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ABSTRACT
Website fingerprinting is a traffic analysis attack that allows an
eavesdropper to determine the web activity of a client, even if the
client is using privacy technologies such as proxies, VPNs, or Tor.
Effective defenses against website fingerprinting hamper user ex-
perience due to their large bandwidth overhead and time overhead,
requiring more than a half minute to load a page on average. In
this work we propose a new defense against website fingerprinting,
Walkie-Talkie, with a small overhead that can confuse even
a perfectly classifying attacker. Walkie-Talkie modifies the
browser to communicate in half-duplex mode rather than the usual
full-duplex mode, thus restricting the feature set available to the
attacker. We then add random padding to further confuse the at-
tacker. With Walkie-Talkie, at a bandwidth overhead of 32%
and time overhead of 9%, the perfect attacker’s false positive rate
exceeds 5%; at a bandwidth overhead of 55%, the perfect attacker’s
false positive rate exceeds 10%. Our defense therefore allows web-
browsing clients to defend their privacy against website fingerprint-
ing both effectively and efficiently.

1. INTRODUCTION
Website fingerprinting allows a local, passively observing eaves-

dropper to determine which web page a client is visiting by ob-
serving the sequence of packets. The attacker uses various packet
sequence features, such as packet counts, packet order, packet di-
rections, and unique packet lengths to classify the web page. [4]
Website fingerprinting attacks require no extra capabilities, small
computational cost, and carry little risk of detection. Previous au-
thors have found that even privacy technologies that hide packet
contents, destinations, and sizes, such as VPNs, IPsec, and Tor, are
susceptible to website fingerprinting. [5, 9, 11, 12, 15, 21] As web-
browsing clients of these privacy technologies do not want to reveal
the web pages they are visiting to any eavesdropper, they need to
defend their privacy against website fingerprinting in some way.

Website fingerprinting is a well-established threat to privacy in
the literature [7, 10, 15], as well as in practice: Tor, a popular
anonymity network, has implemented two variations of a website
fingerprinting defense [16, 18]. However, these defenses are not
effective [5, 21]. Researchers have proposed alternative defenses,
but these defenses are either ineffective against newer attacks [4]
or carry a very large overhead [3, 7, 14, 21]; we describe previous
website fingerprinting work in detail in Section 2.

We refer to defenses that are effective against all classification at-
tacks as general defenses. With known general defenses, the over-
head is very large: clients can expect a mean web page load time
between half a minute and a minute, which is frustrating. There-
fore, we want to design a defense against website fingerprinting
with the following design goals:

1. General: The defense succeeds against all possible classifica-
tion attacks by causing collisions, where the defense outputs
the same packet sequence given input packet sequences from
different web pages. Even a perfect attacker would not be
able to tell which page it came from.

2. Easy to use: The client does not need to configure the de-
fense. The defense is ready to use out of the box, and can be
deployed incrementally as it does not depend on other clients
using the same defense.

3. Decentralized: The defense should not require some central
server, with a shared database, to operate. We want to match
the decentralized model of anonymity networks.

In this paper we present Walkie-Talkie, which meets these
criteria. Our defense is effective against all attacks with a signif-
icantly lower (and tunable) overhead compared to previous work.
Walkie-Talkie modifies the client’s behavior when browsing
by enforcing half-duplex communication, much like a walkie-talkie.
Normally, web browsing is full-duplex: multiple servers are send-
ing web page data to the client while the client simultaneously
sends further resource requests, possibly to new servers. Under our
defense, the client only sends requests after the web servers have
satisfied all previous requests. The client and servers both send
data in interleaving bursts of incoming and outgoing packets. We
describe the implementation of half-duplex communication in the
browser in Section 3.

Half-duplex communication significantly reduces the feature set
available to the website fingerprinting attacker: only the number of
packets in each burst is available. Further, as we will see in our
analysis and experiments, half-duplex communication adds only a
small amount of time overhead, as it does not change the num-
ber of round trips needed to load a page, and the round-trip times
are a significant component of the page-load time in anonymity
networks such as Tor. We then add dummy packets to pad the
number of packets in each burst to further confuse the attacker,
as described in Section 4. Using the evaluation methodology de-
scribed in Section 5, we evaluate Walkie-Talkie in Section 6
on a data set collected over Tor. We show that known attacks, as
well as a perfect attacker, are unable to perform website fingerprint-
ing against packet sequences under Walkie-Talkie with high
accuracy, and that our defense has a significantly lower overhead
compared to known defenses. In Section 7 we describe and eval-
uate three variants of Walkie-Talkie that do not satisfy some
of the design goals above. In Section 8, we discuss how our results
can be reproduced and timing analysis attacks on our system. We
conclude in Section 9.
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2. RELATED WORK
Researchers have identified website fingerprinting (WF) as a po-

tential privacy leak since 1998 [6]. WF has become especially rele-
vant with the growing popularity and usability of privacy technolo-
gies such as Tor and the revelation that state-level adversaries are
willing to eavesdrop Internet users en masse [8]. As a result, Tor
currently employs a WF defense [16]. In this section, we discuss
known WF attacks and defenses to contextualize our work.

2.1 Attacks
There is a long line of research on WF attacks. [5, 9, 11, 12, 15,

20, 21] In WF, the attacker classifies which web page each test-
ing packet sequence belongs to. To do so, the attacker learns to
classify using a set of training packet sequences and a machine
learning technique. In the closed-world scenario, testing packet
sequences come from a (small) list of monitored web pages the at-
tacker knows, and the attacker must distinguish packet sequences
coming from those pages. In the open-world scenario, testing packet
sequences could originate from non-monitored web pages outside
of the list and unknown to the attacker.

Over time, researchers have demonstrated increasingly accurate
and noise-tolerant attacks using different classification tools. While
older attacks were only able to identify pages in the closed-world
scenario, newer attacks are also able to tackle the open-world sce-
nario, thus posing a practical threat to privacy. We refer the reader
to other works [4, 21] for a more detailed discussion of the specific
workings of each WF attack and how they have evolved.

2.2 Defenses
In this section we discuss two types of defenses: limited and

general defenses. Limited defenses succeed against specific WF
attacks; general defenses succeed even against an attacker who per-
forms classification perfectly accurately. The new defense we pro-
pose, Walkie-Talkie, is a general defense.

2.2.1 Limited defenses
The earliest WF defenses were designed against specific, effec-

tive attacks. Wright et al. (2009) published traffic morphing [23],
a defense that randomly pads unique packet lengths so that these
packet lengths look as if they came from another distribution of
packet lengths corresponding to another web page. They showed
that this defense was effective against Liberatore and Levine’s at-
tack [11] (2006), because that attack relies on unique packet lengths
and does not consider other features such as packet ordering. Later,
Wang et al. (2014) showed that this defense was not effective against
their attack, which uses packet ordering as a feature. [21]

Luo et al. (2011) published HTTPOS (HTTP Obfuscation) [13].
They implemented the defense on the client side using specific fea-
tures in HTTP. The client sets a range header in order to split traffic
into packets of random length and uses HTTP pipelining to change
the number of outgoing packets. Luo et al. have shown that this is
a successful defense against older attacks [2, 11, 20], but other re-
searchers have also found that it is not a successful defense against
several newer attacks [5, 21].

