
Style Counsel: Seeing the (Random) Forest for the Trees in
Adversarial Code Stylometry∗

Christopher McKnight

Ian Goldberg

ABSTRACT
The results of recent experiments have suggested that code stylom-
etry can successfully identify the author of short programs from

among hundreds of candidates with up to 98% precision. This poten-

tial ability to discern the programmer of a code sample from a large

group of possible authors could have concerning consequences for

the open-source community at large, particularly those contrib-

utors that may wish to remain anonymous. Recent international

events have suggested the developers of certain anti-censorship

and anti-surveillance tools are being targeted by their governments

and forced to delete their repositories or face prosecution.

In light of this threat to the freedom and privacy of individual

programmers around the world, we devised a tool, Style Counsel, to
aid programmers in obfuscating their inherent style and imitating

another, overt, author’s style in order to protect their anonymity

from this forensic technique. Our system utilizes the implicit rules

encoded in the decision points of a random forest ensemble in order

to derive a set of recommendations to present to the user detailing

how to achieve this obfuscation and mimicry attack.

Our tool can successfully extract a set of changes that would

result in a misclassification as another user if implemented. More

importantly, this extraction was independent of the specifics of the

feature set, and therefore would still work even with more accurate

models of style. We ran a pilot user study to assess the usability of

the tool, and found overall it was beneficial to our participants, and

could be even more beneficial if the valuable feedback we received

were implemented in future work.

1 INTRODUCTION
Whether for the purposes of plagiarism detection, disputes over

intellectual property rights, proving forgery of wills or other legal

documents, criminal cases involving threatening letters or ransom

notes, or identifying cases of ghost writing or pen names, the use

cases for authorship attribution are varied and diverse.

The dawn of electronic communications and the Internet precipi-

tated a revolution in writing and self-publishing, greatly simplifying

and vastly scaling the process of communicating between groups of

people. In response to this, the use cases for authorship attribution

have grown to encompass new areas, such as cyber bullying [31, 40],

fake news [12, 34] and more sinister purposes, such as the identifi-

cation and subsequent persecution of political bloggers [5], among

others. Additionally, new techniques have also been developed for

analyzing this data with the assistance of computers, which is both

a convenience and a necessity given the quantity of data involved.

One particular technique for authorship attribution, known as

stylometry, is defined as “the statistical analysis of literary style” [14],

∗
This is an extended version of our WPES 2018 paper [25]. Even more detail can be

found in the first author’s Master’s thesis [24].

and as such is concerned solely with the content of the document,

rather than the method or medium of its delivery. Stylometry tech-

niques tend to focus on syntactical features, such as choice of words,

spelling, preference for certain grammatical structures and even

layout; these characteristics make it ideal for use in digital analysis.

Stylometry has been the subject of a number of research studies

looking at both closed- and open-class cases, real-world and fabri-

cated data sets and use cases ranging from the canonical Federalist

Papers disputed authorship [27] to more modern scenarios such

as identifying the authors of tweets [3]. While much research has

been conducted on establishing stylometry as a viable method for

the identification of authors, very little has been conducted into

its resistance to conscious attempts at subverting it. Of the few

studies that have been conducted, the results seem to suggest it is

rather easy for an informed individual to thwart the analysis [7, 18],

which may largely be a result of the underlying machine learning

algorithms employed, that are known to be susceptible to evasion

attacks [2], rather than a by-product of this particular problem

domain.

Just as stylometry attempts to carry out authorship attribution

through an analysis of the style in which a sample of writing has

been composed, its equivalent in terms of software, code stylom-
etry [9], attempts to identify the programmer that wrote some

sample of computer code through an analysis of their programming
style. It achieves this by examining their source code or executable

artifacts in order to discover common features that together may re-

veal a “fingerprint” of the author’s style, such as their preference for

certain logical structures, data types, use of comments, and naming

conventions, to name but a few. The origins of this idea date back

to the early 80s when researchers and educators were interested in

the analysis of coding style for the purposes of grading students’

assignments or just assessing whether some program adheres to

an agreed-upon standard of “good style” [26, 38]. Following the

Internet/Morris Worm incident in 1988 [30], a report was published

that attempted to profile the author of the worm based on an exam-

ination of the reverse-engineered code [37], casting style analysis

as a forensic technique in addition to a code quality metric.

Despite a substantial body of prior work on program author-

ship attribution, only one paper we are aware of [35] (independent

and concurrent work to ours) has yet investigated how robust the

techniques are to adversarial modifications aimed at obfuscation

of style or imitation of someone else’s style, and how difficult or

realistic this is. We go beyond prior work by developing a tool (a

plugin for the Eclipse IDE) named Style Counsel to assist program-

mers in obscuring their coding style by mimicking someone else’s,

achieved through an analysis of the decision trees contained in a

random forest classifier. The name “Style Counsel” is derived from

the intended behaviour of the system, to “counsel” users on their

style.
1
We evaluate the effectiveness of our random forest analysis

algorithm against a corpus of real-world data. Finally, we present

the results from a pilot user study conducted to determine the ease

with which a programmer can imitate someone else’s coding style

with and without the assistance of Style Counsel.

2 MOTIVATION
The threat to individuals’ freedom and privacy online from both

state and industry actors is growing year-on-year, resulting in an

increasingly censored Internet and World-Wide Web. According

to the Web Index 2014 report [17], 90% of the countries they sur-

veyed became less free with regards to political journalism between

2007 and 2013. They stated, “the overall environment for freedom
of expression has deteriorated in the overwhelming majority of Web
Index countries.” [17] They also highlighted the trend of declining

press freedom in countries that had previously scored highly in

this measure: “in 14 countries, including the US, UK, Finland, New
Zealand, and Denmark, scores fell by 20% or more.”

There are several cases of software developers being treated as

individuals of suspicion, intimidated by authorities and/or coerced

into removing their software from the Internet. In the US, Nadim

Kobeissi, the Canadian creator of Cryptocat (an online secure mes-

saging application) was stopped, searched and questioned by De-

partment of Homeland Security officials on four separate occasions

in 2012 about Cryptocat and the algorithms it employs [36]. In No-

vember 2014, Chinese developer Xu Dong was arrested, primarily

for political tweets supporting the occupy and umbrella movement

in Hong Kong, but also because he allegedly “committed crimes of
developing software to help Chinese Internet users scale the Great
Fire Wall of China” [10] in relation to software produced by his

“Maple Leaf and Banana” brand, which includes a proxy for by-

passing the Great Firewall. In August 2015, the Electronic Frontier

Foundation (EFF) reported that Phus Lu, the developer of a popu-

lar proxy service hosted on Google’s App Engine, called GoAgent,

had been forced to remove all their code from GitHub and delete

all their tweets on Twitter [29]. This followed a similar incident

reported on greatfire.org a few days earlier involving the creator

of ShadowSocks, another popular proxy used in China to “scale

the wall”, known pseudonymously as clowwindy. According to the

article reporting this incident, clowwindy posted a note afterwards

that said: “the police contacted him and asked him to stop working
on the tool and to remove all of the code from GitHub” [32], which
was subsequently removed. The README file for the project now

simply says “Removed according to regulations”. Earlier in March

2015, GitHub was subjected to “the largest DDoS that they have
ever dealt with” [8], which has been linked to the Chinese govern-

ment [21] and has been suggested was in an attempt to bully the

site into removing repositories that contravened their censorship

regulations.

As the environment turns hostile towards the developers, many

of them may opt to disguise their identities and authorship attri-

bution techniques such as code stylometry could be deployed in

order to identify them from other code they may have published

using their real identities. Even the threat of such techniques could

1The Style Council is also the name of a new wave pop band formed by Paul Weller in

1983 shortly after The Jam had split.

be enough to instill a chilling effect in open-source contributors

who otherwise may have been willing to contribute their time and

effort into assisting with censorship resistance tools and privacy-

enhancing technologies.

3 RELATEDWORK
As a research topic, authorship attribution has been, and continues

to be, popular, with dozens of papers published each year. The first

author’s Master’s thesis [24, Ch. 4] features an extensive discussion

of stylometric analysis, of natural language, source code, and even

executable binaries. In this paper, we will focus on defences against
stylometric analysis.

Kacmarcik and Gamon [18] were the first to consider how robust

known stylometry techniques were to adversarial modifications.

Using the federalist papers as their corpus, they decided to select

the features to modify independently of selecting the features to

use for classification. For the modification list, they first calculated

the relative frequencies of all 8,674 words found in the papers.

They then applied a novel feature selection process using decision

trees to establish which words to focus on. This process began by

generating a decision tree from all the features, then extracting the

word at the root node along with its threshold value, taking this to

be the most influential word. Decision trees are normally generated

with a greedy algorithm that chooses as the root node the feature

and threshold value that produces subsets with either the highest

information gain or purity measure relative to the parent set. This

process was then repeated iteratively, removing the root node word

each time to force the decision tree to select a new feature as the

root node. This iteration continued until the classification accuracy

dropped below the level of a random guess, producing a list of 2,477

ranked words.

They then trained SVM classifiers on feature sets of varying

dimensions (from three to 70), taken from other studies that used

the same corpus [4, 15, 28, 39], which assigned all but essay 55

to Madison (in agreement with the consensus on this problem).

Then, taking the top ten ranked words according to their feature

selection process and the related threshold values, the researchers

modified the feature vectors of the disputed papers to change the

values for these words to favour Hamilton, rather than Madison.

It was a partial success, with half of the papers being assigned

to Hamilton and half still to Madison. When the top ten ranked

features were limited to only those words appearing at least once

per thousand words, however, the ability to successfully attribute

the disputed papers to Hamilton rose so that all documents were

assigned to him. The classifiers with higher dimensionality were

found to be more resistant to these modifications, because they are

able to base their classification on a wider selection of features; it

is less likely that all the features used would be modified by any

general approach such as this. Thus, classifiers that are less fine

tuned to the particulars of their training data are likely to contain

more redundancy than feature sets that have been reduced to only

key features. In total, only 14.2 changes on average per 1000 words

were required to invert the classification fromMadison to Hamilton,

although applying the unmasking approach proposed by Koppel

and Schler [20] demonstrated that the change in classification may

be somewhat superficial.

2

Brennan, Afroz, andGreenstadt [7] sought to build on this simula-

tion of adversarial modifications with empirical results, by running

a user study to ascertain the feasibility of such modifications on

real documents by human participants. During the user study, they

tried three techniques with the participants: manual obfuscation,

manual imitation, and automated obfuscation (using a translation

service). Participants were asked to submit samples of their formal

writing (assignments, essays, theses, professional correspondence,

etc.) totalling at least 6,500 words, then asked to write a new pas-

sage on a given topic with the intent of obfuscating their writing

style and a second passage imitating the style of a “target” author,

chosen in advance to be Cormac McCarthy, in particular the style

of his book The Road [22]. For the final technique, the participants’

sample documents and excerpts from The Road were subjected

to automated translation by the services provided by Bing
2
and

Google
3
between the following languages:

• English→ German→ English

• English→ Japanese→ English

• English→ German→ Japanese→ English

For background training data, two corpora were derived, one from

student submissions and the other from Amazon Mechanical Turk
4

comprising twelve and 45 authors, respectively. In total, three clas-

sification systems were tested:

(1) A Neural Network trained with the “basic-9” feature set—this

feature set consisted of nine simple statistical and readability

features.

(2) A synonym-based approach [11], where shared words be-

tween texts are counted and weighted by the number of

synonyms that word has—in other words it is a tf-idf with

synonym weighting.

(3) SVM with the write-prints [16] feature set.

