Putting Dots in Triangles

Simon R. Blackburn1 Maura B. Paterson2
Douglas R. Stinson3

1Information Security Group
Royal Holloway, University of London

2Department of Economics, Mathematics and Statistics
Birkbeck, University of London

3David R. Cheriton School of Computer Science
University of Waterloo

University of Vermont
Wednesday, April 7, 2010
the plan

In this talk, we give a complete answer to a simply stated combinatorial problem. The solution that we found is quite short, but perhaps surprising.

The main focus of this elementary talk is not the proof of the main result, but how we arrived at the proof, including a few wrong turns along the way.

After carrying out this research, we found that the problem had been solved previously using somewhat different techniques:

the problem

Consider a “triangle” of squares in a grid whose sides are n squares long, as illustrated by the following diagram, for which $n = 7$.

We denote by $N(n)$ the maximum number of dots that can be placed into the cells of the triangle such that each row, each column, and each diagonal parallel to the third side of the triangle contains at most one dot.
\(n = 1 \)
\[n = 1 \]

\[N(1) = 1 \]
\[n = 2 \]
\[n = 2 \]

\[N(2) = 1 \]
\(n = 3 \)
$n = 3$

$N(3) = 2$
$n = 4$
\[n = 4\]

\[N(4) = 3\]
$n = 5$
\[n = 5 \]

\[N(5) = 3 \]
$N(5) \neq 4$
$N(5) \neq 4$
$N(5) \neq 4$
$N(5) \neq 4$
\[N(5) \neq 4 \]
$N(5) \neq 4$
$N(5) \neq 4$
\[N(5) \neq 4 \]
$N(5) \neq 4$
$N(5) \neq 4$
\[N(5) \neq 4 \]
$n = 6$
\(n = 6 \)

\(N(6) = 4 \)
\[n = 7 \]
$n = 7$

$N(7) = 5$
\[N(n) \text{ for small values of } n \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(n))</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
$N(n)$ for small values of n

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(n)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Conjecture: $N(n) = N_f(n)$, where

\[
\begin{align*}
N_f(3t) &= 2t \\
N_f(3t + 1) &= 2t + 1 \\
N_f(3t + 2) &= 2t + 1
\end{align*}
\]
$N(n)$ for small values of n

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(n)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Conjecture: $N(n) = N_f(n)$, where

\[
N_f(3t) = 2t \\
N_f(3t + 1) = 2t + 1 \\
N_f(3t + 2) = 2t + 1
\]

Simplification:

\[
N_f(n) = \left\lfloor \frac{2n + 1}{3} \right\rfloor
\]
a construction meeting the lower bound

First, we show that $N(3t + 1) \geq 2t + 1$:

1. Place a dot in the leftmost cell of the $(2t + 1)$st row.
2. Place t more dots, each two squares to the right and one square up from the previous dot.
3. Place a dot in the $(t + 2)$nd cell from the left in the bottom row.
4. Place $t - 1$ more dots, each two squares to the right and one square up from the previous dot.
First, we show that $N(3t + 1) \geq 2t + 1$:

1. Place a dot in the leftmost cell of the $(2t + 1)$st row.
2. Place t more dots, each two squares to the right and one square up from the previous dot.
3. Place a dot in the $(t + 2)$nd cell from the left in the bottom row.
4. Place $t - 1$ more dots, each two squares to the right and one square up from the previous dot.

Next, $N(3t + 2) \geq N(3t + 1) \geq 2t + 1$ (add a row of empty cells).
First, we show that $N(3t + 1) \geq 2t + 1$:

1. Place a dot in the leftmost cell of the $(2t + 1)$st row.
2. Place t more dots, each two squares to the right and one square up from the previous dot.
3. Place a dot in the $(t + 2)$nd cell from the left in the bottom row.
4. Place $t - 1$ more dots, each two squares to the right and one square up from the previous dot.

Next, $N(3t + 2) \geq N(3t + 1) \geq 2t + 1$ (add a row of empty cells).