Tor has implemented another WF defense [16] in response to
a WF attack by Panchenko et al. [15]. Tor’s defense uses HTTP
pipelining1 by randomizing the maximum number of requests in a
pipeline, so that the order of requests may change if the number
1HTTP pipelining is implemented in modern browsers but it is not
enabled by default in IE, Firefox, and Chrome. Tor Browser, which
is based on Firefox, enables pipelining because of this defense, but
the defense does not take effect if the web server does not support
pipelining, which is still common [13].

of requests exceeds the depth of the pipeline. This defense has no
bandwidth overhead as pipelining does not introduce extra pack-
ets. Tor has updated its defense [18] recently in response to newer
attacks, but both versions of the defense have little effect on the
accuracy of known attacks [5, 21, 22].

2.2.2 General defenses
The above shows us that defenses designed only to defeat older

attacks often fail against newer attacks. The client cannot fully trust
limited defenses to carry privacy-sensitive traffic, especially against
invested adversaries that are willing to update their attacks.

Recently, researchers have developed general defenses: defenses
that would succeed against any possible classifier. In other words,
different web pages should, with sufficient likelihood, produce the
exact same packet sequence.

Dyer et al. (2012) described BuFLO [7], in which the client sends
and receives traffic at a fixed, constant rate. The traffic is padded
with dummy packets that contain no information if there are no real
packets to send. The duration of each page load is padded up to 10
seconds if it is lower; there is no further padding if it is higher.
Dyer et al. found that this defense still failed often against WF at-
tacks. Cai et al. (2014) argued that this is because the duration
frequently exceeded 10 seconds, so it is not padded, thus revealing
the approximate size of the page [4]. They showed that Tamaraw,
their modification of BuFLO, can fix this problem while signifi-
cantly reducing overhead. Similarly Wang et al. (2014) presented
Supersequence [21], finding that supersequences offer the optimal-
bandwidth solution if the defense is only applied on the wire, but
searching for such a solution is still difficult.

2.3 Moving Forward
The known general defenses—Tamaraw and Supersequence—

use constant-rate packet delivery, which has several problems:

1. Overhead. A major barrier towards implementation of gen-
eral defenses is that the bandwidth overhead and time over-
head (these terms are defined in Section 5.3) are both very
large. Under constant-rate packet delivery, both the client
and the servers send many dummy packets. Researchers have
reported a 90% to 180% bandwidth overhead [3, 4, 21] and a
170% to 240% time overhead [3]. For Tor, the time overhead
implies that loading a single web page will take more than
half a minute. We show that these defenses are overkill in
Section 6.3.

2. Inflexible packet rate. Cai et al. [3] have found that the fixed
packet rate demanded by Tamaraw and Supersequence causes
poor behavior in congested networks, especially when other
protocols are also demanding bandwidth, since there is no
congestion control in constant-rate packet delivery. The au-
thors have suggested that varying the packet rate depending
on congestion would improve its network performance, but
it is not clear if the resulting defense would still be general.

In this work we show that by using half-duplex communication,
Walkie-Talkie addresses both of these problems: it is a gen-
eral defense with low overhead and no restriction on packet rate.

3. IMPLEMENTING HALF-DUPLEX COM-
MUNICATION

Under half-duplex communication, the web-browsing client and
the servers send alternating bursts of packets: the client sends the
first outgoing burst, the server sends the first incoming burst, the
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Figure 1: Client-server connection schema for Walkie-Talkie.
Under normal HTTP, clients (C) send HTTP requests to the
server (S) as soon as possible. With half-duplex communica-
tion, clients send HTTP requests only after all previous re-
quests have been satisfied by the server in accordance with half-
duplex communication. Walkie-Talkie uses half-duplex com-
munication with extra padding packets (dashed lines) as well
as dummy burst pairs.

client replies with the second outgoing burst, and so on. We illus-
trate how half-duplex communication affects HTTP in Figure 1.

Half-duplex communication reduces the attacker’s potential fea-
ture set to only a series of burst traffic sizes, which makes WF
difficult. Previous general defenses relied on constant-rate packet
delivery. The advantages of half-duplex communication as a WF
defense compared to constant-rate packet delivery are as follows:

1. Small time overhead. Constant-rate packet delivery has a
high time overhead because it required the packet rate to be
low in order to minimize the need for dummy packets and
thus reduce bandwidth overhead. In contrast, half-duplex
communication does not impose any limit on the packet rate.

2. No bandwidth overhead. Half-duplex communication has no
bandwidth overhead; the only bandwidth overhead in our de-
fense, Walkie-Talkie, comes from the random padding,
described later in Section 4.

3. Implementation. Cai et al. found barriers to implementing
constant-rate packet delivery [3] as mentioned in Section 2.3.
However, half-duplex communication is easy to implement;
we have already done so, and we next provide details on our
implementation.

3.1 How browsers work
In this section we will briefly describe how browsers use persis-

tent connections to load data from a web server. We will use the
terminology present in Firefox, although the underlying operations
are the same for all modern browsers.

During web browsing, clients request data from the server (or
post data to the server) with transactions, which start with an HTTP
request from the client. To dispatch transactions, the browser cre-
ates or re-uses long-lived TCP/IP connections (up to a preset max-
imum number of connections). When transactions are complete,

the browser may close the attached connection, or keep them alive
as idle connections in order to dispatch further transactions to the
same server.

If the browser cannot dispatch a transaction (generally due to
a limit on the number of connections per server or in total), the
browser stores the transaction in a pending transaction queue. When
any connection dies or becomes idle, the browser enumerates the
pending transaction queue in an attempt to dispatch every trans-
action (sometimes by creating new connections). During the enu-
meration process, the browser may re-use idle connections or close
them to make room for new connections to other servers.

Within Firefox, a connection manager keeps track of connec-
tions. The connection manager owns the pending transaction queue,
counts connections, and enforces limits on the number of connec-
tions, amongst other responsibilities. To enforce the limit on the
number of connections, the connection manager decides when to
queue a transaction and when to enumerate the transaction queue
to dispatch transactions. We implement half-duplex communica-
tion by modifying the connection manager.

3.2 Implementing half-duplex communication
We add two states to the connection manager to enforce half-

duplex communication: walkie and talkie. Conceptually, the walkie
state corresponds to an idle browser; the talkie state corresponds to
a browser that is actively loading a page. We explain each below.

The connection manager starts in the walkie state. When the
client starts any transaction in the walkie state, the connection man-
ager dispatches the transaction immediately, and the connection
manager switches to the talkie state. After each page has finished
loading, when there are no pending transactions left, the connection
manager will return to the walkie state.

In the talkie state, the connection manager is currently loading
a page. The connection manager always queues new transactions
in this state; it never dispatches transactions immediately. Fur-
thermore, the connection manager does not enumerate the pending
transaction queue for dispatching whenever any connection dies or
become idle. Rather, the connection manager only enumerates the
transaction queue for dispatching when there are no active connec-
tions left (i.e. all connections have died or become idle). At this
point, the connection manager first attempts to dispatch the entire
transaction queue. If the queue is empty, the connection manager
returns to the walkie state; page loading has stopped.

We justify why the above states implement half-duplex commu-
nication in two steps. First, the client should only be talking when
the web servers are not talking. Second, the web servers should
only be talking when the client is not talking.