In their experiments, the authors were split into 1000 sets contain-

ing unique combinations of 5, 10, 15, 20, 25, 30, 35, and 40 authors

before 10-fold cross validation was used and the mean precision

was taken as the overall accuracy. Initially, a baseline test was

run to assess the performance of the classifiers on the unmodi-

fied documents. The synonym-based approach and write-prints

had precisions over 90% on average for five authors, falling to ap-

proximately 75% when considering 40 authors. When evaluating

the success of the participants at obfuscating their style, all three

classifier systems were reduced to no better than a random guess,

except for write-prints, which was marginally better. The imitation

attack successfully fooled the basic-9 and synonym-based systems,

returning 43–68% confidence that the passage had been written

by Cormac McCarthy, while write-prints proved to be somewhat

more resistant at 18–44%. The machine translation obfuscation ex-

periment demonstrated that this approach would not be effective,

for two reasons. First and foremost, it reduced the accuracy, but

not by enough to misclassify as another author. Secondly, some

sentences of the obfuscated text were often difficult to read or had

their meanings altered, while others were completely unchanged. A

paraphrasing tool, such as Barreiro’s SPIDER [1] would clearly be a

2
https://www.bing.com/translator

3
https://translate.google.com/

4
https://www.mturk.com/mturk/welcome

better option for automated obfuscation of text and an abundance

of these tools are available online [33].

In a follow-up paper, McDonald et al. [23] described a system

they had written to assist authors in anonymizing their documents,

called Anonymouth. This consisted of two subsystems: the first,

JStylo, performed feature extraction and could be configured with a

choice of feature sets and classifier; the second subsystem, Anony-

mouth, produced recommendations for the user by leveraging a

clustering algorithm and information gain to select features and

then advised the users to either move toward or away from the

centroid of a cluster depending on whether they should increase

or decrease a particular feature. These were shown as markers

in an editor window. They carried out a user study involving ten

participants, in which they were asked to write a new document,

following the recommendations given by the tool. Eight of the ten

users were able to do so successfully; i.e., obfuscate their style. The

authors noted that attempting to carry out this task on an existing

document was very hard and so did not attempt this, focusing in-

stead on the likely use case where a user would be guided by the

tool in creating new documents.

In parallel with our own work, another paper has been published

that investigates adversarial source code stylometry, by Simko et
al. [35]. This work carries out two significant user studies looking

into the robustness of a state-of-the-art source code stylometry

system [9] to human adversaries attempting to perform targeted

mimicry attacks and non-targeted obfuscation of style. The first user

study had 28 participants who were asked to modify someone else’s

code with the express intent of imitating a third person’s style. The

second study, involving 21 participants (none of whom had taken

part in the first study), examined their ability to attribute forged

samples to their true author, initially without knowledge of forgery

and then again after being informed of the potential forgeries. In

both studies, data from the Google Code Jam competition
5
were

used as the corpus, taken from the dataset used by Caliskan-Islam

et al. [9].
It is important to note that all code was formatted prior to both

studies, using an open-source tool.
6
By normalizing the formatting

of all files, Simko et al. wanted to focus the minds of participants

on the syntactic aspects of style present in the files, rather than the

minutiae issues associated with indentation and whitespace, saving

them from the tedium of making such changes.

The main finding from the first study was that the classifier

used was not robust against the adversarial attacks. With feedback

on their success, participants were able to successfully forge the

target’s style 66.6, 70, and 73.3% of the time for 5-, 20- and 50-class

datasets. Without feedback, the average success rate was 61.1%.

The obfuscation success rate (which they term as “masking”) was

comparatively higher, at 76.6, 76.6 and 80% for the 5-, 20- and 50-

class datasets. Note that masking was not given as an explicit task

by the researchers, but rather is what they termed an attempt at

forgery that was unsuccessful at being classified as Y, if it was also

not classified as X.

Simko et al. reported the following as their main finding from

the second study: “While our participants do not spot forgeries when

5
https://code.google.com/codejam/

6
http://astyle.sourceforge.net

3

https://www.bing.com/translator
https://translate.google.com/
https://www.mturk.com/mturk/welcome
https://code.google.com/codejam/
http://astyle.sourceforge.net

given no information at all, they can develop successful forgery de-
tection strategies without examples of forgeries or instructions about
forgery creation.” [35] When performing a simple attribution task;

i.e., classification without knowledge of forgeries, the average at-

tack success rate was 56.6%. After being informed of the potential

forgeries in the dataset, participants were only fooled 23.7% of the

time, although Simko et al. noted this coincided with an increase

in the number of false positives; i.e., where an unmodified sample

was mistakenly believed to be a forgery.

In terms of the types of changes made, the researchers found

these were “overwhelmingly local control flow, local information
structure changes, and typographical changes.” These local changes
are in contrast to algorithmic changes, such as using dynamic pro-

gramming instead of recursion, or refactoring a block of code into

a helper function. For an explanation of the participants’ success,

Simko et al. offer the following: “By making small, local changes to
only variable names, macros, literals, or API calls, forgers had access
to over half of the features”. This suggests the feature set devised by

Caliskan-Islam et al. may be overly reliant on such content-specific

attributes, rather than structural features; however, in their paper,

Caliskan-Islam et al. stressed the importance of the AST-based fea-

tures, which are more structural in nature, in producing their high

accuracies. Note that to achieve a classification as a particular class

in a decision tree, all decision points on paths leading to that class

must be satisfied. This implies there were sufficient numbers of

trees contained within the random forest inducted by Simko et al.
that were classifying instances based solely on these local features,

such as variable names, without including any AST-based features.

For recommendations in relation to local, content-specific fea-

tures, Simko et al. suggested: “future classifiers should consider fewer
of these features, or that these features could be contextualized with
their usage in the program.” They also suggested including more

features in future classifiers that are harder to forge, such as more

complex AST features, or higher-level algorithmic characteristics,

as well as including adversarial examples in training sets.

Overall, their paper offers insights into the vulnerabilities of

even state-of-the-art classifiers, and highlights the problems that

can arise by only evaluating classification systems (of any sort, not

merely authorship attribution systems) in terms of their accuracy

under ordinary conditions, assuming honest actors. It is comple-

mentary to our own research, as we are interested in establishing a

method for automated extraction of adversarial modifications, with

a developer tool that assists users and counsels them on their use

of code style, much in the vein of Anonymouth [23] by McDonald

et al. for disguising one’s natural-language writing style.

4 STYLE COUNSEL
4.1 Contributions
While there are some papers [7, 18, 23] investigating natural lan-

guage stylometry from an adversarial perspective, and one [35]

about the source code equivalent, we look at automating the pro-

cess of making suggestions for altering source code to imitate the

style of another author. If code stylometry is truly feasible en masse
against real-world data, it represents a threat to the safety of in-

dividuals online and therefore defences ought to be developed to

assist programmers in protecting their identities against such a

threat. To this end, this work offers the following contributions:

(1) A new set of features for capturing elements of programming

style.

(2) A novel, practical, algorithm for extracting a change set from a

random forest classifier in order to produce a misclassification

of a particular feature vector as an alternative, known class.

(3) A tool to assist developers in protecting their anonymity that

integrates with a popular IDE and is able to perform feature

extraction on their source code and recommend changes to

both obfuscate their style and imitate the style of another,

specific individual.

(4) A pilot user study evaluating the usability of the tool, the

feasibility of manually imitating another’s style, and the prac-

ticalities of using the tool for this task.

4.2 Data Collection and Feature Extraction
One of the aims of our work was to perform a realistic authorship

attribution study, to discover, highlight and hopefully overcome

some of the practical challenges associated with carrying out a

study such as this “in the wild”. All prior studies into source code at-

tribution have used corpora derived from student assignments, text-

books and programming competitions—but none of these sources

presents a corpus such as one would encounter in a real attempt at

performing large-scale deanonymization. Student assignments are

often relatively short, all trying to achieve the same end result, and

written by individuals from very similar backgrounds (particularly

with regards to their education). Code from textbooks is likely to

be proofread and edited, over-commented and, from the author’s

perspective, a model of perfection. Code from programming com-

petitions is likely to contain much copy and pasted boilerplate

code, taken from their other submissions, as well as being short,

uncommented and probably not following the competitor’s usual

style—its purpose is to solve the problem as quickly as possible, it

is not intended to be production quality, readable or maintainable.

To this end, we chose to obtain a large corpus of source code

from real projects that had been published on GitHub,
7
with the

caveat that the code belong to a single author (and truly written

by that person), to ensure purity of style. The multiple-author case

is considerably harder as this obviously introduces multiple styles,

and to varying degrees depending on how many lines each author

has contributed, whether code reviews were conducted and who by,

and so on. Trying to solve the multiple-author case may also not be

necessary, as in most cases lone authors are more likely to be the

intended beneficiaries of our tool. Selecting a popular and public

source for our data ensures a wide diversity of both developers, in

terms of their background and demographic, and projects, in terms

of purpose and size.

We enumerated 66,619 C repositories on GitHub, collecting data

on 11,164 that GitHub reported as containing 32KB or more of C

code with a single contributor. After cloning, we filtered the set of

repositories as follows (see the thesis version of this work [24, §5.3]

for more details):

(1) Removing repositories whose commit logs contained names

or email addresses of different people.

7
https://github.com

4

https://github.com

Table 1: Distribution of repositories per author

Repositories 2 3 4 5 6 7 8 9 10 11

Authors 396 88 25 8 2 2 0 2 1 1

(2) Removing code from “lib” and “ext” folders.

(3) Excluding repositories belonging to different owners that con-

tained identical files.

(4) Removing duplicate files by the same author.

(5) Excluding repositories not containing a minimum of 32 KB of

C source code (using a more accurate measure than provided

by GitHub) spread over 10–100 files, after the preceding filters

had been applied.

(6) Excluding authors that were only represented by a single repos-

itory, after all preceding filters had been applied.

Our evaluations were carried out on a final tally of 1,261 reposito-

ries from 525 authors. Table 1 gives the distribution of repositories

per author in our dataset.

Our target platform is the Eclipse IDE, so we wanted to integrate

the task of feature extraction within the plugin as much as possible

and take advantage of the rich services provided by the IDE for code

parsing. The Eclipse C Development Tools (CDT) provides a con-

venient mechanism for traversing the AST it constructs internally,

with an abstract class (ASTVisitor) containing callback methods

one can implement and pass as an argument to the AST interface

(IASTTranslationUnit). Our feature set is constructed largely from

this tree traversal, while specialized feature extractors are used to

parse comments and preprocessor directives, which are not present

in the AST.

We extracted features in the following categories:

• Node Frequencies—The relative frequency of AST node type

unigrams in the AST (detailed in Appendix A.1).

• Node Attributes—The relative frequency of AST node at-

tributes. These are dependent on the node type and provide

more detail on the content of that node; e.g., for the node type

IASTBinaryExpression, there is an attribute “type” that defines

whether the expression is addition, subtraction, etc. (detailed

in Appendix A.2).

• Identifiers—Naming conventions, average length, etc. (de-

tailed in Appendix A.3).

• Comments—Use of comments, average length, ratio of com-

ments to other structures, etc. (detailed in Appendix A.4).

These categories combined to give us a total of 265 features. We

purposefully exclude typographical features, such as indentation

and whitespace, as these inflate the accuracy of a classifier at the

cost of susceptibility to trivial attacks. Furthermore, as Simko et
al. [35] alluded to, asking users to make many minor typographical

modifications is tedious and frustrating, while there would be little

research novelty in automating such changes within our tool as

code formatters are already very common and would make our

adversarial attacks less compelling. Instead, we invoke Eclipse’s

built-in code formatter in order to provide default protection for our

users against the weakest attribution systems, without considering

such modifications as being successful defences. We also decided

against counting node bigrams as used by Caliskan-Islam et al. [9],
or character n-grams, as implemented by Frantzeskou et al. [13].

