to the blockchain until the time t has passed.

The transaction T that fulfills this contract must have
the following input script:

<v> <sig s1> <sig s2>

Each owner of a secret in the set S must provide a
transaction with this input script to redeem their funds.
This involves signatures from both parties on each trans-
action.
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4 Lavinia Protocol

4.1 Overview

Lavinia allows a publisher to publish content, submit
payments, and then vanish from the system completely—
the continued availability of content is not contingent on
the actions of the original publisher. This protects against
out-of-band coercion tactics such as rubber-hose crypt-
analysis in the case that the publisher is captured or pros-
ecuted. Additionally, third-party benefactors may fund
existing documents to increase the likelihood that they
will remain in the system or extend the document’s life-
time. This ensures that even popular content with higher
bandwidth costs will remain in the system.

Micropayments to participating servers occur during
audit periods chosen by the publisher or benefactor dur-
ing the initial payment step. The publisher chooses a
different auditing server for each audit period and places
with them the responsibility of checking a file for avail-
ability at some time during that period, in exchange for
a small remuneration. An auditor lacks sufficient evi-
dence to prove her auditor status and requests the file
as a regular user would, forcing the server to respond to
both audits and regular requests for content. We place re-
strictions on the auditor by preventing her from learning
which files she will audit until the previous audit period
has passed. At that time, she may access the file’s lookup
key by searching the payment system’s append-only log.
Finally, we place additional incentives to ensure that all
audits and remuneration occur in a timely manner at each
audit time.

An important challenge associated with making cen-
sorship resistance a possibly profitable endeavor is en-
suring that a participant is unable to game the system and
receive payments without providing services. We assume
that participants in the Lavinia protocol are rational and
self-serving entities who will employ any means neces-
sary to receive payments while incurring as few costs as
possible in the form of storage space and network band-
width. The fault tolerance features of our protocol will
also defend against a small number of irrational, mali-
cious participants. In Section 5, we show that exploit-
ing this self-interest strengthens the censorship-resistant
properties of the system and increases the likelihood that
a document remains available until its expiration date.

Although Lavinia cannot directly help impoverished
users publish documents safely, it does provide a way for
third parties to help them more efficiently by allowing
them to create payment contracts on behalf of the pub-
lisher or to suppliment existing documents. For example,
concerned free speech advocates could form a fund to
store documents they felt were meritorious, and perhaps
even participate as servers in the storage system and host

content for free.

4.2 Protocol Details
We give the full Lavinia protocol in Figure 1. During
publication (or at any time throughout the life of the doc-
ument) a publisher or benefactor, Alice, prepares pay-
ments for each of their files f stored in the system.

Alice first determines a set of times T = {t1, . . . , tn}
that separate the audit periods during which she wishes
her document to be checked for availability. (For conve-
nience, let t0 denote the time of publication of the doc-
ument.) She creates a payment contract for each time
ti ∈ T . For example, if she wishes her document to
be audited approximately once a month for two years,
she would then create 24 payment contracts for each file
f she uploads to the system. These contracts form an
agreement between Alice, the servers hosting her shares,
and the auditors responsible for ensuring her document’s
availability.

For each of Alice’s contracts, she randomly generates
new wallets with private keys skA and skS for an auditor
and server, respectively. She then decides on the pay-
ment amounts X = {skA : xa,skS : xs} for the auditor and
server.

The time lock enforces that funds will not be trans-
fered until the audit period ending at time ti has passed.
Let kw(s,K) be a key wrapping function that encrypts a
key K with a secret s. We assume that this key wrap-
ping function is secure and that the ciphertext does not
leak information about the secret s or the key K. Al-
ice encrypts the auditor’s secret with a random value r
to produce the masked secret v = kw(r,skA); v becomes
the value that must be posted to the append-only log to
redeem the contract, as described in Section 3.2.

Alice now constructs a contract
P({skAi : xa,skSi : xs}, ti,{skSi,skAi},kw(ri,skAi)).

for each audit period by spending coins to the newly cre-
ated wallets, as described in subsection 3.2. This places
funds for the file f in escrow with the server responsi-
ble for hosting the share and the auditor responsible for
assuring its existence in the audit period [ti−1, ti]. She
distributes the server secrets skSi for each time ti to the
server hosting the file by encrypting them with the key
wrapping function kw and a random value rsi to produce
the masked server secrets {kw(rsi ,skSi)}n

i=1. If the file
changes hands (as in a dynamic storage system), the se-
crets {kw(rsi ,skSi)}n

i=1 travel with it.
Alice then selects auditors for each of her con-

tracts, and sends to each of them the beginning and
end of their audit period, ti−1 and ti, the lookup key
for f encrypted with the previous auditor’s secret,
kw(skAi−1, lookup( f )), and the masked auditor secret,
kw(H( f‖skAi−1),skAi), encrypted with a hash of the file
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Alice Server Auditor

kw(rsi ,skSi)

Commits to P(X , ti,{skSi,skAi},kw(ri,skAi),{skBi,x3})

ti−1, ti, kw(skAi−1, lookup( f )), kw(H( f‖skAi−1),skAi), ri−1, ri, kw(H( f‖skAi−1),rsi)

at time t

Finds value kw(ri−1,skAi−1)

