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Abstract. This paper presents a generic meet-in-the-middle attack on block ciphers
by introducing a novel property of block ciphers called correlated sequences. Such
sequences exploit the properties of given key dependent sequences of length t to
obtain other keyed sequences of same length with σ (0 ≤ σ < t) computations of
the nonlinear function. We call these sequences (σ, t)-correlated sequences, utlilize
them for 2t rounds in a meet-in-the-middle attack, and thereby propose a 2t− 3 + l
(resp. 2t+ l)-round key recovery attack on Feistel (resp. Substitution Permutation
Network) ciphers, where l is the number of rounds of partial encryption.
We apply this technique on Simon-32/64 and Simeck-32/64 by exploiting the
linear segment set property of the nonlinear function, and show the construction
of (1, 8)-correlated sequences, i.e., length 8 sequences can be obtained by computing
the nonlinear function only once. Using these sequences, we present the first 24, 25
(out of 32)-round attacks on both ciphers which is independent of their respective key
scheduling algorithms. The attacks require 3 known plaintext-ciphertext pairs and
has a time complexity less than that of average exhaustive search. Next, we show that
the attack can be pushed to 27 rounds by considering the key scheduling algorithms
and one round differential properties without change in the attack complexities. Our
attack improves the previous results on Simon-32/64 and Simeck-32/64 by 4 rounds
and has a success probability 1. The attack has been experimentally verified with
implementation of attack on small state ciphers.
Keywords: Correlated sequences · Simon · Simeck · Meet-in-the-middle attack ·
Substitution Permutation Network · Feistel

1 Introduction
Block ciphers are one of the most and well studied symmetric key primitives. It takes n
bit plaintext and m bit (m ≥ n) master key as a input and outputs a random looking
n bit ciphertext after iterating a round function multiple times. Such a m + n to n bit
mapping can be defined using two well known constructions namely Feistel structure
and Substitution Permutation Network (SPN). A typical example of Feistel cipher1 is
DES [DES77] while AES [DR98] is the most widely deployed SPN block cipher.

A common approach while designing a block cipher is to evaluate its security against
the known generic attacks. Accordingly, the number of rounds are determined together

† This article is the revised version of the paper titled Correlated Sequence Attack on
Reduced-Round Simon-32/64 and Simeck-32/64. https://eprint.iacr.org/2018/699.pdf

1We only consider a Feistel network with 2 branches in this work.
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with an appropriate security margin2. Examples of such attacks include differential and
linear cryptanalysis [BS91, Mat93], impossible differential and zero-correlation attacks
[BBS99, BR11], integral attacks [KW02] and meet-in-the-middle (MitM) attack [DH77] to
name a few.

Over the past few years, the above cryptanalytic techniques in concurrent with auto-
mated tools such as SAT/SMT solver and Mixed Integer Linear Programming (MILP)
have been extensively used in the design and analysis of block ciphers. As a result, several
lightweight block ciphers have emerged specifically to target the challenges posed by
resource constrained environments such as RFID (EPC tags and NFC), IoT devices and
sensor networks. Examples of lightweight block ciphers encompass PRESENT [BKL+07],
LED [GPPR11], HIGHT [HSH+06], PICCOLO [SIH+11], SIMON and SPECK [BTCS+13],
SIMECK [YZS+15], SKINNY [BJK+16] and GIFT[BPP+17].

Among most of the aforementioned block ciphers, Simon [BTCS+13] designed by the US
National Security Agency (NSA) in 2013 acheive overwhelming performance in hardware
due to its simple quadratic round function which consists of only bitwise XORS and ANDs.
Later in CHES 2015, Yang et al. [YZS+15] proposed Simeck that has a smaller hardware
footprint than Simon, by combining the good design components of both Simon and Speck.
However, the attacks on Simon are directly applicable to Simeck because of a similar
structure. Accordingly, Simon-like ciphers, i.e., Feistel ciphers with a similar nonlinear
function3 as Simon attracted a lot of attention from the cryptographic community.

In this work, we propose a generic meet-in-the-middle attack on block ciphers by
introducing a novel property called correlated sequences. As an application of our attack,
we break up to 85% (27/32) rounds of Simon-32/64 and Simeck-32/64 while the previous
attacks can reach only 23 rounds. Although, our attack has time complexity close to
average exhaustive search, it has a very low data complexity and success probability 1.
In addition, it depict weaknesses in Simon-like ciphers which were not investigated before.
Table 1 presents a summary of state-of-the-art cryptanalytic results on Simon-32/64 and
Simeck-32/64.
Related work. Several papers have analyzed the security and investigated the param-
eter choices of the round function to get a deeper understanding of design rationale of
Simon-like ciphers [ALLW14, CW16, CCW+18, FSW16, KLT15, KR16, KSI16, LLW17,
QHS16, QCW16, SHMS14, TM16, WLV+14, WWJZ14, ZGHL16]. Currently, the best
cryptanalytic results on Simon and Simeck are reduced-round differential/linear and integral
attacks. The smaller versions, namely Simon-32/64 and Simeck-32/64, with blocksize and
key length, 32 and 64-bit, respectively, have security margin of 28% with MitM attack
[SHMS14] covering only 18 rounds. Up to our knowledge, the only 24 round attack on
Simon-32/64 was proposed in [CCW+18]. However, it requires full codebook and has time
complexity 263 (see Table 1).
Our contributions. In this paper, we propose a generic meet-in-the-middle attack on
block ciphers by introducing a novel property called correlated sequences. We apply this
attack on reduced-round Simon-32/64 and Simeck-32/64, and present the first 24, 25, 26
and 27-round key recovery attacks on both ciphers. Thus, our main contributions are
summarized as follows.

1. We introduce a novel property of block ciphers called correlated sequences. For
a fixed key k, we consider t rounds of cipher as a keyed sequence of length t,
i.e, S(k,t) = (s0, s1, . . . , st−1), where si is the state at i-th round. Our technique
exploit the properties of S(k,t) to obtain S(k′,t) with σ (0 ≤ σ < t) computations of
the nonlinear function. We call these sequences (σ, t)-correlated sequences. For a

2
(

1− # attacked rounds
# full rounds

)
× 100

3Different shift parameters, for e.g., the shift parameters of Simon and Simeck are (8,1,2) and (5,0,1),
respectively.
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Table 1: Summary of attacks on Simon-32/64 and Simeck-32/64
Attack Cipher #

attacked
rounds /

32

Data Memory
(Bytes)

Time Success
rate

Differential Simon-32/64 [WWJZ14] 21 231 - 255.25 0.51
Simon-32/64 [QHS16] 22 232 - 258.76 0.315
Simeck-32/64 [KR16] 19 231 233 240 -
Simeck-32/64 [QHS16] 22 232 - 257.9 0.417

Linear Simon-32/64 [CW16] 23 231.19 - 261.84 0.277
Simeck-32/64 [QCW16] 23 231.91 - 261.78 0.456

Integral Simon-32/64 [WLV+14] 21 231 254 263 1
Simon-32/64 [FSW16] 22 231 255.8 263 1
Simon-32/64 [CCW+18] 24 232 233.64 263 1
Simeck-32/64 [ZGHL16] 21 231 246.22 263 1

Impossible Differential Simon-32/64 [DF16] 20 232 245.5 262.8 -
Simeck-32/64 [YZS+15] 20 232 258 262.5 -

Zero correlation Simon-32/64 [SFW15] 21 232 231 259.4 -
Simeck-32/64 [ZGHL17] 21 232 247.67 258.78 -

Meet-in-the-middle Simon-32/64 [SHMS14] 18 8 252 262.57 1

Correlated sequences Simon-32/64

24 3 249 262.87 1
25 3 249 262.94 1
26 3 249 262.88 1

Sections 5 and 6 27 3 249 262.94 1

Simeck-32/64

24 3 249 262.87 1
25 3 249 262.94 1
26 3 249 262.88 1
27 3 249 262.94 1

r-round block cipher with (σ, t)-correlated sequences, we propose a generic r1 + r2
rounds MitM attack where r1 + r2 ≤ r, r1 = 2t− 3 (resp. 2t) for Feistel (resp. SPN)
ciphers, and r2 is the number of rounds of partial encryption. Our attack has a
time complexity strictly less than that of trivial exhaustive search and requires only⌈ keysize
blocksize

⌉
+ 1 known plaintext-ciphertext pairs.

2. We apply the method of correlated sequences to Simon-like ciphers where the key
length is twice the blocksize. We investigate the linear segment set properties of the
quadratic nonlinear function and show that all (1, 8)-correlated sequences can be
obtained by computing the nonlinear function only once. Using these sequences, we
present the first 24, 25-round key recovery attack on Simon-32/64 and Simeck-32/64
which is independent of the key scheduling algorithms. The attack requires 3 known
plaintext-ciphertext pairs and has a memory complexity of 249 bytes. The time
complexities are 262.87(resp. 262.94) for 24 (resp. 25)-round attacks.

3. By incorporating the properties of correlated sequences with key scheduling algorithms
and one round differentials, we show that the attack can be pushed to 2 more rounds.
Accordingly, we present a key recovery attack on 26 (27)-round Simon-32/64 and
Simeck-32/64 which has same complexities as of the 24 (25)-round attack.

4. We provide an implementation of our attack in Python for the smaller cases, i.e.,
Simon-8/16 (Simeck-8/16) and Simon-16/32 (Simeck-16/32). Our experimental results
have a success probability 1 and hence proves the attack’s soundness for Simon-32/64
and Simeck-32/64.

Outline. The rest of the paper is organized as follows. In Section 2, we review the
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meet-in-the-middle attack and specification of Simon-like block ciphers. Section 3 presents
the definitions and basic properties of the correlated sequences, and applications of these
sequences to MitM attack on Feistel and SPN ciphers. In Section 4, we provide the
theoretical construction of correlated sequences for Simon-like ciphers. Section 5 presents
the application of correlated sequences to 25-round key recovery attack on Simon-32/64
and Simeck-32/64. In Section 6, we show that the attack can be improved by 2 rounds
leading to 27 round key recovery attack. Finally, the paper is concluded in Section 7.

2 Preliminaries
In this section, we briefly review the meet-in-the-middle attack and give a brief description
of Simon-like ciphers. The notations used throughout the paper are defined in Table 2.

Table 2: Notations
Notation Description
+ bitwise XOR
& bitwise AND
|| concatenation operator
n wordsize
K key space
F2 {0,1}
Fn

2 n dimensional vector space over F2

Li left cyclic shift operator, i.e., for x ∈ Fn
2 , Li(x) =

(xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1)
Cs coset modulo 2n − 1, i.e., Cs = {s, 2s, . . . , 2ns−1s}

where ns is the smallest number such that s ≡
2nss mod 2n − 1, and s is the smallest number in
Cs and denotes the coset leader

|S| cardinality of set S
A[i] i-th element of A
Img(f) Image set of f

2.1 Meet-in-the-Middle attack
Consider an encryption algorithm Enc that takes plaintext P and secret key k as a input and
gives the ciphertext C = Enc(k, P ). The basic idea is to decompose Enc as a composition
of two subciphers (see Figure 1) such that C = Enc(k, P ) = Encb(kb,Encf (kf , P )).

v v′P C

Encf (kf , P ) Enc−1
b (kb, C)

Figure 1: MitM attack

The steps of standard MitM attack is divided into two phases.
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1. MitM phase. For all possible values of kf , compute v = Encf (kf , P ) and store
(kf , v) in data structure DS. We then compute v′ = Enc−1

b (kb, C) and check if
v′ ∈ DS. If so, the value of k corresponding to the pair (kf , kb) is one of the key
candidate.

2. Brute force phase. If the number of keys obtained from MitM phase is more than
one, we perform an exhaustive search on additional plaintext-ciphertext pairs to get
the correct key.

2.2 Specification of Simon-like block ciphers
Simon-2n/mn, where 2n and mn denote the blocksize and key length, respectively, is
a family of block ciphers proposed by NSA in 2013 [BTCS+13]. A generic diagram of
Simon-like block cipher is depicted in Figure 2. It adopts a Non-Linear Feedback Shift
Register (NLFSR) based structure where the nonlinearity comes from the quadratic
function f(a,b,c)(x) = La(x)&Lb(x) + Lc(x). We refer to f(a,b,c) as Simon-like nonlinear
function unless the parameter set (a, b, c) is explicitly mentioned.