Node bigram-based features result in extremely high-dimensional

feature vectors, while character n-grams would be completely im-

practical for producing recommendations to the user, being made

up of combinations of partial words, tokens and whitespace.

As this is exploratory work and its main purpose is to explore

defences against attribution, rather than performing attribution

itself, this comprehensive but not exhaustive set of features was

chosen to be representative of the features one might employ if

wishing to perform authorship attribution while simultaneously

being of a high enough level to be the source of meaningful advice

to present to the user. Our aim is to demonstrate the feasibility of

an approach to parse the model generated by a learning algorithm

to automatically produce change sets for misclassification. Because

of the generality of this goal, we have provided a flexible frame-
work that can accommodate varying feature sets; exploring such

alternative feature sets to discover those that succinctly capture

an author’s style, while being amenable to producing actionable

advice, would be an excellent avenue for future work.

4.3 Training and Making Predictions
Once we had our background data corpus and a set of features

we could extract from it, we wanted to ascertain the ability of our

feature set and chosen random forest classifier (using the popular

open-source Weka platform
8
) to make predictions about the author

of a file, and subsequently of an entire repository. The random

forest algorithm, first proposed by Breiman [6], is an ensemble

classifier, meaning it is made up of multiple simpler classifiers, who

each provide their prediction and “vote” on the class. In this case,

the ensemble is made up of random decision trees. The class receiv-

ing the most votes is taken to be the overall prediction. Random

forests are discussed in more detail in the thesis version of this

work [24, §5.2.4]. We decided to use a similar training and evalua-

tion methodology to hold-one-out, meaning, for each repository

in our dataset, we trained our classifier on all repositories except

for the one under evaluation, then we classified each file in the

repository being evaluated and recorded the result. The overall

prediction of the author of an entire repository was simply the

most numerous author class assigned to each file in the repository.

In the case multiple authors tied for the plurality, the repository

classification was deemed unsuccessful, as was obviously the case

when the most numerous class was incorrect. Another way to de-

rive the repository prediction using aggregation would be to sum

the individual trees’ output predictions for each class and file, then

take the class that received the most votes from individual trees

as the repository prediction, or use this figure to produce a “top n”

list of possible authors. It would be worth exploring the differences

this makes in future work. The thesis version of this work [24, §5.5]

gives the details of our hold-one-out evaluation against the entire

corpus, with and without character unigram frequencies.

4.4 Making Recommendations
A significant part of our system, and crucial to its effectiveness, is

the ability to make recommendations to the user on what aspects

of their code they should change in order to disguise their identity

as a particular target author. Our reasons for imitating a specific

8
https://www.cs.waikato.ac.nz/ml/weka/

5

https://www.cs.waikato.ac.nz/ml/weka/

individual, rather than just “any” author, or “no” author (obfusca-

tion) are as follows: first, with obfuscation the aim is to reduce the

classification confidence to some target value, preferably to that

of a random guess or below that of some other author. This typi-

cally would involve perturbing the feature vector to a position just

outside the boundaries of that class in the feature space. A second

classifier trained on the same data, or with alternative background

data, may derive a different boundary that places the perturbed

feature vector within the bounds of its original class. Furthermore,

there is the problem of selecting which features to perturb, and by

howmuch. Imitation of “any” author suffers frommany of the same

drawbacks. Granted, the direction and magnitude of perturbations

is now more clearly defined (toward the nearest other author in the

feature space), but if it is known that the feature vector has been

perturbed, the original author could be determined by finding what

classes are nearest to the feature vector’s position other than the

given class. Indeed, we must assume everything is known about our

defences, and design a system that is secure despite this knowledge;

this design requirement follows from Kerckhoffs’ Principle [19].

4.4.1 Requirements. We have the following requirements for

our system:

(1) The advice should relate to something that is possible for

the programmer to change, so not refer to something that

is inherent to the programming language itself, or violate

syntactical rules of the language.

(2) The recommendations should not contradict one another, so

not advising the user to increase one feature while simultane-

ously decreasing another that is strongly positively correlated.

(3) The user should be presented only with changes that con-

tribute to the desired misclassification—either reducing con-

fidence in their classification or increasing it in the target

author.

(4) There should be a minimum of effort on the part of the user;

they should be presented with the minimum set of changes

required to effect a misclassification as the target.

(5) The recommendations should make sense to the user; they

should be able to understand what is required.

(6) Similarly, the advice should not be too vague; there should

be a clear connection between the recommendation and the

content of each file.

(7) As our tool is aimed at open-source developers, we want them

to be able to implement the changes without having a large

negative impact on readability of the code.

Of these requirements, the first two are the most important and

possibly easiest to ensure. The first equates to correctness and is

mostly a requirement of feature selection, extraction and represen-

tation. The second requirement equates to consistency and refers

to our ability to analyze the dataset and the relationships between

features; we cannot simply derive recommendations from the fea-

tures in isolation, but must take into consideration how features

are related and what impact a recommended change has on the rest

of the features.

The third and fourth requirements relate to how we extract

meaning from the classification model itself. The third equates to

relevance and can be met by only considering features that are ac-

tually used by the learning algorithm. With random forests, a form

of feature selection occurs during induction, due to the algorithm

selecting the best feature/value split at each node from among a

random subset of the total features. Therefore, the more important

and influential features will be seen with greater probability in each

tree. This gives us the ability to “rank” recommendations accord-

ing to their influence on the overall (mis)classification, which is

governed by how many paths within the decision trees contain the

feature. Conversely, if a feature does not appear in any path leading

to a certain class, that feature can be ignored or assigned any arbi-

trary value, as it does not contribute to the classification. In some

situations, it can be beneficial to know which features fall into this

category, as being able to assign arbitrary values to a feature can

help when needing to adjust values in another, related feature. By

only making recommendations to the user that will actually affect

their classification, we can maximize the effectiveness of the plugin,

and reduce the impact on the original code. The fourth requirement

equates to efficiency and can be met by calculating some form of

effort requirement to transform the user’s feature vector into one

that elicits a classification as the target, which we can then use to

select the one requiring the least effort.

The fifth and sixth requirements are related to the tool’s com-

munications with the user. The fifth equates to simplicity of com-

munication, and can be met by using language that is familiar to

programmers, but without introducing too much jargon. The sixth

requirement equates to clarity and is mostly related to the features

used. Features based on vague patterns found in the file contents

that are not tied to discrete semantic objects, such as character

n-grams rather than words, are going to be hard to relate to real

content.

The final requirement equates to non-intrusiveness, and is the

most difficult of the requirements to meet. It is dependent, to a large

extent, on the person implementing the change, and how exactly

they choose to do it. However, it is also dependent on the feature

set and the interpretation of the classification model. As mentioned

above, vague recommendations are hard to relate to real content

and can result in highly intrusive changes that affect readability and

other desirable aspects of the code, possibly even to the detriment

of performance and correctness.

4.4.2 Parsing the Random Forest. A random forest contains a

great deal of information about its training dataset. As discussed

above, Requirement 3 states that the user should only be presented

with changes that will affect their classification. We described an ap-

proach to solving this by only considering features that are present

on paths leading to our user’s present classification, and on paths

leading to leaf nodes that classify as our target. Finding the set of

features and their split points that contribute to our current classifi-

cation is relatively straightforward, requiring only a tree traversal.

As we already have our user’s feature vector, we simply need to

evaluate that vector for each tree in our forest, recording the fea-

ture splits found at each node along the way. As data structures,

trees have the property that each node is itself the root of its own

subtree. This recursive property lends itself to recursive algorithms

for traversing the tree structure quite elegantly.

Finding the set of features and their splits points that exist on

paths leading to our target’s classes is a little more complex, as we

do not have a feature vector to traverse the tree with, however a

6

recursive solution is once again our preferred approach, using a

post-order traversal, and can be summarized as follows:

(1) Traverse each path in the tree down to the leaf nodes;

(2) Check the majority class at each leaf node—if it is our target,

start a list whose first element is the leaf node;

(3) At each branch node, check whether any child nodes returned

a list indicating one or more descendant leaf nodes classify as

the target. If so, insert the current node to the start of the list,

additionally indicating whether the split is left or right (less

than or greater than/equal, respectively);

(4) Once the root node has returned, there will be n lists, one for

each leaf node that classifies as the target, containing all the

feature/value splits and their left/right direction for the nodes

on the paths leading to the leaf nodes;

Note that this algorithm returns nested data structures, organized

by tree, path and node, in that order. Most nodes will appear in

more than one path, as multiple leaf nodes may be reachable from

each branch node, and each leaf node is the endpoint of a distinct

path.

Note also that this algorithm can be modified to additionally

return the feature vector of each training instance of our target class,

if the random forest is adapted to have a “memory” of its training

instances. We made this adaptation to Weka’s implementation of

random forests, for reasons that will be elaborated in the next

section.

4.4.3 Analyzing the Split Points. Now that we have a set of

feature/value splits that lead to our current classification and our

target’s, we can find a set of changes that, if implemented, will lead

to us being classified as the target. We can actually reduce this to

simply finding a set of feature value intervals that will be classified
as the target, then perform a difference calculation with our current

feature values and present to the user as recommendations the

features that are outside this interval, with information on exactly

howmuch to perturb each feature in order to move within the range.

Intervals are the natural representation when dealing with decision

trees, because each split point in a tree defines two intervals; e.g.,

if the split point is x , then the two ranges are [0,x), [x ,+∞).
In our case, we are also concerned with the direction of the split;

i.e., whether the path leading to our target class requires that the

value of the feature be greater than/equal or less than the split

point, or both (splits found higher in the tree, i.e. at lower depths,

often lead to leaves of a given classification in either direction).

We can construct two sets, Λ and Γ, containing all the split points

where the path we are interested in follows the less than or greater

than/equal side of the split, respectively:

Λ = {λ1, λ2, . . . , λn−1, λn = +∞}, Γ = {γ1 = 0,γ2,γ3, . . . ,γm }
We can place an element in both sets to represent the case where

paths exist following both sides of the split. If we order the two

sets, such that:

∀i ∈ {1, . . . , |Λ|}, j ∈ {1, . . . , |Γ |} : λi−1 < λi ∧ γj−1 > γj
And: λ0 =minval (Λ) and γ0 =maxval (Γ), we can construct an

interval for each:

[0, λ0), [γ0,+∞)
Such that values in the intervals are guaranteed to satisfy all

the split points in their relative sets. Furthermore, if λ0 > γ0, we

can define an interval: [γ0, λ0) that is guaranteed to satisfy all split

points in both Γ and Λ:
γ0 ≤ x < λ0 =⇒ ∀γi ∈ Γ, λj ∈ Λ : γi ≤ x < λj

As our decision trees are inducted from multiple training in-

stances, it can easily be the case that our constructed sets Γ and Λ
contain split points that are less harmonized, causing an overlap

between elements’ split points. If λ0 ≤ γ0, we can construct two

subsets, Γ′ = {γ ∈ Γ | ∃λi ∈ Λ : γ ≥ λi } and Λ′ = {λ ∈ Λ | ∃γi ∈
Γ : λ ≤ γi }, then our task is to remove the least number of elements

from either Γ or Λ to reduce both Γ′ and Λ′ to ∅. If we once again
order the two sets, such that the elements in Γ′ are in ascending

order and Λ′ are in descending order, we can store our values into a

stack, pushing the elements in order so the top of the stack for Γ′ is
the highest numbered split and for Λ′ it is the lowest. Now, we only
need to compare the top of each stack, and if peek (Γ′) ≥ peek (Λ′),
we choose one side to pop according to some rule, and repeat until

peek (Γ′) < peek (Λ′). We detail this approach in Algorithm 1 in

Appendix D.