Unlocks lookup( f )
Search for lookup( f ) in storage

f

Decrypts skAi, rsi

rsi

(Posts kw(ri,skAi) to log)

T (proo f ({skSi,skAi}),kw(ri,skAi))

Can’t find kw(ri−1,skAi−1)

T (proo f (skBi),skBi)

Figure 1: Protocol for setting up payments and auditing a file f during the period [ti−1, ti], where kw(s,K) is a function
that encrypts a key K with a secret s. The burn procedure is shown in red.

f concatenated with the previous auditor’s secret, where
the cryptographic hash function H is both pre-image re-
sistant and collision resistant. The first auditor for time
period [t0, t1] will also receive the value skA0, randomly
chosen by Alice. Finally, she sends the auditor the ran-
dom value ri−1, which is used to decrypt the previous
auditor’s secret, the random value ri, which the auditor
will use to encrypt her secret, and kw(H( f‖skAi−1),rsi),
which the auditor will later decrypt and send to the server
to unlock skSi. After this point, the publisher or other
benefactor is free to cease all interaction with the system.
The construction and distribution of the above payment
information can be performed during or after the publi-
cation of the document. Note that it is in Alice’s interest
to construct these values honestly. An incorrect or inse-
cure value that prevents a server or auditor from being
paid or allows them to cheat the system will increase the
probability that her files will be dropped.

To ensure that Alice’s files will be audited during each
time period, the server and auditor should not be paid
before their audit period ends and they should not be
able to audit the document before their audit period be-
gins. To accomplish this, we use the payment system’s
time-lock feature and encrypt the lookup keys and secrets
for auditor [ti−1, ti] with the published value v of auditor

[ti−2, ti−1]. In order for the auditor of period [ti−1, ti] to
unlock her secret skAi, she must know skAi−1.

This scheme has the advantage of enforcing the time
lock with self-interest. The auditor [ti−2, ti−1] cannot re-
deem her payment until time ti−1 has passed. When an
auditor moves funds, she must also release her encrypted
secret, kw(ri−1,skAi−1) to a publicly viewable append-
only log. At this time, the auditor for the period [ti−1, ti],
who owns ri−1, is able to compute her own secret and
perform the audit of the file. If the previous auditor re-
leases her secret ahead of time, she runs the risk of for-
feiting her payment to the next auditor (since her secret
will then be visible to that auditor). We note that if a
server is temporarily unavailable at the time the auditor
attempts to retrieve the file f , the auditor can continue to
query for the document until her audit period has passed.
We show the timeline for auditing a file f at audit time ti
in Figure 2.

Alice initializes this sequence by providing the first
auditor with a randomly generated initialization key skA0
and the following values:
t1, lookup( f ),kw(H( f‖skA0),skA1),r1,kw(H( f‖skA0),rs1)

Note that this first auditor must still conduct a lookup
of the file f to unlock her secret skA1 and the server’s
random secret rs1 .
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publication time = ti−1 time = ti

P(X, ti, {skAi, skSi}, kw(ri, skAi), {skBi, x3})

Alice commits to:

Alice gives Auditor [ti−1, ti]:
random values: ri−1, ri, kw(H(f‖skAi−1), rsi)
document key: kw(skAi−1, lookup(f)),
locked private key: kw(H(f‖skAi−1), skAi)
Burn secret: skBi

kw(ri−1, skAi−1)

Auditor [ti−2, ti−1] posts

Auditor [ti−1, ti] sends
T (proof(skBi), skBi)

Auditor [ti−1, ti]
decrypts skAi−1,
lookup(f)

Auditor [ti−1, ti]
retrieves file f

Auditor [ti−1, ti]
decrypts skAi

T (proof(skAi), kw(ri, skAi))

Auditor [ti−1, ti] sends:

Figure 2: The timeline of an audit sequence for a file f from the perspective of its auditor for period [ti−1, ti]. If the
auditor for period [ti−2, ti−2] fails to complete their audit and post their private key, the next auditor will follow the
burn procedure shown in red.

4.3 Burn contracts

A disadvantage of the method of sequential payments de-
scribed above is the impact of an auditor leaving the sys-
tem, even temporarily. If the previous auditor fails to
release her information after time ti−1, the auditor during
[ti−1, ti] will not be able to perform her audit or receive re-
muneration for her efforts. This in turn will prevent sub-
sequent auditors from receiving the information needed
to perform their audits, effectively terminating the rev-
enue stream for the file. A malicious party could easily
exploit this by posing as an auditor, and simply declin-
ing to perform her audit, or coercing an honest auditor
into skipping a single payment on some targeted docu-
ment. To avoid this, we extend the requirements of our
payment system to allow an auditor to burn the previ-
ous auditor’s payment after her time has passed. If an
auditor at time ti becomes aware that the previous audit
failed, she will be able to burn the money in both her and
her predecessor’s accounts and forward the secret to the
next auditor in the chain. In order to incentivize burning
instead of complete inaction, we allow auditors to keep
a small fraction of the profits they would have received
if an audit were possible (though not so large that they
would prefer burning payments to performing audits).