For r-round cipher, the (i + 2)-th element of NLFSR sequence is given by
si+2 = f(a,b,c)(si+1) + si + ki where ki ∈ Fn

2 is the i-th round subkey4 and 0 ≤ i < r.
Finally, the ciphertext is the r-th state of NLFSR, i.e., (sr+1, sr). The shift parameters of
Simon are given by (a, b, c) = (8, 1, 2).

s1 s0

f(a,b,c)

n
n

kr−1, · · · , k1, k0

n n

Figure 2: Simon-like block cipher

Simeck-2n/mn was proposed in CHES 2015 by Yang et al. [YZS+15] and adopts a
Simon-like structure with the shift parameters given by (5, 0, 1). However, it has more
efficient and compact hardware implementation because of reuse of the round function in
the key scheduling algorithm.
Key scheduling algorithms. For n = 16 and m = 4, r = 32 and the subkeys are
calculated as follows.

Simon-32/64 : ki+4 = Zi + ki + ki+1 + L15(ki+1) + L13(ki+3) + L12(ki+3),
Simeck-32/64 : ki+4 = Zi + f(5,0,1)(ki+1) + ki.

The attack presented in this paper is not affected by the constants Zi and the reader
may refer to [BTCS+13, YZS+15] for more details of their respective key scheduling
algorithms.

3 Correlated Sequences of Block Ciphers
In this section, we formally introduce the correlated sequences and then show how to use
them in a meet-in-the-middle attack. Consider an n-bit block cipher with r rounds and
mn-bit master key k = (k0, k1, . . . , km−1) as depicted in Figure 3. Let si denote the state

4k0, k1, . . . , km−1 are first m n-bit words of key.
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at i-th round. Then, for 0 ≤ i < r, si+1 = rf(si, ki) where rf denotes the round function,
and is generally a composition of two functions, namely i) a linear function χ and ii) a
nonlinear function ρ.

rf rf rf rfs0 s1 s2 s3 sr−1 sr

k0 k1 k2 kr−1
n n n n

n

rf

ρ: nonlinear function χ: linear function

Figure 3: Generic diagram of a block cipher

3.1 General idea
Definition 1 (Keyed sequence). Given k ∈ K and 1 ≤ t < r. We say S(k,t) =
(s0, s1, . . . , st−1) is a keyed sequence of length t, if si+1 = rf(si, ki) for 0 ≤ i < t− 1.

From Definition 1, it is clear that we need to compute rf t times to obtain S(k,t). This
implies that ρ is computed t times in total. Thus, to obtain another sequence S(k′,t) of same
length t, the worst case is to compute ρ exactly t times. The idea of correlated sequences is
“Given S(k,t) and k′ 6= k, obtain the sequence S(k′,t) by computing the nonlinear function
ρ at most t times.”

We now present a toy example to illustrate this notion before providing the formal
definition.

Example 1. Consider a 4-bit toy Simon-like block cipher with 8-bit blocksize and 16-bit
key as shown in Figure 4. Let the non-linear function is given by ρ(x) = x&L(x) + L2(x)
where x ∈ F4

2. The length seven keyed sequences are given in Table 3. We note the
following observations from Table 3.

1. For all k = (k0, k1, k2, k3), s4 = k2, s5 = 0 and s6 = k2 + k4.

2. For all k′ = (k′0, k′1, k′2.k′3), s′4 = k′2, s′5 = 1 and s′6 = k′2 + k′4 + ρ(1).

3. For each row, k′3 = k3 + 1 and s′6 = s6 + k4 + k′4 + ρ(1).

We now define the correlated sequences in Definition 2.

Definition 2 ((σ, t)-correlated sequences). Given S(k,t) and 0 ≤ σ < t. We say S(k,t) and
S(k′,t) are (σ, t)-correlated sequences if S(k′,t) can be obtained from S(k,t) by computing
the nonlinear function ρ exactly σ times.

Remark 1. σ = 0 =⇒ S(k,t) and S(k′,t) are linearly related.

Definition 3 (Zero correlated keys). Given S(k,t). We define zero correlated keys as the
set CK(k) = {k′ | S(k,t) and S(k′,t) are (0, t)-correlated sequences}.

For example, in Table 3, for each row S(k,t) and S(k′,t) are (1, 7) correlated sequences,
|CK((0, 0, 0, 0))| = 15 (gray colored rows) and |CK((0, 0, 0, 1))| = 15 (light gray rows). Thus,
to obtain all 32 sequences, we only need to compute ρ(1) once.
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s1 s0

ρ

ρ(x) = L(x)&x+ L2(x)

ki ki+1 ki+2 ki+3

ki+1 + L3(ki+1) ki+3 + L(ki+3)
110zi

z = (1, 1, 1, 1, 1)

Figure 4: 4-bit toy Simon-like cipher

Table 3: Keyed sequences
k0 k1 k2 k3 k4 s0 s1 s2 s3 s4 s5 s6 k′0 k′1 k′2 k′3 k′4 s′0 s′1 s′2 s′3 s′4 s′5 s′6

0 0 0 0 13 0 0 0 0 0 0 13 0 0 0 1 14 0 0 0 0 0 1 10
0 0 1 4 1 0 0 0 0 1 0 0 0 0 1 5 2 0 0 0 0 1 1 7
0 0 2 8 4 0 0 0 0 2 0 6 0 0 2 9 7 0 0 0 0 2 1 1
0 0 3 14 14 0 0 0 0 3 0 13 0 0 3 15 13 0 0 0 0 3 1 10
0 0 4 1 14 0 0 0 0 4 0 10 0 0 4 0 13 0 0 0 0 4 1 13
0 0 5 5 2 0 0 0 0 5 0 7 0 0 5 4 1 0 0 0 0 5 1 0
0 0 6 13 11 0 0 0 0 6 0 13 0 0 6 12 8 0 0 0 0 6 1 10
0 0 7 11 1 0 0 0 0 7 0 6 0 0 7 10 2 0 0 0 0 7 1 1
0 0 8 2 11 0 0 0 0 8 0 3 0 0 8 3 8 0 0 0 0 8 1 4
0 0 9 7 4 0 0 0 0 9 0 13 0 0 9 6 7 0 0 0 0 9 1 10
0 0 10 10 2 0 0 0 0 10 0 8 0 0 10 11 1 0 0 0 0 10 1 15
0 0 11 13 11 0 0 0 0 11 0 0 0 0 11 12 8 0 0 0 0 11 1 7
0 0 12 11 1 0 0 0 0 12 0 13 0 0 12 10 2 0 0 0 0 12 1 10
0 0 13 14 14 0 0 0 0 13 0 3 0 0 13 15 13 0 0 0 0 13 1 4
0 0 14 7 4 0 0 0 0 14 0 10 0 0 14 6 7 0 0 0 0 14 1 13
0 0 15 0 13 0 0 0 0 15 0 2 0 0 15 1 14 0 0 0 0 15 1 5

3.2 Application of correlated sequences to MitM attack
Let (s0, sr) denote the plaintext and ciphertext pair encrypted with the mn-bit master
key k. As depicted in Figure 5, we first use s0 to construct (σ, t)-correlated sequences
and their corresponding CK(·) for t rounds. Next, starting with sr, we follow the same
approach. We then do partial encryption for r2 rounds starting from t-th round and match
the state values at (t+r2)-th round. Thus, for a SPN cipher the number of attacked rounds
is 2t + r2. Considering a Feistel cipher, the state at i-th round equals (si+1, si) where
si = rf(si−1, ki−2) + si−2 and i ≥ 2. Accordingly, the encryption of (s1, s0) gives (sr+1, sr)
and the number of attacked rounds is 2t− 4 + r2, and equals 2t− 3 + r2 if matching is
done on half state.
Time complexity. Let T e (resp. T d) denote the number of computations of ρ to construct
(σ, t)-correlated sequences and their corresponding CK(·) in encryption (resp. decryption)
direction. Then, the time complexity in terms of the number of computations of ρ is given
by T = T e + T d + 2|K| × r2

r . Clearly, T < 2|K|.
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s0 sr

t rounds t roundsr2 rounds

partial
encryption

(σ, t)-correlated
sequences

CK(·)

(σ, t)-correlated
sequences

CK(·)

Figure 5: MitM attack using correlated sequences

Data complexity. The above attack filters 2n(m−1) keys that map s0 to sr. The
correct key can then be found out by performing an exhaustive search on the remaining
known dmn

n e − 1 plaintext-ciphertext pairs. Note that for a Feistel cipher, an additional
plaintext-ciphertext pair is needed if matching is done on half state.

4 Correlated Sequences of Simon-like Ciphers
In this section, we show the construction of correlated sequences of Simon-like ciphers where
the key length is twice the block size. We first look at the theoretical properties of non-linear
function f(a,b,c). Next, we use these properties to construct (1, 8)-correlated sequences.
We assume that a 6= b 6= c.

4.1 Properties of Simon-like nonlinear function
Property 1. Let s be the coset leader corresponding to the coset Cs, then for 0 ≤ i < |Cs|,
the following hold.

1. f(a,b,c)(Li(s)) = Li(f(a,b,c)(s))

2. f(a,b,c)(s) = La−1(s) + Lb−1(s) + Lc−1(s), if s = 011 . . . 1︸ ︷︷ ︸
n

.

Property 2. Let s = 0101 . . . 01︸ ︷︷ ︸
n

and a, b are not both simultaneously even or odd, then

f(a,b,c)(s) =
{
s if c ≡ 0 mod 2
L(s) otherwise

Properties 1 and 2 imply that it is enough to compute the values of f(a,b,c) for 2n−1
n

coset leaders only. However, as f(a,b,c) is quadratic and the only linear term involved in
it is Lc(.), hence f(a,b,c)(x) = Lc(x) + z for all x ∈ Fn

2 and some constant z ∈ Fn
2 . As a

result, we partition the coset leaders based on the values of z. Since, f(a,b,c) is linear on
each partition, we call such partition as z-linear segment set and formally define it in
Definition 4 as follows.

Definition 4 (z-linear segment set). The z-linear segment set of f(a,b,c) is the set of coset
leaders CLz given by CLz = {s | f(a,b,c)(s) + Lc(s) = z}.

Table 4 lists the z-linear segment sets for n = 8 and (a, b, c) = (8, 1, 2), while the number
of z-linear segments (denoted by Nz) for varying n are presented in Table 5. (Note that
since n = 8, the shifts (8, 1, 2) is equivalent to (0, 1, 2).)

Example 2. In Table 4, consider z = 2 and 3 ∈ CL2. Then, for all

x ∈ C3 = {3, 6, 12, 24, 48, 96, 192, 129},

f(8,1,2) is computed as follows.
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x f(8,1,2)(x)
3 L2(3) + 2 = 14
6 L2(6) + L(2) = 28
12 L2(12) + L2(2) = 56
24 L2(24) + L3(2) = 112
48 L2(28) + L4(2) = 224
96 L2(96) + L5(2) = 193
192 L2(192) + L6(2) = 131
129 L2(129) + L7(2) = 7

Table 4: z-linear segment sets for n = 8 and
(a, b, c) = (8, 1, 2)

z CLz z CLz

0 {0, 1, 5, 9, 17, 21, 37, 85} 2 {3, 11, 19, 43}
6 {7, 23, 39, 87 } 8 {13, 45}
14 {15, 47} 16 {25}
18 {27, 91 } 24 {29}
30 {31, 95} 32 {53}
34 {51} 38 {55}
50 {59} 56 {61}
62 {63} 78 {111}
102 {119} 126 {127}
255 {255} - -

4.2 Construction of (1, 8)-correlated sequences
Let (s0, s1) be any random 2n-bit value and K(k0,k1) = {(k0, k1, k2, k3) | (k2, k3) ∈ Fn

2×Fn
2}

be the set of 22n keys with k0 and k1 fixed to some constant value. For t ≥ 6 and 0 ≤ i < 2n,
define

P(i, t,K(k0,k1)) = {(k, S(k,t)) | k ∈ K(k0,k1) and s5 = i}

as the set of keys and their corresponding sequences which maps s5 to i.
We start with the simpler case, i.e., s5 = 0. First, we construct P(0, 8,K(k0,k1)) and

then show how to construct P(i, 8,K(k0,k1)) from the knowledge of P(0, 8,K(k0,k1)).

