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1 Introduction

A series of works describe cryptosystems relying on the hardness of finding a small generator
of a principal ideal in the ring of integers of K = Q((2n). In particular, this problem allows
to describe fully homomorphic schemes, such as that of Smart and Vercauteren [13], or the
multilinear maps of Garg, Gentry and Halevi [8]. Moreover, these schemes have been described
as quantum safe in the absence of quantum attacks against them. This potential for quantum
safety was the main appeal to scientists from the CESG for the development of SOLILOQUY,
a cryptosystem relying on the hardness of finding a short generator of a principal ideal.

Since then, the CESG has interrupted the SOLILOQUY program because there were in-
dications that it was not as quantum safe as they originally thought. Campbel, Groves and
Shepherd [4] released an online draft explaining the design of SOLILOQUY and its apparent
weaknesses. Most notably, they observed that finding a short generator of an ideal in the ring of
integers of Q((an) polynomially reduced to finding an arbitrary generator (which corresponds
to the Principal Ideal Problem - PIP). This fact was rigorously proved by Cramer, Ducas,
Peikert and Regev [5] shortly thereafter.

The bottleneck of a key-recovery attack against schemes relying on the hardness of finding
a short generator of a principal ideal is the resolution of the PIP. A classical subexponential
algorithm was described by Biasse and Fieker for this task [2,3]. Meanwhile, the draft of
Campbel et al. [4] describes a quantum attack and conjectures that it runs in polynomial time.
Since then, this conjecture has been retracted by Pinch [12] in a talk on SOLILOQUY on behalf
of Campbel, Groves and Shepherd. The possibility of a quantum polynomial time attack has
generated a lot of attention, and was cited in [5], as well as in various blogs and discussion
forum.

Contribution In this paper, we show how to derive a quantum polynomial time attack from
a recent result of Eisentrager, Hallgren, Kitaev and Song [6] and the reduction from short-PIP
to PIP of Cramer, Ducas, Peikert and Regev [5]. We focus on the task of finding a generator
of a principal ideal in the ring of integers of Q((y~). Our contribution is two fold.

On the negative side, we analyze the quantum algorithm mentioned in the draft of Campbel
et al. [4], and we highlight the main obstructions to a polynomial run time and we put this
into perspective with respect to the current state of the art in quantum computing.



On the positive side, we rigorously prove that we can derive a quantum polynomial time
algorithm for the search of the generator of a principal ideal from the recent work of Eisentrager
et al. [6].

2 The quantum algorithm of Campbel et al. [4]

Campbel, Groves and Shepherd [4] attempted to describe a quantum polynomial time algo-
rithm for solving the Principal Ideal Problem (PIP) in totally real cyclotomic fields by using
essentially the same technical tools than those available to Hallgren in his 2005 paper [10]
(which gives a polynomial time solution to the PIP in classes of fixed degree number fields).
Combined with the Gentry-Szydlo (classical) attack [9], this solves the PIP in any cyclotomic
field. They sketched an attack in [4, Sec. 5], but it was never analyzed.

We give a high level description of the quantum attack of [4] and show how it suffers
from the same fundamental obstruction as Hallgren’s 2005 algorithm for solving the Hidden
Subgroup Problem [10] which is only known to run in polynomial time in fixed dimension.
The quantum PIP algorithm of Campbel et al. follows the usual two-step strategy consisting
of first reducing the PIP to the task of finding the periods of a function (which is similar to
the Hidden Subgroup Problem, except that the function they use does not fall into the formal
definition for the HSP). This means exhibiting a function f : G C R™ — {Lattices over R"}
for some subgroup G and m,n € Z~( such that f(z) = f(y) if and only if x = y mod A for
a lattice A C R™ whose knowledge answers the original problem (the PIP in this case). Then
the second step consists of finding the periods of f.

Proposition 1 (exponential run time). Assuming we use the same analysis as in [10, Sec
3.2] the run time of the overall algorithm is at least 2" where r > deg(K)/2.

3 An algorithm for the PIP in totally real fields

It does not seem that the HSP algorithm proposed by Hallgren [10] (and used in the draft of
Campbel et al. [4]) allows us to solve the Hidden Subgroup Problem in R™ in polynomial time
in m. However, recent work from Eisentrdger, Hallgren, Kitaev and Song [6] developed a new
framework for HSP in R™, which admits an efficient quantum algorithm even for large values
of m. They illustrated this by computing the unit group of a number field of arbitrary degree
in polynomial time. The algorithm described in [6] returns generators of a secret subgroup
H of R™ (where m depends on the degree n of the field) hidden in the periods of a function
f:R™ — {quantum states}. Eisentréger et al. showed in [6, Th. 6.1] how to recover generators
of a secret subgroup H C R™ in polynomial time in m if there is a function f satisfying the
following properties:

1. f is periodic on H, that is f(z +u) = f(z) Ve € R™, u € H,
2. f is Lipschitz for some constant a : ¥V z,y € R™, ||| f(2)) — |f(y)]| < a - dgm(z,y),
3. There are 7,& > 0 such that V x,y € R™, if dgm g (7,y) > 7, then [(f(z)|f(y))| < e,

where dgm (2,y) = ||z — y| and dgm /g (2,y) = infuen |z —y — ul| for the Euclidean norm ||z||.

Given an input principal ideal a of a totally real field K, we show how to construct a
function fy : R™ — {quantum states} which hides a lattices A, C R™ whose knowledge reveals
a generator of a and which satisfies Properties (1), (2) and (3). The main observation allowing



us to reuse the function f (defined in [6]) hiding the units of K is that if g € R™ corresponds
to a generator (unknown) of a, then f, : R™ x Z defined by fq(z,i) = f(x — ig) hides a lattice
corresponding to the i-th powers of generators of a and can be extended to a function on R™*!
enjoying Properties (1), (2), and (3).

Proposition 2. There is a function fq defined on R"™, where m is polynomial in n := deg(K),
that hides the lattice Aq and satisfies conditions (1), (2) and (3) for the parameters a,T,e
defined by

™ms

a* =6(r1 + 12 — 1) log? [N (a)| < 1 +2>2 ”(;A(l +V))2

= (log (1 + (sv/n)"~ 12V\F))2+l(21/)\)2
:3/

4 Computing a short generator of a principal ideal in Q({pn)

We show how to combine the algorithm for the PIP described in the previous section with
known techniques, in particular the recent reduction short-PIP to PIP proved by Cramer,
Ducas, Peikert and Regev [5], to perform a key recovery attack. The general idea of first
solving the PIP and then using a reduction from short-PIP to PIP probably goes back to the
time when cryptosystems relying on the short-PIP were defined. However, in the absence of
algorithms for efficiently solving these problems, there had not been any public description of
it until recently. To the best of our knowledge, the first time such an approach was publicly
suggested was by Bernstein [1]. The attack of Campbel et al. [4] also relies on the same idea.
The outline of the algorithm for solving the short-PIP we present here, which is based on the
same general strategy, is the following:

1. Compute the ideal b of KT = Q((pn + CZ;}) (totally real field) generated by N g+ (a).

2. Find a generator g of b.

3. Solve the norm equation Ny /k+(x) = g with the generalization of the Howgrave-Graham-
Szydlo algorithm [11] of Garg, Gentry and Halevi [8, 7.3].