We define P(X , t,S,v,{skB,x3}) to be an extension of
the payment contract in subsection 3.2 to allow Alice to
specify a burn secret, skBi and a payment amount x3 for
each time ti. This will invalidate payments to the secrets
in skSi−1 and skAi−1, and pay the holder of this secret
the amount x3. The money is burned if and only if an
auditor issues a transaction T (proof(skBi),skBi) where
she posts skBi to the log. Alice provides the auditor for
period [ti, ti+1] with the previous auditor’s secret locked
with their burn secret, kw(skBi,skAi) at the initial time
of payment. This will allow the auditor at time ti+1 to

proceed as usual.
Each auditor will then receive the previous auditor’s

secret locked with the previous burn secret. In addition
to preventing deliberate attacks on the chain of audits,
this will incentivize auditors to complete their assigned
audits before the next time period begins. We now give
an implementation of the burn functionality in Bitcoin
using the OP RETURN call. The following Bitcoin script
implements the payment contract:

P({skSi : x1,skAi : x2}, ti,{skSi,skAi},kw(r,skAi),{skBi+1,x3})

Output: [
{x1,

<hash_of_skB> OP_EQUAL
OP_IF

OP_RETURN //burns the money
OP_ELSE

<Pubkey skS> <Pubkey skA> 2
OP_CHECKMULTISIG
OP_SHA256
<hash_of_kw(r, skA)>
OP_EQUALVERIFY

OP_ENDIF
}, {x2, //same as x1 script },
{x3,

<hash_of_skB> <Pubkey skB>
OP_CHECKSIG

}]

4.4 Choice of Auditors and Audit Times

Auditors can conceivably be any collection of entities
willing to participate in the Lavinia protocol. We do not
make any assumptions about whether or not they also
participate as servers in the system. However, auditors
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do need to be discoverable by Alice. For maximum se-
curity, Alice should choose a different auditor for each
audit time and file. This requires a potentially large num-
ber of auditors. One way to increase the ease of distribu-
tion and discoverability is to make the set of servers and
auditors one and the same. This would allow Alice to
choose a random lookup key for each payment contract,
and probabilistically ensure that no one auditor will be
responsible for multiple audit times of a single file.

To reduce the ability of servers to guess future audit
times, a publisher can choose times at random intervals,
distributed according to a Poisson process. This defends
against an attack in which servers only serve content dur-
ing brief time windows around fixed intervals in an effort
to distinguish between auditors and regular users.

We also note that any reader can claim to be an auditor
for an audit time t, and servers are unable to verify her
identity. Even if the server is certain about the next audit
time, there will always be at least some period between
the release of the previous secret and the retrieval of the
document by the next auditor during which the servers
will be forced to serve the document to all users.

5 Game Theory Analysis

In the Lavinia protocol, servers are incentivized to be-
have correctly by the potential profits they earn from de-
livering files. While individual operators might have no-
bler motives, we claim that the harnessing of the profit
motive is actually an advantage of our system in many
respects. Operators who see an opportunity for profit
can go to great lengths to ensure the integrity of the sys-
tem, and to ensure they are able to fulfill their obliga-
tions. However, the use of the profit motive also has a
distinct disadvantage: profit-seeking operators will not
necessarily conform to the desired protocols and be-
haviours of the system if they can find and implement
a more profitable protocol, which may not include de-
sired behaviours [14]. In this section, we show that ratio-
nal, profit-maximizing server operators will follow the
Lavinia protocol faithfully by continuously storing and
serving documents to both regular users of the system
and auditors.

Game theoretically, we model choices of servers
within a censorship-resistant storage system as a game
played by the set of server operators A, and denote player
i by Ai. Each player operates one or more servers, all
connected to the same network, and tries to maximize
her own profits, but does not try to reduce the profits of
other players (unless doing so increases her own prof-
its).3 We assume there are η servers in total, and denote
the set of all servers by S, and server j operated by player

3We consider the impact of malicious servers in the next section.

i with Si, j.
In our model, each player plays several families of

games, in which they select a strategy in the form of
a set of policy decisions (e.g., when to store a file or
when to serve a requested file). Strategies are selected
to maximize the profit functions of each player, poten-
tially based on what the other players do. The set of
strategies selected by all players is called a strategy pro-
file. A strategy profile forms a Nash equilibrium when,
even with complete knowledge of what the other play-
ers have done, no player could improve her profits by
retroactively adopting a different strategy. An equilib-
rium is a dominant strategy equilibrium when no player
could improve her profits, regardless of what the other
players may or may not do. If the dominant strategy
equilibrium is not unique (there exists, e.g., two equally
good actions for a player to take), we assume that play-
ers prefer the strategy that is closest to the Lavinia pro-
tocol (a useful assumption in many game theoretic con-
texts [27]). This is essentially an assumption of sloth: no
player should waste resources to change from the default
client behaviour to something else, if there is no change
in her overall profits.

5.1 The Static Game
To begin, we consider a simplified version of the stor-
age system where the network topology is fixed. This
environment is unrealistic, but could be a useful approx-
imation of the network in the long run (i.e., after it has
operated for a long time, and includes many players). Its
study will also provide insights for the model considered
in the next subsection, in which servers can both join and
leave the network.