Path Aware. Taking this view of our decision trees and hence

random forest, as being a set of decision points made up of a feature,

value and direction (<, ≥), it is easy to forget the context within

which these decision points lie—to not see the forest for the trees

(or the trees for the paths (or the paths for the steps)). A path is a

sequence of steps (decision points) leading to a classification:

Π = {π0 = (ϕ0,x0,ψ0), . . . ,πn−1 = (ϕn−1,xn−1,ψn−1),πn = (θ)}
Where ϕi is the feature, x j is the split point,ψk ∈ {<, ≥} and θ is

the class. Paths have the property that all decision points must be

satisfied to reach the classification. In fact, a path is uniquely defined

by its decision points; if a condition is not met by a certain value,

then there must exist another path in which that condition is met

by the value. By taking this conceptual view of a decision tree, and

in turn a random forest, as being a set of paths, it becomes clear that

if we eliminate a particular split from either of our sets Λ or Γ, we
have effectively eliminated the entire path that contains the decision
point represented by that split, and we should therefore remove

all the other splits on that path from our consideration in their

respective Λ or Γ too. If we fail to remove these “broken” paths from

our consideration, we may later make decisions to disregard other

nodes on unbroken paths, due to the presence of nodes on broken

paths. As we consider features one by one, slowly our trees become

more “pruned”, resulting in less overlap between the respective Λ
and Γ sets.

One difficulty in taking this path elimination approach is decid-

ing which feature to consider first. The order in which features are

chosen can have a significant impact—if the first feature’s set of

conditions happens to contain a large degree of overlap, a lot of

paths would be eliminated, but this may not necessarily be optimal.

Calculating all possible combinations of feature ordering in this

respect to decide which is optimal would be expensive computation-

ally. As a path is a sequence of conditional steps towards a given

classification, it is natural to consider conditions in ascending order

of depth. Therefore, in our implementation, we took the greedy

approach of deriving intervals for all the conditions at a particular

depth, di , before di+1. Once an optimal interval has been derived

for the features found at depth di , these form the endpoints for the

ordered sets/stacks Γ and Λ for that feature at depths dj | j > i ,
meaning any conditions at dj with splits lower or higher than their

7

respective endpoints are dropped automatically. This favours the

conditions at lower depths, which is a reasonable assumption, as

these conditions have the greatest influence on classification, and

are likely to be present on multiple paths.

Tree Aware. In addition to being more path aware when choosing

to disregard a certain node, it is also necessary to be aware of the

individual trees the paths exist within. The overall output of our

ensemble classifier is determined by the number of trees that voted

for each class, therefore it is beneficial to maximize the number

of different trees represented in a set of recommended changes, to

increase our potential votes, as each tree can vote only once on the

output classification. When selecting a decision point to exclude,

it is therefore advisable to select one from a tree that includes

other potential paths to our target class rather than one from the

only path present in a tree. We also included this heuristic in our

implementation of Algorithm 1.

Cluster Aware. Finally, in order for our calculated intervals to

produce feature vectors that will actually classify successfully as

our target, it is necessary to take a holistic approach. Hitherto,

we have considered our features as isolated variables that can be

optimized independently of one another to satisfy the maximum

number of decision points, only referencing other features when

deselecting entire paths. It is important to note, however, that paths

are constructed during induction from real training instances, and

as such, each path represents a set of features that are in synergy

with one another, representing some configuration of the system

we are modelling (the source code) that is feasible and makes sense
in the rules of the system. So, for our model, each path represents a

combination of elements in a source code file that can co-exist in

the definition of the language syntax and produce features whose

values satisfy the conditions of the path’s decision points. We can

extrapolate this argument further, by noting that any paths that

were constructed from the same cluster (sets of training instances

that can be grouped together in the feature space), if combined,

must produce a set of decision points that some concrete instances

can satisfy. Note that this does not mean any feature vector that can

satisfy such a set represents a feasible combination of source code

elements. The decision points created in a decision tree represent

open-ended intervals—they divide sets of training instances, but do

not bound them. However, we can guarantee that it must be possible

for at least k real instances to exist that satisfy the decision points,

where k is equal to the cluster size, because those decision points

are based on the same k training instances. If we take different paths

leading to the same classification, but that were constructed from

different clusters, we cannot just arbitrarily combine the decision

points from these two paths to construct a set of recommendations,

because unless we know these paths led to the same cluster of training
instances, we do not know if the features found can be combined to
represent a source code file that is possible to exist.

As each tree is presented with a slightly different training set

and selects from a random subset of features at each node dur-

ing induction, we cannot guarantee that the same clusters will be

present throughout our forest. This is particularly true for larger

clusters, where the probability that one of the training instances

was not present in the training set is higher. If two clusters are

not exactly the same, we cannot guarantee that combinations of

decision points derived from paths leading to either of the two

clusters will be satisfiable. Previously, we noted that maximizing

the number of trees increases the potential classification confidence,

or number of votes, of our target class by the ensemble. Therefore,

rather than combining paths for a particular cluster, it is better

to combine paths for a particular training instance. The rationale
behind this is simple: firstly, by selecting only paths leading to a

particular training instance, we guarantee to find a set of decision

points that are satisfiable by files that can exist. Secondly, we will

also automatically find a set of decision points that are satisfiable

by any other files in the same cluster. This is true whether the size

of the cluster is one or 100. Algorithms 2 and 3 in Appendix D are

extensions to Algorithm 1 with tree- and path-aware behaviour.

Limitations. While the approach presented here is a technique

for deriving a set of feature value ranges that are guaranteed to

be satisfiable by real source code files, and hence is applicable in

practice, there are certain limitations which should be noted.

The first limitation is that finding sets of conditions for a particu-

lar training instance is only possible for trees that were inducted on

training sets containing that instance. As bootstrapping employs

sampling with replacement to produce an alternative training set

the same size as the original, any particular training instance is

likely to occur in only 1− 1

e ≈ 63.2% of decision trees, which means

we are only able to gather information from that proportion of our

forest to aid us. In reality, we are likely to accumulate some votes

from trees that we did not parse, as a feature vector that has already

been perturbed to resemble our target class is likely to also resem-

ble it in some unparsed trees, if the out-of-bag error is sufficiently

low, the data set exhibits a degree of clustering and we have not

suffered from overfitting. As future work, we could improve this

situation further by evaluating the training instance against the

decision trees inducted without it, noting when it was classified

correctly, and also including these paths in our evaluations.

The second limitation, also in relation to solving for a particular

training instance, is that a feature vector perturbed according to

our recommendations is not guaranteed to return an optimal classi-

fication confidence. One way we could optimize our feature vector

towards higher confidence is with some form of metaheuristic algo-

rithm, such as simulated annealing, memetic search, hill climbing

or genetic algorithms. The open question in this case would be

whether discovered solutions can exist in terms of the original

source code. Furthermore, is it the case that a solution reaching

high confidence must represent a feasible solution; i.e., would the

random forest encode in its multitude of nodes a definition of what

is possible to exist? By extension, could we assume that such so-

lutions are feasible and safely present them to our users? Another

potential issue with this form of search through optimization is it

does not naturally return intervals, but rather discrete points in the

feature space. Deriving a set of intervals to use for making recom-

mendations from a set of discrete points in our feature space would

be a difficult problem, possibly reducing to our original problem,

albeit with clearer clustering.

4.4.4 Presenting to the User. Once we have a set of intervals,
grouped by training instance, that can be used to achieve a certain

classification, our next task is to derive concrete recommendations

for the user. Initially, we must decide which training instance we

want to use the set of intervals for. We decided to base this decision

8

on the degree of change required, primarily how many features to

change and secondarily how many edits within each change. For

features based on relative frequencies and arithmetic means, the

difference between the current and recommended values is first

calculated, then this is multiplied by the denominator value that

was used to derive the frequency or mean. If the current value is 0,

the recommended value can be inverted and rounded to the nearest

integer to give an approximation of the number of changes; e.g., to

change the frequency from 0 to 0.5, at least 2 changes would need

to be made. For Boolean-valued feature changes, the number of

edits is counted as one. We also chose to use the closest endpoint of

the recommended interval when presenting the suggested changes

to the user, although they are also advised where the opposite

extremum lies to avoid over-editing. If the user edits their source

file, the degree of change metric will change for each of the target

instance intervals. It is possible that these edits may result in a

different set of target intervals returning a lower number for the

degree of change. Further edits may cause the target to change

repeatedly, particularly if the distances between the user’s feature

vector and the targets were high—a consequence that would be

rather disconcerting for the user. In order to maintain consistency

in our recommendations and avoid this “moving target” problem,

the plugin records the chosen training instance and its intervals, so

this selection process is only necessary the first time the user’s file

is evaluated.

Lists of recommended changes are presented to the user and

grouped according to their relationship with other features. In

the case of node type unigrams, they were grouped with their

siblings according to the extended interface in the Eclipse AST

they shared. Features that were already within their recommended

intervals were given, along with features that did not appear in any

trees and paths for that training instance. This is because knowing

these values can be incredibly useful when planning edits to a file,

as it informs the user which features can safely be added to or

removed in order to satisfy a related feature’s recommendation.

Recommendations that are not currently met by their respective

features are marked for clarity.

Each recommended change is formatted according to a template,

indicating the potential influence of the change (according to how

many trees and paths it was seen on in the forest), the direction (in-

crease/decrease), and magnitude. Additionally, the feature’s name

is mapped to a more descriptive term to aid the user in determining

what to change.

4.5 Using the Plugin
In this section, we describe the plugin and its workflow from the

user’s perspective. There are three main functional components

to the system that are accessible to the user: training a model,

evaluating one or more files and making recommendations, and

saving/loading trained models. These actions are presented as com-

mands in a menu accessible from the main toolbar in the Eclipse

editor (see Figure 1).

Setup. Before using the plugin, the user should have a corpus of

publicly available and attributable source code they have authored,

and a second corpus of unpublished source code, for which they

wish to disguise their authorship. In this case, their public source

Figure 1: Plugin menu

code will form part of the training data and be combined with the

background data included with the plugin.

Training. After selecting this option, the user is presented with

a resource selection dialog, which they can use to select either

individual files or entire folders and projects that are present in the

Eclipse workspace (collectively known in Eclipse as resources). The
selected resources can include files that do not contain source code,

as the plugin filters out such files. When training a model, the user

should select resources other than those they wish to modify. Once

the plugin has the list of source code files, it proceeds to extract

the features described in Section 4.2 to produce a feature vector for

each file, informing the user once this process is complete. These

feature vectors are combined with the background training data

and used to train a random forest classifier from Weka by calling

the embedded weka.jar file, which produces a model.

Saving and Loading. To enable users to work across multiple

sessions, being able to save the current model and load it at a later

time is vital. Due to the inherent randomness in the random forest

algorithm, there can be a fair degree of variation between models

trained on the same data, causing significant extra work for the user

if they must generate a new model in each session. This would be

compounded by the plugin potentially choosing a different training

instance’s set of conditions each time, according to the degree of

change metric discussed in Section 4.4.4.

Evaluation. Upon choosing this command, the user is once again

presented with a resource selection dialog from which they can

select one or more resources they wish to evaluate and generate

recommendations for. If no trained model exists at this point, the

command will exit without taking any action. Assuming a model

does exist, the plugin extracts features for the files being evaluated,

classifies them using the trained model and outputs messages in-

dicating the classification and confidence of each file, as well as

an aggregate classification/confidence value for the set of files (see

Figure 2), if more than one file was selected. Following this, the rec-

ommendations are generated by initially computing all paths in the

forest leading to each training instance of the target class (defined

a priori). These paths are processed according to the algorithms

presented in Section 4.4, the differences are calculated and finally

recommendations are generated and placed into template messages

as described in Section 4.4.4. The recommendations are given as

warnings in the “problems” view in the workspace (see Figure 3).