1. If the client is talking (dispatching transactions): In the walkie
state, there are never any active connections, and the client
is allowed to dispatch new transactions at any time. In the
talkie state, the client only attempts to dispatch new trans-
actions when there are no active connections left. In both
cases, when the client dispatches a transaction, there are no
active connections; since an HTTP server does not initiate
contact with the client again after the connections have died
or become idle, the server is not talking.

2. If the servers are talking (responding to transactions): The
client sends all transaction requests at the same time, when
the pending transaction queue is enumerated for dispatching.
The server then responds with content for each transaction.
During this time, the client waits for responses for all these
transaction requests and does not attempt to dispatch new
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transaction requests until all requests have been satisfied, so
the client is not talking.

We note that in the above proof (specifically in the second por-
tion), we made the assumption that transaction dispatching is nearly
instantaneous as compared to the round-trip time, but this is not
normally true. This is because dispatching a new transaction may
involve two steps: first, establishing a TCP connection, and sec-
ond, sending the HTTP request. The round-trip time creates a time
gap that causes the client to talk when the servers are already re-
sponding to other HTTP requests. One way to solve this problem
is to ensure that the client must perform these two steps (establish
a connection and sending the HTTP request) in two bursts rather
than one burst. However, there is a more efficient way to do so, as
described below.

3.3 Optimistic data
Normally, when a client wishes to load a resource from a web

server, the client makes a TCP connection request, waits for the
server’s request acknowledged message, and only then will the client
send a GET request to load the resource. For multi-hop anonymity
networks, this creates an extra round-trip time that can be removed
by having the client send both the TCP connection request2 and the
HTTP GET request at the same time. The final hop holds the GET
request until the TCP connection is established, and then sends out
the GET request. This is known as optimistic data in Tor, and Tor
Browser has used optimistic data since 2013. [17] As optimistic
data works on Firefox in general if the client is using a SOCKS
proxy, users of other privacy options and anonymity networks can
use optimistic data as well.

Optimistic data works on the socket level; it does not involve
the connection manager. Normally, after sending a connection es-
tablishment request, the socket waits for an acknowledgment by
the server before informing the connection manager that it is ready
to dispatch transactions. With optimistic data, the socket does not
wait, but rather it immediately pretends to the connection manager
that the server has established the TCP connection, which causes
the connection manager to dispatch the GET request immediately.
Optimistic data is useful for our defense, as it allows the client to
establish a new connection and dispatch the owning transaction at
the same time. Optimistic data reduces the number of bursts and
thus the amount of padding we need to confuse the attacker.

3.4 Other Implementation Details
Pipelining: Normally, each connection can only handle one HTTP

request at a time, and the response should be complete before the
connection manager will dispatch another request on the connec-
tion. With pipelining, each connection can dispatch multiple HTTP
requests at the same time, and the server replies to them one by one,
in order. Pipelining may reduce the number of round trips required
to load a web page, but the benefit is small and it is currently dis-
abled in major browsers. Additionally, many web servers do not
support pipelining [13]. Tor Browser has enabled pipelining as a
costless defense against WF [16], but there is no noticeable effect
on WF attacks [5, 21]. As the sole intent of using pipelining in Tor
is as a WF defense, and it does not benefit Walkie-Talkie, we
have disabled pipelining.

TLS: We note that even with optimistic data, HTTP requests over
TLS are not sent with the connection establishment request. This
is because the TLS handshake requires the client to generate a pre-
2The TCP connection request is here an application-layer message
instructing the last hop in the anonymity network to make a TCP
connection to the desired destination.

master key from the server’s response. The client cannot send the
HTTP request without completing the TLS handshake. Therefore,
the client will send the HTTP request a short while after a burst has
started. Our defense assumes the HTTP request to be at the front
of the burst, but our attackers will see their true location; we show
this does not weaken our defense in Section 6.

Speculative connections: Firefox may initiate speculative con-
nections if it believes that a transaction for the connection will ap-
pear soon. These connections may save a round trip if the specu-
lation is correct, or they may be unused and eventually closed. We
have simply disabled speculative connections as they do not obey
half-duplex communication and provide no significant benefit to
Walkie-Talkie.

4. PADDING
To begin, we assume that the client has already taken simple pre-

cautions: she is using an encrypted connection to a proxy in order
to hide both the content and IP addresses of the sites to which she
connects. Further, we assume this encrypted channel pads all pack-
ets to a fixed size so as to remove packet size as a possible feature.3

Then by using half-duplex communication, the client reduces the
attacker’s possible feature set even further, to simply counts for the
number of packets in each burst of traffic. We call the number of
packets in each burst the burst size, and we call an outgoing burst
followed by an incoming burst a burst pair. The attacker’s infor-
mation is then limited to a list of pairs of positive integers; e.g.
〈(2, 2), (2, 3), (5, 20)〉, representing the number of packets in each
outgoing burst and its corresponding incoming reply.

The client adds dummy packets that contain no information in
order to lower the attacker’s maximum possible accuracy. We refer
to the attacker who is using the best (information-theoretic) strat-
egy that gives the maximum accuracy as the perfect attacker; the
perfect attacker’s accuracy is the maximum possible attacker accu-
racy, even if it is unlikely that a real attacker could actually achieve
that level of accuracy. The perfect attacker can use all informa-
tion about the website’s true content, the network conditions, the
client’s defense, and so on, to determine which website(s) could
possibly have produced the observed packet sequence. This perfect
attacker can only fail, then, when a collision occurs; that is, when
the same packet sequence (with dummies) could have come from at
least two different web pages. In this case, even the perfect attacker
cannot correctly determine the web page. We define the collision
rate as one minus the maximum attacker accuracy. In this section
we design a padding defense that protects the client against even a
perfect attacker by padding burst traffic sizes; we want to maximize
the collision rate while minimizing overhead. We describe how we
calculate the collision rate and overhead in Section 5.

We present two variations of a padding defense: a determinis-
tic version, where the defense pads each burst size to a constant,
and a random version, where the defense adds a random number
of dummy packets to confuse the attacker. The client adds out-
going dummy packets, while a cooperator adds incoming dummy
packets. The cooperator is located between the attacker and the
destination server. In single-hop networks, a cooperating proxy de-
fends against WF attackers eavesdropping on the client’s network.
In multi-hop networks such as Tor, the cooperator may be any of
the hops. An earlier hop saves on bandwidth because padding only
exists between the client and the cooperator.4

3Note that Tor delivers all data in fixed-size cells.
4In both cases proxies that are one hop away from the client (and
eavesdroppers on its network) are potential WF attackers, so a

4



It is not necessary to add enough padding for the perfect at-
tacker’s accuracy to be close to zero, because of the base rate fal-
lacy. Due to the low base rate of visits to each single web page,
a client protecting her page accesses against an attacker may only
need a false positive rate over 5% [18,21] even if the attacker’s true
positive rate was 100%. This is because the number of false alarms
will overwhelm the attacker’s classifier.

4.1 Deterministic Padding
For deterministic padding, we perform rounding on burst sizes.

With Y as a set, we define a rounding function roundY (a) as fol-
lows:

roundY (a) =

{
min{y ∈ Y |y ≥ a} if ∃ y ∈ Y : y ≥ a

a otherwise.

In our case Y is a small set of positive integers that we call the
rounding set. We refer to costY (a) = roundY (a)− a as the cost
of rounding a by the rounding set Y .