In this game operators must pick a strategy for operat-
ing their servers. An operator must adopt the following
policies:

• A serving policy, Πshare, that specifies for each file
f held by a server, whether or not to serve the file
when it is requested. This policy is expressed as a
set of probabilities 0≤Πshare( f )≤ 1, each of which
specifies the probability that the server responds to
a request for file f .

• A storage policy Πstore that specifies whether or not
to continue storing a file f expressed as a set of
probabilities 0≤Πstore( f )≤ 1.

• A routing policy Πroute, that specifies how a server s
responds to lookup requests that are routed through
it. This policy cannot depend on any particular f ,
but may instead depend on the server or lookup
key. This policy can be split into three components:
Πroute(s,any), Πroute(s,sel f ) and Πroute(s,others),
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respectively denoting whether the routing informa-
tion from server s is sent at all, whether the rout-
ing information contains correct information about
the keyspace managed by s, and whether the rout-
ing information for the keyspace of other servers is
correct.

We further model global properties of the network
with Γsend( f ), and Γroute(s): the fraction of requests for
a file f that are correctly routed (eventually) to the server
storing f , and the fraction of routing traffic that passes
through s as a fraction of all traffic expected to pass
through s (i.e., 1

η
of all traffic is expected to pass through

s). Additionally, we denote by Γhop the average num-
ber of routing steps made by a given request. Finally,
the function λBR( f ) denotes the ratio of lookup requests
made by ordinary users to lookup requests made by audi-
tors for a particular file f . The functions gtransmit( f ) and
ctransmit( f ) denote the profit from sending f to an audi-
tor, and the transmission cost of sending f to anyone,
respectively. croute similarly denotes the cost of sending
routing information for one lookup key, and T is the total
number of lookups into the system. We are now able to
state a formal characterization of how rational actors will
behave in the important set of static games of this kind
(see Appendix A for the proof).

Theorem 1. If every server in the network is a start-
ing point for 1

η
lookups, and no lookup will visit the

same server more than once, then provided that for ev-
ery server s in the storage system,

∑ f
1
η
(gtransmit( f )−λBR( f )ctransmit( f ))

T
> croute

and for every file f stored at s
1
η
(gtransmit( f )−λBR( f )ctransmit( f ))> cstore( f ),

then there exists a dominant strategy Nash equilibrium
where all servers adopt the strategy Πstore( f ) = 1 and
Πsend( f ) = 1, for all f , and Πroute(s,all) = Rs, where Rs
is the correct routing information for s.

The interpretation of this result is that, in a static sys-
tem in which traffic levels for files are relatively constant
in the longer term (i.e. λBR( f ) does not change much
from the server’s initial belief), rational servers will con-
form to the Lavinia protocol even if other servers be-
have irrationally, subject to some modest, realistic, con-
straints. Further, when more servers behave rationally,
Γsend( f ) increases, while ΓhopΓroute(s) decreases, mak-
ing the cost of irrational behaviour (relative to rational
behaviour) increase. (See the proof in Appendix A for
further details.) We conclude that this indicates the sys-
tem should be quite stable in practice, once established.

We note that, although storage and bandwidth costs
will vary by jurisdiction, the price of storage hardware

at the moment amounts to approximately $0.03 per GB
in the United States,4 and the cost of bandwidth is ap-
proximately $10/month per Mbps,5 which also equals
$0.03 per GB. The profit from hosting a file, gtransmit( f ),
should then be at least (η +λBR)

$0.03
GB · | f |.

5.2 Estimating λBR

Since the strategy adopted by the server is dependent on
λBR, the ratio of unprofitable reader traffic to profitable
auditor traffic, we now explain how servers might com-
pute this quantity, and consequently compute their strate-
gies.

If we assume that audit times are Poisson distributed,
as mentioned above, then a server Ai still needs to esti-
mate the frequency of non-audit traffic to compute λBR.
In practice, the amount of non-audit traffic may change
dramatically over time (e.g., making it an inhomoge-
neous Poisson process or a Cox process [17]). For exam-
ple, one might expect a rapid increase in reader traffic if
an important file is posted, and then later discovered and
reported in the press. If Ai cannot model the change in
the process’s value over time, then it cannot reasonably
decide whether to continue serving the file in response to
sudden spikes in traffic (like a denial of service attack). It
also cannot decide whether or not to continue storing the
file if traffic grows too high (in the hope that traffic rates
will decline again in the future), or to discard it (under
the assumption that transmitting the file will never again
be profitable).

In essence this is a traffic prediction problem, which is
an active area of research. We suggest the use of a simple
piece-wise linear approximation process [17], to estimate
the current rate of requests. Since the auditor’s request
rates should not change over time, it can be estimated us-
ing a conventional maximum likelihood approach, where
events take the form of a payment by an auditor. Thus,
using the rate of payments for the file, λT , and the rate
of total requests for the file, λ f , a server can calculate

λBR =
λ f−λ

T
λT

.

5.3 Dynamic Behaviours

Having established that Lavinia is stable when the set
of players is static, we now consider strategic behaviour
in scenarios where servers can join and leave the net-
work. In this section, we rely heavily on the presence of
cached content in the storage system. When Alice pub-
lishes a document, she should store copies of each file,
along with its payment keys at mirroring servers. We will

4http://www.mkomo.com/cost-per-gigabyte-update
5https://blog.cloudflare.com/the-relative-cost-of-bandwidth-

around-the-world/
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show in this section that servers have strong incentives
for continuing to store this information in the long term.