4.6 Pilot User Study
In order to help assess the usability and feasibility of our plugin, we

conducted a small pilot user study in order to receive feedback from

real users—extremely valuable for developing an effective tool.

For our pilot study, we chose participants that had C program-

ming experience and a corpus of source code files they had authored.

9

Figure 2: Aggregate output

Figure 3: Sample recommendations

Three members of the CrySP (Cryptography, Security, and Privacy)

lab at the University of Waterloo who satisfied these criteria volun-

teered for the study. Each participant was given two tasks; the first

was to manually analyze another author’s source code with the aim

of identifying elements of their style and reproducing those ele-

ments in one of the participant’s own files. The second task was to

use our plugin to achieve the same goal, with a different author so

as not to confer an advantage from carrying out the first task. The

tasks were chosen in this order so that completion of the assisted

task would not provide the user with insights into the feature set

for the unassisted task. Our Office of Research Ethics approved our

study (reference number ORE#22378).

5 RESULTS
5.1 Extracting a Class of Feature Vectors That

Can Systematically Effect a Classification
as Any Given Target

We evaluated the recommendation algorithm described in Sec-

tion 4.4. The purpose of this evaluation is to demonstrate that

the recommendation algorithm produces correct recommendations,

in terms of eliciting a misclassification as a target author. We also

wish to show that features not included in the recommendations

do not contribute to the overall classification for that target, and

can safely be ignored.

We carried out this evaluation by generating recommendations

for each file in our corpus, as though the author of that file were

the target. The min, max and mid values of each recommendation

were used to perturb that file’s existing feature vector. For example,

if a particular feature in the targeted instance had a value of 0.44

and the extracted interval indicated a perturbation in the range

of [0.4, 0.5) was possible, we evaluate the feature vector with this

value set to 0.4, 0.45 and 0.5 − ϵ , where ϵ is some suitably small

value. Two versions of these min-, mid-, and max-modified vectors

25 50 75 100 125

0

20

40

60

80

Size of Forest

C
o
n
fi
d
e
n
c
e
%

Training Instance Var. A (Orig. RF) Var. B (Orig. RF)

Var. A (New RF) Var. B (New RF)

Figure 4: Results of evaluating variation A and B feature vec-
tors generated from recommendations. The fabricated fea-
ture vectors were evaluated by the random forest that pro-
duced them and an alternate random forest trained on the
same data. The confidences reported here indicate how suc-
cessfully the extracted intervals model the volume of fea-
ture space occupied by the training instance, with higher
confidences being more successful.

were then produced, according to how the features with no rec-

ommendations were treated. In variation A, those features were

left as their original values, and in variation B they were set to 0.

If the variation A and B feature vectors return similar confidence

labels, then we can say the recommendations only included the

features that actually contribute to the classification. This is a de-

sirable characteristic for our system as we want to minimize the

changes we ask users to make. We then evaluated these feature

vectors with both the random forest they were derived from and a

second random forest trained on the same data (representing the

fact that the defender aiming to hide her identity will not have

access to the exact trained classifier being used by the stylometric

analyst). The results of these evaluations are given in Figure 4. The

confidence returned for the original training instances are averaged

across both random forests, as the differences are negligible, while

the confidence for the variation A and B feature vectors are aver-

aged separately over the respective forests, as their differences are

more significant. We report the confidences, rather than accuracy,

because this more accurately reflects the closeness with which we

are able to imitate the target, but note that with the relatively large

number of classes in our corpus, any class receiving a confidence

(i.e., votes) greater than 2% will typically become the overall label

attached to that instance; a class receiving a confidence greater

than 50% is guaranteed to become the overall class label. There-

fore, the accuracy in our context is always strictly greater than the

confidence.

We tested our algorithm with varying numbers of decision trees

to see the effect this had on confidence. It is clear that as the number

of trees increases, the classification confidence of the perturbed

feature vectors on the second random forest also increases. The per-

formance with the same feature vectors and the original classifier

10

increases only marginally, and for the original training instance, the

confidence remains almost constant. This increase is explained by

the additional information provided by larger forests, as more com-

binations of features are compared in individual nodes at differing

depths and with subtly varied training data, so the recommenda-

tions become more robust and more likely to still give the desired

result even with different classifiers. The variation A vectors give

significantly better confidences in the smallest retrained forests

due to the compensating effects of defaulting to the original values

rather than 0. The additional information available in larger forests

all but cancels this effect out with more than 100 trees, however.

This additional depth comes at the cost of more recommendations

for the user to implement, which is a tradeoff that could be config-

ured according to each user’s preference.

Comparing the performance of the variation A and B vectors,

we can see there is very little difference, which demonstrates that

the subset of features used in deriving the recommendations for

the user are the only features contributing to the classification.

The differences between the target and derived feature vectors’

performances on the original random forest are a result of the

relaxing of the feature vector values from the original single point

to a volume of the feature space encompassing a much greater

number of potential feature vectors, each of which can expect to

elicit a similar classification confidence from the random forest in

question as its peers. Having a target volume to guide users toward

instead of a single point in the feature space is far more flexible,

providing our users with more options when it comes to deciding

how to implement the suggestions offered by the tool, improving

its usability. This increase in flexibility and usability comes at a cost

of lower overall classification confidence, however.

As previously noted, the set of intervals extracted for each train-

ing instance encountered while traversing the random forest was

sampled three times during evaluation: once using the minimum

values, once using the middle values and once using the maximum

values in the interval. The output of these three samples are aver-

aged in Figure 4 for clarity, but note that there are minor differences

in their performance. For evaluations on the original forest, the

feature vectors using the maximum values from the intervals gave

the best average performance. The results for the new forest are ex-

pected, with the mid-range values providing the best performance.

This is because values at the fringes of the derived intervals are

more likely to fall on the wrong side of a split when a new forest

is inducted on a different bootstrapped dataset. There is a certain

amount of fuzziness in the positions of boundaries for the same

feature between two independent forests, therefore it follows that

values falling well within these boundaries, rather than near the

end points, would be more resistant to such uncertainty.

5.2 Pilot User Study
Our next evaluation was to elicit some valuable initial feedback

on the usability aspects of our plugin, and how it compared in the

participants’ perspectives to a manual attempt at the same feat.

This evaluation was of a more qualitative nature than our previous

assessments, consisting of far fewer samples, and largely based

on feedback responses to a questionnaire, which is provided in

Appendix B. Still, quantitative results were also obtained as part

of this process, and these are discussed alongside the participants’

responses below.

We refer to our three participants as P1, P2 and P3 respectively.

Each participant provided a number of C source files they had

written and were tasked with a manual attempt at mimicking an-

other programmer’s style (Target X) after being given access to a

selection of their source files and an assisted mimicry attempt of a

different programmer (Target Y) using our tool. Upon completion,

the participants were asked to answer a short written questionnaire

asking about their experiences using the plugin and comparing it to

their manual attempt, as well as how they thought the plugin could

be improved. Programmers P1 and P2 returned their responses,

however Programmer P3 chose not to complete the questionnaire.

Each participant used the same workstation to carry out their tasks.

The workflow during the assisted attempt was identical to the work-

flow a real user would follow when using the plugin. This involved

initially training the classifier on the participant’s provided source

code plus the background dataset, then for the file(s) they wish to

modify as part of the task, performing an evaluation and following

the recommendations as described in Sections 4.4.4 and 4.5 until

a desired classification confidence was reached, or the time limit

of one hour expired. Note that in a real user session, ideally the

classifier would be trained on completely independent repositories

of code to the one being modified, preferably public repositories, if

any exist. In our limited user study, the files provided by the partici-

pants did not constitute entire repositories, nor where they in great

enough numbers to split into separate training/test sets, therefore

all files were used for training. Note that this has no bearing on the

outcome of the study, as the recommendations are based on the

target programmer, whose code is part of the background dataset.

The user’s files are used to calculate the differences between their

current values and the end points of each interval, regardless of

whether that file’s data formed part of the background dataset or

not. Indeed, including all the user’s files in the training data makes

the task harder, as the initial classification confidence will be higher

than if it were not included.

5.2.1 Results. Programmer P1 furnished us with 22 files, with

an average size of 1.45 KB. After training, their files were classified

with an average confidence of 71.95%. They selected two files for

modifying in the first task, one of which was 4.1 KB and the other

4.6 KB. These files were initially classified as them with a confi-

dence of 66% and 67%, respectively and the target with 0% (i.e., that

percentage of trees output those predictions). For task two, they

modified the same 4.6 KB file from task one. After their manual

mimicry attempt of Target X, Programmer P1’s classification con-

fidence had been reduced to 64% for the first file and 30% for the

second, while the target’s was still 0% for both. On completing the

assisted task with Target Y, Programmer P1’s classification confi-

dence had been reduced to 6%, while that of the target was still

0%.

Programmer P2 provided ten files, with an average size of 20.06 KB.

After training, their files were classified with an average confidence

of 63.3%. They selected one file for modifying in both tasks, with a

size of 14.59 KB, that was classified as them with a confidence of

65% and the target with 0%. Their manual attempt with Target X

11

resulted in a reduction in confidence to 31% and 0% as the target.

The assisted attempt yielded 5% as themselves and 2% as Target Y.

Programmer P3 provided 32 files, with an average size of 14.7 KB

and classification confidence of 74.78%. The file they selected for

both tasks was 4.5 KB in size and had a classification confidence

of 66%, with the target 0%. Upon completion of the first task, they

managed to reduce this to just 4% (0% Target X), while the second

task saw a reduction to 11% for them and 1% as Target Y.

For detailed discussion of the participant experiences in the pilot

user study, see Appendix C.

5.2.2 Summary of User Study. Overall, we can see there were

both significant benefits and drawbacks to using the tool to assist

with the mimicry attempt. First, the results for both Programmers

P1 and P2 were significantly stronger in terms of reducing their

own classification confidence with assistance than without, while

Programmer P3 was able to achieve a lower confidence in task one

than task two. Moreover, all three Programmers’ files were classi-

fied as a different author after completion of task two, even if they

did not manage to achieve a classification as the target, whereas

only P3 managed to achieve this in task one. From the participants’

responses to the questionnaire, they thought one of the most im-

portant benefits was that analysis of both theirs and the target’s

code was automated. This saves a great deal of time over manually

inspecting the files and allows for objective and comprehensive

comparison between features present in both sets of files. Of course,

the automated approach is able to go much farther than that even,

as many thousands of files and authors can all be compared within

seconds in order to find the features that are potentially most sig-

nificant, which would be beyond the capabilities of a single person

carrying out a manual analysis. An additional benefit was that, with

frequent feedback on progress, the participants were able to keep

track of howmuch of an effect their changes were having and when

they had made sufficient modifications to a particular feature to

produce the desired effect. This guidance allowed them to focus on

the important aspects and ignore the rest. The downsides were that

it was often difficult to understand what they were being asked to

do by the plugin and the suggestions often represented changes

that were not conducive to maintaining functionality or readability

of the code. The first of these downsides is entirely preventable in

future versions if more effort is put into improving the wording of

the recommendations and the mapping between feature names and

user-friendly descriptions. This problem would also be greatly im-

proved with a better selection of features, utilizing fewer low-level

and ambiguous representations and more higher-level characteris-

tics that have a one-to-one mapping to recognizable elements in

the code itself. The second drawback, relating to “correctness” of

suggested changes, is much harder, and possibly touches on some

unsolved problems related to automated program synthesis and

analysis, which is an area of active research in its own right and far

beyond the scope of this work. This drawback could be alleviated,

however, with the same careful selection of features that would

solve some of the issues related to clarity. Having more concrete

recommendations, truly representative of style rather than content,

would be easier for the user to incorporate and could be combined

with examples of how to achieve the suggestion. A solution involv-

ing weighting of features when determining the degree of change

could also be incorporated, so features known to be less intrusive

and easier to implement without affecting the program behaviour,

could be favoured over other features that are harder to alter.