4. Find a short generator « of a from z with the techniques described by Cramer et al. [5].

5. Return either o or & (depending on which one generates a).

Proposition 3. There is an efficient quantum algorithm that recovers the short generator of
an input ideal a in a cyclotomic field of the form Q((pm).

5 Conclusion and significance

We provided the first polynomial time algorithm to compute the generator of a principal ideal in
a totally real number field of arbitrary degree. We showed that it derives from the results of [6]
in a rather straightforward way, and despite the fact that it only applies to totally real fields, it
is a very significant result for post-quantum cryptography. Indeed. together with the reduction
from the short-PIP to the PIP, originally observed by Campbel, Groves and Shepherd [4] and
later proved by Cramer, Ducas, Peikert and Regev [5], it is enough to attack cryptosystems
based on the hardness of finding a short generator of a principal ideal in a cyclotomic field
of prime power conductor in quantum polynomial time. These include the multilinear maps
of Garg, Gentry and Halevi [8] and the fully homomorphic encryption scheme of Smart and
Vercauteren [13].
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Abstract. Some recent cryptosystems, including the multilinear maps of Garg, Gentry and
Halevi [§] and the fully homomorphic encryption scheme of Smart and Vercauteren [I7], are
based on the hardness of finding a short generator of an principal ideal (short-PIP) in a number
field (typically in cyclotomic fields). However, the assumption that short-PIP is hard has been
challenged recently by Campbel et al. [4]. They proposed an approach for solving short-PIP that
proceeds in two steps: first they sketched a quantum algorithm for finding an arbitrary generator
(not necessarily short) of the input principal ideal. Then they suggested that it is feasible to com-
pute a short generator efficiently from the generator in Step 1. Campbel et al. [4] conjectured that
this attack could run in polynomial time, which drew a lot attention. Since then, the conjectured
run-time for Step 1 has been retracted [I5] while Cramer et al. [5] validated Step 2 of the approach
by giving a detailed analysis. Whether the first step could be salvaged remains an open question.
In this paper we investigate the first step of [4] formally. We first observe that their quantum
algorithm for finding a generator essentially falls into a framework of quantum algorithms for the
hidden subgroup problem described by Hallgren [11I]. Hence, it suffers from similar limits, and
we can show that, according to the same line of analysis of Hallgren, the algorithm has running
time exponential in the degree of the number field. It has been an open question whether one can
improve the analysis of Hallgren [I1]. Therefore it indicates that it is at least difficult to prove
that the quantum algorithm of Campbel et al. [4] is efficient.

On the positive side, we show that if we adapt one component of the algorithm of Campbel
et al. and combine it with techniques in a recent work by Eisentriger et al. [6], then we can
essentially use the quantum algorithm for computing the unit group described in [6] to compute
the a generator of a principal ideal, thus efficiently solving the problem of Step 1.

Keywords: Lattice-based cryptography, quantum attack, number theory

1 Introduction

A series of works describe cryptosystems relying on the hardness of finding a small generator of
a principal ideal in the ring of integers of Q((2n). In particular, this problem allows to describe
fully homomorphic schemes, such as that of Smart and Vercauteren [17], or the multilinear maps
of Garg, Gentry and Halevi [8]. Moreover, these schemes have been described as quantum safe
in the absence of quantum attacks against them. This potential for quantum safety was the
main appeal to scientists from the CESG for the development of SOLILOQUY, a cryptosystem
relying on the hardness of finding a short generator of a principal ideal.

Since then, the CESG has interrupted the SOLILOQUY program because there were in-
dications that it was not as quantum safe as they originally thought. Campbel, Groves and
Shepherd [4] released an online draft explaining the design of SOLILOQUY and its apparent
weaknesses. Most notably, they observed that finding a short generator of an ideal in the ring of
integers of Q((an) polynomially reduced to finding an arbitrary generator (which corresponds



to the Principal Ideal Problem). This fact was rigorously proved by Cramer, Ducas, Peikert
and Regev [5] shortly thereafter.

The bottleneck of a key-recovery attack against schemes relying on the hardness of finding
a short generator of a principal ideal is the resolution of the PIP. A classical subexponential
algorithm was described by Biasse and Fieker for this task [2J3]. Meanwhile, the draft of
Campbel et al. [4] describes a quantum attack and conjectures that it runs in polynomial time.
Since then, this conjecture has been retracted by Pinch [15] in a talk on SOLILOQUY on behalf
of Campbel, Groves and Shepherd. The possibility of a quantum polynomial time attack has
generated a lot of attention, and was cited in [5], as well as in various blogs and discussion
forum.

Contribution In this paper, we show how to derive a quantum polynomial time attack from
a recent result of Eisentrager, Hallgren, Kitaev and Song [6] and the reduction from short-PIP
to PIP of Cramer, Ducas, Peikert and Regev [5]. We focus on the task of finding a generator
of a principal ideal in the ring of integers of Q({y»). Our contribution is two fold.

On the negative side, we analyze the quantum algorithm mentioned in the draft of Campbel
et al. [4], and we highlight the main obstructions to a polynomial run time and we put this
into perspective with respect to the current state of the art in quantum computing.

On the positive side, we rigorously prove that we can derive a quantum polynomial time
algorithm for the search of the generator of a principal ideal from the recent work of Eisentrager
et al. [6].

2 An (over) simplified presentation of quantum computing

In this section, we try to convey the aspects of quantum computing that are relevant to the
quantum algorithm described in [4] as well as to other quantum cryptanalysis algorithms
without getting too technical. This is achieved at the price of some simplifications. First of all,
quantum computations occur on quantum states, which are vectors of the form

2) = ag|0) + ag|1) + - + ag_ |28 — 1),
where values involved in this definitions are

— Complex numbers «; such that Y, |a;|? = 1.
— Vectors |i) of (C?)®* where |i) is the i-th element of an orthonormal basis.