4.2.1 Construction of P(0, 8,K(k0,k1))

We divide the construction of P(0, 8,K(k0,k1)) into 3 steps, namely i) Finding P(0, 6,K(k0,k1)),
ii) Obtaining P(0, 7,K(k0,k1)) from P(0, 6,K(k0,k1)), and iii) Obtaining P(0, 8,K(k0,k1)) from
P(0, 7,K(k0,k1)). For each step, we denote the number of computations of f(a,b,c) by Tstep.
We now present the details of each step as follows.
Step 1: Finding P(0, 6,K(k0,k1)). We note that ∀k ∈ K(k0,k1), S(k,4) is a constant
sequence and requires only 2 computations of f(a,b,c). Hence, finding the keys for which
s5 = 0 is equivalent to solve f(a,b,c)(X + k2) = k3 + s3 where X = f(a,b,c)(s3) + s2. We
use z-linear segments (see Definition 4) to solve this equation. As a result, Tstep1 =
3 +Nz. Note that |P(0, 6,K(k0,k1))|= 2n, as s4 = X + k2 can take all 2n distinct values.
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Table 5: Number of z-linear segment sets
for varying n

n # coset leaders Nz

(a, b, c)
(8, 1, 2) (5, 0, 1)

8 36 20 17
10 108 42 14
12 352 119 119
14 1182 50 287
16 4116 909 798

Thus, for all (k, S(k,6)) ∈ P(0, 6,K(k0,k1)), the pair (k2, k3) is unique. Accordingly, let
I(k0,k1) = {k3 | (k, S(k,6)) ∈ P(0, 6,K(k0,k1))}, then |I(k0,k1)|= 2n.
Step 2: Obtaining P(0, 7,K(k0,k1)) from P(0, 6,K(k0,k1)). Let (k, S(k,6)) ∈
P(0, 6,K(k0,k1)) and consider the following relation s4 + s6. We have s4 + s6 = s4+
f(a,b,c)(s5) + s4 + k4 = s4 + 0 + s4 + k4 =⇒ s6 = s4 + k4. Thus, Tstep2 = 0.
Step 3: Obtaining P(0, 8,K(k0,k1)) from P(0, 7,K(k0,k1)). Let (k, S(k,7)) ∈
P(0, 7,K(k0,k1)). We compute s7 as follows.

s7 = f(a,b,c)(s6) + s5 + k5 = f(a,b,c)(s6) + k5

= f(a,b,c)(s′4) + k5 (By step 1)
= f(a,b,c)(X + k′2) + k5 = s′3 + k′3 + k5

= s3 + I(k0,k1)[k′2] + k5 (as s′3 = s3)
= s3 + I(k0,k1)[k2 + k4] + k5.

Note that since s6 = X + k′2 =⇒ k′2 = s6 + X = s4 + k4 + X = k2 + k4. Furthermore
Tstep3 = 0.

Corollary 1. Given P(0, 8,K(k0,k1)), I(k0,k1) and k = (k0, k1, 0, I(k0,k1)[0]). Then

|CK(k)|= 2n − 1.

We could use the similar construction shown above to get P(i, 8,K(k0,k1)) for 1 ≤ i < 2n.
However, this would require 2n(3 +Nz) computations of f(a,b,c) in total. Next, we show
how to reduce this number to (3 + 2Nz).

4.2.2 Computing P(i, 8,K(k0,k1)) from P(0, 8,K(k0,k1))

Theorem 1. Given I(k0,k1), k = (k0, k1, 0, I(k0,k1)[0]), (k, S(k,8)) ∈ P(0, 8,K(k0,k1)) and
X = f(a,b,c)(s3) + s2. Let 1 ≤ i < 2n and k̃ = (k0, k1, 0, I(k0,k1)[0] + i). Then the following
hold.

1. S(k,5) = S(k̃,5)

2. (k̃, S(k̃,6)) ∈ P(i, 6,K(k0,k1))

3. s̃6 = s3 + I(k0,k1)[X + i] +X + k̃2 + k̃4

4. s̃7 = s3 + i+ k̃5 + I(k0,k1)[s̃6 +X]

10



5. |CK(k̄)|= 2n − 1

Proof. 1. Since k2 = k̃2 = 0 =⇒ s4 = s̃4 = X =⇒ S(k,5) = S(k̃,5).

2. It is enough to show that s̃5 = i. We have

s̃5 = f(a,b,c)(s̃4) + s̃3 + k̃3 = f(a,b,c)(s4) + s3 + k̃3

= I(k0,k1)[0] + s3 + s3 + I(k0,k1)[0] + i = i.

3.

s̃6 = f(a,b,c)(s̃5) + s̃4 + k̃4 = f(a,b,c)(i) + s̃4 + k̃4

= s3 + I(k0,k1)[X + i] +X + k̃2 + k̃4.

4. The proof is similar to previous part.

5. Note that for 1 ≤ j < 2n, (k0, k1, j, I(k0,k1)[j]) ∈ CK(k) ⇐⇒ (k0, k1, j, I(k0,k1)[j] +
i) ∈ CK(k̄). This follows because s5 + s̄5 = k3 + k̄3 =⇒ k3 + k̄3 = i. Thus,
|CK(k̄)|= 2n − 1.

We use Theorem 1 with z-linear segment sets to compute all partitions. A brief
comparison of different approaches with the number of computations of f(a,b,c) to obtain
P(i, 8,K(k0,k1)) is provided in Table 6.

Table 6: Comparison of different approaches with the number of computations
of f(a,b,c) for 6 out of r rounds

Approach # computations of f(a,b,c)

(a, b, c)
(8, 1, 2) (5, 0, 1)

Naive 264 × 6
r 264 × 6

r

Theorem 1 and z-linear segment sets 232 × (3+1818)
r 232 × (3+1596)

r

5 Key Recovery Attack on 25 rounds Simon-32/64 and
Simeck-32/64

In this section, we show the key recovery attack procedure on 25-round Simon-32/64
and Simeck-32/64. We note that construction of (1, 8)-correlated sequences as shown in
Section 4 is independent of the key scheduling algorithms. Thus, we simply utilize these
sequences for 6 encryption and 6 decryption rounds in a MitM attack (see Figure 6). As a
result, we do partial encryption for 12 rounds, starting from round 6 and match the left
half of state, i.e., s19 at 19-th round.

From now, we denote se
i/s

d
i , ke

i /k
d
i , Xe/Xd, I(ke0,ke1)/I(kd0 ,kd1 ) and DSe/DSd as the i-th

element of keyed sequence, i-th subkey, value of f(a,b,c)(se
3)+se

2 / f(a,b,c)(sd
3)+sd

2 , indexing
set and stored data structure from encryption/decryption side, respectively. For example,
se

0 = s0, se
1 = s1, sd

0 = s26, sd
1 = s25, ke

24 = kd
0 and so on.

In Algorithm 1, we present a generic procedure for recovering the secret key. It
takes input as 3 known plaintext-ciphertext pairs encrypted either by Simon-32/64 or
Simeck-32/64 and returns the secret key. The attack procedure is divided into two phases,
namely i) Offline phase and ii) Online phase. The time complexities of both phases are given
by T offline and T online, where a subscript (for e.g., T online

i ) denotes the time complexity
of i-th step of the corresponding phase. In what follows, we present the details of both
phases.
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(s1, s0) (s26, s25)(s7, s6) (s19, s18) (s20, s19)(1, 8)-correlated
sequences

(1, 8)-correlated
sequences

Data
structure

6-round 12-round partial encryption Match 6-round

Figure 6: 25-round key recovery procedure

5.1 Offline phase
In this phase, we first compute z-linear segment sets using Defintion 4. Next, we construct a
data structure DSd that is used in the online phase to compute the value of sd

7 without doing
any nonlinear operation. Note that in order to compute sd

7 for any key k = (kd
0 , k

d
1 , k

d
2 , k

d
3),

we only need the values of sd
3, X

d and I(kd0 ,kd1 ) (see Theorem 1). Hence, we store the array
[sd

3, X
d, I(kd0 ,kd1 )] as the (L16(kd

0)||kd
1)-th row of DSd for a fixed (kd

0 , k
d
1) pair.

The procedures compute_zs and construct_ds in Algorithm 1 constitute the offline
phase. In Appendix A, we provide an example of DSd for a toy Simon cipher.
Memory complexity. The memory required to store z-linear segment sets is (Nz +
# coset leaders)× 16 bit. Furthermore, to store a single row of DSd, (1 + 1 + 216)× 16 bit
space is needed. Thus, the total memory (Mem) is given by:

MemSimon-32/64 = (Nz + # coset leaders)× 16 + 232 × (1 + 1 + 216)× 16
= (909 + 4116)× 16 + 232 × (2 + 216)× 16 ≈ 249 bytes.

Similarly, MemSimeck-32/64 ≈ 249 bytes as Nz = 798 (see Table 5).
Time complexity. The time complexity in terms of the number of computations of
f(a,b,c) is given by:

T offline = T offline
0 + T offline

1

= # coset leaders + 232 ×
(3 +Nz

25

)
︸ ︷︷ ︸

# computations of f(a,b,c) to get I(kd0 ,kd1 )

Thus, T offline ≈ 237.18 and 237 for Simon-32/64 and Simeck-32/64, respectively.

5.2 Online phase
In this phase, we recover the secret key that maps the plaintext (se,i

0 , se,i
1 ) to ciphertext

(sd,i
0 , sd,i

1 ) for i = 0, 1, 2. We first find the key set K that maps (se,0
0 , se,0

1 ) to (sd,0
0 , sd,0

1 )
using filter_keys procedure in Algorithm 2. Note that |K|= 248 as partial matching is done
at 19-th round (see step 16 of Algorithm 2). Next, we perform an exhaustive search on
remaining 2 plaintext-ciphertext pairs to get the correct key (steps 31-41 of Algorithm 1).
We now present the details of filter_keys procedure.
Procedure filter_keys. For a fixed (ke

0, k
e
1) pair, we first compute se

3, Xe = f(a,b,c)(se
3)+se

2
and the indexing set I(ke0,ke1). Then, we use Theorem 1 and z-linear segment sets to compute
partitions P(i, 8,K(ke0,ke1)) (see steps 7-14 of Algorithm 2). Next, we do encryption for 12
rounds and check if se

19 matches with sd
7 or not. If so, the corresponding key is one of the

12



Algorithm 1 Key recovery algorithm

1: Input : {(se,0
0 , se,0

1 ), (sd,0
0 , sd,0

1 )}, {(se,1
0 , se,1

1 ), (sd,1
0 , sd,1

1 )}, {(se,2
0 , se,2

1 ), (sd,2
0 , sd,2

1 )}
2: Output : secret key k
3: Procedure main :
4: // Offline phase . T offline

5: call procedure compute_zs
6: call procedure construct_ds
7: // Online phase . T online

8: call procedure recover_sk
9:
10: Procedure compute_zs : . T offline

0
11: // Compute z-linear segment sets using Definition 4
12: n = 16, (a, b, c) = (8, 1, 2) / (5, 0, 1)
13: return(Z, CLz)
14:
15: Procedure construct_ds : . T offline

1
16: // Construct data structure for 6 decryption rounds
17: DSd = [ [ ] ]
18: sd

0 = sd,0
0 , sd

1 = sd,0
1

19: for kd
0 = 0 to 216 − 1 do

20: for kd
1 = 0 to 216 − 1 do

21: Compute sd
3, X

d, I(kd0 ,kd1 )
22: DS.append([ sd

3, X
d, I(kd0 ,kd1 ) ])

23: end for
24: end for
25: return(DSd)
26:
27: Procedure recover_sk :
28: // Filtering keys with Algorithm 2
29: K = filter_keys . T online

0
30: // Exhaustive search on K using second plaintext-ciphertext pair
31: for γ ∈ K do . T online

1
32: if encryption of (se,1

0 , se,1
1 ) with γ equals (sd,1

0 , sd,1
1 ) do

33: K1.append(γ)
34: end if
35: end for
36: // Exhaustive search on K1 using third plaintext-ciphertext pair
37: for γ ∈ K1 do . T online

2
38: if encryption of (se,2

0 , se,2
1 ) with γ equals (sd,2

0 , sd,2
1 ) do

39: K2.append(γ)
40: end if
41: end for
42: return(K2) . K2 = {k}

correct key candidate. The number of computations of f(a,b,c) is then calculated as follows:
3 +Nz

25︸ ︷︷ ︸
# computations of f(a,b,c) to get I(ke0,ke1)

+ Nz

25︸︷︷︸
# computations of f(a,b,c) to get P(i, 8, K(ke0,k

e
1))

+232 × 12
25︸︷︷︸

12-round encryption
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= 3 + 2Nz

25 + 232 × 12
25 .