6 CONCLUSIONS
Source code stylometry has been identified as a potential threat to

the privacy of software developers, particularly those working in

the open-source community. In addition, several recent cases have

highlighted a worrying trend of governments targeting the devel-

opers of tools deemed to be used primarily for bypassing Internet

censorship and surveillance. It is easy to see how these two separate

phenomena could combine to threaten the safety and anonymity

of current contributors, as well as push would-be contributors into

silence. Alternatively, using authorship attribution has also been

proposed as a means of identifying computer criminals and mal-

ware developers. Before we can reach any meaningful conclusions

about its applications, however, it is important to understand its

limitations with more research into its feasibility in real-world set-

tings, its robustness in adversarial settings, and its ability to discern

style from content.

To this end, we developed an algorithm for providing source

code modification recommendations that will result in a successful

imitation if followed, using a “human-in-the-loop” model, where

it is down to the user’s discretion whether and how to implement

said recommendations. We presented our solution as a plugin called

Style Counsel for the popular open-source IDE Eclipse.

We ran a pilot user study to gain feedback and assess the usability

of the plugin with a small number of participants. The results

showed that two of the three participants performed far better

in the task of imitating another user with the assistance of the

tool than without. The participants that returned responses to a

questionnaire about their experiences highlighted the ability of the

tool to perform a mass analysis of their and the target’s source code

and continual feedback on progress as the main benefits. The clarity

of recommendations and difficulty implementing them without

negatively impacting the code’s readability or behaviour were given

as the main drawbacks, and are ripe targets for future work.

ACKNOWLEDGEMENTS
We thank NSERC for grants STPGP-463324 and RGPIN-03858. This

work benefitted from the use of the CrySP RIPPLE Facility at the

University of Waterloo.

REFERENCES
[1] Anabela Barreiro. 2011. SPIDER: A System for Paraphrasing in Document Editing

and Revision-Applicability in Machine Translation Pre-Editing. Computational
Linguistics and Intelligent Text Processing (2011), 365–376.

[2] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. 2010. The

Security of Machine Learning. Machine Learning 81, 2 (2010), 121–148. https:

//doi.org/10.1007/s10994-010-5188-5

[3] Mudit Bhargava, Pulkit Mehndiratta, and Krishna Asawa. 2013. Stylometric

Analysis for Authorship Attribution on Twitter. In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Vol. 8302 LNCS. 37–47. https://doi.org/10.1007/978-3-

319-03689-2_3

[4] Robert A. Bosch and Jason A. Smith. 1998. Separating Hyperplanes and the Au-

thorship of the Disputed Federalist Papers. The American Mathematical Monthly
105, 7 (1998), 601–608.

[5] Clark Boyd. 2005. The Price Paid for Blogging Iran. http://news.bbc.co.uk/2/hi/

technology/4283231.stm [Online; Accessed July 2018].

[6] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.

12

https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.1007/978-3-319-03689-2_3
https://doi.org/10.1007/978-3-319-03689-2_3
http://news.bbc.co.uk/2/hi/technology/4283231.stm
http://news.bbc.co.uk/2/hi/technology/4283231.stm

[7] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. 2012. Adversarial

Stylometry: Circumventing Authorship Recognition to Preserve Privacy and

Anonymity. ACM Transactions on Information and System Security 15, 3 (2012),

1–22. https://doi.org/10.1145/2382448.2382450

[8] Bill Budington. 2015. China Uses Unencrypted Websites to Hijack Browsers

in GitHub Attack. https://www.eff.org/deeplinks/2015/04/china-Uses-

Unencrypted-Websites-to-Hijack-Browsers-in-Github-Attack [Online; Ac-

cessed July 2018].

[9] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare

Voss, Fabian Yamaguchi, and Rachel Greenstadt. 2015. De-Anonymizing Program-

mers via Code Stylometry. 24th USENIX Security Symposium (USENIX Security
15) (2015), 255–270. https://doi.org/10.1145/2665943.2665958 arXiv:1512.08546

[10] China Change. 2014. Young IT Professional Detained for Developing Software to

Scale GFW of China. https://chinachange.org/2014/11/12/young-It-Professional-

Detained-for-Developing-Software-to-Scale-Gfw-of-China/ [Online; Accessed

July 2018].

[11] Jonathan H. Clark and Charles J. Hannon. 2007. A Classifier System for Author

Recognition Using Synonym-Based Features. InMexican International Conference
on Artificial Intelligence. Springer, 839–849.

[12] Niall J. Conroy, Victoria L. Rubin, and Yimin Chen. 2015. Automatic Deception

Detection: Methods for Finding Fake News. Proceedings of the Association for
Information Science and Technology 52, 1 (2015), 1–4.

[13] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, Carole E. Chaski,

and Blake Stephen Howald. 2007. Identifying Authorship by Byte-Level N-Grams:

The Source Code Author Profile (SCAP) Method. International Journal of Digital
Evidence 6, 1 (2007), 1–18.

[14] David I. Holmes. 1998. The Evolution of Stylometry in Humanities Scholarship.

Literary and Linguistic Computing 13, 3 (1998), 111 –117. https://doi.org/10.1093/

llc/13.3.111

[15] David I. Holmes and Richard S. Forsyth. 1995. The Federalist Revisited: New

Directions in Authorship Attribution. Literary and Linguistic Computing 10, 2

(1995), 111 –127. https://doi.org/10.1093/llc/10.2.111

[16] Farkhund Iqbal, Rachid Hadjidj, Benjamin C M Fung, and Mourad Debbabi. 2008.

A Novel Approach of Mining Write-Prints for Authorship Attribution in E-Mail

Forensics. Digital Investigation 5, SUPPL. (2008), 42–51. https://doi.org/10.1016/

j.diin.2008.05.001

[17] Anne Jellema, Hania Farhan, Khaled Fourati, Siaka Lougue, Dillon Mann, and

Gabe Trodd. 2014. Web Index Report. [Online; http://thewebindex.org/wp-

content/uploads/2014/12/Web_Index_24pp_November2014.pdf; Accessed August

2018].

[18] Gary Kacmarcik and Michael Gamon. 2006. Obfuscating Document Stylometry to

Preserve Author Anonymity. Proceedings of the COLING/ACL on Main Conference
Poster Sessions - (2006), 444–451. https://doi.org/10.3115/1273073.1273131

[19] Auguste Kerckhoffs. 1883. La Cryptographie Militaire. Journal des Sciences
Militaires IX (1883), 5–83.

[20] Moshe Koppel and Jonathan Schler. 2004. Authorship Verification as a One-

Class Classification Problem. Twenty-First International Conference on Machine
Learning - ICML ’04 (2004), 62. https://doi.org/10.1145/1015330.1015448

[21] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fiflield, Sarah

Mckune, Arn Rey, John Scott-Railton, Ronald Deibert, and Vern Paxson. 2015.

China’s Great Cannon. Technical Report. Citizen Lab. https://citizenlab.ca/2015/

04/chinas-Great-Cannon/, [Accessed Aug 2018].

[22] Cormac McCarthy. 2009. The Road. Pan Macmillan.

[23] AndrewW.E. McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and Rachel

Greenstadt. 2012. Use Fewer Instances of the Letter “i”: Toward Writing Style

Anonymization. In Privacy Enhancing Technologies, Vol. 7384. Springer, 299–318.
[24] Christopher McKnight. 2018. StyleCounsel: Seeing the (Random) Forest for the

Trees in Adversarial Code Stylometry. Master’s thesis. University of Waterloo.

https://uwspace.uwaterloo.ca/handle/10012/12856.

[25] Christopher McKnight and Ian Goldberg. 2018. Style Counsel: Seeing the (Ran-

dom) Forest for the Trees in Adversarial Code Stylometry. In 17th ACMWorkshop
on Privacy in the Electronic Society (WPES 2018).

[26] Brian A.E. Meekings. 1983. Style Analysis of Pascal Programs. SIGPLAN Notices
18, September (1983), 45–54.

[27] Frederick Mosteller and David Wallace. 1964. Inference and Disputed Authorship:

The Federalist. (1964).

[28] Frederick Mosteller and David L. Wallace. 1963. Inference in an Authorship

Problem. , 275–309 pages. https://doi.org/10.1080/01621459.1963.10500849

[29] Danny O’Brien. 2015. Speech That Enables Speech: China Takes Aim at Its

Coders. https://www.eff.org/deeplinks/2015/08/speech-Enables-Speech-China-

Takes-Aim-Its-Coders [Online; Accessed July 2018].

[30] Hilarie Orman. 2003. The Morris Worm: A Fifteen-Year Perspective. IEEE Security
& Privacy 99, 5 (2003), 35–43.

[31] JustinW. Patchin and Sameer Hinduja. 2006. Bullies Move Beyond the Schoolyard:

A Preliminary Look at Cyberbullying. Youth Violence and Juvenile Justice 4, 2
(2006), 148–169.

[32] Percy. 2015. Chinese Developers Forced to Delete Softwares by Po-

lice. https://en.greatfire.org/blog/2015/aug/chinese-Developers-Forced-Delete-

Softwares-Police [Online; Accessed July 2018].

[33] Ann M Rogerson and Grace McCarthy. 2017. Using Internet-Based Paraphrasing

Tools: Original Work, Patchwriting or Facilitated Plagiarism? International
Journal for Educational Integrity 13, 1 (2017), 2.

[34] Victoria L. Rubin, Niall J. Conroy, Yimin Chen, and Sarah Cornwell. 2016. Fake

News or Truth? Using Satirical Cues to Detect Potentially Misleading News. In

Proceedings of NAACL-HLT. 7–17.
[35] Lucy Simko, Luke Zettlemoyer, and Tadayoshi Kohno. 2018. Recognizing and

Imitating Programmer Style: Adversaries in Program Authorship Attribution.

PoPETs 2018, 1 (2018), 127–144.
[36] Privacy SOS. 2012. Programmer and Activist Interrogated at the Border. https://

privacysos.org/blog/programmer-and-Activist-Interrogated-at-the-Border/ [On-

line; Accessed July 2018].

[37] Eugene H. Spafford. 1989. The Internet Worm Program: An Analysis. ACM
SIGCOMM Computer Communication Review 19, 1 (1989), 17–57.

[38] David R. Tobergte and Shirley Curtis. 1984. Program Complexity and Program-

ming Style. Data Engineering, 1984 IEEE First International Conference On (1984),

534 – 541. https://doi.org/10.1109/ICDE.1984.7271316

[39] Fiona J. Tweedie, Sameer Singh, and David I. Holmes. 1996. Neural Network

Applications in Stylometry: The Federalist Papers. Computers and the Humanities
30, 1 (1996), 1–10. https://doi.org/10.1007/BF00054024

[40] Heidi Vandebosch and Katrien Van Cleemput. 2008. Defining Cyberbullying:

A Qualitative Research Into the Perceptions of Youngsters. CyberPsychology &
Behavior 11, 4 (2008), 499–503.