The notation |z)|y) denotes the tensor product of |z) and |y). A quantum algorithm can
be viewed as a unitary matrix U in C2*2" acting on a state via |z) — Ulz) (matrix-vector
multiplication). A quantum state only gives away information once it is measured (according to
the chosen basis). This process returns the answer i with probability |a;|? and leaves the system
in the state |i). Therefore, whatever happens to the original state (usually a trivial one) has
to lead to a state whose measurement yields the result of the algorithm with good probability
(typically a constant probability). More generally, when a state has the form ) = Y. ¢; ® |v;)
where the ¢; are orthogonal vectors of (C?)®*1 such that Y,(¢;,¢;) = 1 and the |v;) are an
orthonormal basis of (C2)®*2, then measuring the second register yields the answer 7; with
probability (¢;, ¢;) and leaves the system in the state ¢; ® |v;).



3 Shor’s factoring algorithm

Post-quantum cryptography really became a concern when Shor proposed a quantum algorithm
to factor RSA integers [16]. Moreover (as we see in the next section), this algorithm extends
to the discrete logarithm problem in any group. The problem of factoring an RSA number
reduces to an instance of the so-called Hidden Subgroup Problem (HSP).

Definition 1 (Hidden Subgroup Problem over Z). Given f : Z — X for a finite set X
such that there exists a subgroup H < 7 with

flx+g) = f(x) Ve € Z if and only if g € H,

the Hidden Subgroup Problem 1is the task of finding H given oracle access to f. This means
finding v such that H = rZ.

We want to factor an RSA number N = pq. Let a coprime with N (if a | N, the factorization
problem is solved) and

z L z/NZ

r — a®*mod N

A solution to the HSP with f yields r the order of a mod N and if a is a square we get
(a"? = 1)(a"/? + 1) = 0 mod N.

This gives us a divisor of N with probability 1/4.
The first step of this method relies on the fact that if f is efficiently computable classically,
one can create an efficient quantum algorithm to evaluate f in superposition. This yields a

circuit for
Z 10) Z /(@

(EEZ]\[ IEZM

The other main ingredient we need to use in Shor’s algorithm is the so-called Quantum Fourier
Transform (QFT) over Zy; (for a large enough M). Let wyy = ¢*™/M the QFT is the quantum
algorithm realizing

QFT); : |z) — WZ“ 1)

YEL M

If we apply the QFT to the second register of the previous state, we obtain

NI ) 0, DI r 3 Wiy

CEEZ]\/[ IGZ YyEL M

=5 X e |
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We can easily verify that the ¢, are orthogonal vectors satisfying Zy<¢y|¢y> = 1. We perform
a measurement on the second register which yields the value y with probability ﬁ(gby, by) =

ﬁ ZkgM/r (w%)k~

1 —X1: -
Pr [measure y] = 2 Z (flx)wy ™ Z wyg Y1 f(x2))
21E€Zp T2€L N
1 To—x
=3 2 @)l ()
x1,T2€2L0
1 ro—XT
T I
z1,02€Z1, f(21)=f(22)
1 K

Then if y/M is close to an element of the form [/r, then the above probability will high (a
constant) if it is not, it will, the probability of measuring y will be low. From the good rational
approximation y/M of an element of the form /7, one can recover the period r and thus solve
the problem. This is not the only variant of Shor’s algorithm for factoring algorithms. Often
times, a partial measurement is performed on the f(x) register before applying the Quantum
Fourier Transform. This renormalizes nicely the resulting state, thus facilitating the analysis.
We presented this way because we wanted to use an approach similar to that of the work of
Campbel et al. [4] to emphasize the similarities between [4] and the original algorithm due to
Shor.

4 The Hidden Subgroup Problem in higher dimension

The hidden subgroup problem has a straightforward generalization in higher dimension. Many
problems in algebraic number theory can be reduced to an instance of the HSP.

Definition 2 (Hidden Subgroup Problem over Z"). Given f : Z" — X for a set X such
that there exists a subgroup H < Z™ with

f(z+g) = f(z) if and only if g € H,
the Hidden Subgroup Problem is the task of finding H given oracle access to f.

The discrete logarithm problem is the search for h € Z such that b = a” where a,b are given
elements of a group G. This can be reduced to an instance of the Hidden Subgroup Problem
in Z2. We define the function

Zx7 -1 ¢

(x,y) —— a”b7¥

The periods of this function are the subgroup G' = (1, h)Z?, and finding the subgroup G hidden
by f solves our problem. The analysis we carried on to solve the HSP in Z generalizes in higher



dimension by using the tensor product of the QFT

1 .
QFTEF : [x) —» = > willy),

k
YEZS,

where x,y € Z%,, and |x) is an encoding of the vector x. Note that here again, M has to be
chosen large enough with respect to the typical values we are calculating. As for factoring,
applying the QFT yields a state of the form ﬁ ZyeZﬁ, ¢y ® |y) and we measure the vector

y € Zk, with probability

1 (xp— 1 .
D S e P

xl,XQGZﬁ/I,f(.m):f(wg) uEEﬁZ’fW

where £ C Z* is the hidden subgroup (a lattice) we are looking for. This sum is larger when
y - X is an integer, that is when y/M € L£*. It can be shown that when y/M is close enough to
a point in the dual of £, then it has a high probability of being sampled. This generalizes the
factoring algorithm presented in the previous section which relies on the sampling of elements
in the dual of the lattice £ = rZ. After finding a good approximation of the dual lattice £+,
we use classical linear algebra methods to compute L.

To solve other number theoretic problems, we need to work with approximations of real
numbers. This occurs for example in Hallgren’s method [12] to solve the Pell equation in
quantum polynomial time. The discretization method used by Hallgren was generalized by
Hales [10] to derive a solution to the Hidden Subgroup Problem over (approximations of) the
reals. To compute the ideal class group, the unit group and to solve instances of the Principal
Ideal Problem in number fields of higher degree, the usual approach is to first reduce the
problem to the task of finding the periods of a functions f defined over R¥, and then find these
periods with an algorithm for solving the HSP. For example, Hallgren [I1] described a unit
group algorithm in a field K consisting of finding the periods of the function

R L, IxRE
where 1 € O minimizes |Log(u) — |-
r — (%(’),x —Log(u))

Here Log(u) = (log|oi(u)l, - -+ ,log|or(r)|) is the vector of the logarithms of the Archimedean
embeddings of . Since this function relies on the search for a minimum in O, its evaluation
costs exponential time in the degree, thus restricting its use for classes of number field with
fixed degree. In the same paper, Hallgren [11] described quantum polynomial time algorithms
for the unit group, the class group and the Principal Ideal Problem in classes of fixed degree
number fields.