After a server joins the network, it will be present in
the routing information of all servers that point to its
keyspace6. The only needed result is to show that newly
joined servers will be able to acquire the content, and vi-
tally, the payment information, associated with their as-
signed keyspace. We refer to this as the mirroring sub-
game. As stated, we assume that each file f is mirrored
by at least two other servers s f 1 and s f 2. The mirror-
ing subgame is then a game played between a new server
that wishes to join the network, which we call snew, and
three other servers, sorig, s f 1 and s f 2. We denote by
key(s) the identity determining the keyspace of a particu-
lar server. The other servers are defined as follows: sorig
is the server that holds some files that the new server snew
would like to take over. s f 1 and s f 2 are currently mirror-
ing the file f . We derive the following equilibrium result
(see Appendix A for the proof):

Theorem 2. In the mirroring subgame, there is a Nash
equilibrium where the joining server snew offers a one-
time payment to either s f 1 or s f 2, selected randomly, and
will receive f with certainty. Further, this amount is not
more than half the long-run total value of the mirrored
file, ensuring a long-run profit for snew.

We have now established that, under the assumption
a joining server snew will receive all income from ac-
quired content, it can still plausibly acquire said content.
Having established this, it is straightforward to show that
servers are able to come and go from the network at will.
To leave the network, a server simply copies the con-
tent to the server that will be responsible for the files af-
ter she leaves and mirrors the content at the new mirror-
ing servers server f 1, . . . ,server f n. These mirror servers
will accept the extra load if the content is profitable to
host in the first place, because it can be sold to future
joining servers for a sum that will likely cover its costs,
provided that network churn occurs frequently enough
relative to the storage cost of the content. Since pay-
ment times are Poisson distributed, no particular block
of time is worth more than any other in expectation, so
servers cannot gain value by repeatedly joining and leav-
ing. Note also that although many servers may thus end
up with a given file and the associated payment keys,
only the server reached by an auditor will receive the rs
value needed to unlock payment for that time period.

Under our assumptions regarding secure routing,
Lavinia incentivizes an equilibrium where servers can
join and leave at will, and where content will be stored
redundantly. Coupled with the more robust equilibrium

6Note that we assume the presence of a secure routing protocol, in
which there are protections against servers reporting incorrect routing
information [7].

for a system with low churn, our results reinforce the idea
that Lavinia satisfies the goals of our payment protocol.

6 Security

We claim our audit protocol is secure if an attacker is
unable to: (1) compute the value of skA for any audit time
t, unless she is the auditor for time t, or time t has passed
and the previous auditor has posted to the append-only
log, (2) receive a payment for auditing a file f at time
t, unless she has retrieved f from the system sometime
after the previous audit time has passed, and (3) receive
a payment for serving a file f at time t, unless she has
served f after the previous audit time has passed. We
defend against these attacks through the use of the key
wrapping function kw and the cryptographically secure
hash function H. For a full proof, see Appendix A.

While the security of the protocol itself guarantees that
an auditor or server is unable to receive payment without
faithfully implementing the protocol, there are a number
of attacks that a malicious adversary willing to forego
personal gains could employ to drop content from the
system. We will now describe these attacks and their
defenses.

Denial-of-Service (DoS) Attacks: As mentioned, a
document that is frequently accessed will have a higher
associated bandwidth cost for the hosting server. An
adversary could flood the storage system with lookups
in order to make content costly, incentivizing servers to
stop serving certain files. There are defenses that servers
could deploy individually, such as rate limiting by IP or
requiring the performance of a small computational task,
to limit the number of lookups by a single user. How-
ever, these techniques are useless against distributed at-
tacks. In any case, we argue that a short-lived DoS attack
will not result in content being dropped from system, but
rather that servers will refuse to serve content only un-
til the number of requests drop back to normal levels. A
long-term DoS attack may be discoverable or too costly
even for a state-level censor. Even the DDoS attack on
Github by the Chinese government [3], which lasted five
days, is still short term in the context of a document with
a life span of multiple years.

Auditor-Server Collusion: An integral part of our
protocol is that an audit must look no different from a
regular request, forcing a server to deliver content at ev-
ery request in return for possible payment. We show that
an auditor lacks a sufficient amount of proof to reveal
her status to the server without forfeiting her own pay-
ment. The only way for an auditor to prove her status
before faithfully collecting the file f during the audit
is to provide the server with kw(H( f‖skAprev),rs) and
lookup( f ), allowing the server to retrieve skS. However,
the server cannot validate that this signing key is correct
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without the other signing key skA, and the only way for
the server to validate it without serving the file to any
auditor or reader that claims to possess skA is for the au-
ditor to give the server kw(H( f‖skAprev),skA), forfeiting
her payment.

Join-and-Leave Attacks: In an effort to inherit con-
tent from existing servers and drop it from the system en-
tirely, an adversary can employ a join-and-leave attack.
By repeatedly joining the network, an adversary will in-
herit a subset of documents from existing servers in the
system. If the adversary leaves the system without repli-
cating or moving these documents, the content will be
lost. We argue that the existence of mirrored content and
the profit motive will result in multiple redundant copies
of each document, and that these copies may be found
with minimal investigation.