A DETAILS OF OUR FEATURE SET
A.1 Node Frequencies
Counting Nodes. The AST class hierarchy used by Eclipse is

not a one-to-one mapping between tokens seen in the code and

classes/interfaces in the hierarchy. Each node typically implements

multiple AST interfaces depending on its syntactical role. The con-

crete class each node object instantiates is not a suitable level of

abstraction to count occurrences for our unigram frequencies, be-

cause the Eclipse plugins involved have placed restrictions on ref-

erencing these classes from external plugins, which are enforced to

discourage their use. This is to protect calling code from becoming

too tightly coupled to a particular version of the Eclipse platform;

classes are not documented and may be subject to change at any

time between even minor version releases. Therefore, it is not ad-

visable to assume beforehand which classes are going to be present

in the AST if we wish our plugin to be at least somewhat portable

between different versions of Eclipse; however, at the same time we

must predefine our feature set as it is also not practical to include

within a plugin JAR file all the training data in its raw, unextracted

form (e.g., source and associated files). Therefore, we must include

the background training data in an extracted, normalized form of

feature vectors ready to be imported directly into our learning sys-

tem (Weka). This means for our unigram node frequency features,

we must focus on the interfaces, rather than the implementing

classes, which presents us with the problem of which of the mul-

tiple AST interfaces that a class implements should it be counted

against? The solution we chose for this problem was to derive a

list/array of all relevant interfaces (i.e., extensions of the root ASTN-
ode) that a node class implements, then record their counts against

each of their parent interfaces. In Java, classes can implement mul-

tiple interfaces and interfaces can extend multiple parent interfaces.

This can cause similar issues to multiple class inheritance when

trying to carry out reflection/introspection operations or navigate a

class hierarchy. We decided to use a list/array structure rather than

a set, because an interface may be implemented or extended twice

in the same class hierarchy. In order to keep child counts in the

correct proportion to their parents, i.e. the sum of the occurrences

13

https://doi.org/10.1145/2382448.2382450
https://www.eff.org/deeplinks/2015/04/china-Uses-Unencrypted-Websites-to-Hijack-Browsers-in-Github-Attack
https://www.eff.org/deeplinks/2015/04/china-Uses-Unencrypted-Websites-to-Hijack-Browsers-in-Github-Attack
https://doi.org/10.1145/2665943.2665958
http://arxiv.org/abs/1512.08546
https://chinachange.org/2014/11/12/young-It-Professional-Detained-for-Developing-Software-to-Scale-Gfw-of-China/
https://chinachange.org/2014/11/12/young-It-Professional-Detained-for-Developing-Software-to-Scale-Gfw-of-China/
https://doi.org/10.1093/llc/13.3.111
https://doi.org/10.1093/llc/13.3.111
https://doi.org/10.1093/llc/10.2.111
https://doi.org/10.1016/j.diin.2008.05.001
https://doi.org/10.1016/j.diin.2008.05.001
http://thewebindex.org/wp-content/uploads/2014/12/Web_Index_24pp_November2014.pdf
http://thewebindex.org/wp-content/uploads/2014/12/Web_Index_24pp_November2014.pdf
https://doi.org/10.3115/1273073.1273131
https://doi.org/10.1145/1015330.1015448
https://citizenlab.ca/2015/04/chinas-Great-Cannon/
https://citizenlab.ca/2015/04/chinas-Great-Cannon/
https://uwspace.uwaterloo.ca/handle/10012/12856
https://doi.org/10.1080/01621459.1963.10500849
https://www.eff.org/deeplinks/2015/08/speech-Enables-Speech-China-Takes-Aim-Its-Coders
https://www.eff.org/deeplinks/2015/08/speech-Enables-Speech-China-Takes-Aim-Its-Coders
https://en.greatfire.org/blog/2015/aug/chinese-Developers-Forced-Delete-Softwares-Police
https://en.greatfire.org/blog/2015/aug/chinese-Developers-Forced-Delete-Softwares-Police
https://privacysos.org/blog/programmer-and-Activist-Interrogated-at-the-Border/
https://privacysos.org/blog/programmer-and-Activist-Interrogated-at-the-Border/
https://doi.org/10.1109/ICDE.1984.7271316
https://doi.org/10.1007/BF00054024

of all child nodes equal to the occurrences of their parent, it was

necessary to count interfaces each time they were encountered,

even if this meant double counting. Indeed, in this case multiple

counting is unavoidable if we wish our relative frequencies to be

meaningful—it is no use simply taking the interface that appears

lowest in the class hierarchy, immediately above the concrete class,

because the class may directly implement multiple relevant inter-

faces and moreover a class may directly implement an interface

that is not a “leaf” interface. In short, the problem we are facing is

that each node in the AST is not a single entity, but due to poly-

morphism, has its own class hierarchy, which is a graph, not a

tree. Mapping from one to the other to count occurrences for the

purposes of frequency derivation requires that each node in the

graph be counted, regardless of its type.

Feature Representation. In total, there are 89 AST interfaces

we are interested in for the purposes of frequency derivation. As

discussed above, it was necessary to count the occurrences of a

relevant interface for each of its parent interfaces, up to the root

ASTNode interface. Each count is relative to its parent, so this means

there are multiple independent counts of the same interfaces in our

feature set, named Child-ParentNodeFrequency to avoid collisions

with other features based on the same child interface. This resulted

in a total of 95 AST frequency features, representing the frequencies

of the 89 interfaces.

A.2 Node Attributes
Many of the interfaces encountered define attributes that provide

additional information about the particular node type it represents.

The information provided by these attributes is relevant to us, there-

fore we created features representing, for example, the ratio of each

unary expression type to the total number of unary expressions,

which would vary between authors that had a preference for prefix

instead of postfix increment/decrement operators, for example.

A.3 Identifiers
Identifiers can provide a rich source of style information, demon-

strating the programmer’s preference for certain naming conven-

tions, for example, that can differ depending on educational back-

ground, experience and native language. Depending on the method

by which a programmer learned their craft, they may have been

taught or read about a variety of “best” practices regarding naming

of variables, functions, structures and so on. This can also indicate

their prior experience with other languages, as different languages

sometimes have their own idiomatic preferred naming conven-

tions. Their experiences working in teams either professionally or

on open-source projects will also have moulded their preferences,

with different organizations promoting different schemes amongst

their team members; e.g., Microsoft’s use of Hungarian notation

in its Win32 API.
9
Finally, programmers often use their native lan-

guage when naming elements of their code, particularly if they

are accustomed to working in teams where their native language

is spoken. This could have an impact on average name length, or

character frequencies, for example.

9
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378932(v=vs.85)

.aspx

To try to capture some of these preferences in our feature set,

we labelled identifiers according to the following characteristics

(maintaining separate lists for the names of variables, functions

and structs/unions):

• Title Case—First and subsequent words within the identifier
are capitalized; e.g., TitleCase.

• CamelCase—First word is lower case, but subsequentwords
are capitalized; e.g., camelCase.

• All Caps—All characters are in uppercase; e.g., ALLCAPS.

• Underscore Delimited—Words are separated with an un-

derscore; e.g., underscore_delimited, or ALL_CAPS.

• Underscore prefix—The identifier begins with an under-

score; e.g., _identifier.

• Single char—The identifier is made up of a single character

only; e.g., x.

• Hungarian notation—The identifier uses the so called Hun-
garian notation, which prefixes the name with the type of

the variable, or return type of the function, in lower case be-

fore reverting to title case for the remainder of the identifier.

This is harder to determine, as the prefixes are often a single

character, which could be part of a non-Hungarian notation

identifier. For example ‘a’ is used to denote an array, but an

identifier may be called “aCar”, for example, using camel

case notation.

We refrained from using character frequencies or n-grams, with

one exception described below, as the sample would be far too

small in any given file. Also, as we are precomputing our back-

ground training data, before the user’s training data can be known,

comparing files with one another is not possible, therefore shared

names or words cannot be utilized. In any case, shared words are

likely to be highly identifying when training/evaluating from the

same corpus, i.e. when using cross validation, due to the shared

functionality between files from the same software repository, but

would be far less so when evaluating files from different projects

by the same author, as would be the case for our tests. Unigram

frequencies of all possible words is similarly impractical, due to

the high number of non-dictionary words that would be present,

and as we do not know what data the user will want to train and

evaluate on in advance, we cannot precompute the words that will

be present in our corpus.

In addition to the above features based on labelling identifiers,

we also extracted the following:

• The character frequencies of single-char identifiers, as it was

postulated programmers would demonstrate a preference

for particular characters when using single-char identifiers.

While many programmers may favour i, j and k for their

control variables in for loop constructs, others may favour a,

b and c. Other programmers may habitually use single-char

identifiers in regular code.

• Average length of identifiers.

A.4 Comments
Similarly to identifiers, comments can be highly individualistic as

they represent the least restricted aspect of a program’s structure.

There is no strict syntax within a comment and styles vary greatly

both in terms of number and length of comments, as well as their

14

https://msdn.microsoft.com/en-us/library/windows/desktop/aa378932(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378932(v=vs.85).aspx

contents. Comment contents range from simple notes on the inten-

tion of one or more statements, details of bug fixes, TODOs (tasks)

and code fragments, to forming part of formal API documentation.

In our feature set, we catalogue the following features related to

comments:

• Comment frequency—As a ratio of total nodes.

• Single vs. multi-line preference—i.e., // or /* */
• Presence of header or footer comments—Before the first
non-comment token, or after the last.

• Character type ratio—ASCII to non-ASCII, letters to non-

letters and control chars.

• Use of frames—When non-letter chars are used to place

borders around comments and between sections; e.g., ********

• Use of tags—Providing metadata attributes, such as author,

date and version.

Once again, despite the actual words used in the comments prob-

ably revealing much about authorship, creating features based on

bag-of-words or word unigrams would be corpus-specific, and as

the user’s training data cannot be known in advance, it would

be of little use without including either the full representation

of the background corpus, or at least the set of words and their

counts/files/author details found in the background corpus, so that

the full training data set including the user’s could be dynamically

created. This latter option is feasible, although would make the

plugin larger and somewhat more complex, and is a possibility for

future work. There is also the question of realism, because although

finding common words, such as names, within multiple reposito-

ries by the same author would indeed be an identifying feature,

we should remind ourselves that the authors of these repositories

are not trying to disguise their identity—they have openly linked

these repositories together to one account. In the case where a

programmer is concerned about remaining pseudonymous, it is

unlikely they would include their real name, or a user name that

links them to an overt account they also use. It could also be the

case, however, that they have copied and pasted code they wrote

in another repository into their covert repository and this copied

code includes their other username, so this could actually be a real-

istic consideration. These, and other related questions, remain open

problems in authorship attribution in both the natural language

and source code settings.

A.5 Other
Other features that do not fall into any of the categories mentioned

above are:

• Size of AST—Total number of nodes (objects only), reveals

more about the complexity than a simple line count.

• Max breadth and depth of the AST—Can reveal some-

thing about the nesting habits of the developer, i.e. a nar-

rower, deeper tree indicates preference for more deeply

nested code.

• Ratio of leaf to branch nodes—Also indicates a preference
for shallow or deep nesting.

• Fraction of if statements with an else clause
• Average number of parameters to functions

B USER STUDY QUESTIONNAIRE
Thank you for agreeing to participate in this study. As previously

mentioned, I am interested in exploring your experiences, thoughts

and feedback regarding the tasks you were just asked to complete.

I would like to remind you that you are not obligated to participate

in the study or respond to any questions in the questionnaire if you

do not wish to. You may choose to end your participation in this

study at any time without repercussions.

(1) How would you describe your experience of completing

the first task of imitating the other author’s style without

guidance or assistance? How easy/difficult did you find the

task? Did you feel you were able to make sufficient changes

to successfully imitate their style of programming?

(2) What aspects of the task did you find particularly challeng-

ing, and why?

(3) What aspects of the task did you find particularly easy, and

why?

(4) How would you describe your experience of completing

the second task of imitating another author’s style with the

guidance of the tool? How easy/difficult did you find the

task? Do you feel the changes you were able to make were

sufficient to successfully imitate their style of programming?