A necessary condition to ensure that these problems can be solved in polynomial time is
that they reduce to the search for the periods of a function that is efficiently computable. The
evaluation of the function described above is not polynomial in the degree of the extension,
which is one reason why the overall algorithm does not run in polynomial time in k. The
other obstruction lies within the resolution of the subsequent instance of the HSP. Indeed, the
method used in [I1] to solve the Hidden Subgroup Problem in R* does not seem to run in
polynomial time with respect to k. It relies on the creation and the measurement of the state

|9) = RS Z Z wEWuJ ), where £, = £N10,q]".
\ |£q| meZﬁ/l ueLy



Hallgren showed that the probability of measuring x such that x/q was 1/g-close to £+ was
at least 8%,9 where n = log(disc(O) (a term corresponding to the zero-filling was omitted). In
classes of fixed degree (i.e. when k is fixed), this gives a polynomial time algorithm to solve
the HSP. However, deciding if this method could be adapted to have a polynomial complexity
in k has been an open problem for over 10 years.

5 The quantum algorithm of Campbel et al. [4]

Campbel, Groves and Shepherd [4] attempted to describe a quantum polynomial time algo-
rithm for solving the Principal Ideal Problem (PIP) in totally real cyclotomic fields by using
essentially the same technical tools than those available to Hallgren in his 2005 paper [11]
(which gives a polynomial time solution to the PIP in classes of fixed degree number fields).
Combined with the Gentry-Szydlo (classical) attack [9], this solves the PIP in any cyclotomic
field. They sketched an attack in [4, Sec. 5], but it was never analyzed.

In this section, we give a high level description of the quantum attack of [4] and show
how it suffers from the same fundamental obstruction as Hallgren’s 2005 algorithm for solving
the Hidden Subgroup Problem [II] which is only known to run in polynomial time in fixed
dimension. The quantum PIP algorithm of Campbel et al. follows the usual two-step strategy
consisting of first reducing the PIP to the task of finding the periods of a function (which
is similar to the Hidden Subgroup Problem, except that the function they use does not fall
into the formal definition for the HSP). This means exhibiting a function f : G C R™ —
{Lattices over R"} for some subgroup G and m,n € Zs¢ such that f(z) = f(y) if and only if
x =y mod A for a lattice A C R™ whose knowledge answers the original problem (the PIP in
this case). Then the second step consists of finding the periods of f.

Reduction to the search for the periods of a function Let o/ € K be a generator
(not necessarily small) of the input fractional ideal a of K and let wi,---,u, be a system
of fundamental units of the ring of integers R of K. Then every generator of the principal
ideal a is of the form o - uj*---u¥". This means that —k Log(/) + Y, x; Log(u;) = Log(p)
for some 3 € K satisfying - O = a=*, which is equivalent to 5 - Oa* = O (where Log(z) :=
(log |o1(x)], -+ ,log|or(x)])). Let v = (v1,--+ ,v,) € R", we define e” := (e”,--- ,e"), and
if K is a totally real field (the case considered in [4]), then for v = Log(x) wth = € K, we
have e¥ = (|o1(z)], -, |ov(x)]). For k € Z and v € R" (not necessarily corresponding to the
valuations of an element in K), let us denote by eV - a* the lattice generated by the elements of
the form eV -a for a € a (where elements of a are represented by their vector of real embedding,
and multiplication is component-wise). In the special case where v = Log(z) for x € K, we
have
e' ¥ =+20-af =20 o~

An element of the form (—k,v) satisfies e’ - a* = O if and only if v = k Log(c/) + >, z; Log(u;)
for some z; € Z. This means that (k,v) is in the hidden subgroup of Z x R" defined by

Ay :=Z(—1,Log(a’)) + Z(0, Log(uy)) + - - - + Z(0, Log(u;)).

As each element (k,v) of A, satisfies Y, v; = —klog(N(a)), the search of the corresponding
hidden subgroup can be restricted to the control space

G= {(k,v) € Z x R" such that Zvi = —klog(/\f(a))} .

7



The function F : G — {lattices over R"} defined by F(k,v) := ea* can be then composed by
a quantum encoding to uniquely identify the lattice eVa*. This encoding of lattices is called
the “quantum fingerprint” and it gives the map

fi(kw) € G Pk, v) D8P ).

Campbel et al. conjectured that the quantum encodings of almost identical lattices have inner
product close to 1 while the quantum encodings of essentially different lattices have inner
product close to 0. Although this property was not proved, it seems likely to hold true. The
function f “hides” A, in the sense that

f(k1,v1) = f(ko,v2) <= w = (k1,v1) — (k2,v2) € Ay

Identifying A,/ from the periods of this map is an analogue of the so-called Hidden Subgroup
Problem (HSP). This reduction between the search for a generator of an ideal and the compu-
tation of the periods of a function is different from what was done by Hallgren in [I1], and it
is a suitable one even in the case of large degree number fields. Indeed, unlike Hallgren in [I1],
Campbel et al. use a function F whose evaluation has polynomial complexity in k.

Computing the periods of f However, the method proposed by Campbel, Groves and
Shepherd for computing the periods of f does not seem to overcome the obstruction faced by
the HSP resolution method of [I1]. They propose to to find the periods of f in the same way
as the HSP is solved in Hallgren’s 2005 paper [I1], thus encountering the same limitations.

Discretize and bound G, and then create the state |¢) := ﬁ Y kwyec [Vrw)|(k,0)).
Apply the Quantum Fourier Transform over G to [).

Measure (k,v) and check if we obtain a good approximation of an element in A,
Repeat Step 2 and 3 until a basis of good approximations of Ai, is found.

Find an approximation of a basis of A, from Aé/ with classical methods.

AN S

In Step 1, M is the normalization factor depending on the radius and the precision of the
bounded discretized version G’ of G.

Proposition 1 (Sampling probability). Using the same techniques as in [11, Sec 3.2],
the probability of drawing a rational approzimation that is 1/q-close to a vector in AaL, for
q > (r+1)?X where X is a bound on the size of the vectors in a reduced basis of Ay is at least

1
> T | Al 10
~ 8(loglAf)™*!

where t > 8(r +1).

The above statement gives a lower bound on the probability of drawing points that are
approximations of elements in Aé,. This in turns give an upper bound on the run time to obtain
enough approximations of lattice points before being able to find a basis of A,/. Still assuming
that the same techniques are used, we can also derive an upper bound on the probability of
sampling an approximation of a dual lattice points, which in turns gives a lower bound on the
run time of the algorithm.



Proposition 2 (exponential run time). Still assuming the techniques of [11, Sec 3.2] with
the parameters described in the previous proposition, the run time of the overall algorithm is
at least 27.