False Payment Attacks: An adversary can attempt to
trick servers or auditors into dropping a document from
the system by issuing false payment contracts, forcing
the server-auditor pairs to undergo the audit and payment
protocol before she realizes that there are no funds asso-
ciated with the provided payment keys. We argue that a
document will still remain in the system as long as the
original payments provided by Alice cover the marginal
cost of participating in the additional malicious audits,
which would be very small. Furthermore, the adversary
is required to put some amount of funds in escrow and
is unable to receive her funds until the audit time t has
passed, allowing an auditor and server pair to race the
adversary to complete the protocol and receive the addi-
tional payment. An adversary may try to overwhelm Al-
ice’s original contract by flooding the system with thou-
sands of worthless ones. Such an attack is quite costly,
in both computing resources and capital, as it requires a
large amount of transactions in which the adversary must
submit real payment contracts.

7 Conclusion

We have proposed Lavinia, a novel audit and payment
protocol that incentivizes the continued availability of
published content by remunerating server participation
in a privacy-preserving manner. Lavinia provides a pub-
lisher with the means to specify an arbitrary storage time
for her documents. The continued availability of stored
documents is ensured by an audit and payment protocol,
in which servers and auditors are compensated for ensur-
ing that the document stays in the system until its expi-
ration date. We provide a game-theoretic analysis that
shows servers in the storage system acting on behalf of
self-interest to maximize profits will participate honestly
in the Lavinia protocol. With these requirements met, the
Lavinia protocol provides the final pieces for a compre-
hensive realization of a true digital printing press for the

Internet age.
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A Game Theory and Security Proofs

A.1 Proof of Theorem 1

Proof. We can now describe the utility (profit) functions
for server operators in this game. The utility of an opera-
tor is given by the sum of the utilities of the servers they
operate:

Uopp(Ai) = ∑
Si, j∈Si

User(Si, j)

while the utility of a server is given by:

User(Si, j)=∑
f

{
Πstore( f )Πroute(s,sel f )Πsend( f )Γsend( f )

×(gtransmit( f )−λBR( f )ctransmit( f ))

−Πstore( f )cstore( f )−Πroute(s,any)crouteΓroute(s)ΓhopT
}

That is, the utility function of the server is equal to
the total expected profit from the policy adopted to serve
and store each file f (or not), less the fixed costs imposed
by the routing policy (i.e. the costs of sending routing
information to those who ask for it).

Several facts are immediately apparent from this util-
ity function:

1. Servers cannot benefit from adopting a policy
Πroute(s,others) that sends incorrect routing infor-
mation, because their utility function is indepen-
dent of the routing information sent. Similarly,
adopting a policy for Πroute(s,sel f ) that incorrectly
reports the keyspace for s is pointless, because
Πroute(s,sel f ) affects all files, but Πstore( f ) pro-
vides a finer grained control over the same set, al-
lowing servers to selectively serve only profitable
files instead. Therefore, policies in which rout-
ing information is reported correctly (or not at all)
dominate policies where routing information is re-
ported incorrectly. Reporting truncated routing in-
formation is also not profitable, because its rela-
tively small size in most distributed storage systems
(e.g., about 4 KB in Chord for networks with mil-
lions of nodes) means transmission costs for full and
partial information are essentially identical.

2. Servers should always respond to routing requests,
provided that

(∑
f

Πstore( f )×Πsend( f )Γsend( f )(gtransmit( f )

−λBR( f )ctransmit( f )))/(Γroute(s)ΓhopT )> croute.

That is, as long as the routing costs are lower than
the ratio of expected profit for all files stored by the
server, to the total number of routing requests the
server handles, the server should serve files. In prac-
tice, most distributed storage systems (for instance,
distributed hash tables) perform a lookup in a lo-
gorithmic number of steps, so number of queries for
routing information that pass through a given node
should scale as logη

η
. Since routing costs should be

extremely small, we expect that for all practical val-
ues of these parameters, server operators should im-
plement the routing protocol correctly.

3. Servers should send any file for which

gtransmit( f )> λBR( f )ctransmit( f )

as this means the expected value of transmitting
the file is positive. Estimating λBR( f ), the average
number of requests before an audit, is of course key
to the policy adopted by the server for any particu-
lar file, and the server must assess whether sudden
spikes in demand for a file signal a long-term shift
in the rate, or just a short-term fluctuation. How-
ever, if it becomes unprofitable to serve the file, any
interested user (who has already retrieved the file
and who remembers the lookup keyword) can sup-
plement the file’s payments by creating a new (sep-
arate) audit contract on the same file, effectively
increasing gtransmit . The contract could be for a
shorter term than the original, allowing for tempo-
rary increases in times of high demand.

4. Servers should store any file for which

Γsend( f )(gtransmit( f )−λBR( f )ctransmit( f ))

> Πstore( f )cstore( f )

that is, any file for which the expected profits of
storing (and presumably serving) it for a given time
period exceed the costs of storage. As in observa-
tion 3 above, estimating λBR( f ) and the long-term
effects of short-term fluctuations will be important
for the actual policy adopted by a given server.