The time complexity (T online
0 ) of filter_keys then equals 232×( 3+2Nz

25 +232× 12
25 ) ≈ 264× 12

25 .
In Appendix B, we provide an example of computation of sd

7 from DSd.

Algorithm 2 Extracting keys that maps (se
0, s

e
1) to (sd

0, s
d
1)

1: se
0 = se,0

0 , se
1 = se,0

1
2: K = []
3: Procedure filter_keys :
4: for ke

0 = 0 to 216 − 1 do
5: for ke

1 = 0 to 216 − 1 do
6: Compute se

3, Xe = f(a,b,c)(se
3) + se

2 and I(ke0,ke1)
7: for z in z-linear segment sets do
8: for x ∈ CLz do
9: for i = 0 to |Cx|−1
10: f = Lc(Cx[i]) + Li(z)
11: for j = 0 to 216 − 1 do
12: k = (ke

0, k
e
1, j, I(ke0,ke1)[j] + Cx[i])

13: se
6 = f +Xe + ke

2 + ke
4

14: se
7 = se

3 + ke
5 + Cx[i] + I(ke0,ke1)[se

6 +Xe]
15: Encrypt (se

7, s
e
6) for 12 rounds and get se

19
16: if se

19==compute_sd
7(k, DSd) do

17: K.append(k)
18: end if
19: end for
20: end for
21: end for
22: end for
23: end for
24: end for
25: return(K)
26:
27: Procedure compute_sd

7(k, DSd) :
28: // Compute 8-th element of sequence from decryption side (Theorem 1)
29: sd

3 = DSd[L16(kd
0) + kd

1 ][0]
30: Xd = DSd[L16(kd

0) + kd
1 ][1]

31: I(kd0 ,kd1 ) = DSd[L16(kd
0) + kd

1 ][2]
32: p = I(kd0 ,kd1 )[kd

2 + kd
3 ]

33: sd
6 = I(kd0 ,kd1 )[p+Xd] + sd

3 +Xd + kd
2 + kd

4
34: sd

7 = sd
3 + kd

5 + p+ I(kd0 ,kd1 )[sd
6 +Xd]

35: return(sd
7)

Time complexity of online phase. The time complexity of complete attack is dominated
by T online which is given by:

T online = T online
0 + T online

1 + T online
2

= 264 × 12
25 + 248 + 216 ≈ 262.94.
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Remark 2. For the 24-round attack, the data and memory complexities are the same.
However, the time complexity is 264 × 11

24 ≈ 262.87.

5.3 Experimental verification of attack
We have implemented the complete attack in Python and the source code is provided
in Appendix C. We ran experiments for toy versions of both ciphers, i.e., with block-
size/keysize, 8/16 and 16/32-bit. We find that the attack works for all keys, and for any 3
distinct random plaintext encrypted either by Simon-8/16 (Simon-16/32) or Simeck-8/16
(Simeck-16/32). Hence, a success probability of 1 proves that the similar results hold for
Simon-32/64 and Simeck-32/64.

6 Key Recovery Attack on 27 Rounds
In this section, we show how to improve the key recovery attack presented in previous section
by 2 rounds with the same complexities as of the 25-round attack. For a fixed partition
P(i, 8,K(ke0,ke1)), we incorporate the properties of key scheduling algorithms (KSA) and one
round differentials and show that P(i, 9,K(ke0,ke1)) can be computed from P(i, 8,K(ke0,ke1)) by
computing f(a,b,c) at most 215 times. As a result, both forward and middle rounds can be
extended by one round each, i.e., partial encryption starts from round 7 and matching is
done at 20-th round. The results of the following two properties can be obtained directly
by the definition of P(i, 8,K(ke0,ke1)) and key scheduling algorithms. We present the main
result of this section in Lemma 1.

Property 3 (Simon KSA and P(i, 8,K(ke0,ke1))). Let n = 16, F : Fn
2 → Fn

2 be such that
F (x) = f(8,1,2)(x + ∆y) + x + Ln−1(x) + Ln−6(y) + Ln−8(y), where y = I(ke0,ke1)[x] and
∆y = Ln−3(y) + Ln−4(y). Then |Img(F (x))|≤ 2n−1.

Property 4 (Simeck KSA). Let n ≥ 4, ke
i+4 = f(5,0,1)(ke

i+1) + ke
i and i ≥ 0. Then for a

fixed (ke
0, k

e
1) pair, ke

4 is constant for all 2n × 2n values of ke
2 and ke

3.

Property 5 (Differential [KLT15]). Let n ≥ 4, ∆ ∈ Fn
2 be fixed. Then

|Img(f(a,b,c)(x) + f(a,b,c)(x+ ∆))|≤ 2n−1.

Lemma 1. Given n = 16 and (a, b, c) = (8, 1, 2)/(5, 0, 1). Then for all (k, S(k,8)) ∈
P(i, 8,K(ke0,ke1)), se

7 can take at most 2n−1 values.

Proof. Consider the value of se
7 in the following cases:

• Case 1 : (a, b, c) = (8, 1, 2)

se
7 = f(8,1,2)(se

6) + se
5 + ke

5 = f(8,1,2)(se
4 + ke

4 + f(8,1,2)(i)) + i+ ke
5

= f(8,1,2)(Xe + ke
2 + ke

4 + f(8,1,2)(i)) + i+ ke
5, X

e = f(8,1,2)(se
3) + se

2

= f(8,1,2)(C0 + ke
2 + (L13(ke

3) + L12(ke
3)) +

C1 + ke
2 + L15(ke

2) + L10(ke
3) + L8(ke

3) (Simon KSA)

Here C0 and C1 are constants and given by:

C0 = Xe + f(8,1,2)(i) + ke
0 + ke

1 + L15(ke
1) + Z0

C1 = i+ Z1 + L13(Z0) + L12(Z0) + L13(ke
0) + L12(ke

0) +
ke

1 + L13(ke
1) + L11(ke

1)

By Property 3, se
7 can take at most 2n−1 values.
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• Case 2 : (a, b, c) = (5, 0, 1)

se
7 = f(5,0,1)(se

6) + se
5 + ke

5 = f(5,0,1)(se
4 + ke

4 + f(5,0,1)(i)) + i+ ke
5

= f(5,0,1)(Xe + ke
2 + ke

4 + f(5,0,1)(i)) + i+ ke
5, X

e = f(5,0,1)(se
3) + se

2

= f(5,0,1)(∆ + ke
2) + C1 + f(5,0,1)(ke

2) (Property 4)

Similar to previous case, ∆ and C1 are constants and given by:

∆ = Xe + f(5,0,1)(i) + ke
0 + f(5,0,1)(ke

1) + Z0

C1 = i+ Z1 + ke
1

The proof then follows from Property 5.

From Lemma 1, we note that for each partition P(i, 8,K(ke0,ke1)), se
7 can take at most 215

values. Accordingly, we only modify steps 11-18 of Algorithm 2. The partial encryption
starts from (se

8, s
e
7) and se

21 is then used for the matching. The modification is presented
in Algorithm 3.

Algorithm 3 Modified algorithm for 27-round key recovery attack
1: TEMP_S6 = [ ]
2: TEMP_S7= [ ]
3: TEMP_Uniq_S7 = [ ]
4: for j = 0 to 216 − 1 do
5: k = (ke

0, k
e
1, j, I(ke0,ke1)[j] + Cx[i])

6: se
6 = f +Xe + ke

2 + ke
4

7: se
7 = se

3 + ke
5 + Cx[i] + I(ke0,ke1)[se

6 +Xe]
8: TEMP_S6.append(se

6)
9: TEMP_S7.append(se

7)
10: end for
11:
12: // Unique value of TEMP_S7
13: TEMP_Uniq_S7 = unique(TEMP_S7)
14:
15: for u in TEMP_Uniq_S7 do
16: te = f(a,b,c)(u)
17: // get_index finds indexes l such that TEMP_S7[l] = u
18: Indices = get_index(TEMP_S7)
19: for ind in Indices do
20: k = (ke

0, k
e
1, ind, I(ke0,ke1)[ind] + Cx[i])

21: se
8 = te + ke

6+TEMP_S6[ind]
22: Encrypt (se

8, u) for 13 rounds and get se
21

23: if se
21==compute_sd

7(k, DSd) do
24: K.append(k)
25: end if
26: end for
27: end for

Attack complexities. The data and memory complexities are same as 25-round attack.
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The time complexity is given by:

T online = 232 × T online
0 + T online

1 + T online
2

≈ 232(3 + 2Nz

27 + 231 × 1
27 + 232 × 13

27) + 248 + 216

≈ 264 × 13
27 ≈ 262.94.

Remark 3. The complexities of 26-round attack are calculated accordingly.

7 Concluding Remarks
In this work, we have introduced a new property of block ciphers called correlated sequences
and demonstrated its application in a meet-in-the-middle attack. As a result, we presented
a 2t − 3 + l (resp. 2t + l)-round attack for Feistel (resp. SPN) ciphers with t length
correlated sequences and l rounds of partial encryption. We have applied our technique
on two lightweight block ciphers Simon-32/64 and Simeck-32/64 and presented the first
24, 25, 26, 27-round attack on these ciphers with data and memory complexities of 3 and
249 bytes, respectively. The time complexities are 262.87(resp. 262.94) for 24, 26 (resp. 25,
27)-round attacks.
Future work. We observe that number of attacked rounds depends on the length of
correlated sequences. Thus, an immediate question is how to extend the length of correlated
sequences of Simon-32/64 and Simeck-32/64 and improve the presented attack. It should
be noted that correlated sequences has similar applications to other variants of Simon
and Simeck as well. In addition, investigating the generic techniques or the underlying
ciphers’ structure to construct correlated sequences is an interesting future problem.
Furthermore, in our analysis of Simon-like ciphers, we exploited the linear segment set
properties of the nonlinear round function. Thus, our attack has similar applications to
constructions (for e.g., Keccak [BDPVA09] 5-bit Sbox and Rasta’s [DEG+18] substitution
layer) where the nonlinear function preserves such properties. The recently proposed
lightweight permutations sLiSCP and sLiSCP-light [ARH+17, ARH+18] use Simeck’s round
function as their underlying nonlinear component. Hence, our attack could be used as a
starting point to analyze these permutations further.
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A Example: Data Structure
Consider a toy Simon-8/16 cipher as given in Example 1. Let k = (1, 2, 3, 4) and se

0 = 15,
se

1 = 14, then sd
0 = 5 and sd

1 = 11. In Table 7, we provide the data structure DSd that is
used for 6 decryption rounds.