Proof (of proposition . To bound and discretize G, we need three parameters that were not
explicitly given in [4]. The grid has precision 1/N for some N > 0, and we choose to restrict
the QFT to G N [0,¢]"*! for a large enough integer q. We also enlarge the grid by a factor
t that will be used to analyze the complexity (this is the so-called zero-filling technique). As
before, we denote the dimension by £ = r + 1 and the normalization factor M = qtN. We
can identified the discretized and bounded G’ with Z’fw. Then the algorithm is the same as for
factoring,

Z |9x) ’X Mk Z oy @ ly).

k
xGZM XGZM yezk,

We measure y and hope that it is close enough to a vector in A,/. To analyze this technique,
we use the same approach as Hallgren’s 2005 paper [I1]. As for Shor’s factoring algorithm, the
probability of drawing y € G’ (regardless of its properties) is

1 (xX2—X1
M2k<¢w¢y> M2k Z W?\’/[( )<7/’X1WJX2>

xl,xzeZ’}"w

Unlike in the exact case where (g, |[¢x,) is either 1 when x2 — x; € £ and 0 otherwise (here
L = Ay), we are dealing with approximations. We assume that the fingerprint behaves as
conjectured in [4, Sec. 3.6]. We formalize this by (¢x,[¢x,) = 1 if xo — x; is e-close to L
for some ¢ < 1/N and (i, |1x,) = 0 otherwise. For each lattice vector u € L, we have
(%, |x,) = 1 for all the x1,x9 such that x2 — x; is in a ball of radius € centered around u. So
the probability of measuring y is

! R 1 (x9—x%
M2k Z w?\l/[(z 1)<¢x1|¢xQ>:W Z Z WL(Q 1)

Xl,XQEZI]cVI X1€Z§€W XQGZIICM
X1—X2 6£+(0,€)k

To bound this probability from below, we show that the phases corresponding to an element y
close to a dual lattice vector are small. Each term x5 — x1 is of the form Nv + ¢, where v € L
and |,| < 1. The y that we hope to measure are of the form [tquw] for w € £+. Moreover, to
make sure that the phase terms remain bounded, we restrict ourselves to vectors with entries

satisfying |y;| < #AI[ZI' This means that we are measuring approximations of w € £+ with

|w;| < loqg]\'fil + 1, and that N has to be chosen large enough so that we measure a significant
portion of L. So y = qtw + &, for ||6,|| < 1/2 and
y- (X2 _xl) = (th+5w) ’ (NUJ’_E’U)
= gNt(w-v) + qgt(w - €y) + 0y - (Nv + &y).
The first term of the sum vanishes from the phase because it equals zero modulo gtN. Indeed
v-w € Z. The second term satisfies

k max; |w;] ko1

- N = log|A| ~ log(n)

qt(w - &y)
qtN




Finally, the third term of the phase satisfies

dw - (Nv+¢ey)

o < |0 - V] n |0w -« €] < k max |v;| < 1

qt gtN — qt -8

y-(x2—x1)

if we choose t > 8k. So for large enough n, we have ’ 2N

< %, and the probability P, of

measuring z satisfies

x1€Zk, x2€Zk, ueLn|o,q]k
x1—x2€L+(0,6)F

1 Z (62m/3 4 €f2m/3> _ M

> _ -
~ 2M* 2MF
ueLn|o,q]k

The above probability holds for all z € £ with entries bounded by N/log|A|. As in [IT], we
need to relate the number of points in £, = £ N[0, q]* to the number of points of Eﬁ/ log |A] =

k
£tn [0, ﬁ} . Let A be a bound on the length of the vectors in a reduced basis of £, by [14]

Prop. 8.7] we have |Ly| > if ¢ > k2 and |£ > WglADY 46 N7 > Jog | A[FE2A.

i N/tog 4]l = “FaercT)
Therefore
Ceh s A/ logAD (N log ]!
N/log|All = 4de t(L) det(EJ-) 4 ’

and the probability of drawing z such that gtz is 1/g-close to w € Eﬁ J1og | A satisfies

£ 1 1

P, > >
= 2M* = 8(log |Alt

) ‘ N/log |A|’

As pointed out in [II], such z are the points of our grid such that % is 1/g-close to a

w € ‘C]J\_f/log\A\' As there are ‘EJJ\_T/loglAl‘ vectors y associated to such a w, the probability

. . 1
of measuring one is at least ———.
& 8(log | A"

Proof (of Proposition @) With the same choice of parameters as in the proof of the previous
proposition, the probability of drawing z satisfies

1 v 1£0[0.af] g
P,=— WY VY <
(NV/log |AD* : . . .
There are | £+ N/log|al| ¥ “det(zt such points, which means that the probability of drawing

a rational approximation that is 1/¢-close to a point in Eﬁ Jlog | A is no more than

(V/logAD* ¢+ 1 _1
= det(LLt) MFdet(L)  (log|AJt)k = 2k

The total run time is at least as much as the time taken to draw a single approximation of a

dual lattice point, which is at least 2% = 27+1,



Remark This means that according to the analysis of Hallgren’s HSP algorithm for R¥, then
only upper bound on the run time that we can derive is exponential in the degree of the number
field. Moreover, we can also show that the run time to derive a rational approximation that
is 1/g-close to a vector in A2, for ¢ > (r + 1)2) is in fact at least exponential in the degree.
This shows that according to the state of the art on the resolution of the HSP, the quantum
algorithm of Campbel et al. [4] does not run in polynomial time. However, it does not formally
prove that there is no other way to choose the parameters and analyze its behavior differently.
Indeed, we followed the method of [I1, Sec 3.2] that forces us to consider the probability of
drawing elements e-close to the dual lattice for a very small ¢ = 1/q. It is unclear to us how to
analyze a variant with a relaxed condition on g, but it is certain that a different analysis than
Hallgren’s would have to be used.