For each burst of b packets, the defense pads to b̂ = roundY (b)
packets for some rounding set Y by adding dummy packets. We
actually have a different rounding set for each burst, but we some-
times elide this detail for simplicity of discussion in what follows.
This method of causing collisions is similar to Tamaraw [4]. The
overhead of the defense (the number of dummy packets added) is
therefore

∑
b costY (b), where b runs across all burst sizes.

We use a deterministic algorithm to find the overhead-optimal
rounding set Y given its size |Y |. Suppose that the set of integers
for which we want to find the optimal Y is a sorted multi-set B.
For example, B can be the set of first incoming burst sizes across
all observed sequences. Denote Y≤(a) as {y|y ∈ Y ∧ y ≤ a} (and
similarly for Y>(a)). Then if Y is optimal for B, Y≤(y) is optimal
for B≤(y) for any y ∈ Y , and Y>(y) is optimal for B>(y) for
any y ∈ Y . We can therefore search for the optimal rounding set
of size |Y | by enumerating all possible ways to divide B into two
contiguous sets, then searching within these two sets for optimal
rounding sets of size |Y |/2. This is a recursive solution with time
complexity O(|B|log2 |Y |+1). In our implementation we found that
the computation cost balloons out of hand at around |Y | = 10, but
fortunately for our case we do not need such a large Y .

A larger |Y | will lead to a smaller overhead but a lower collision
rate. Although we can find the optimal Y given |Y |, finding the
optimal |Y | for each burst is difficult. In our experiments, we ran-
domize |Y | within 2 ≤ |Y | ≤ 9 for each burst and seek to find the
optimal solution by evaluating many random solutions.

4.2 Random padding
In this section, we present an alternative scheme that adds a ran-

dom number of dummy packets each time it is called. The random
padding scheme is more complicated because we cannot use the
optimization algorithm for deterministic padding. As a result, we
must search the solution space of random functions, hoping to find
good solutions within a reasonable amount of time.

We denote a probability distribution over the non-negative inte-
gers as X : Z≥0 → [0, 1].

Given a packet sequence s = 〈b1, b2, b3, ..., b|s|〉 with bi =

(biOUT , biINC ), we apply defense D as follows to produce D(s):5

client using the first hop as a cooperator would not be defending
against the first hop itself.
5Note that the defense D can be applied with no prior knowledge
of the bi, which is a practical advantage compared to some variants
of Supersequence.

1. Padding real burst pairs: From two distributions XiOUT and
XiINC , we draw xiOUT and xiINC respectively, and add
them to bi, such that b̂i = (biOUT +xiOUT , biINC +xiINC ).
i runs across all burst pairs in the sequence.

2. Adding fake burst pairs: From two distributions XidumOUT

and XidumINC , we draw xidumOUT and xidumINC , and gen-
erate a new fake burst pair ˆdumi = (xidumOUT , xidumINC ).
We add fake burst pairs at random with probability pdummy

before each real burst pair of packets, which allows multiple
fake burst pairs to be added consecutively.

The defense D is therefore defined by the distributions XiOUT ,
XiINC , XidumOUT , XidumINC , (for each i = 1, 2, 3, . . .) as well
as the probability pdummy . The freedom of choice in these distri-
butions allows our scheme to be tunable (i.e., a client may wish to
increase the collision rate by increasing overhead). In the following
we describe how we choose these distributions.

4.2.1 Padding real burst pairs
We add a random number of incoming dummy packets to in-

coming bursts and outgoing dummy packets to outgoing bursts as
padding. Padding covers the true number of packets, which the at-
tacker uses as a feature. To implement the addition of dummy pack-
ets, both the client and the cooperator send dummy packets when
each burst has started. The client detects the start of a new burst
from the browser state, and sends dummy packets before send-
ing real packets. The cooperator sees the client’s dummy pack-
ets, drops them, and similarly starts sending dummy packets before
sending real packets.

Parameter selection

We choose the number of packets added to each burst from a uni-
form distribution over an interval we will determine below. Using
the uniform distribution gives no extra information to the attacker
except that the true number of real packets is in a range of a par-
ticular length, even if the attacker knows an accurate non-uniform
prior on the distribution of the number of real packets. We learn the
range of the uniform distribution as follows:

• Minimum: The minimum of the range is always zero. If the
minimum were, say, k > 0, then the attacker could remove
k packets from the given stream every time, thus effectively
reducing the minimum of the range to 0 for the attacker (but
costing the client a larger bandwidth overhead).

• Maximum: We set the maximum L of the range as some pro-
portion r of the mean number of packets in each burst posi-
tion, taken over all observed packet sequences. We can vary
r to change the overhead of the scheme. If the third incom-
ing burst, for example, tends to be large, the third incoming
burst of all sequences will receive more padding, whereas
typically smaller burst positions will receive less padding.

In our experiments we vary r to obtain results with a range of
collision rates and overhead.

4.2.2 Adding fake burst pairs
If the number of burst pairs in two packet sequences is different,

the defense cannot make them collide by padding real burst pairs
as above. We add fake burst pairs to packet sequences to increase
the chance of causing a collision. In a fake burst pair, all outgoing
and incoming packets are dummy packets; the number of outgo-
ing packets is drawn from XdumOUT and the number of incoming
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packets is drawn from XdumINC . Before each real burst pair, with
probability pdummy we insert a fake burst pair. After inserting this
fake burst pair, we may insert another with the same probability.
Given the number of real and fake burst pairs, any permutation of
them has the same occurrence probability. To implement this, the
client sends dummy packets without any real data and requests a
number of dummy packets in return from the cooperator.

Adding fake bursts anywhere in the packet sequence rather than
only at the end is useful for the defense. This is because many
packet sequences have multiple bursts with few packets and one or
two large bursts with many packets. The position of the large bursts
in the sequence is a powerful feature for the attacker; adding fake
bursts before or after the large bursts can cover their true location.

Parameter selection

Fake burst sizes should be similar to real burst sizes to maxi-
mize the collision rate; we do not want the attacker to be able to
distinguish between real bursts and fake bursts with high accuracy.
We generate fake burst sizes from distributions fitting the observed
burst sizes of real packet sequences (plus the real padding). In
Section 6 we will test two simple distributions: uniform and nor-
mal distributions. Their simplicity allows us to efficiently estimate
the maximum attacker accuracy, as the attacker needs to enumerate
over all possible permutations of fake and real bursts. We will also
determine if fake bursts help at all (as they cost extra packets) by
disabling them and measuring the maximum attacker accuracy.

5. EVALUATION
We will evaluate Walkie-Talkie by testing it against known

attacks in Section 6.4. However, this is insufficient for arguing that
our defense is truly effective against WF. Amongst other shortcom-
ings, this approach does not consider the fact that previous attacks
do not expect half-duplex input. If a defense is designed only to
defeat known attacks, it is entirely likely that it will soon be de-
feated by later attacks, a fact that is repeatedly demonstrated in
WF [5, 7, 21]. This creates a cat-and-mouse game that cannot pro-
duce effective defenses.

Therefore, the mainstay of our evaluation methodology is to dem-
onstrate that our defense is general. In other words, we evaluate
our defense against a perfect attacker that has maximal accuracy
in website fingerprinting. The perfect attacker knows the occur-
rence likelihood of all possible packet sequences of all pages, and
he is always best equipped to classify each sequence to its page.
The perfect attacker’s classification strategy is simple: it will use
a noiseless lookup table matching sequences to web pages. Our
choice of a perfect attacker is a continuation of more recent work
on general WF defenses [4, 14, 21].