The theorem follows fairly directly from observations
1–4 above. In the worst case, Γsend( f ) = 1

η
, meaning that

requests for the file only reach the node when it is ran-
domly selected as an entry point into the storage system,
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which should happen 1
η

times. Further, Γroute(s)×Γhop
must be no greater than 1, since every node is visited at
most once per lookup. If

∑ f Γsend( f )(gtransmit( f )−λBR( f )ctransmit( f ))
Γroute(s)ΓhopT

> croute

for a server, then by observations 1 and 2 above, that
server’s profits are maximized by always providing cor-
rect routing information. It follows that Πroute(s,all) =
Rs.7

Since sending correct routing information for all nodes
is a dominant policy, and we have assumed that all stored
files are profitable,8 it follows directly from observation
3 together with the assumption that storage costs are pos-
itive (i.e., operators do not earn money by storing files
alone), and the constraint

1
η
(gtransmit( f )−λBR( f )ctransmit( f ))> cstore( f )

⇒ gtransmit( f )> λBR( f )ctransmit( f )

that profits are maximized by setting Πsend = 1 for every
file.

The final part of the dominant strategy profile then fol-
lows directly from observation 4, together with the con-
straint that

1
η
(gtransmit( f )−λBR( f )ctransmit( f ))>

cstore( f )

.

A.2 Proof of Theorem 2
Proof. In the mirroring subgame, snew wants to acquire
all content (and associated payment information) with
keys for the files it is acquiring from sorig. It may is-
sue payments to one or more of the other three servers to
acquire this information. At the same time, sorig wants
to prevent snew from taking over control of this keyspace.
(In this subgame, we assume that snew will be paid for
files in this keyspace after acquiring them, rather than

7Note that the proposed bound is not unrealistic. The marginal cost
of transporting a 4 KB Chord finger table at the present time is ap-
proximately 10−7 USD. Therefore, if the total traffic on the network
is approximately 10,000,000 lookups per audit period, a total expected
payment of 1 USD/period for all stored files combined would suffice.
This also represents the worst case value (i.e. when no other nodes in
the network respond to any routing requests). Consequently, we posit
that all realistic scenarios conform to this requirement.

8Again, in a static network, this assumption is realistic. Documents
that were not expected to be profitable should not have been stored in
the first place.

sorig, who is paid for them now. We make the worst-
case assumption that, despite the secure routing proto-
col, an auditor can still discover the copy of a file at
sorig if snew does not have one.) The actions available
to each player are respectively that: snew may offer pay-
ments to each other player via the payment function p;
sorig may also offer payments to each other player, via
the payment function p′; and each player with a copy of
the file (and associated payment information) controls a
policy Πm, which takes on value 1 if they give the file to
snew, and value 0 otherwise. The game is played sequen-
tially. First, players snew and sorig set the payment vari-
ables to any configuration they prefer. Then s f 1, s f 2, and
sorig each select a value of Πm to adopt, in light of these
variables. The game is played in a sequence of rounds
unless and until snew acquires f , or some other circum-
stance causes f to no longer be valuable. We assume
that all nodes view money one time step in the future to
be worth a fraction γ of the value today (because of the
uncertain nature of future earnings). We define the utility
functions for the players, for a single timestep, with re-
spect to a single file f with expected long-term earnings
of β ( f ) = (gtransmit( f )−λBR( f )ctransmit( f )− cstore as:

U(snew) = (Πm(s f 1)∨Πm(s f 2)∨Πm)(sorig))β ( f )

−Πm(sorig)p(sorig)−Πm(s f 1)p(s f 1)−
Πm(s f 2)p(s f 2)+ p′(snew)

U(s f 1) = Πm(s f 1)p(s f 1)+

¬(Πm(s f 1)∨Πm(s f 2))p′(s f 1)

U(s f 2) = Πm(s f 2)p(s f 2)+

¬(Πm(s f 2)∨Πm(s f 1))p′(s f 2)

U(sorig) = ¬(Πm(s f 1)+Πm(s f 2)+Πm)(sorig))β ( f )−

p′(snew)−Πm(s f 1)p′(s f 1)−Πm(s f 2)p′(s f 2)+

Πm(sorig)p(sorig)

In the long run, if sorig, s f 1 and s f 2 all adopt Πm = 0,
their utilities are:

U(s f 1) =
∞

∑
i=0

p̄′(s f 1)γ
i =

1
1− γ

p̄′(s f 1)

U(s f 2) =
1

1− γ
p̄′(s f 2)

and
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U(sorig) =
1

1− γ
(β ( f )− p̄′(s f 1)− p̄′(s f 2))

where p̄′ is the average payment given to s f 1 or s f 2
in the long run. For U(sorig) to be positive in the long
run, it follows that β ( f ) > p̄′(s f 1)+ p̄′(s f 2). However,
if p̄′(s f 1) 6= p̄′(s f 2), then snew may pay a lesser amount
to the less-well paid one to induce mirroring. Maxi-
mum resistance to mirroring is achieved when p̄′(s f 1) =
p̄′(s f 2), so for U(sorig) to be positive, and each other
server paid as much as possible, it must be the case that
p̄′(s f 1) = p̄′(s f 2) =

β ( f )
2 . If the average payments exceed

this amount in the long run, then sorig would have been
better off allowing mirroring to occur.