Finally, $N(3t) \geq N(3t + 1) - 1 \geq 2t$ (delete the bottom row of cells, which contain at most one dot).
it seemed like a good idea at the time
it seemed like a good idea at the time

- It is obvious that

\[N(n) \leq N(n - 1) + 1. \]
• It is obvious that

\[N(n) \leq N(n - 1) + 1. \]

• To prove \(N(n) = N_f(n) \), it would suffice to prove that

\[N(n) \leq N(n - 3) + 2. \]
it seemed like a good idea at the time

• It is obvious that

\[N(n) \leq N(n - 1) + 1. \]

• To prove \(N(n) = N_f(n) \), it would suffice to prove that

\[N(n) \leq N(n - 3) + 2. \]

• An inductive proof seems promising, but we couldn’t make the induction proof work out, despite trying various approaches.
it seemed like a good idea at the time

- It is obvious that
 \[
 N(n) \leq N(n - 1) + 1.
 \]
- To prove $N(n) = N_f(n)$, it would suffice to prove that
 \[
 N(n) \leq N(n - 3) + 2.
 \]
- An inductive proof seems promising, but we couldn’t make the induction proof work out, despite trying various approaches.
- It is possible to prove some weak partial results such as the following: If there are two dots in the top three rows, then the total number of dots is at most $N(n - 3) + 2$.

two dots in the top three rows
two dots in the top three rows
two dots in the top three rows

a triangle of side \(n - 4 \) remains
two dots in the top three rows
two dots in the top three rows

a triangle of side $n - 3$ remains
two dots in the top three rows
two dots in the top three rows

a triangle of side $n - 3$ remains
a tiny step: a not-very-good upper bound

\[A + B + C \leq n^2 \]

\[B + C + D \leq n^2 \]

\[A + C + D \leq n^2 \]

\[A + B + C + D \leq 3n^2 \]
a tiny step: a not-very-good upper bound

\[
A + B + C \leq \frac{n}{2} \\
B + C + D \leq \frac{n}{2} \\
A + C + D \leq \frac{n}{2}
\]
a tiny step: a not-very-good upper bound

\[A + B + C \leq \frac{n}{2} \]
\[B + C + D \leq \frac{n}{2} \]
\[A + C + D \leq \frac{n}{2} \]
\[\Rightarrow \quad A + B + C + D \leq \frac{3n}{4} \]
another dead end?

- A more refined analysis yields the result that $N(n) < 3n/4$ for all even $n > 4$ (note that $N(4) = 3 = 4 \times 3/4$).
another dead end?

• A more refined analysis yields the result that $N(n) < 3n/4$ for all even $n > 4$ (note that $N(4) = 3 = 4 \times 3/4$).

• Decomposing the triangle into $1 + 3 + 5 = 9$ smaller triangles also yielded the same bound of roughly $3n/4$.
another dead end?

- A more refined analysis yields the result that $N(n) < 3n/4$ for all even $n > 4$ (note that $N(4) = 3 = 4 \times 3/4$).
- Decomposing the triangle into $1 + 3 + 5 = 9$ smaller triangles also yielded the same bound of roughly $3n/4$.
- This is far from the conjectured bound of (roughly) $2n/3$.
A more refined analysis yields the result that $N(n) < 3n/4$ for all even $n > 4$ (note that $N(4) = 3 = 4 \times 3/4$).

Decomposing the triangle into $1 + 3 + 5 = 9$ smaller triangles also yielded the same bound of roughly $3n/4$.

This is far from the conjectured bound of (roughly) $2n/3$.

But, if we decompose the triangle into $n(n + 1)/2$ individual cells, then we have an integer program which will yield the exact value of $N(n)$ (in principle, at least).
integer program formulation

The computation of $N(n)$ can be formulated as an integer program. Suppose we number the cells as indicated in the following diagram (where $n = 6$):

Define $x_{i,j} = 1$ if the corresponding cell contains a dot; define $x_{i,j} = 0$ otherwise.
integer program formulation

The sum of the variables in each row, column, and diagonal is at most 1. This leads to constraints of the form

\[\sum_{j=1}^{i} x_{i,j} \leq 1, \quad \text{for } i = 1, 2, \ldots, n \]

\[\sum_{i=j}^{n} x_{i,j} \leq 1, \quad \text{for } j = 1, 2, \ldots, n \]

and

\[\sum_{i=k+1}^{n} x_{i,i-k} \leq 1, \quad \text{for } k = 0, 1, \ldots, n-1. \]

Finally, \(x_{i,j} \in \{0, 1\} \) for all \(i, j \).