Table 7: Data structure for toy Simon
i DSd[i]
0 [9, 15, [9, 14, 7, 2, 4, 3, 14, 11, 2, 4, 12, 8, 7, 1, 13, 9]]
1 [8, 10, [2, 5, 10, 15, 15, 8, 3, 6, 0, 6, 8, 12, 5, 3, 9, 13]]
2 [11, 5, [14, 10, 0, 6, 15, 11, 5, 3, 5, 0, 11, 12, 12, 9, 6, 1]]
3 [10, 2, [2, 4, 10, 14, 7, 1, 11, 15, 0, 7, 8, 13, 13, 10, 1, 4]]
4 [13, 6, [0, 6, 12, 8, 5, 3, 13, 9, 10, 13, 6, 3, 7, 0, 15, 10]]
5 [12, 3, [2, 4, 8, 12, 7, 1, 9, 13, 1, 6, 11, 14, 12, 11, 2, 7]]
6 [15, 8, [13, 8, 5, 2, 4, 1, 8, 15, 15, 11, 7, 1, 14, 10, 2, 4]]
7 [14, 15, [14, 9, 0, 5, 3, 4, 9, 12, 5, 3, 11, 15, 0, 6, 10, 14]]
8 [1, 12, [10, 15, 6, 1, 3, 6, 11, 12, 0, 4, 12, 10, 1, 5, 9, 15]]
9 [0, 8, [2, 7, 10, 13, 11, 14, 7, 0, 0, 4, 8, 14, 1, 5, 13, 11]]
10 [3, 6, [14, 8, 2, 6, 11, 13, 3, 7, 4, 3, 8, 13, 9, 14, 1, 4]]
11 [2, 0, [2, 6, 10, 12, 3, 7, 15, 9, 0, 5, 8, 15, 9, 12, 5, 2]]
12 [5, 13, [11, 14, 5, 2, 2, 7, 8, 15, 0, 4, 14, 8, 1, 5, 11, 13]]
13 [4, 9, [3, 6, 9, 14, 10, 15, 4, 3, 0, 4, 10, 12, 1, 5, 15, 9]]
14 [7, 3, [9, 15, 3, 7, 12, 10, 2, 6, 10, 13, 0, 5, 7, 0, 9, 12]]
15 [6, 5, [3, 7, 13, 11, 2, 6, 8, 14, 8, 13, 6, 1, 1, 4, 11, 12]]
16 [12, 2, [4, 2, 12, 8, 1, 7, 13, 9, 6, 1, 14, 11, 11, 12, 7, 2]]
17 [13, 7, [6, 0, 8, 12, 3, 5, 9, 13, 13, 10, 3, 6, 0, 7, 10, 15]]
18 [14, 14, [9, 14, 5, 0, 4, 3, 12, 9, 3, 5, 15, 11, 6, 0, 14, 10]]
19 [15, 9, [8, 13, 2, 5, 1, 4, 15, 8, 11, 15, 1, 7, 10, 14, 4, 2]]
20 [8, 11, [5, 2, 15, 10, 8, 15, 6, 3, 6, 0, 12, 8, 3, 5, 13, 9]]
21 [9, 14, [14, 9, 2, 7, 3, 4, 11, 14, 4, 2, 8, 12, 1, 7, 9, 13]]
22 [10, 3, [4, 2, 14, 10, 1, 7, 15, 11, 7, 0, 13, 8, 10, 13, 4, 1]]
23 [11, 4, [10, 14, 6, 0, 11, 15, 3, 5, 0, 5, 12, 11, 9, 12, 1, 6]]
24 [4, 8, [6, 3, 14, 9, 15, 10, 3, 4, 4, 0, 12, 10, 5, 1, 9, 15]]
25 [5, 12, [14, 11, 2, 5, 7, 2, 15, 8, 4, 0, 8, 14, 5, 1, 13, 11]]
26 [6, 4, [7, 3, 11, 13, 6, 2, 14, 8, 13, 8, 1, 6, 4, 1, 12, 11]]
27 [7, 2, [15, 9, 7, 3, 10, 12, 6, 2, 13, 10, 5, 0, 0, 7, 12, 9]]
28 [0, 9, [7, 2, 13, 10, 14, 11, 0, 7, 4, 0, 14, 8, 5, 1, 11, 13]]
29 [1, 13, [15, 10, 1, 6, 6, 3, 12, 11, 4, 0, 10, 12, 5, 1, 15, 9]]
30 [2, 1, [6, 2, 12, 10, 7, 3, 9, 15, 5, 0, 15, 8, 12, 9, 2, 5]]
31 [3, 7, [8, 14, 6, 2, 13, 11, 7, 3, 3, 4, 13, 8, 14, 9, 4, 1]]
32 [1, 14, [6, 1, 10, 15, 11, 12, 3, 6, 12, 10, 0, 4, 9, 15, 1, 5]]
33 [0, 10, [10, 13, 2, 7, 7, 0, 11, 14, 8, 14, 0, 4, 13, 11, 1, 5]]
34 [3, 4, [2, 6, 14, 8, 3, 7, 11, 13, 8, 13, 4, 3, 1, 4, 9, 14]]
35 [2, 2, [10, 12, 2, 6, 15, 9, 3, 7, 8, 15, 0, 5, 5, 2, 9, 12]]
36 [5, 15, [5, 2, 11, 14, 8, 15, 2, 7, 14, 8, 0, 4, 11, 13, 1, 5]]
37 [4, 11, [9, 14, 3, 6, 4, 3, 10, 15, 10, 12, 0, 4, 15, 9, 1, 5]]
38 [7, 1, [3, 7, 9, 15, 2, 6, 12, 10, 0, 5, 10, 13, 9, 12, 7, 0]]
39 [6, 7, [13, 11, 3, 7, 8, 14, 2, 6, 6, 1, 8, 13, 11, 12, 1, 4]]
40 [9, 13, [7, 2, 9, 14, 14, 11, 4, 3, 12, 8, 2, 4, 13, 9, 7, 1]]
41 [8, 8, [10, 15, 2, 5, 3, 6, 15, 8, 8, 12, 0, 6, 9, 13, 5, 3]]
42 [11, 7, [0, 6, 14, 10, 5, 3, 15, 11, 11, 12, 5, 0, 6, 1, 12, 9]]
43 [10, 0, [10, 14, 2, 4, 11, 15, 7, 1, 8, 13, 0, 7, 1, 4, 13, 10]]
44 [13, 4, [12, 8, 0, 6, 13, 9, 5, 3, 6, 3, 10, 13, 15, 10, 7, 0]]
45 [12, 1, [8, 12, 2, 4, 9, 13, 7, 1, 11, 14, 1, 6, 2, 7, 12, 11]]
46 [15, 10, [5, 2, 13, 8, 8, 15, 4, 1, 7, 1, 15, 11, 2, 4, 14, 10]]
47 [14, 13, [0, 5, 14, 9, 9, 12, 3, 4, 11, 15, 5, 3, 10, 14, 0, 6]]
48 [6, 6, [11, 13, 7, 3, 14, 8, 6, 2, 1, 6, 13, 8, 12, 11, 4, 1]]
49 [7, 0, [7, 3, 15, 9, 6, 2, 10, 12, 5, 0, 13, 10, 12, 9, 0, 7]]
50 [4, 10, [14, 9, 6, 3, 3, 4, 15, 10, 12, 10, 4, 0, 9, 15, 5, 1]]
51 [5, 14, [2, 5, 14, 11, 15, 8, 7, 2, 8, 14, 4, 0, 13, 11, 5, 1]]
52 [2, 3, [12, 10, 6, 2, 9, 15, 7, 3, 15, 8, 5, 0, 2, 5, 12, 9]]
53 [3, 5, [6, 2, 8, 14, 7, 3, 13, 11, 13, 8, 3, 4, 4, 1, 14, 9]]
54 [0, 11, [13, 10, 7, 2, 0, 7, 14, 11, 14, 8, 4, 0, 11, 13, 5, 1]]
55 [1, 15, [1, 6, 15, 10, 12, 11, 6, 3, 10, 12, 4, 0, 15, 9, 5, 1]]
56 [14, 12, [5, 0, 9, 14, 12, 9, 4, 3, 15, 11, 3, 5, 14, 10, 6, 0]]
57 [15, 11, [2, 5, 8, 13, 15, 8, 1, 4, 1, 7, 11, 15, 4, 2, 10, 14]]
58 [12, 0, [12, 8, 4, 2, 13, 9, 1, 7, 14, 11, 6, 1, 7, 2, 11, 12]]
59 [13, 5, [8, 12, 6, 0, 9, 13, 3, 5, 3, 6, 13, 10, 10, 15, 0, 7]]
60 [10, 1, [14, 10, 4, 2, 15, 11, 1, 7, 13, 8, 7, 0, 4, 1, 10, 13]]
61 [11, 6, [6, 0, 10, 14, 3, 5, 11, 15, 12, 11, 0, 5, 1, 6, 9, 12]]
62 [8, 9, [15, 10, 5, 2, 6, 3, 8, 15, 12, 8, 6, 0, 13, 9, 3, 5]]
63 [9, 12, [2, 7, 14, 9, 11, 14, 3, 4, 8, 12, 4, 2, 9, 13, 1, 7]]
64 [0, 12, [11, 14, 7, 0, 2, 7, 10, 13, 1, 5, 13, 11, 0, 4, 8, 14]]