6 An algorithm for the PIP in totally real fields

As mentioned before, it does not seem that the HSP algorithm proposed by Hallgren [I1] (and
used in the draft of Campbel et al. [4]) allows us to solve the Hidden Subgroup Problem in R™
in polynomial time in m. However, recent work from Eisentrager, Hallgren, Kitaev and Song [0]
developed a new framework for HSP in R™, which admits efficient an quantum algorithm even
for large values of m. They illustrated this by computing the unit group of a number field of
arbitrary degree in polynomial time. The algorithm described in [6] returns generators of a
secret subgroup H of R™ (where m depends on the degree n of the field) hidden in the periods
of a function f : R™ — {quantum states}. Eisentréger et al. showed in [6] Th. 6.1] how to
recover generators of a secret subgroup H C R™ in polynomial time in m if there is a function
f satisfying the following properties:

1. f is periodic on H, that is f(z +u) = f(x) Ve € R™, u € H,
2. f is Lipschitz for some constant a : ¥V z,y € R™, |||f(z)) — |f(y)]| < a - dgm(z,y),
3. There are 7,& > 0 such that V x,y € R™, if dgm (7, y) > 7, then [(f(z)|f(y))| < e,

where dgm (2,y) = ||z — y| and dgm /g (2,y) = infuen ||z —y — ul| for the Euclidean norm ||z|.
To construct such a function, it is possible to start from a function defined on a subgroup
G of R™. As shown in [0 Sec. 6.1], if a function defined on G C R™ hides H and satisfies
conditions (2) and (3) on all z,y € G, it can be used to define a function on R™ hiding (the
embedding of) H and satisfying (2) and (3). For simplicity, we use the following notation.

Definition 3 ((a,r,e)-oracle). . Let G be a subgroup of R™ and f : G — {quantum states}.
We say that f is a (a,r,€)-oracle on G if

— f is Lipschitz for some constant a : ¥V z,y € G, |||f(x)) = |f@W)] < a-drm(z,y),
— There are r,e > 0 such that ¥ x,y € G, if dgm g (v, y) > 1, then |(f(z)|f(y))| < e,

Our goal is to find a (a,r,e)-oracle on R™ that hides the right subgroup H of R™. Then it
can be used with the HSP algorithm of [6] to find a generator of a principal ideal in a totally
real field.

6.1 Computation of the unit group: Review of [6]

To compute the unit group, Eisentréger et al. used a function of the form f(z) = |e*- O) where
e”-O is the lattice generated by the elements of the form e”-w; for O =}, Zw;. Such a function



hides the unit group of the order O because f(z + u) = f(z) if and only if e* - O = O which
means that e” is a unit in O. It is derived from a function fg : G C R™ — {Quantum States}
where G is a hyperplane containing H. They show that if f is a (a, 7, €)-oracle on G that hides
H. then it can be extended to f : R™ — {Quantum States} satisfying (1), (2) and (3). The
first step of the description of a function hiding the unit group is to find a classical function
fc on a certain hyperplane G, then we compose it with a quantum encoding f;, and finally we
extend fg : fy o fe to a function f on R™ that satisfies (1), (2) and (3).

Classical function The function F' used by Campbel et al. [4] is very similar to the classical
oracle f. used in [6]. The latter is defined by

G CR™ e, {lattices in R¥}
v — e’ 0

Here G C R"*"™2 x (Z/2Z)"™ x (R/Z)™ is the hyperplane such that 37, . ., v = 0. In
particular, it contains the elements z of the number field K such that M(z) = £1 via the
correspondence

x = (log ’U1($)|, -, log ’O'r1+r2($)’7 sign(al(a:)), T 7Sign(a1”1 (37))7 b1, 79T2) )

where the §; are the phases of the complex embeddings ¢;(z). Then for
v = (7)17 o '77)7’1—1—7“27517 T 757‘17017 T 797‘2)7

we define the exponentiation
e’U — ((_1)516’017 e (_1)57"1 e’UTl , e?iﬂelevrl+1, . 7621'7T97‘2 eUT1+T2> e R?"l X CT’Q.

This can be naturally embedded into R* for k = | + 2r9, and in the case of v corresponding
to an x € K, we have e’ = z. Multiplication in R¥ being considered component-wise, we have
e’ - O = O if and only if v corresponds to a unit of O. This also implies that f.(v1) = fc(ve) if
and only if v; — v9 = u where e* is a unit of O.

The quantum encoding The properties that fg = f, o f. has to satisfy also depend on the
quantum encoding that was chosen, which is one of the important contributions of Eisentrager
et al. Let g(-) be the Gaussian function gs(z) = eI#I’/s* 2 ¢ RF. For any set S C R¥,
denote g5(5) := >, cq 9s(x). Given a a lattice L, the quantum encoding maps L to the lattice
Gaussian state via

{Lattices over R*} s (unit vectors in a Hilbert space)

9

L — L) = 2 er 95(v)Istrue(v))

where 7 is a normalization factor. Here [str,;(v)) is the straddle encoding of a real-valued
vector v € R¥, as defined in [6]. Intuitively, we discretize the space R* by a grid vZ*, and
we encode the information about v by a superposition over all grid nodes surrounding v.
Specifically, for the one-dimensional case, the straddle encoding of a real number is

z € R [stry(z)) == cos(gt)m + sin(gt)|j 1),



where j := |z/v| denotes the nearest grid point no bigger than x and t := z/v — j denotes
the (scaled) offset. Repeat this for each coordinate of v = (v1,...,v,) we get [str, ;(v)) =
-, Istry,(v)). To analyze our function hiding generators of a principal ideal a, we rely on the
properties of the quantum encoding of the function hiding the unit group of O.

A simplified oracle To show that the HSP algorithm of [6] can be used to compute the unit
group, we need to prove that fg is a (a,r,e)-oracle for some (a, r, €) on G. Only a simplified
version of this statement appears in [6] where the phases are discarded. A simplified oracle
defined over R™*"2 (instead of G) was described and rigorously analyzed. In this paper, we
restrict our analysis to the results that can be derived from the following statement.

Proposition 3 (Th. 5.7 of [6]). Let fr . be the classical oracle defined by

Rritrs _fRe {lattices in RF}
v — e’ O

Then fr := fq o frc s an (a,r,€)-oracle on R™1"2 with

a= N;ms +1e=3/4,r=log(1+ (3\/5)"_121/\/ﬁ) .
v

This simplified function hides the free part of the unit group in a totally real field (ro = 0). It
is claimed in [6] that the methods used to prove[6, Th. 5.7] can be generalized to prove that fg
is a (a,r,e)-oracle for some (a, r, €) on G that hides the unit group of an arbitrary field. Then
by the methods of [4, Sec 6.1], it can be extended to a function f : R™ — {Quantum States}
that satisfies conditions (1), (2) and (3) for

@’ = +l<%(1 +y))2

7 =72 +1(2v)\)?