While this information-theoretic attacker has perfected WF, it is
not 100% accurate. Specifically, if a packet sequence s can come
from two or more possible pages (a collision), the attacker cannot
classify s perfectly. Collisions create false positives to deter the at-
tacker: for example, an authority that would take legal action upon
observing clients visiting banned pages would be unlikely to act if
the false positive rate overwhelms the base incidence rate of clients
visiting banned pages. The attacker is not able to affect the base
incidence rate of each page. The strategy of the general defense
against a perfect attacker is therefore to maximize the collision rate.

5.1 Evaluation of deterministic defenses
Here we show how to calculate the perfect attacker’s maximum

classification accuracy in the context of collisions caused by a de-
fense D.

The web-browsing client generates a set of packet sequences,
denoted as S. Due to half-duplex communication, each sequence
s ∈ S can be written as s = (b1, b2, b3, ..., b|s|), where each burst
pair bi is a pair (biOUT , biINC ) of the number of outgoing and
incoming packets. For s, s′ ∈ S, s = s′ if all of their burst pairs
are equal. We denote M as the list of all web pages in the data
set. Each s has a true class m ∈ M , which the attacker attempts
to discern; m may be one of the monitored web pages or the non-
monitored class of all remaining web pages.

The attacker has a training set with the correct classification of
all elements in S. If the client exposes S to the attacker, the attacker
will identify the class of almost all elements, because the collision
rate of S is very low. So instead, the client uses a defense that
applies some transformation D to each sequence in S by padding
(adding dummy packets), such that the attacker only sees D(S).
For now we consider only a deterministic D. The attacker is per-
fect at classification, only failing to classify if there is a collision:
for s1, s2 ∈ S coming from different classes, D(s1) = D(s2).
Otherwise, the attacker always succeeds.

The objective of the defense is to maximize collisions. For each
s ∈ S, we define the collision set of s as {s′ ∈ S|D(s) = D(s′)}.
After applying D, the attacker cannot distinguish between any two
sequences in the same collision set. Collision sets impart an equiv-
alence relationship on the elements of S and therefore S is a union
of its distinct collision sets. For a collision set c ⊆ S, we define ni

as the number of sequences in c that came from class i. To classify
any sequence belonging to c, the attacker’s optimal strategy (opti-
mizing accuracy) is to guess that all elements in the collision set
belong to the class with the highest rate of occurrence in that set.
The attacker’s overall accuracy over c is therefore maxi ni/|c|.

5.2 Evaluation of random defenses
When a random padding D is applied to a sequence s ∈ S, the

result D(s) is now a probability distribution over possible output
sequences. We denote ps(ŝ) = Pr[D(s) = ŝ]. In this case, we
need to calculate the perfect attacker’s accuracy differently.

Suppose the attacker sees defended packet sequence ŝreal, which
is drawn from a distribution D(sreal) (the defense applied on sreal).
Our perfect attacker knows D, but should not be able to remove
dummy packets trivially; that is to say, the attacker cannot extract
sreal from ŝreal. Instead, the attacker proceeds as follows. The
attacker correctly computes ps(ŝreal) for all s ∈ S; for example,
the attacker certainly knows that psreal(ŝreal) > 0. Similar to the
deterministic case, the attacker’s optimal strategy is to guess the
class with the highest likelihood of generating ŝ.

Denoting Sreal as the subset of S from the same class as sreal,
and Smax as the most likely class to generate ŝ (determined by
computing ps(ŝreal) for all classes), the chance that the attacker
classifying ŝreal correctly is 1 if Sreal = Smax and 0 otherwise.

The above is the accuracy of only one defended packet sequence
ŝreal. To evaluate the defense, we apply D multiple times to each
element s ∈ S and perform the calculation as above, as the number
of possible outputs of D is too large for computationally exhausting
all possibilities. For our experiments in Section 6, we will apply D
10,000 times to obtain small 95% confidence intervals.

5.3 Overhead
We care about two types of overhead: bandwidth overhead and

time overhead. The bandwidth overhead of a defense is the number
of dummy packets divided by the number of real packets during
page loading. The total number of packets sent across the network
is the sum of the numbers of dummy packets and real packets. We
write the overhead as a percentage; e.g., a client using a 100% over-
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Figure 2: Attacker’s accuracy for the four padding algorithms
described in Section 6.2. Points are Pareto-optimal in band-
width overhead and accuracy. Note that the y-axis does not
start at 0.

head defense expects to send twice as many packets as a client who
is not using any defense. Our objective is to minimize overhead
while maximizing the collision rate. A high overhead implies that
the underlying network (proxies or anonymity network) must carry
more traffic.

When comparing Walkie-Talkiewith previous defenses, we
will also discuss their time overheads. The time overhead is the
amount of extra time needed to load a page, written as a percentage
of the amount of time originally needed to load a page. Defenses
with constant-rate packet delivery incur a time overhead by forcing
packets to wait for the next sending window. For example, Tama-
raw [4] intentionally sends data at a low rate in order to decrease the
chance of having to send dummy packets, thus lowering bandwidth
overhead at the cost of time overhead. Note that we evaluate the
time overhead separately from the bandwidth overhead; i.e., the
possibility that the extra bandwidth needed will clog the network
and lower packet rates does not increase the time overhead. For ex-
ample, a scheme that simply duplicates each packet in the network
has a bandwidth overhead of 100% and a time overhead of 0%.

6. RESULTS
In this section we evaluate Walkie-Talkie on data collected

from Tor using the methodology in Section 6.1. In Section 6.2 we
show that Walkie-Talkie is both effective and efficient even
against a perfect attacker. In Section 6.3 we compare our defense
against known defenses to show the significantly lower overhead of
Walkie-Talkie. Finally in Section 6.4 we demonstrate that our
defense is also highly effective against known successful website
fingerprinting attacks.

6.1 Data Collection
We collected our data on Tor Browser 4.5a4 with Tor 0.2.7.0-

alpha. We modified Tor Browser to enable half-duplex communi-
cation, as described in Section 3. Tor sends data in fixed-size cells,
across ephemeral circuits of three hops.

We collected data from Alexa’s top pages [1]. We use 100 of the
top pages as the monitored set (after removing duplicates due to
different localizations or URLs of the same page), and we collected
90 instances of each page in the monitored set. We use the next
10,000 pages in Alexa’s top pages as the non-monitored set. We
dropped any instance with fewer than 50 cells in it.

We did not use Tor for padding in our experiments; rather, padding
is simulated after data collection. This is because we wanted to test
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Figure 3: True positive rate and true negative rate with
Uniform fake bursts. Points are Pareto-optimal in bandwidth
overhead and true negative rate. Note that the y-axis does not
start at 0.

out a large number of parameter choices for our padding schemes,
and re-collecting data for each set of parameters is infeasible.

6.2 Walkie-Talkie results
In Section 4 we described a deterministic (referred to as Det

here) and a random scheme for padding in Walkie-Talkie. We
will test three ways of adding fake bursts in random padding:

1. Nofake: No fake bursts are added. Only real bursts are
padded.

2. Normal: Fake bursts are all normal distributions fitting the
observable distribution of real bursts.

3. Uniform: Fake bursts are all uniform distributions fitting
the observable distribution of real bursts. The range of the
uniform distribution is the smallest range that covers 70% of
the real burst sizes at the same burst position.