i DSd[i]
65 [1, 8, [3, 6, 11, 12, 10, 15, 6, 1, 1, 5, 9, 15, 0, 4, 12, 10]]
66 [2, 4, [3, 7, 15, 9, 2, 6, 10, 12, 9, 12, 5, 2, 0, 5, 8, 15]]
67 [3, 2, [11, 13, 3, 7, 14, 8, 2, 6, 9, 14, 1, 4, 4, 3, 8, 13]]
68 [4, 13, [10, 15, 4, 3, 3, 6, 9, 14, 1, 5, 15, 9, 0, 4, 10, 12]]
69 [5, 9, [2, 7, 8, 15, 11, 14, 5, 2, 1, 5, 11, 13, 0, 4, 14, 8]]
70 [6, 1, [2, 6, 8, 14, 3, 7, 13, 11, 1, 4, 11, 12, 8, 13, 6, 1]]
71 [7, 7, [12, 10, 2, 6, 9, 15, 3, 7, 7, 0, 9, 12, 10, 13, 0, 5]]
72 [8, 14, [15, 8, 3, 6, 2, 5, 10, 15, 5, 3, 9, 13, 0, 6, 8, 12]]
73 [9, 11, [4, 3, 14, 11, 9, 14, 7, 2, 7, 1, 13, 9, 2, 4, 12, 8]]
74 [10, 6, [7, 1, 11, 15, 2, 4, 10, 14, 13, 10, 1, 4, 0, 7, 8, 13]]
75 [11, 1, [15, 11, 5, 3, 14, 10, 0, 6, 12, 9, 6, 1, 5, 0, 11, 12]]
76 [12, 7, [7, 1, 9, 13, 2, 4, 8, 12, 12, 11, 2, 7, 1, 6, 11, 14]]
77 [13, 2, [5, 3, 13, 9, 0, 6, 12, 8, 7, 0, 15, 10, 10, 13, 6, 3]]
78 [14, 11, [3, 4, 9, 12, 14, 9, 0, 5, 0, 6, 10, 14, 5, 3, 11, 15]]
79 [15, 12, [4, 1, 8, 15, 13, 8, 5, 2, 14, 10, 2, 4, 15, 11, 7, 1]]
80 [5, 8, [7, 2, 15, 8, 14, 11, 2, 5, 5, 1, 13, 11, 4, 0, 8, 14]]
81 [4, 12, [15, 10, 3, 4, 6, 3, 14, 9, 5, 1, 9, 15, 4, 0, 12, 10]]
82 [7, 6, [10, 12, 6, 2, 15, 9, 7, 3, 0, 7, 12, 9, 13, 10, 5, 0]]
83 [6, 0, [6, 2, 14, 8, 7, 3, 11, 13, 4, 1, 12, 11, 13, 8, 1, 6]]
84 [1, 9, [6, 3, 12, 11, 15, 10, 1, 6, 5, 1, 15, 9, 4, 0, 10, 12]]
85 [0, 13, [14, 11, 0, 7, 7, 2, 13, 10, 5, 1, 11, 13, 4, 0, 14, 8]]
86 [3, 3, [13, 11, 7, 3, 8, 14, 6, 2, 14, 9, 4, 1, 3, 4, 13, 8]]
87 [2, 5, [7, 3, 9, 15, 6, 2, 12, 10, 12, 9, 2, 5, 5, 0, 15, 8]]
88 [13, 3, [3, 5, 9, 13, 6, 0, 8, 12, 0, 7, 10, 15, 13, 10, 3, 6]]
89 [12, 6, [1, 7, 13, 9, 4, 2, 12, 8, 11, 12, 7, 2, 6, 1, 14, 11]]
90 [15, 13, [1, 4, 15, 8, 8, 13, 2, 5, 10, 14, 4, 2, 11, 15, 1, 7]]
91 [14, 10, [4, 3, 12, 9, 9, 14, 5, 0, 6, 0, 14, 10, 3, 5, 15, 11]]
92 [9, 10, [3, 4, 11, 14, 14, 9, 2, 7, 1, 7, 9, 13, 4, 2, 8, 12]]
93 [8, 15, [8, 15, 6, 3, 5, 2, 15, 10, 3, 5, 13, 9, 6, 0, 12, 8]]
94 [11, 0, [11, 15, 3, 5, 10, 14, 6, 0, 9, 12, 1, 6, 0, 5, 12, 11]]
95 [10, 7, [1, 7, 15, 11, 4, 2, 14, 10, 10, 13, 4, 1, 7, 0, 13, 8]]
96 [12, 5, [9, 13, 7, 1, 8, 12, 2, 4, 2, 7, 12, 11, 11, 14, 1, 6]]
97 [13, 0, [13, 9, 5, 3, 12, 8, 0, 6, 15, 10, 7, 0, 6, 3, 10, 13]]
98 [14, 9, [9, 12, 3, 4, 0, 5, 14, 9, 10, 14, 0, 6, 11, 15, 5, 3]]
99 [15, 14, [8, 15, 4, 1, 5, 2, 13, 8, 2, 4, 14, 10, 7, 1, 15, 11]]
100 [8, 12, [3, 6, 15, 8, 10, 15, 2, 5, 9, 13, 5, 3, 8, 12, 0, 6]]
101 [9, 9, [14, 11, 4, 3, 7, 2, 9, 14, 13, 9, 7, 1, 12, 8, 2, 4]]
102 [10, 4, [11, 15, 7, 1, 10, 14, 2, 4, 1, 4, 13, 10, 8, 13, 0, 7]]
103 [11, 3, [5, 3, 15, 11, 0, 6, 14, 10, 6, 1, 12, 9, 11, 12, 5, 0]]
104 [4, 15, [4, 3, 10, 15, 9, 14, 3, 6, 15, 9, 1, 5, 10, 12, 0, 4]]
105 [5, 11, [8, 15, 2, 7, 5, 2, 11, 14, 11, 13, 1, 5, 14, 8, 0, 4]]
106 [6, 3, [8, 14, 2, 6, 13, 11, 3, 7, 11, 12, 1, 4, 6, 1, 8, 13]]
107 [7, 5, [2, 6, 12, 10, 3, 7, 9, 15, 9, 12, 7, 0, 0, 5, 10, 13]]
108 [0, 14, [7, 0, 11, 14, 10, 13, 2, 7, 13, 11, 1, 5, 8, 14, 0, 4]]
109 [1, 10, [11, 12, 3, 6, 6, 1, 10, 15, 9, 15, 1, 5, 12, 10, 0, 4]]
110 [2, 6, [15, 9, 3, 7, 10, 12, 2, 6, 5, 2, 9, 12, 8, 15, 0, 5]]
111 [3, 0, [3, 7, 11, 13, 2, 6, 14, 8, 1, 4, 9, 14, 8, 13, 4, 3]]
112 [11, 2, [3, 5, 11, 15, 6, 0, 10, 14, 1, 6, 9, 12, 12, 11, 0, 5]]
113 [10, 5, [15, 11, 1, 7, 14, 10, 4, 2, 4, 1, 10, 13, 13, 8, 7, 0]]
114 [9, 8, [11, 14, 3, 4, 2, 7, 14, 9, 9, 13, 1, 7, 8, 12, 4, 2]]
115 [8, 13, [6, 3, 8, 15, 15, 10, 5, 2, 13, 9, 3, 5, 12, 8, 6, 0]]
116 [15, 15, [15, 8, 1, 4, 2, 5, 8, 13, 4, 2, 10, 14, 1, 7, 11, 15]]
117 [14, 8, [12, 9, 4, 3, 5, 0, 9, 14, 14, 10, 6, 0, 15, 11, 3, 5]]
118 [13, 1, [9, 13, 3, 5, 8, 12, 6, 0, 10, 15, 0, 7, 3, 6, 13, 10]]
119 [12, 4, [13, 9, 1, 7, 12, 8, 4, 2, 7, 2, 11, 12, 14, 11, 6, 1]]
120 [3, 1, [7, 3, 13, 11, 6, 2, 8, 14, 4, 1, 14, 9, 13, 8, 3, 4]]
121 [2, 7, [9, 15, 7, 3, 12, 10, 6, 2, 2, 5, 12, 9, 15, 8, 5, 0]]
122 [1, 11, [12, 11, 6, 3, 1, 6, 15, 10, 15, 9, 5, 1, 10, 12, 4, 0]]
123 [0, 15, [0, 7, 14, 11, 13, 10, 7, 2, 11, 13, 5, 1, 14, 8, 4, 0]]
124 [7, 4, [6, 2, 10, 12, 7, 3, 15, 9, 12, 9, 0, 7, 5, 0, 13, 10]]
125 [6, 2, [14, 8, 6, 2, 11, 13, 7, 3, 12, 11, 4, 1, 1, 6, 13, 8]]
126 [5, 10, [15, 8, 7, 2, 2, 5, 14, 11, 13, 11, 5, 1, 8, 14, 4, 0]]
127 [4, 14, [3, 4, 15, 10, 14, 9, 6, 3, 9, 15, 5, 1, 12, 10, 4, 0]]
128 [11, 13, [5, 0, 11, 12, 12, 9, 6, 1, 14, 10, 0, 6, 15, 11, 5, 3]]
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i DSd[i]
129 [10, 10, [0, 7, 8, 13, 13, 10, 1, 4, 2, 4, 10, 14, 7, 1, 11, 15]]
130 [9, 7, [2, 4, 12, 8, 7, 1, 13, 9, 9, 14, 7, 2, 4, 3, 14, 11]]
131 [8, 2, [0, 6, 8, 12, 5, 3, 9, 13, 2, 5, 10, 15, 15, 8, 3, 6]]
132 [15, 0, [15, 11, 7, 1, 14, 10, 2, 4, 13, 8, 5, 2, 4, 1, 8, 15]]
133 [14, 7, [5, 3, 11, 15, 0, 6, 10, 14, 14, 9, 0, 5, 3, 4, 9, 12]]
134 [13, 14, [10, 13, 6, 3, 7, 0, 15, 10, 0, 6, 12, 8, 5, 3, 13, 9]]
135 [12, 11, [1, 6, 11, 14, 12, 11, 2, 7, 2, 4, 8, 12, 7, 1, 9, 13]]
136 [3, 14, [4, 3, 8, 13, 9, 14, 1, 4, 14, 8, 2, 6, 11, 13, 3, 7]]
137 [2, 8, [0, 5, 8, 15, 9, 12, 5, 2, 2, 6, 10, 12, 3, 7, 15, 9]]
138 [1, 4, [0, 4, 12, 10, 1, 5, 9, 15, 10, 15, 6, 1, 3, 6, 11, 12]]
139 [0, 0, [0, 4, 8, 14, 1, 5, 13, 11, 2, 7, 10, 13, 11, 14, 7, 0]]
140 [7, 11, [10, 13, 0, 5, 7, 0, 9, 12, 9, 15, 3, 7, 12, 10, 2, 6]]
141 [6, 13, [8, 13, 6, 1, 1, 4, 11, 12, 3, 7, 13, 11, 2, 6, 8, 14]]
142 [5, 5, [0, 4, 14, 8, 1, 5, 11, 13, 11, 14, 5, 2, 2, 7, 8, 15]]
143 [4, 1, [0, 4, 10, 12, 1, 5, 15, 9, 3, 6, 9, 14, 10, 15, 4, 3]]
144 [15, 1, [11, 15, 1, 7, 10, 14, 4, 2, 8, 13, 2, 5, 1, 4, 15, 8]]
145 [14, 6, [3, 5, 15, 11, 6, 0, 14, 10, 9, 14, 5, 0, 4, 3, 12, 9]]
146 [13, 15, [13, 10, 3, 6, 0, 7, 10, 15, 6, 0, 8, 12, 3, 5, 9, 13]]
147 [12, 10, [6, 1, 14, 11, 11, 12, 7, 2, 4, 2, 12, 8, 1, 7, 13, 9]]
148 [11, 12, [0, 5, 12, 11, 9, 12, 1, 6, 10, 14, 6, 0, 11, 15, 3, 5]]
149 [10, 11, [7, 0, 13, 8, 10, 13, 4, 1, 4, 2, 14, 10, 1, 7, 15, 11]]
150 [9, 6, [4, 2, 8, 12, 1, 7, 9, 13, 14, 9, 2, 7, 3, 4, 11, 14]]
151 [8, 3, [6, 0, 12, 8, 3, 5, 13, 9, 5, 2, 15, 10, 8, 15, 6, 3]]
152 [7, 10, [13, 10, 5, 0, 0, 7, 12, 9, 15, 9, 7, 3, 10, 12, 6, 2]]
153 [6, 12, [13, 8, 1, 6, 4, 1, 12, 11, 7, 3, 11, 13, 6, 2, 14, 8]]
154 [5, 4, [4, 0, 8, 14, 5, 1, 13, 11, 14, 11, 2, 5, 7, 2, 15, 8]]
155 [4, 0, [4, 0, 12, 10, 5, 1, 9, 15, 6, 3, 14, 9, 15, 10, 3, 4]]
156 [3, 15, [3, 4, 13, 8, 14, 9, 4, 1, 8, 14, 6, 2, 13, 11, 7, 3]]
157 [2, 9, [5, 0, 15, 8, 12, 9, 2, 5, 6, 2, 12, 10, 7, 3, 9, 15]]
158 [1, 5, [4, 0, 10, 12, 5, 1, 15, 9, 15, 10, 1, 6, 6, 3, 12, 11]]
159 [0, 1, [4, 0, 14, 8, 5, 1, 11, 13, 7, 2, 13, 10, 14, 11, 0, 7]]
160 [3, 12, [8, 13, 4, 3, 1, 4, 9, 14, 2, 6, 14, 8, 3, 7, 11, 13]]
161 [2, 10, [8, 15, 0, 5, 5, 2, 9, 12, 10, 12, 2, 6, 15, 9, 3, 7]]
162 [1, 6, [12, 10, 0, 4, 9, 15, 1, 5, 6, 1, 10, 15, 11, 12, 3, 6]]
163 [0, 2, [8, 14, 0, 4, 13, 11, 1, 5, 10, 13, 2, 7, 7, 0, 11, 14]]
164 [7, 9, [0, 5, 10, 13, 9, 12, 7, 0, 3, 7, 9, 15, 2, 6, 12, 10]]
165 [6, 15, [6, 1, 8, 13, 11, 12, 1, 4, 13, 11, 3, 7, 8, 14, 2, 6]]
166 [5, 7, [14, 8, 0, 4, 11, 13, 1, 5, 5, 2, 11, 14, 8, 15, 2, 7]]
167 [4, 3, [10, 12, 0, 4, 15, 9, 1, 5, 9, 14, 3, 6, 4, 3, 10, 15]]
168 [11, 15, [11, 12, 5, 0, 6, 1, 12, 9, 0, 6, 14, 10, 5, 3, 15, 11]]
169 [10, 8, [8, 13, 0, 7, 1, 4, 13, 10, 10, 14, 2, 4, 11, 15, 7, 1]]
170 [9, 5, [12, 8, 2, 4, 13, 9, 7, 1, 7, 2, 9, 14, 14, 11, 4, 3]]
171 [8, 0, [8, 12, 0, 6, 9, 13, 5, 3, 10, 15, 2, 5, 3, 6, 15, 8]]
172 [15, 2, [7, 1, 15, 11, 2, 4, 14, 10, 5, 2, 13, 8, 8, 15, 4, 1]]
173 [14, 5, [11, 15, 5, 3, 10, 14, 0, 6, 0, 5, 14, 9, 9, 12, 3, 4]]
174 [13, 12, [6, 3, 10, 13, 15, 10, 7, 0, 12, 8, 0, 6, 13, 9, 5, 3]]
175 [12, 9, [11, 14, 1, 6, 2, 7, 12, 11, 8, 12, 2, 4, 9, 13, 7, 1]]
176 [5, 6, [8, 14, 4, 0, 13, 11, 5, 1, 2, 5, 14, 11, 15, 8, 7, 2]]
177 [4, 2, [12, 10, 4, 0, 9, 15, 5, 1, 14, 9, 6, 3, 3, 4, 15, 10]]
178 [7, 8, [5, 0, 13, 10, 12, 9, 0, 7, 7, 3, 15, 9, 6, 2, 10, 12]]
179 [6, 14, [1, 6, 13, 8, 12, 11, 4, 1, 11, 13, 7, 3, 14, 8, 6, 2]]
180 [1, 7, [10, 12, 4, 0, 15, 9, 5, 1, 1, 6, 15, 10, 12, 11, 6, 3]]
181 [0, 3, [14, 8, 4, 0, 11, 13, 5, 1, 13, 10, 7, 2, 0, 7, 14, 11]]
182 [3, 13, [13, 8, 3, 4, 4, 1, 14, 9, 6, 2, 8, 14, 7, 3, 13, 11]]
183 [2, 11, [15, 8, 5, 0, 2, 5, 12, 9, 12, 10, 6, 2, 9, 15, 7, 3]]
184 [13, 13, [3, 6, 13, 10, 10, 15, 0, 7, 8, 12, 6, 0, 9, 13, 3, 5]]
185 [12, 8, [14, 11, 6, 1, 7, 2, 11, 12, 12, 8, 4, 2, 13, 9, 1, 7]]
186 [15, 3, [1, 7, 11, 15, 4, 2, 10, 14, 2, 5, 8, 13, 15, 8, 1, 4]]
187 [14, 4, [15, 11, 3, 5, 14, 10, 6, 0, 5, 0, 9, 14, 12, 9, 4, 3]]
188 [9, 4, [8, 12, 4, 2, 9, 13, 1, 7, 2, 7, 14, 9, 11, 14, 3, 4]]
189 [8, 1, [12, 8, 6, 0, 13, 9, 3, 5, 15, 10, 5, 2, 6, 3, 8, 15]]
190 [11, 14, [12, 11, 0, 5, 1, 6, 9, 12, 6, 0, 10, 14, 3, 5, 11, 15]]
191 [10, 9, [13, 8, 7, 0, 4, 1, 10, 13, 14, 10, 4, 2, 15, 11, 1, 7]]
192 [10, 14, [13, 10, 1, 4, 0, 7, 8, 13, 7, 1, 11, 15, 2, 4, 10, 14]]