Objective function: Maximize \(\sum x_{i,j} \) subject to the above constraints; this maximum is \(N(n) \).
linear program formulation

The only change is that the variables can take on any real values in the closed interval $[0, 1]$. So the constraints are

$$\sum_{j=1}^{i} x_{i,j} \leq 1, \quad \text{for } i = 1, 2, \ldots, n$$

$$\sum_{i=j}^{n} x_{i,j} \leq 1, \quad \text{for } j = 1, 2, \ldots, n$$

and

$$\sum_{i=k+1}^{n} x_{i,i-k} \leq 1, \quad \text{for } k = 0, 1, \ldots, n - 1.$$

Finally, $0 \leq x_{i,j} \leq 1$ for all i, j.

Objective function: Maximize $\sum x_{i,j}$ subject to the above constraints; call this maximum $LP(n)$.
solution of the linear program for $n = 6$
solution of the linear program for \(n = 6 \)

This solution is optimal, so \(\text{LP}(6) = 4/7 \).
solution of the linear program for $n = 6$

This solution is optimal, so $LP(6) = 4\frac{2}{7}$.
solutions to the LP for small values of \(n \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(N(n))</th>
<th>(LP(n))</th>
<th>(LP(n) - N(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3 (\frac{3}{5})</td>
<td>(\frac{3}{5})</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4 (\frac{2}{7})</td>
<td>(\frac{2}{7})</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5 (\frac{5}{8})</td>
<td>(\frac{5}{8})</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>6 (\frac{3}{10})</td>
<td>(\frac{3}{10})</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>7 (\frac{7}{11})</td>
<td>(\frac{7}{11})</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>8 (\frac{4}{13})</td>
<td>(\frac{4}{13})</td>
</tr>
</tbody>
</table>
Define

\[\text{LP}_f(3t) = 2t + \frac{t}{3t + 1} \]
\[\text{LP}_f(3t + 1) = 2t + 1 \]
\[\text{LP}_f(3t + 2) = 2t + 1 + \frac{2t + 1}{3t + 2} \]
Define

\[LP_f(3t) = 2t + \frac{t}{3t + 1} \]
\[LP_f(3t + 1) = 2t + 1 \]
\[LP_f(3t + 2) = 2t + 1 + \frac{2t + 1}{3t + 2} \]

LP Conjecture: \(LP(n) = LP_f(n) \)
a possible approach to a proof?

- Because $N(n)$ is an integer and $N(n) \leq LP(n)$, it is clear that

$$N(n) \leq \lfloor LP(n) \rfloor$$
a possible approach to a proof?

• Because $N(n)$ is an integer and $N(n) \leq LP(n)$, it is clear that

$$N(n) \leq \lfloor LP(n) \rfloor$$

• It is also easy to verify that

$$\lfloor LP_f(n) \rfloor = N_f(n).$$
a possible approach to a proof?

- Because $N(n)$ is an integer and $N(n) \leq LP(n)$, it is clear that

 $$N(n) \leq \lfloor LP(n) \rfloor$$

- It is also easy to verify that

 $$\lfloor LP_f(n) \rfloor = N_f(n).$$

- We already showed that $N(n) \geq N_f(n)$.
a possible approach to a proof?

- Because \(N(n) \) is an integer and \(N(n) \leq LP(n) \), it is clear that
 \[
 N(n) \leq \lfloor LP(n) \rfloor
 \]

- It is also easy to verify that
 \[
 \lfloor LP_f(n) \rfloor = N_f(n).
 \]

- We already showed that \(N(n) \geq N_f(n) \).

- Now, suppose we could prove the LP Conjecture.
a possible approach to a proof?

- Because $N(n)$ is an integer and $N(n) \leq LP(n)$, it is clear that
 $$N(n) \leq \lfloor LP(n) \rfloor$$

- It is also easy to verify that
 $$\lfloor LP_f(n) \rfloor = N_f(n).$$

- We already showed that $N(n) \geq N_f(n)$.
- Now, suppose we could prove the LP Conjecture.
- Then it would immediately follow that
 $$N(n) = N_f(n).$$
is this going anywhere?

- We have a simple conjectured formula for $N(n)$ along with a simple construction that achieves the conjectured bound.
- For the LP, we have a more complicated conjectured formula, and very messy, irregular optimal solutions found by Maple.
- This does not seem to be very promising, but...
- "If every instinct you have is wrong, then the opposite would have to be right.”
 Jerry Seinfeld – The Opposite
- Actually, we have one very powerful weapon when dealing with LPs, namely, duality theory.
is this going anywhere?