The perfect attacker maximizes his accuracy, which is defined as
the proportion of true classifications over the total number of test
cases. In our case the number of positive (monitored) test cases and
the number of negative (non-monitored) test cases are nearly equal.

To find the optimal parameters, we tested these four algorithms
in two steps. First, we obtained 10,000 random selections of param-
eters (randomization as described in Section 4) for each variation
and tested each briefly by obtaining the accuracy for 100 random
packet sequences and the overhead for all packet sequences. Ob-
taining the accuracy is computationally expensive because the at-
tacker needs to evaluate all possible combinations of real and fake
bursts. Next, we chose 100 of the best-performing selections of
parameters for each variation, and tested them up to 10,000 times
against randomly selected packet sequences. This allowed us to ob-
tain 95% confidence intervals assuming a binomial distribution of
true and false classifications.

We obtain the Pareto-optimal results (minimal overhead, min-
imal accuracy) from this list and plot them in Figure 2 for each
padding algorithm. We see that Det, our deterministic algorithm,
did not perform well compared to the random algorithms. At a
bandwidth overhead of 80%, the maximum attacker accuracies were
respectively 96.0% ± 0.3%, 91.0% ± 0.8%, 92.2% ± 0.5% and
80% ± 3% respectively for the four algorithms Det, Nofake,
Normal, and Uniform. Among these algorithms, Uniform
fake bursts was the most efficient.
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Figure 5: Comparison of maximum attacker accuracy between
general defenses. Points are Pareto-optimal in bandwidth over-
head and accuracy. With a fixed packet rate, Tamaraw and Su-
persequence cannot have a lower bandwidth overhead than the
region shown in this graph, and they have a large time over-
head between 50% and 150%. Walkie-Talkie has almost no
time overhead.

The accuracy as obtained above is an average of the true posi-
tive rate and true negative rate. We are also interested in observ-
ing how each rate varies individually because a low true negative
rate (high false positive rate) would severely hamper the attacker in
our low base rate scenario. If the attacker categorized a monitored
page as a different monitored page, we count it as a false positive.
To obtain the true positive rate and true negative rate, we tested
Uniform fake bursts specifically for the open-world scenario, and
show the results in Figure 3. In this figure, we plot the Pareto-
optimal points in terms of bandwidth overhead and true negative
rate. Nevertheless the graph shows that the true positive rate drops
faster than the true negative rate with increasing overhead. At an
overhead of 35%, the false positive rate exceeds 5%; at an overhead
of 55%, the false positive rate exceeds 10%. We therefore see that
Walkie-Talkie is able to cause significant confusion to even a
perfect attacker with relatively small overhead, especially if a low
false positive rate is sufficient (as is the case if the base rate of vis-
iting the monitored pages is low). In the next section we will show
that this overhead is much smaller than that of previous defenses.

6.3 Comparison with previous defenses
We compare our defense with previous known defenses to show

the advantages of Walkie-Talkie. Researchers have published
two general defenses: Tamaraw [4] and Supersequence [21]. Both
of them use constant-rate packet delivery and rounding the total
number of packets to a rounding set in order to produce collisions.

We divide each defense into two components: morphing and
padding, and compare them on each component.

1. Morphing: The defense restricts the feature set available to
the attacker by morphing packet sequences into another for-
mat. Walkie-Talkie uses half-duplex communication to
morph, whereas Tamaraw and Supersequence use constant-
rate packet delivery. Morphing in Walkie-Talkie has
almost no overhead and morphing in the other defenses has
a large overhead.

2. Padding: The defense adds dummy packets to cause colli-
sions. For Walkie-Talkie we use Uniform fake bursts
as described in Section 6.2. Tamaraw and Supersequence use
rounding sets to add dummy packets.

Morphing: For Walkie-Talkie, morphing with half-duplex
communication incurs no bandwidth overhead but some time over-
head waiting between bursts. The mean amount of time taken to
load each page in our data set was 17.8 ± 6.6 seconds with half-
duplex communication compared to 16.4 ± 6.0 without it. The
large variance is caused by fluctuating network conditions in Tor.
The time overhead at the mean is 8.5%. Walkie-Talkie incurs
a low time overhead because the number of round trips required to
load the page remains the same with and without half-duplex com-
munication, and the round-trip time dominates page load time in
multi-hop anonymity networks such as Tor.

For Tamaraw and Supersequence, morphing with constant-rate
packet delivery is much more expensive. The cell rate in Tamaraw
and Supersequence determine the time overhead and bandwidth
overhead: a lower cell rate sends real packets more slowly, po-
tentially decreasing the necessity for sending dummy packets, and
so decreasing the bandwidth overhead; however, the lower cell rate
increases the time overhead. We show the tradeoff between time
overhead and bandwidth overhead of Tamaraw and Supersequence
in Figure 4 by varying the cell rate.6 From the plot we can see that
if we want to implement Tamaraw or Supersequence with a rea-
sonably low time overhead, their bandwidth overhead must be very
high. For example, to reach a time overhead of 20%, the bandwidth
overhead would be at least 180% and 150% respectively even at no
collision rate.

Realistically, Tamaraw and Supersequence are likely to have an
even higher overhead because the optimal cell rate depends on the
parameters of the connection itself, which may be unpredictable
to the client, whereas for Walkie-Talkie we do not limit the
packet rate. This shows us that half-duplex communication is much
more realistic for a low-latency web-browsing client than constant-
rate packet delivery.
Padding: Next, we evaluate the padding components for the gen-
eral defenses. To do so, we measure the perfect attacker’s max-
imum accuracy versus bandwidth overhead. Relative to the other
defenses, padding is harder for Walkie-Talkie because its mor-
phing component left more features for the attacker. For Tamaraw
and Supersequence, we select the cell rate that minimizes the band-
width overhead where the time overhead is 50%. At this level,
6Supersequence originally did not have a parameter to control the
cell rate; we added it to the algorithm.
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the bandwidth overhead for Supersequence is at least 80% and the
bandwidth overhead for Tamaraw is at least 140% from constant-
rate packet delivery.

We plot the Pareto-optimal results for the three defenses in Fig-
ure 5. We see that while Tamaraw and Supersequence perform
better than Walkie-Talkie in their respective ranges of band-
width overhead, their minimal bandwidth overhead is much higher
from morphing. Furthermore their accuracy is not tunable when
the cell rate is fixed. For Walkie-Talkie, between bandwidth
overheads of 25% to 50% the perfect attacker’s false positive rate
ranges between 4% and 10%, which is often more than sufficient to
overwhelm the base rate of page visits in the sensitive data set.

Note that for Tamaraw and Supersequence, padding further in-
creases the time overhead, such that the points in Figure 5 have a
time overhead between 50% and 150% due to constant-rate packet
delivery forcing padding packets to wait. For Walkie-Talkie,
padding real bursts does not add to the time overhead, but adding
fake bursts does. The extra time overhead depends on the network;
in the worst case, where page load time is dominated entirely by
the round-trip time, the extra overhead is between 8% and 15% for
our best parameters.