Given the utility functions above, it is obvious that a
one-time payment of 1

1−γ

β ( f )
2 + ε exceeds the long-term

expected earnings of either s f 1 or s f 2, and will thus be
accepted by a profit maximizing agent. Further, snew
should be happy to make such a payment, provided their
discounting factor γ is similar to those of the mirroring
servers, as they will still recover half the long-run value
of the file. Since sorig makes no payments if defection
occurs, there is no incentive to avoid offering a payment
of β ( f )

2 to both s f 2 and s f 1.

It is interesting to note that, if the joining node snew
is aware of additional caches (e.g., sorig nodes that con-
tinued storing content after previous joins), then an even
lower price can be offered. We speculate that, in the long
run, an equilibrium is reached when the storage costs of
f for the caching nodes are approximately equal to the
expected profit from joins that use the strategy outlined
above.

Importantly, the above proof depends on the exact val-
ues of γ that are used. We suppose that rational agents
have similar values of γ , because it represents the uncer-
tainty about the future (which should affect all similarly
in expectation). However, in practice, human operators
may have wildly different γ values. We note that if s f 1
and s f 2 have different values of γ , but do not know each
others’ exact γ value, they should still accept offers based
on a globally average γ , under the belief that their op-
ponent (who will eventually be offered the same value)
is just as likely to have an above-average γ as a below-
average one. Additionally, the proof depends on all play-
ers having some reasonable estimate of β ( f ). Ultimately
this could be obtained through incrementally increasing
the offers made by the p function in snew’s equilibrium
strategy. sorig has no incentive to make offers that pro-
duce negative income (it is not malicious, merely profit
maximizing), and so should give up when the bid values
exceed 1

1−γ

β ( f )
2 .

Note that the equilibrium we describe is not necessar-
ily unique. However, if snew plays according to the equi-
librium, the other players will maximize their profits by
doing so as well. Our result therefore provides an upper
bound on the price snew must pay to acquire content dur-
ing a join. Another obvious, and seemingly preferable,
policy is one where sorig gives snew the content freely.
This has the same expected value for sorig as the equi-
librium in our proof, and is better for snew, but is not an
equilibrium of the outlined game. If sorig does not make
randomized offers to the caching players, than sorig could
improve its profits by making no payments to those play-
ers, and also not providing f to snew. Consequently, play
of this kind is unstable. Indeed, there is no equilibrium
where snew can pay sorig less for the file than it could
pay either caching player. We emphasize again however,
that altruistic operators might be happy to mirror content
free of charge (especially since doing so has the same ex-
pected profits), so our provided results are for the worst
case.

A.3 Audit Protocol Security Proof

We claim our audit protocol is secure if an attacker is
unable to:

1. compute the value of skA for any audit time t, un-
less they are the auditor at that time, or time t has
passed and they are the auditor in the subsequent
time period,

2. receive a payment for auditing a file f at time t, un-
less they have retrieved the file f from the system
sometime after the previous audit time, tprev, has
passed, and

3. receive a payment for serving a file f at time t, un-
less they have served the file f some time after the
previous audit time, tprev, has passed.

Theorem 3. The Lavinia audit protocol is secure.

Proof. We first prove that an attacker is unable to per-
form attack (1) above. Let us assume for the sake of con-
tradiction that an attacker can learn information about
the auditor’s secret skA. There are only four messages
that depend on skA: kw(r,skA), kw(H( f‖skA),skA),
kw(H( f‖skA),rs), and kw(skA′,skA) as well as the pro-
tocol for commiting to a contract P and proving the pos-
session of a secret in the transaction T . Learning skA
from any of these messages, without knowledge of r or
skA′ violates our assumption on the security of the key-
wrapping function kw, the collision and pre-image resis-
tance of the hash function H, and the requirements we
placed on our payment system in subsection 3.2.
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We now show that an attacker cannot perform attack
(2). If the attacker is not tasked with auditing the file
f at time t, they do not possess kw(r,skA) and therefore
cannot perform a transaction T (proo f (skA),kw(r,skA))
and cannot receive a payment for auditing the file. Let
us then assume that the attacker is an auditor at this
time and possesses the values t, kw(lookup( f ),skAprev),
kw(H( f‖skAprev),skA), rprev, r, and rs. The auditor can
not fulfill the contract P without the secret skA. To un-
lock this secret, the auditor must possess the previous
audit key skAprev and the file f . Since skAprev will not
become available until the audit time tprev has passed, the
attacker is unable to collect a payment before time tprev.
Additionally, the auditor has no way of knowing which
file f they are in charge of until they unlock the lookup
key. This can only be done with skAprev. Therefore,
the attacker can not collect payment unless they have re-
trieved the file f from storage after tprev has passed. As
we mentioned in subsection 4.4, as long as Alice chose
her auditors reasonably, there is a very small probability
that an auditor will have cached the file f from a previous
audit time.

Finally, we show that an attacker cannot perform at-
tack (3) above. A server can only receive the payment
for serving file f at time t if it has the corresponding
payment key skS. This is locked with rs, which may be
sent by the auditor at time t. This value is locked with the
same key as skA. This reduces the attack to performing
attack (2).
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