i DSd[i]
193 [11, 9, [12, 9, 6, 1, 5, 0, 11, 12, 15, 11, 5, 3, 14, 10, 0, 6]]
194 [8, 6, [5, 3, 9, 13, 0, 6, 8, 12, 15, 8, 3, 6, 2, 5, 10, 15]]
195 [9, 3, [7, 1, 13, 9, 2, 4, 12, 8, 4, 3, 14, 11, 9, 14, 7, 2]]
196 [14, 3, [0, 6, 10, 14, 5, 3, 11, 15, 3, 4, 9, 12, 14, 9, 0, 5]]
197 [15, 4, [14, 10, 2, 4, 15, 11, 7, 1, 4, 1, 8, 15, 13, 8, 5, 2]]
198 [12, 15, [12, 11, 2, 7, 1, 6, 11, 14, 7, 1, 9, 13, 2, 4, 8, 12]]
199 [13, 10, [7, 0, 15, 10, 10, 13, 6, 3, 5, 3, 13, 9, 0, 6, 12, 8]]
200 [2, 12, [9, 12, 5, 2, 0, 5, 8, 15, 3, 7, 15, 9, 2, 6, 10, 12]]
201 [3, 10, [9, 14, 1, 4, 4, 3, 8, 13, 11, 13, 3, 7, 14, 8, 2, 6]]
202 [0, 4, [1, 5, 13, 11, 0, 4, 8, 14, 11, 14, 7, 0, 2, 7, 10, 13]]
203 [1, 0, [1, 5, 9, 15, 0, 4, 12, 10, 3, 6, 11, 12, 10, 15, 6, 1]]
204 [6, 9, [1, 4, 11, 12, 8, 13, 6, 1, 2, 6, 8, 14, 3, 7, 13, 11]]
205 [7, 15, [7, 0, 9, 12, 10, 13, 0, 5, 12, 10, 2, 6, 9, 15, 3, 7]]
206 [4, 5, [1, 5, 15, 9, 0, 4, 10, 12, 10, 15, 4, 3, 3, 6, 9, 14]]
207 [5, 1, [1, 5, 11, 13, 0, 4, 14, 8, 2, 7, 8, 15, 11, 14, 5, 2]]
208 [14, 2, [6, 0, 14, 10, 3, 5, 15, 11, 4, 3, 12, 9, 9, 14, 5, 0]]
209 [15, 5, [10, 14, 4, 2, 11, 15, 1, 7, 1, 4, 15, 8, 8, 13, 2, 5]]
210 [12, 14, [11, 12, 7, 2, 6, 1, 14, 11, 1, 7, 13, 9, 4, 2, 12, 8]]
211 [13, 11, [0, 7, 10, 15, 13, 10, 3, 6, 3, 5, 9, 13, 6, 0, 8, 12]]
212 [10, 15, [10, 13, 4, 1, 7, 0, 13, 8, 1, 7, 15, 11, 4, 2, 14, 10]]
213 [11, 8, [9, 12, 1, 6, 0, 5, 12, 11, 11, 15, 3, 5, 10, 14, 6, 0]]
214 [8, 7, [3, 5, 13, 9, 6, 0, 12, 8, 8, 15, 6, 3, 5, 2, 15, 10]]
215 [9, 2, [1, 7, 9, 13, 4, 2, 8, 12, 3, 4, 11, 14, 14, 9, 2, 7]]
216 [6, 8, [4, 1, 12, 11, 13, 8, 1, 6, 6, 2, 14, 8, 7, 3, 11, 13]]
217 [7, 14, [0, 7, 12, 9, 13, 10, 5, 0, 10, 12, 6, 2, 15, 9, 7, 3]]
218 [4, 4, [5, 1, 9, 15, 4, 0, 12, 10, 15, 10, 3, 4, 6, 3, 14, 9]]
219 [5, 0, [5, 1, 13, 11, 4, 0, 8, 14, 7, 2, 15, 8, 14, 11, 2, 5]]
220 [2, 13, [12, 9, 2, 5, 5, 0, 15, 8, 7, 3, 9, 15, 6, 2, 12, 10]]
221 [3, 11, [14, 9, 4, 1, 3, 4, 13, 8, 13, 11, 7, 3, 8, 14, 6, 2]]
222 [0, 5, [5, 1, 11, 13, 4, 0, 14, 8, 14, 11, 0, 7, 7, 2, 13, 10]]
223 [1, 1, [5, 1, 15, 9, 4, 0, 10, 12, 6, 3, 12, 11, 15, 10, 1, 6]]
224 [6, 11, [11, 12, 1, 4, 6, 1, 8, 13, 8, 14, 2, 6, 13, 11, 3, 7]]
225 [7, 13, [9, 12, 7, 0, 0, 5, 10, 13, 2, 6, 12, 10, 3, 7, 9, 15]]
226 [4, 7, [15, 9, 1, 5, 10, 12, 0, 4, 4, 3, 10, 15, 9, 14, 3, 6]]
227 [5, 3, [11, 13, 1, 5, 14, 8, 0, 4, 8, 15, 2, 7, 5, 2, 11, 14]]
228 [2, 14, [5, 2, 9, 12, 8, 15, 0, 5, 15, 9, 3, 7, 10, 12, 2, 6]]
229 [3, 8, [1, 4, 9, 14, 8, 13, 4, 3, 3, 7, 11, 13, 2, 6, 14, 8]]
230 [0, 6, [13, 11, 1, 5, 8, 14, 0, 4, 7, 0, 11, 14, 10, 13, 2, 7]]
231 [1, 2, [9, 15, 1, 5, 12, 10, 0, 4, 11, 12, 3, 6, 6, 1, 10, 15]]
232 [14, 1, [10, 14, 0, 6, 11, 15, 5, 3, 9, 12, 3, 4, 0, 5, 14, 9]]
233 [15, 6, [2, 4, 14, 10, 7, 1, 15, 11, 8, 15, 4, 1, 5, 2, 13, 8]]
234 [12, 13, [2, 7, 12, 11, 11, 14, 1, 6, 9, 13, 7, 1, 8, 12, 2, 4]]
235 [13, 8, [15, 10, 7, 0, 6, 3, 10, 13, 13, 9, 5, 3, 12, 8, 0, 6]]
236 [10, 12, [1, 4, 13, 10, 8, 13, 0, 7, 11, 15, 7, 1, 10, 14, 2, 4]]
237 [11, 11, [6, 1, 12, 9, 11, 12, 5, 0, 5, 3, 15, 11, 0, 6, 14, 10]]
238 [8, 4, [9, 13, 5, 3, 8, 12, 0, 6, 3, 6, 15, 8, 10, 15, 2, 5]]
239 [9, 1, [13, 9, 7, 1, 12, 8, 2, 4, 14, 11, 4, 3, 7, 2, 9, 14]]
240 [0, 7, [11, 13, 5, 1, 14, 8, 4, 0, 0, 7, 14, 11, 13, 10, 7, 2]]
241 [1, 3, [15, 9, 5, 1, 10, 12, 4, 0, 12, 11, 6, 3, 1, 6, 15, 10]]
242 [2, 15, [2, 5, 12, 9, 15, 8, 5, 0, 9, 15, 7, 3, 12, 10, 6, 2]]
243 [3, 9, [4, 1, 14, 9, 13, 8, 3, 4, 7, 3, 13, 11, 6, 2, 8, 14]]
244 [4, 6, [9, 15, 5, 1, 12, 10, 4, 0, 3, 4, 15, 10, 14, 9, 6, 3]]
245 [5, 2, [13, 11, 5, 1, 8, 14, 4, 0, 15, 8, 7, 2, 2, 5, 14, 11]]
246 [6, 10, [12, 11, 4, 1, 1, 6, 13, 8, 14, 8, 6, 2, 11, 13, 7, 3]]
247 [7, 12, [12, 9, 0, 7, 5, 0, 13, 10, 6, 2, 10, 12, 7, 3, 15, 9]]
248 [8, 5, [13, 9, 3, 5, 12, 8, 6, 0, 6, 3, 8, 15, 15, 10, 5, 2]]
249 [9, 0, [9, 13, 1, 7, 8, 12, 4, 2, 11, 14, 3, 4, 2, 7, 14, 9]]
250 [10, 13, [4, 1, 10, 13, 13, 8, 7, 0, 15, 11, 1, 7, 14, 10, 4, 2]]
251 [11, 10, [1, 6, 9, 12, 12, 11, 0, 5, 3, 5, 11, 15, 6, 0, 10, 14]]
252 [12, 12, [7, 2, 11, 12, 14, 11, 6, 1, 13, 9, 1, 7, 12, 8, 4, 2]]
253 [13, 9, [10, 15, 0, 7, 3, 6, 13, 10, 9, 13, 3, 5, 8, 12, 6, 0]]
254 [14, 0, [14, 10, 6, 0, 15, 11, 3, 5, 12, 9, 4, 3, 5, 0, 9, 14]]
255 [15, 7, [4, 2, 10, 14, 1, 7, 11, 15, 15, 8, 1, 4, 2, 5, 8, 13]]
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B Example: Computing Eighth Element of Sequence
Consider the parameters as given in Appendix A. The 25-round sequence is given in
Table 8.

Table 8: 25-round sequence
i 0 1 2 3 4 5 6 7 8 9 10 11 12 -
ke

i 1 2 3 4 3 0 8 10 1 3 15 15 7 -
se

i 15 14 9 11 7 4 5 1 9 12 3 1 8 -

i 13 14 15 16 17 18 19 20 21 22 23 24 25 26
ke

i 6 8 6 4 11 13 11 2 3 3 1 7 - -
se

i 12 4 11 1 9 2 10 5 4 6 10 15 11 5

We compute sd
7 using data structure given in Table 7 in the following 3 steps.