We see that morphing with constant-rate packet delivery causes
Tamaraw and Supersequence to be overkill against an open-world
attacker. Walkie-Talkie fills an important niche: a low-cost al-
gorithm that deters even a perfect attacker by imposing a nontrivial
false positive rate.

6.4 Performance against known attacks
We have shown that our defense performs well against a perfect

attacker in Section 6.2. It is also interesting for us to measure the
effectiveness of Walkie-Talkie against known attacks. We im-
plemented eight known WF attacks and tested each of them against
Walkie-Talkie using Uniform fake bursts. Each WF attack
we tested was the state of the art at the time of its publication. Since
many of the older attacks were not designed for the open-world sce-
nario, we tested all of them in the closed-world scenario for consis-
tent comparison. We use 40 instances of each of the 100 monitored
pages for training and testing with 10-fold cross validation.

We show the results in Table 1 under four columns: the original
reported accuracy by the authors of the attack (Reported), the accu-
racy after morphing (half-duplex communication) but no padding
(NoPad), the accuracy with light padding (LightPad) and the accu-
racy with heavy padding (HeavyPad). The details of the LightPad
and HeavyPad settings are in the caption to the table.

We can see from Table 1 that none of the attacks comes close to
the perfect attacker’s maximum accuracy. Jaccard and MNBayes
are highly inaccurate in our case because they rely on unique packet
lengths, and there are no unique packet lengths in our scenario. Out
of all the attacks, SVM by Panchenko et al. [15] appears to suffer
least from the padding. Indeed, previous authors [4, 7] have noted
the resilience of this attack against random noise, possibly because
its use of a “kernel trick” transforming distances between packet se-
quences allows greater flexibility in ignoring dummy packets. Later
attackers using the SVM and kNN did not use this kernel trick.
We note that the comparison between the original reported accu-
racy and the accuracy under morphing (first and second columns)
may be due to half-duplex communication restricting the feature
set available to the attacker, but it may also be because those exper-
iments had different experimental setups. The last four attacks in
the table use the same setup as ours.

Table 1: Accuracy of known attacks against Walkie-Talkie.
The accuracy reported by the original authors (with no de-
fense) is included for comparison. The NoPad column is only
morphing with no noise. LightPad includes morphing and
padding using Uniform fake bursts with 23% bandwidth over-
head and maximum attacker accuracy of 0.97. HeavyPad in-
cludes morphing and padding using 64% bandwidth overhead
and maximum attacker accuracy of 0.84.

Attack Reported NoPad LightPad HeavyPad
Jaccard [11] 0.72 0.01 0.01 0.01

Naive Bayes [11] 0.68 0.44 0.28 0.17
MNBayes [9] 0.96 0.06 0.06 0.04

SVM [15] 0.73 0.65 0.51 0.36
DLevenshtein [5] 0.87 0.55 0.27 0.14

OSAD [22] 0.91 0.68 0.48 0.26
FLevenshtein [22] 0.70 0.51 0.34 0.19

kNN [21] 0.91 0.70 0.38 0.11

7. ALTERNATIVE DEFENSES
In Section 1, we listed three design goals of Walkie-Talkie.

In this section, we present three variants of Walkie-Talkie that
do not meet each one of the three goals. Each variant has a signif-
icantly lower overhead and maximum attacker accuracy. A sum-
mary is given as follows:

1. Without generality: Rather than measuring our defense ef-
fectiveness against a perfect attacker, we investigate what
overhead our defense needs in order to defeat the state-of-
the-art kNN attack by Wang et al. [21]

2. Without ease of use: We show that the client can use a nearly
costless defense with a different objective: rather than pro-
tecting all page accesses, the client chooses a set of web page
accesses she wishes to conceal and only adds noise to them,
attempting to mimic a set of frequently visited web pages.
Since the client needs to configure the sensitive and popular
pages, this variant requires some effort from the client.

3. Without decentralization: We show that by using a frequently
updated central database, which stores some packet informa-
tion about web pages, the client can add padding in a much
more efficient manner.

We present each variant and briefly evaluate its effectiveness in
the following sections.

7.1 Without generality
One of our design goals is that the defense should be general; i.e.,

even a perfect attacker should not be able to decide which packet se-
quences come from monitored web pages under the defense. This
is a strong requirement: for example, many web servers contain
advertising, varying or personalized content, which may be unpre-
dictable to any reasonable attacker, but the perfect attacker predicts
such content perfectly. We investigate what overhead we would
need if we wanted to defeat only the best known attack, which is
currently the kNN attack by Wang et al. [21], rather than all possi-
ble attacks with all possible auxiliary information available to the
attacker. Their attack is a good candidate for our case because it is
designed to defeat defenses by using feature extraction to exploit
limited defenses that left some features unprotected.
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Figure 6: kNN [21] accuracy versus overhead with the burst-
splitting defense described in Section 7.1.

Wang et al. suggest that gathering features about contiguous se-
quences of packets in the same direction is effective for their attack.
Therefore we consider a simple burst-splitting defense: the burst-
splitting defense adds random incoming and outgoing dummy pack-
ets to break contiguous sequences, on top of half-duplex commu-
nication. We then test the kNN attack against the burst-splitting
defense, varying the total number of dummy packets, to obtain
a tradeoff between bandwidth overhead and accuracy. We show
the results in Figure 6. We can see that the attack accuracy drops
sharply with only a small amount of noise added. In comparison,
recall that the attacker’s maximum accuracy was around 96% when
we added 25% overhead to Walkie-Talkie. For the burst-
splitting defense, kNN attack accuracy drops to 6% with the same
amount of overhead. At around 50% overhead, the accuracy is 1%,
the random guessing accuracy.

Although the variant we describe here is highly successful with
low overhead, it would perform very poorly against a perfect at-
tacker. In general we believe that designing a defense that specif-
ically defeats the state-of-the-art attack is a flawed approach. In
practice, the attacker may store the client’s packet sequences, tak-
ing his time to figure out the defense and tune his attack until he
succeeds with high confidence. What this variant does is the re-
verse: we tuned the defense to defeat the attack. A realistic client
would not be able to tune her defense against a known attack; the
client must choose a good defense with no knowledge of how it
will be attacked.

7.2 Without ease of use
We designed our defense so that it would require no input from

the client; in fact, it is invisible to the client. This is because we
believe privacy solutions should be easily usable, and the popularity
of Tor is evidence of this: thanks to the Tor Browser, using Tor to
browse the Internet is as easy as using a common browser to do so.
However, if the client is willing to put in some effort for a more
efficient Walkie-Talkie, she may use the variant described in
this section.

Using this defense, the client does not protect all page visits from
the WF attacker. Rather, the client selects a small set of pages, the
sensitive set (a set of infrequently accessed pages). When the client
visits a sensitive page, the defense adds noise, such that it looks like
a page from the popular set (a set of frequently accessed pages).
The popular set could be Alexa’s top 100 pages. No noise is added
to any other page. Given that the base rate of accessing the sensitive
set is very low, the perfect attacker’s accuracy and the overhead of

the scheme are both close to 0, the exact value depending on the
base rate of visiting pages from the sensitive set.

Mimicry may fail if the number of real packets when visiting a
sensitive page exceeds the number of packets we wanted to add.
Failing to mimic a page does not completely reveal the original
page; however, the attacker may guess that mimicry is happening
and gain some information about the true packet sequence. There-
fore we only need to ensure that the failure rate is low.