E=¢

6.2 Computing a generator of a principal ideal in a totally real field

In this section, we assume that we are given the Z-basis of a principal ideal a of an order
O in a totally real field K. We show that there is a polynomial time algorithm to compute
(log|g|1,--- ,log|g|n) where g is a generator of a, n = deg(K) and |g|; = |oi(g)| is the i-th
Archimedean valuation of g. We reduce this problem to an instance of the HSP and we use
the framework of Eisentréger et al. [6]. We start from the same classical oracle as the function
F' defined by Campbel et at. 4] which we compose with f, and extend to R™ (in this case
m = n). The main observation that allows us to reuse the analysis of the oracle f. hiding the
unit group in [6] is that F(v,j) = f.(v—jg) where €9 is an arbitrary generator of a. We denote
The classical function we use is defined by

GCR"XZ LN {lattices in R"}
(v,7) — - 0-a7’

for a certain hyperplane G. The function f, o f¢ can be then extended from G to R™ while pre-
serving the essential continuity properties that allow us to reuse the framework of Eisentrager



et al. for the resolution of the continuous HSP. The careful analysis of the properties of f,o f,
and that of its extension to R™ lead to Proposition [6] which shows that there is a polynomial
time algorithm to find the generator of a principal ideal in a number field.

A function hiding generators of a The goal of this paragraph is to prove the following
proposition.

Proposition. There is a function f; defined on R™ that hides the lattice A, and satisfies
conditions (1), (2) and (3) for the parameters @, 7, € defined by

@’ = a} —l—l(i(l +v))2

2UA
2
= 6(r1 + 12 — 1) log? [N (a)] <‘/j:s + 2) i (%(1 + ,,))2

72 = (log (1 + (sv/n)""'2vv/n))? + 1(20))?
£=3/4

The unit group algorithm of [6] can be generalized to return a generator o’ of an ideal a in an
order O of a number field K in the case where a is known to be principal (as it is the case in
cryptography). We focus on the cases where we can use Proposition which restricts the scope
of this analysis to totally real number fields. Let G, C R™ x Z be the hyperplane such that
> i<ri vy Vi = j10g(|N (a)]) where j is the last coordinate (in Z). This contains all the elements
x of K such that NV (z) = £N(a) via the same embedding G < R™ x C" as before (with
r1 = n and ro = 0), and therefore it contains all the vectors of the form (log |g|1, - - ,log |g|n, j)
where g is a generator of a/. Now we define the modified classical oracle (which is essentially
the same function as the function F' used by Campbel et al. [4])

GaCR"XZ LN {lattices in R™}

(v,7) —  e-0-a7

where like in [6], the multiplication of two lattices is the lattice generated by all the products of
lattice elements (multiplication still being considered component-wise). We see that e”-0-a=7 =
O if and only if v corresponds to a generator of a’, and that f%(vi) = f*(vq) if and only if
v; — va = g where €9 is a generator of a/. This gives us a classical oracle hiding the lattice
Ay C G, of elements (v,j) where eV is a generator of o/ from which we can easily derive
a generator of a. But to apply the framework of Eisentrdger et al., we need to analyze the
continuity of f, o f£.

Proposition 4. With the f* and f, defined above, s = 2*"\/n|A| and v = W, fa, =

fqo f&is a (a,r.)-oracle on Gq for

- VNS

1 +2,e=3/4, r=1log(1+ (sv/n)" '2vy/n).
v

Proof. Let us fix a generator g of a and its corresponding (vg,1) € Gq € R™ x Z. The main
observation leading to the result is that f&(v,j) = fe(v — jvg), and therefore |fg,(v,j)) =
|fa(v — jug)). In the following, m :=n + 1.



a) Lipschitz condition: if j; # jo, then dgrm((v1,71), (v2,j2)) > 1 while at the same time
Il faa(v1,41)) = [faa(v2,32)) || < 2. So in this case

I fea(v1,91)) = | fa. (v2, j2))| < 2dgrm ((v1, 51), (v2, j2))-

On the other hand, if j; = jo = j, then

drm ((v1,71), (v2,2)) = dgm-1(v1,v2)
= dgm-1(v1 — jvg, v2 — jvy)
= dgm-1(v1 — j1vg, V2 — J1vy)
> all[fa(v1 — jivg)) — [fa(va — javg)) ||
= alll e, (v1, 1)) — | faa(vas 2)) I,

m™ms

4v

+1. Therefore, we have the Lipschitz condition is always satisfied for a = Y12 42.

for a =

b) The (r,e) condition: we simply need to notice that dgm 4, ((v1, 1), (v2,J2)) < drm-1 0+ (v1—
J1vg, V2 — javg). This is indeed the case because

d]Rm//la((Ulvjl)? (U2aj2)) = ulen(g* ||(U17j1) - (U27j2) - (jvgaj) - (’LL, O)H
JEZ
< nf [|(v1 = j1vg, 0) = (v2 = j2vg, 0) = (u, 0)| (by choosing j = j1 + j2)

= dRmfl/O* (1)1 — ilvg, vy — igvg).

This means that for r = log (1 + (sy/n)" '2vy/n) and e = 3/4, if dgm /4, ((v1,j1), (v2,j2)) > 7,
then dgm-1 /0~ (v1 —i1vg, V2 — i2v4) > 1 as well, and then necessarily

(faa(v1, j1)| faa (v, J2)) = (fa(v1 — jivg)|fa(v2 — javg)) < €.

Reduction to the case G = R"™ We described a (a,r.e)-oracle fg, on a hyperplane G, of
R™ x Z hiding the lattice A4 for

™ms

a=-r=+ 2 e=3/4, r=log (1+ (svn)" '2v\/n).

To apply [6, Th. 6.1], we need a function f; on R™ for some m that hides the lattice A, and
which is an (@,7,)-oracle in R™ for some a, 7, g, not necessarily equal to a,r,e. A general
guideline for performing such a task is given in [6, 6.1]. By following it, we find such a function
fa, and we can apply the quantum algorithm of [6] to derive A4, thus obtaining a generator for
a.

First of all, we can easily turn fg, defined on the hyperplane G, into a function defined
over R"! x xZ with the intermediate operation

R"x 7 —2 Gy

(U,j) I (1)1,'-- ,’L)ererl,—ZiUi+j10g|N(ﬂ)|,j)

Proposition 5. If fg, is an (a,r, e)-oracle hiding Ay on Gq, then fo, == fa,0¢ is an (ay1,r,€)-
oracle hiding Aq on G1 := R x xXZ for

a1 = a\/6(ry + 1y — 1) log [N (a)].