1. Find the row corresponding to (kd
0 , k

d
1) in DSd. The value of row is given by:

row = L4(kd
0)||kd

1

= 7||1 = 113 (as kd
0 = ke

24 = 7 and kd
1 = ke

23 = 1)

2. Compute the partition p = DSd[113][2][kd
2 ]+kd

3 = DSd[113][2][3]+3 = DSd[113][2][3]+
3 = 7 + 3 = 4. Note that DSd[113][0][0] = sd

3 = se
23 = 10 and Xd = 5.

3. Compute sd
7. We have

sd
7 = sd

3 + kd
5 + p+ DSd[113][2][sd

6 +Xd]
= 10 + 11 + 4 + DSd[113][2][5 + 5]
= 5 + DSd[113][2][0] = 5 + 15 = 10 = se

19.

C Python Implementation
C.1 Main.py

## ******* Classes ******* ##
from segments import *
from indexset import *
from functions import *
from extractkeys import *
from datastr import *

## ******* Input parameters ******* ##
ws = 4 # wordsize
a = 0 # Shift parameter a
b = 1 # Shift parameter b
c = 2 # Shift parameter c
N = 1<<ws
t_round = 25 # Total rounds
pe_round = 12 # Partial encryption rounds
# pe_round = 13 # if t_round = 27

if __name__ == " __main__ ":
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secret_key = [1, 2, 3, 4] # random secret key
pt = [[15 , 14], [13, 12], [11, 10]] # 3 random plaintexts
ct = [] # ciphertexts
rk = keyexpansion (secret_key , t_round , ws , a, b, c)
for i in range(len(pt)):

ct. append ( encryption (pt[i], rk , t_round , ws , a, b
, c))

se0 = pt [0][0] # s0 from encryption side
se1 = pt [0][1] # s1 from encryption side
sd0 = ct [0][1] # s0 from decryption side
sd1 = ct [0][0] # s1 from decryption side

## ******* START : z- linear segment sets ******* ##
ZS = zsegments (ws , a, b, c)
[Z,CLZ] = ZS. construct_zsegments ()
# print_zset (Z, CLZ)
## ******* END : z- linear segment sets ******* ##

## **** Data structure for 6 decryption rounds **** ##
X = datastr (ws , a, b, c, Z, CLZ , sd0 , sd1)
DS = X. construct_ds ()

## ******* START : Recover secret key ******* ##

E = extract_keys (ws , a, b, c, se0 , se1 , pe_round , t_round
, DS , Z, CLZ)

K = E. filter_keys ()

K1 = []; K2 = []
for key in K:

rk = keyexpansion (key , t_round , ws , a, b, c)
if([ct [1][0] , ct [1][1]] == encryption (pt[1], rk ,

t_round , ws , a, b, c) ):
K1. append (key)

for key in K1:
rk = keyexpansion (key , t_round , ws , a, b, c)
if([ct [2][0] , ct [2][1]] == encryption (pt[2], rk ,

t_round , ws , a, b, c) ):
K2. append (key)

if( secret_key == K2 [0]):
print ("KEY Found")
print (" Secret key :" + str(K2 [0]))

## ******* END : Recover secret key ******* ##

C.2 Class functions.py

## *** Rotates a ws -bit word cyclically left by j bits *** ##
def lrotate (word , j, ws):

return (( word << j) % (1<<ws) ) | (word >> (ws - j))

## *** Rotates a ws -bit word cyclically right by j bits *** ##
def rrotate (word , j, ws):

return (( word << (ws - j)) % (1 << ws)) | (word >> j)

## **** Simon -like nonlinear round function **** ##
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def rf(lword , ws , a, b, c):
return ( lrotate (lword , a, ws) & lrotate (lword , b, ws) ^

lrotate (lword , c, ws) )

## **** Key scheduling algorithms **** ##
z =[1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0, \

1,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0, \
1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,0]

def keyexpansion (key , rounds , ws , a, b, c):
con = (1 << ws) - 4; m = 4; round_key = []
for i in range(m):

round_key . append (key[i])
for i in range(m, rounds ):
tmp_simon = round_key [i -4] ^ con ^ z[(i -4)%len(z)] ^ (

rrotate ( round_key [i-1], 3, ws)) ^ ( rrotate ( round_key [i
-1], 4, ws)) ^ rrotate ( round_key [i-3], 1, ws) ^
round_key [i -3]

# tmp_simeck = round_key [i -4] ^ con ^ z[(i -4)%len(z)] ^ ((
lrotate ( round_key [i-3], a, ws) & lrotate ( round_key [i

-3], b, ws) ) ^ lrotate ( round_key [i-3], c, ws))
round_key . append ( tmp_simon )

return round_key

## ******* Encryption ******* ##
def encryption (pt , subkey , rounds , ws , a, b, c):

s = []; s. append (pt [0]); s. append (pt [1])
for i in range (2, rounds +2):

tmp = s[i -2] ^ (( lrotate (s[i-1], a, ws) &
lrotate (s[i-1], b, ws) ) ^ lrotate (s[i-1], c,
ws)) ^ subkey [i -2]

s. append (tmp)

return [s[-2], s[ -1]]

## ******* Print z- linear segment sets ******* ##
def print_zset (Z, CLZ):

j = 0
for z in Z:

print (z,CLZ[j])
j = j + 1

print ("Nz : " + str(len(Z)))

## ******* Compute 8-th element of sequence ******* ##
def compute_s7 (D, K, ws):

s3 = D[(K[0]<<ws) + K [1]][0]
X = D[(K[0]<<ws) + K [1]][1]
I = D[(K[0]<<ws) + K [1]][2]
p = I[K[2]] ^ K[3]
s7 = s3 ^ K[5] ^ p ^ I[I[p ^ X] ^ K[2] ^ K[4] ^ s3]
return s7

C.3 Class segments.py

import numpy as np
from functions import *
CL4 = [0, 1, 3, 5, 7, 15] # Coset leaders for ws = 4
CL8 = [ 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, \
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21, 23, 25, 27, 29, 31, 37, 39, 43, 45, \
47, 51, 53, 55, 59, 61, 63, 85, 87, 91, \
95, 111, 119, 127, 255] # Coset leaders for ws = 8

# Coset leaders for ws = 10, 12, 14, 16 are not included due to
space.

class zsegments :
def __init__ (self , ws , a, b, c):
self.ws = ws; self.a = a; self.b = b; self.c = c

def construct_zsegments (self):
Z = [] ; TEMP1 = [] ; CL = []
if(self.ws == 4): TEMP = CL4
elif(self.ws == 8): TEMP = CL8

for s in TEMP:
TEMP1. append ( rf(s, self.ws , self.a, self

.b, self.c) ^ lrotate (s, self.c, self.
ws) )

Z = np. unique (TEMP1)

for z in Z:
indices = [i for i, x in enumerate (TEMP1)

if x == z]
CL. append ([ TEMP[k] for k in indices ] )

return (Z,CL)

C.4 Class indexset.py

import numpy as np
from functions import *

class indexset :
def __init__ (self , ws , c, X, s3 , Z, CLZ):
self.ws = ws; self.c = c; self.X = X;
self.s3 = s3; self.Z = Z; self.CLZ = CLZ

def construct_IK (self):
IK_k2 = []; IK_k3 = []
for k in range(len(self.CLZ)):

for x in self.CLZ[k]:
z = self.Z[k]
for i in range(self.ws):

y = lrotate (x, i, self.ws
)

T = lrotate (y, self.c,
self.ws) ^ lrotate (z,
i, self.ws)

IK_k2. append (y ^ self.X)
IK_k3. append (T ^ self.s3)
if( lrotate (y, 1, self.ws)

== x): break

return ( list( zip (* sorted ( zip(IK_k2 , IK_k3)))[1]
))
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C.5 Class datastr.py

import numpy as np
from functions import *
from indexset import *

class datastr :
def __init__ (self , ws , a, b, c, Z, CLZ , se0 , se1):

self.ws = ws; self.a = a; self.b = b; self.c = c
self.se0 = se0; self.se1 = se1; self.Z = Z ;
self.CLZ = CLZ

def construct_ds (self):
N = 1<<self.ws; DS = []
for ke0 in range(N):

for ke1 in range(N):
se2 = rf(self.se1 , self.ws , self.

a, self.b, self.c) ^ self.se0
^ ke0

se3 = rf(se2 , self.ws , self.a,
self.b, self.c) ^ self.se1 ^
ke1

Xe = rf(se3 , self.ws , self.a,
self.b, self.c) ^ se2

IKe = indexset (self.ws , self.c,
Xe , se3 , self.Z, self.CLZ)

Ie = IKe. construct_IK ()
DS. append ([se3 , Xe , Ie])

return DS

C.6 Class extractkeys.py

import numpy as np
from functions import *
from segments import *
from indexset import *

class extract_keys :
def __init__ (self , ws , a, b, c, se0 , se1 , pe_round ,

t_round , DSd , Z, CLZ):
self.ws = ws; self.a = a; self.b = b; self.c = c
self.se0 = se0; self.se1 = se1; self.DSd = DSd
self. pe_round = pe_round ; self. t_round = t_round
self.Z = Z; self.CLZ = CLZ

def filter_keys (self):
KEYS = []
#kei: i-th subkey starting from encryption round
#sei: i-th half -state starting from encryption

round

for ke0 in range (1<< self.ws):
for ke1 in range (1<< self.ws):

se2 = rf(self.se1 , self.ws , self.
a, self.b, self.c) ^ self.se0
^ ke0
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se3 = rf(se2 , self.ws , self.a,
self.b, self.c) ^ self.se1 ^
ke1

Xe = rf(se3 , self.ws , self.a,
self.b, self.c) ^ se2

IKe = indexset (self.ws , self.c,
Xe , se3 , self.Z, self.CLZ)

Ie = IKe. construct_IK ()
go to fun ()

return KEYS

## ******* fun () ******* ##

for k in range(len(self.CLZ)):
for x in self.CLZ[k]:

z = self.Z[k]
for i in range(self.ws):

y = lrotate (x, i, self.ws)
f = lrotate (y, self.c, self.ws) ^ lrotate

(z, i, self.ws)
if(self. t_round == 25):

go to fun1 ()
elif(self. t_round == 27):

go to fun2 ()

if( lrotate (y, 1, self.ws) == x):
break

## ******* fun1 () ******* ##

for j in range (1<< self.ws):
K = keyexpansion ([ke0 , ke1 , j, Ie[j] ^ y ], self.t_round ,

self.ws , self.a, self.b, self.c)
se6 = f ^ Xe ^ K[2] ^ K[4]
se7 = se3 ^ K[5] ^ y ^ Ie[f ^ K[2] ^ K[4]]
pt = [se6 , se7]
subkey = [K[i+6] for i in range(self. pe_round )]
TEMP = encryption (pt , subkey , self.pe_round , self.ws ,

self.a, self.b, self.c)
if(TEMP [-1] == compute_s7 (self.DSd , [K[-i] for i in range

(1 ,7)], self.ws)):
KEYS. append ([K[i] for i in range (4) ])

## ******* fun2 () ******* ##

S6 = []; S7 = []
for j in range (1<< self.ws):

K = keyexpansion ([ke0 , ke1 , j, Ie[j] ^ y ], self.t_round ,
self.ws , self.a, self.b, self.c)

se6 = f ^ Xe ^ K[2] ^ K[4]
se7 = se3 ^ K[5] ^ y ^ Ie[f ^ K[2] ^ K[4]]
S6. append (se6); S7. append (se7); S7_U = np. unique (S7)
for u in S7_U:

indices = [l for l, t in enumerate (S7) if t == u]
te = rf(u, self.ws , self.a, self.b, self.c)
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for ind in indices :
K = keyexpansion ([ke0 , ke1 , ind , Ie[ind]

^ y ], self.t_round , self.ws , self.a,
self.b, self.c)

pt = [u, te ^ S6[ind] ^ K[6]]
subkey = [K[i+7] for i in range(self.

pe_round )]
TEMP = encryption (pt , subkey , self.

pe_round , self.ws , self.a, self.b,
self.c)

if(TEMP [-1] == compute_s7 (self.DSd , [K[-i
] for i in range (1 ,7)], self.ws)):

KEYS. append ([K[i] for i in range
(4) ])
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