We test the failure rate using the following algorithm. Our data
set is divided into training instances and testing instances of each
page. Using the training instance, the client computes a character-
istic sequence for each sensitive page, which is a supersequence of
most training instance sequences. The client then checks the packet
sequences of all popular pages: if the popular packet sequence is
a supersequence of the characteristic sequence, the client attempts
to mimic that packet sequence. Mimicry fails if the testing packet
sequence (which the client did not train on) is not a subsequence of
the mimicked packet sequence. We randomized the sensitive set by
picking 10 random pages in Alexa’s top 100 pages, and the popular
set as the other 90 web pages.

We found a mean failure rate of 4% ± 3%, and each page had
a mean of 95 packet sequences that it could mimic. The client can
lower the failure rate further by only attempting to mimic very large
packet sequences.

7.3 Without decentralization
Using Walkie-Talkie, the client treats each page the same:

the noise is randomly chosen the same way for each page. How-
ever, if the client were to know the packet sequence of the page
in advance, then the client could pad each sequence differently to
minimize bandwidth overhead. However, such knowledge requires
the use of a centrally maintained database of packet sequences. The
database owner must frequently visit a large set of pages to gather
information on their packet sequences in order to keep the database
up to date. Clients can query the database using private information
retrieval. While expensive to maintain, this variant can significantly
save on the client’s bandwidth overhead.

This setting is similar to the class-level knowledge setting in-
vestigated by Wang et al. [21], and they have proposed an algo-
rithm to optimize the defense. In this work we test a variation of
their algorithm in depth. The database gathers packet sequences
of all pages, and calculates a characteristic sequence for each page,
which is a supersequence of most of its packet sequences. Then, the
database merges characteristic sequences: it takes the characteristic
sequences of two different pages, calculates their supersequence,
and assigns the new supersequence as the characteristic sequences
of both pages. The database repeats this process to increase the
collision rate. The client will attempt to load each page by padding
up to its characteristic sequence.

We test the above algorithm by varying the computation of the
characteristic sequence as well as the number of merges. We show
the Pareto-optimal results (in bandwidth overhead and maximum
attacker accuracy) in Figure 7. With only a 5% overhead, the at-
tacker’s maximum accuracy drops below 90%; 25% overhead is
enough for the attacker’s maximum accuracy to drop below 80%.
However, there is a caveat: some pages remain completely un-
defended as merging their characteristic sequence with any other
would greatly increase the overhead. A defense that defends all
pages in the database would have a much higher overhead.
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Figure 7: Best results for maximum attacker accuracy ver-
sus overhead when the client queries a central database before
packet padding, for Alexa’s top 100 sites.

8. DISCUSSION

8.1 Reproducibility of our results
To ensure that our results can be reproduced, we publish the fol-

lowing:

• Our implementation of Walkie-Talkie: the Firefox code
that modifies the browser to enable half-duplex communica-
tion, our deterministic and random padding algorithms, our
Pareto-optimal selections of parameters, and the three alter-
native defenses.

• Our experimental data sets: the cell sequences we collected
over Tor with and without half-duplex communication.

• Our implementations of previous attacks and defenses.

The code and data is available at the CrySP site https://
crysp.uwaterloo.ca/software/webfingerprint/.

8.2 Timing
In this work we made the simplifying assumption that the at-

tacker does not use precise packet timings as a WF attack feature.
While this does limit the power of the supposedly perfect attacker,
there are several reasons for this assumption:

1. Timing is rarely used as a WF attack metric. None of the at-
tacks tested in this work, which were each the state of the art
at the time, used timing as a metric. We are aware of only one
attack that uses timing: an attack by Bissias et al. [2] (2005),
which is not accurate by state-of-the-art standards. Improved
attacks have not found timing to be a powerful metric.

2. On an anonymity network, a single client must switch regu-
larly between relays to protect her identity. On Tor, the client
switches circuits every 10 minutes (by default). This means
that network conditions, specifically the capacity of the net-
work as experienced by the client, fluctuates very quickly rel-
ative to the training and testing time of the attacker. We can
therefore expect that there is a significant disparity between
the client’s timing and the timing in the attacker’s training
database.

3. Specifically for Tor, the bottleneck in the client’s connection
to a web server is almost always at the connections between
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Figure 8: Bandwidth and time overhead tradeoff if
we implemented constant-rate packet delivery on top of
Walkie-Talkie to remove timing as a metric for the at-
tacker.

Tor relays. [19] Interpacket timing would then only reveal
the packet rate induced by the Tor network.

4. For a mass surveillance operator that needs to attack a large
number of clients at once, each with their own network con-
ditions, the attacker needs to adjust the classifier for each set
of network conditions. In the worst case, the attacker would
need a different data set and classifier for each client. Essen-
tially, the assumption that timing is not a usable metric can
be understood as asserting that the attacker does not have
enough computing power to store, train, and update such a
classifier for each client.

Nevertheless, we can remove the assumption that the attacker
does not use timing as a feature with a slight cost to the bandwidth
and time overhead, simply by enforcing a constant packet rate in
half-duplex communication. When each side begins sending its
burst of data, it does so at a constant rate while sending dummy
packets if there is no real data. After sending several dummy pack-
ets, the sender recognizes that the burst has ended, and stops send-
ing data until the other side finishes their burst. This approach has
two further advantages: the defense can be implemented purely at
the socket level (only modifying Tor, not the browser), and it en-
ables rounding as a defense. Note that unlike Tamaraw and Super-
sequence, each side in our approach stops talking between bursts,
allowing the packet rate to be high, saving significantly on over-
head. On the other hand, this approach does carry the implementa-
tion problems of constant-rate packet delivery as addressed by Cai
et al. [3], as do Tamaraw and Supersequence.

We briefly test this approach on our Tor data set, varying the cell
rate as well as the number of consecutive dummy cells before each
side recognizes that the burst has ended. If the burst ends early (be-
fore all real cells have been sent), we count the rest of the real cells
as errors. In the implementation, those cells would be sent in the
next burst. We discarded any combination of cell rate and consecu-
tive dummy cells where the error rate was more than 5%. We show
the results in Figure 8. We can see that there are relatively efficient
choices of parameters. For example, to achieve a bandwidth over-
head and time overhead of 20% and 48% respectively, we send a
fixed rate of 250 outgoing cells per second, 73 incoming cells per
second, terminating each burst at 37 consecutive dummy cells out-
going and 37 consecutive dummy cells incoming. Decreasing the
bandwidth overhead further would greatly increase the time over-
head (similar to Tamaraw and Supersequence).
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9. CONCLUSION
In this paper, we presented Walkie-Talkie: a flexible, easy-

to-use defense with low overhead that can defend web clients against
all website fingerprinting attacks. Walkie-Talkie uses half-
duplex communication to limit the attacker’s feature set and ran-
dom padding to confuse even a perfect attacker. Given that website
fingerprinting is performed in the low base rate scenario, we find
that previous general defenses such as Tamaraw and Supersequence
are overkill: they incur a large bandwidth and time overhead be-
cause of constant-rate packet delivery, whereas Walkie-Talkie
can cause a sufficient false positive rate efficiently. Our alternative
defenses showed that the defense is even more efficient under less
restrictive design goals.
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