Proof. The fact that the (r,¢) condition is preserved is obvious because we are dropping one
coordinate. This means that if the distance in G; = R"™! x Z (modulo A,) is greater than r,
then so is the distance in G, (modulo 4,), and therefore the inner product of the two states
has to be less than €. The Lipschitz condition comes from the fact that

16, (2)) = |fa, D ? = 1 fea (¢(2) = |faa(dy))I?
< a’d*(¢(x), d(y))

2
= a? Z v,%+<jlog|/\/'(a)—zvk) +5°

k<ri+reo—1

( where (v,j) ==z —y)

=a®| Y g+ Sl@ N+ Y v

k<ri+ro—1 k<ri+ro—1

—2jlogN(a)| | Y. w|+2 D wu+s

k<ri4+ro—1 k;ﬁlgrlﬁ%‘gfl
< 6a’(ry + ry — 1)log? [N (a))| Z i + 52
k<ri+ro—1

= (6a*(r1 + 12 — 1) log® N (a)]) dg;, (2, y).

We have now a function on R¥ x Z! for k = n — 1 and | = 1 that hides A, and that is
an (a1,r ¢)-oracle on R* x Z!. Following the guidelines of [6, 6.1], we can turn it into an
(a,7,%)-oracle f, on R¥*! that hides A,. To do so, we define

l
|fa(X,$1, te 7xl)> = Z ® W)($jvzj)> ® ‘fGl(va(xlazl)a T 7S(xlazl)>a

z1,,21€{0,1} \J=1

where s(z,z) = |2/\] + z, [¢(z, 2)) = cos (%) str, (t) with t = 2/\ — s(z, z) for a lower bound
A on the shortest vector of Aj.

Proposition 6. The function fq hides the lattice Aq and satisfies conditions (1), (2) and (3)
for the parameters a,7,€ defined by
62:a2+l< (1+y))2
! 20\

=6(ry + 7o — 1) log? [N (a)] <\/TS >2+l< M(1+V))2

= (log (1 + (sv/n)"~ IQVf)) 1(2v))?
:3/

Proof. See [0, 6.1].




7 Computing a short generator of a principal ideal in Q({pn)

Several cryptosystems including the multilinear maps of Garg et al. [8] and the Smart Ver-
cauteren homomorphic encryption scheme [17] rely on the hardness of finding a short generator
in an ideal a of the ring of integers Ok of a field of the form K = Q({p») (in the particular
case p = 2). In this section we show how to combine the algorithm for the PIP described in
the previous section with known techniques, in particular the recent reduction short-PIP to
PIP proved by Cramer, Ducas, Peikert and Regev [5], to perform a key recovery attack. The
general idea of first solving the PIP and then using a reduction from short-PIP to PIP probably
goes back to the time when cryptosystems relying on the short-PIP were defined. However, in
the absence of algorithms for efficiently solving these problems, there had not been any public
description of it until recently. To the best of our knowledge, the first time such an approach
was publicly suggested was by Bernstein [I]. The attack of Campbel et al. [4] also relies on
the same idea. The outline of the algorithm for solving the short-PIP we present here, which
is based on the same general strategy, is the following:

Compute the ideal b of K = Q({pm + (1;1) generated by N+ (a).

Find (log|g|1,- - ,1og|g|n) where n = deg(K ') and g is a generator of b.

Compute a compact representation |g| = go - g3 - - -g,%k of |g|.

Solve each norm equation N x+(a;) = g; with the generalization of the Howgrave-
Graham-Szydlo algorithm [13] of Garg, Gentry and Halevi [8] 7.3].

5. Find the vector v = 3, z; Log(u;) € Log(O}) that is the closest to 3 2k Log(a;) with the
techniques described by Cramer et al. [5] where u; = ({t —1)/((pn — 1).

6. Compute a = (H ; oz]zj) -(IL w;") (modulo small primes, then reconstruct it by the CRT).

7. Return either o or & (depending on which one generates a).

-

Step 1 brings the PIP in the totally real field K+ = Q({pm + Cp_nl). This way, we can use the
oracle to the function f, described in Section [6] together with the continuous Hidden Subgroup
Problem of [6] to find (log|g|i,- - ,log|g|,) where n = deg(K™) and g is a generator of b.
From there, we can compute a compact representation of |g|, which is a generator of b (the
information on the sign of g cannot be retrieved). This is done by using the methods described
in [7, Alg. 7.53] and [3| Sec. 5]. Given a constant [ > 0 (which we can set to [ = 2), b, and
Log(g), we get polynomial sized (on the integral basis) elements g; and a polynomial bound &
such that

91 =g0- 91 gk -
This compact representation allows us to solve the norm equation N k+(z) = [g| in poly-
nomial time and to get the output = in exact compact representation. We proceed by simply
solving each each norm equation N k/Kk+(i) = g; involving the polynomially sized g;. This
gives us a generator § = [[,u]" of either a or a in compact representation. The cyclotomic
units u; = (¢l —1)/(¢pn —1) are conjectured to generate Oj, therefore, all the other generators
are of the form §- ([, v;*). Finding the z; leading to the shortest generator boils down to an in-
stance of the Bounded Distance Decoding problem in Log(Oj;). It was observed by Campbel et
al. [4] and later proved by Cramer et al. [5] that Babai’s round-off algorithm allows us to solve

this problem in polynomial time. Then all we have to do is to compute o = (H j a?j) (ILw™)

modulo a collection of small primes and then to reconstruct it.



Proposition 7. There is an efficient quantum algorithm that recovers the short generator of
an input ideal a in a cyclotomic field of the form Q((pn).

8 Conclusion and significance

We provided the first polynomial time algorithm to compute the generator of a principal ideal in
a totally real number field of arbitrary degree. We showed that it derives from the results of [6]
in a rather straightforward way, and despite the fact that it only applies to totally real fields, it
is a very significant result for post-quantum cryptography. Indeed. together with the reduction
from the short-PIP to the PIP, originally observed by Campbel, Groves and Shepherd [4] and
later proved by Cramer, Ducas, Peikert and Regev [5], it is enough to attack cryptosystems
based on the hardness of finding a short generator of a principal ideal in a cyclotomic field
of prime power conductor in quantum polynomial time. These include the multilinear maps
of Garg, Gentry and Halevi [§] and the fully homomorphic encryption scheme of Smart and
Vercauteren [17].

Strictly speaking the algorithm we discussed in Section [6] does not solve the standard
Principal Ideal Problem since the algorithm cannot decide if an input ideal (of a totally real
field) is principal (rather it takes as promise that it is principal). Further generalizations of the
methods of [6] will lead to the resolution of related problems in number theory in arbitrary
fields including the PIP, the computation of the ideal class group, the computation of S-units,
or the resolution of norm equations. For these problems however, more technical contributions
on the metrical properties of lattices will be needed to apply the general HSP framework of [6].
An extended abstract giving directions on how to solve these problems in polynomial time will
be published in the proceedings of the SODA 2016 conference. These methods are conditional
on a generalization of the HSP framework of [6] which is still under development.
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