(5) What aspects of this task did you find particularly challeng-

ing, and why?

(6) What aspects of this task did you find particularly easy, and

why?

(7) Overall, howwould you compare the difficulty of completing

the task with and without the assistance of the tool? Did you

find the advice provided by the tool to be useful?

(8) Would you recommend this tool to others who might benefit

from its application?

(9) What recommendations do you have for how the tool might

be more useful or effective in carrying out the tasks?

(10) Do you have any other comments you’d like to add about

your participation in the study today?

C PARTICIPANT EXPERIENCES IN THE
PILOT USER STUDY

C.1 Experiences with Manual Task
P1 reported that they found the manual task easy, while P2 thought

it only “seemed easy at first”, but they were “only able to find dis-
tinguishing features that were small in scope” and were unsure if

these were actually useful in identifying authors. On reflection, they

stated that they probably “didn’t imitate them as well as I originally
thought”.

Some of the observations made by P1 were that the target of-

ten used static functions, do/while instead of while loops, goto
statements, nested if/else conditionals rather than compound

structures and extensive macro definitions. P2 picked out the choice

of error codes returned by functions and use of whitespace as dis-

tinctive aspects. In Section 4.2, we outlined our reasons for not
including whitespace or any typographical-based features in our

feature set. This was also communicated to our participants; how-

ever, it is easy to forget such details. By automatically formatting

users’ code with Eclipse’s built-in formatter, despite these features

15

not forming part of our feature set, all users are able to benefit from

this basic protection without having to think about such minutiae.

P1 was able to adapt their code to the differences they noticed to

varying degrees, although they reported that they believed they

were only “moderately successful” in achieving the aims, citing the

time restriction and the challenge in “identifying the changes to be
made” as the main limitations. Expanding on this last statement,

they described the task of “ [determining] the differences between
my own style of writing and the target user’s” as difficult, because

“stylistic aspects of the target user could be present in a multitude of
different files and the target user may use features of the language
on an ad-hoc basis”. P2 made a similar observation, noting that “it
was challenging to find distinctive features for a programmer that
spanned multiple files”.

Overall, the manual task gave the participants complete freedom

in how they chose to interpret the target’s style and adapt their own

files to mimic this style, leading to changes that were certain not to

have a negative impact on the integrity or readability of the code.

The downside to this freedom is it causes uncertainty about what

aspects of the target they should try to mimic, what was significant

and to what degree they were successful in their imitation. Having

to carry out manual analysis also presented difficulties when it

came to identifying the common features—without having access

to quantifiable measures statistically significant aspects can easily

be overlooked.

C.2 Experiences with Assisted Task
With the assisted task, P1 reported that they found it a bit tedious

and frustrating at times, while P2 found it to be fun and “almost like
a game”. Regarding the clarity of the recommendations, P1 stated

that “it was relatively difficult to implement the plug-in’s suggestions”.
They went on to elucidate: “some terms used to describe syntactical
features, in the suggestions, were hard to understand”. P2 was simi-

larly confused with the recommendations, finding that “at first it
was difficult to interpret which changes I was supposed to make”. This
indicates some effort is required to improve the feature descriptions

that are mapped during generation of the recommendation text. In

some cases, the node frequencies are based on highly abstracted

interfaces from the Eclipse AST API, which prove to be very diffi-

cult to describe in terms of tangible aspects of the code. A review

of these node types, and whether they should in fact be included,

would be prudent in future versions of the plugin.

Both respondents also found some suggestions were hard to

implement without negatively affecting the behaviour and/or per-

formance of the code in question, and were concerned about main-

taining readability while adding redundant code to meet certain

suggestions. Comparing the suggestions to the changes they had

identified in the first task, P1 commented:

“in contrast to the features that I identified in the first task, all
of which were actionable, not all of the suggestions provided by the
plug-in were stable and implementable. Therefore, I had to spend time
identifying which ones were or were not actionable.”

P2 mostly implemented recommendations related to comments

and string literals, because:

“I was afraid that other changes in the code would alter the be-
haviour of my program and would be difficult to manipulate in a
functionally correct way.”

However, even this strategy had undesirable consequences, as

they noted “my comments ended up looking very strange”.
This highlights two problems, the first is related to using low-

level features while the second is related to automated generation of

recommendations. Using low-level features can present a problem

when linking features to the original phenomena. In most cases,

such features represent some normalization of a real characteristic

that may not be a one-to-one mapping, in which case either assump-

tions must be made or human interpretation must be employed to

ascertain the origin. In either case, the feature values themselves

or any feedback derived from them, do not represent consumable,

“actionable” suggestions. Indeed, the consumer of such advice must

carry out two cognitive tasks: one to determine what underlying

characteristics the low-level feature is derived from, and another to

determine if and how those characteristics can be changed without

adversely affecting either the essential or desirable qualities of the

artifact. As an analogy, take character 4-grams in natural language

stylometry. It might be the case that a particular author uses more

instances of “tion” than another. For the author wishing to disguise

their style and effect a reduction in this feature, they must firstly

find all the words containing this 4-gram, then decide which of

them can be changed and what to change them to. Alternatively,

by presenting them with feedback indicating that a whole word,

such as “obstruction”, occurs too frequently, a tool assisting them

could offer suggestions for alternatives, such as “barrier” or “hin-

drance”. This reduces the cognitive load on the user, making the

tool more intuitive and its results easier to interpret. While such

an approach also improves the automation capability of such a tool

(i.e., by making concrete suggestions), the second problem with

any tool is that it can never decide on behalf of the user whether a

suggestion will irrevocably change some desirable characteristic of

the artifact. Such characteristics are, for the most part, subjective,

and extremely difficult to quantify. By automating as much as can

reasonably be automated with regards to the suggestions, however,

we can at least reduce the decisions that must be made by the user

to only those that are infeasible for a computer to calculate.

In terms of the additional information provided by the plugin’s

evaluations, P1 said:

“The continuous feedback tome, through the updated textual output
to improve my (mis)classification and the dialog box indicating the
current classification, was very helpful.”

They also liked that the suggestions were grouped according to

their sibling and parent features, when presenting node frequency

suggestions. The most significant benefit P1 found to using the

tool over manual attempts, however, was the automation of the

code analysis, which had proved to be one of the most difficult

aspects of task one. They found they “did not need to spend time
identifying stylistic features in my or the target user’s code”. This
was confirmed by P2, who stated “the advice the tool gave was very
useful in pointing out features of my code that deviated from another
author’s programming style.”. P1 also commented that:

“the tool successfully did identify some stylistic features which
were missed through the manual observation process in task one. For
example, the tool indicated that I used a much higher frequency of

16

integer type declarations and much lower frequencies for almost all
other data types.”

P2 found a similar benefit, saying “it pointed out features that I
didn’t even think of when I was trying to imitate someone manually”.

For potential improvements, both respondents commented that

having examples of feature recommendations would have helped

them complete the task, with P2 suggesting “the task would have
been a lot easier if I had concrete examples from the target’s code”.
They also both wanted to see in future versions suggestions that

would not alter the behaviour of the code, with P2 offering as a

potential solution formal verification methods.

D DETAILS OF THE ALGORITHMS

Algorithm 1 Overall structure of an algorithm for deriving an

interval satisfying the split points of a feature seen on paths in the

forest

Let splits be a set of decision point tuples, containing non-

negative split value and direction (left, right) for a particular

feature.

function getInterval(splits)
Γ,Λ← empty list

for all split ∈ splits do
if split .direction = riдht then

add split .value to Γ
else

add split .value to Λ
end if

end for
sort(Γ, desc)
sort(Λ, asc)
if γ0 ≥ λ0 then

resolveOverlap(Γ,Λ)
end if
return (γ0, λ0)

end function

function resolveOverlap(Γ,Λ)
while γ0 ≥ λ0 do

φ ← choose(Γ,Λ,paths) // rules used here are described

later

if φ = γ0 then
remove γ0 from Γ

else
remove λ0 from Λ

end if
end while

end function

Algorithm 2 Method for deriving intervals for a set of paths

Letpaths be a set ofpath items from a random forest for a specific

training instance.

Let path be a sequence of conditions in a decision tree

Let condition be the tuple (tree,path, f eature, split ,direction),
where tree ∈ N, path ∈ N, f eature ∈ N, split ∈ R and

direction ∈ {le f t , riдht }.

function getIntervals(paths)
intervals ← empty hashtable

for j ∈ {0, 1, . . . } do
// Build a hashtable of conditions found at depth j in each

path, indexed by feature

conditionsj ← buildFeatureSplits(paths, j)
if conditionsj is empty then

break // Max depth reached

else
for all conditionsEntry ∈ conditionsj .entries do

if conditionsEntry.key ∈ intervals .keys then
interval ←

intervals .дet (conditionsEntry.key)
f eatureConditions ←

conditionsEntry.value
set f eatureConditions endpoints to min and

max from interval

else
set f eatureConditions endpoints to 0 and∞

end if
// Defined in Algorithm 1

interval ← getInterval(f eatureConditions ,
paths)

intervals .put (conditionsEntry.key, interval)
end for

end if
end for
return intervals

end function

17

Algorithm 3Method for deriving an interval satisfying the split

points, with tree- and path-aware modifications

Let conditions be a set of condition tuples

(tree,path, f eature, split ,direction), where tree ∈ N, path ∈ N,
f eature ∈ N, split ∈ R and direction ∈ {le f t , riдht }.
Let paths be a set of path items from a random forest for a

training instance τ .

function getInterval(conditions,paths)
Γ,Λ← empty list

for all condition ∈ conditions do
// It is assumed conditions with left and right directions

exist twice in conditions
if condition.direction = riдht then

add condition to Γ
else

add condition to Λ
end if

end for
sort(Γ, desc)
sort(Λ, asc)
if γ0 ≥ λ0 then

resolveOverlap(Γ,Λ,paths)
end if
return (γ0, λ0)

end function

function resolveOverlap(Γ,Λ,paths)
while γ0 ≥ λ0 do

φ ← choose(Γ,Λ,paths)
if φ = γ0 then

remove γ0 from Γ
else

remove λ0 from Λ
end if
remove path from paths

end while
end function

Algorithm 3 continued

function Choose(Γ,Λ,paths)
numPathsγ ← getNumPathsInTree(γ0.tree,paths)
numPathsλ ← getNumPathsInTree(λ0.tree,paths)
if numPathsγ = 1 ∧ numPathsλ > 1 then

return λ0
else if numPathsλ = 1 ∧ numPathsγ > 1 then

return γ0
else

// Check which side has the greatest gap to its successor

if γ1 − γ0 > λ0 − λ1 then
return γ0

else if γ1 − γ0 < λ0 − λ1 then
return λ0

else
return Choose randomly ∈ {γ0, λ0}

end if
end if

end function

function getNumPathsInTree(treeId,paths)
numPaths ← 0

for all path ∈ paths do
if path.tree = treeId then

numPaths++
end if

end for
return numPaths

end function

18

	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	4 Style Counsel
	4.1 Contributions
	4.2 Data Collection and Feature Extraction
	4.3 Training and Making Predictions
	4.4 Making Recommendations
	4.5 Using the Plugin
	4.6 Pilot User Study

	5 Results
	5.1 Extracting a Class of Feature Vectors That Can Systematically Effect a Classification as Any Given Target
	5.2 Pilot User Study

	6 Conclusions
	References
	A Details of our feature set
	A.1 Node Frequencies
	A.2 Node Attributes
	A.3 Identifiers
	A.4 Comments
	A.5 Other

	B User Study Questionnaire
	C Participant Experiences in the Pilot User Study
	C.1 Experiences with Manual Task
	C.2 Experiences with Assisted Task

	D Details of the Algorithms