- We have a **simple** conjectured formula for $N(n)$ along with a **simple** construction that achieves the conjectured bound.
- For the LP, we have a **more complicated** conjectured formula, and very **messy, irregular** optimal solutions found by Maple.
is this going anywhere?

- We have a \textit{simple} conjectured formula for $N(n)$ along with a \textit{simple} construction that achieves the conjectured bound.
- For the LP, we have a \textit{more complicated} conjectured formula, and very \textit{messy, irregular} optimal solutions found by Maple.
- This does not seem to be very promising, but . . .

"If every instinct you have is wrong, then the opposite would have to be right."
Jerry Seinfeld – The Opposite

Actually, we have one very powerful weapon when dealing with LPs, namely, duality theory.
is this going anywhere?

- We have a **simple** conjectured formula for $N(n)$ along with a simple construction that achieves the conjectured bound.
- For the LP, we have a **more complicated** conjectured formula, and very **messy, irregular** optimal solutions found by Maple.
- This does not seem to be very promising, but . . .
- “If every instinct you have is wrong, then the opposite would have to be right.”
We have a simple conjectured formula for $N(n)$ along with a simple construction that achieves the conjectured bound.

For the LP, we have a more complicated conjectured formula, and very messy, irregular optimal solutions found by Maple.

This does not seem to be very promising, but . . .

“If every instinct you have is wrong, then the opposite would have to be right.”

Jerry Seinfeld – The Opposite
We have a simple conjectured formula for $N(n)$ along with a simple construction that achieves the conjectured bound.

For the LP, we have a more complicated conjectured formula, and very messy, irregular optimal solutions found by Maple.

This does not seem to be very promising, but . . .

“If every instinct you have is wrong, then the opposite would have to be right.”

Jerry Seinfeld – The Opposite

Actually, we have one very powerful weapon when dealing with LPs, namely, duality theory.
primal and dual LPs, and weak duality

An LP in standard form is specified as:

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b, \ x \geq 0.
\end{align*}
\]

This is often called the primal LP.
An LP in *standard form* is specified as:

\[
\begin{array}{l}
\text{maximize} \quad c^T x \\
\text{subject to} \quad Ax \leq b, \ x \geq 0.
\end{array}
\]

This is often called the *primal LP*. The corresponding *dual LP* is specified as:

\[
\begin{array}{l}
\text{minimize} \quad b^T y \\
\text{subject to} \quad A^T y \geq c, \ y \geq 0.
\end{array}
\]

weak duality: The objective function value of the dual LP at any feasible solution is always greater than or equal to the objective function value of the primal LP at any feasible solution.
primal and dual LPs, and weak duality

An LP in *standard form* is specified as:

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b, \ x \geq 0.
\end{align*}
\]

This is often called the **primal LP**.

The corresponding **dual LP** is specified as:

\[
\begin{align*}
\text{minimize} & \quad b^T y \\
\text{subject to} & \quad A^T y \geq c, \ y \geq 0.
\end{align*}
\]

weak duality: The objective function value of the dual LP at any feasible solution is always greater than or equal to the objective function value of the primal LP at any feasible solution.
the dual LP

- Label the rows r_1, r_2, \ldots, r_n such that r_i is the row containing i squares, and label the columns and diagonals similarly.

- There is a constraint for each cell C. If C is in row r_i, column c_j and diagonal d_k, then the corresponding constraint is $r_i + c_j + d_k \geq 1$.

- The objective function is to minimize $\sum r_i + \sum c_j + \sum d_k$.
the dual LP

- Label the rows r_1, r_2, \ldots, r_n such that r_i is the row containing i squares, and label the columns and diagonals similarly.
- If a cell is in row r_i, column c_j and diagonal d_k, then it is easy to see that $i + j + k = 2n + 1$.

the dual LP

• Label the rows \(r_1, r_2, \ldots, r_n \) such that \(r_i \) is the row containing \(i \) squares, and label the columns and diagonals similarly.

• If a cell is in row \(r_i \), column \(c_j \) and diagonal \(d_k \), then it is easy to see that \(i + j + k = 2n + 1 \).

• In fact, there is a bijection from the set of \(n(n + 1)/2 \) cells to the set of triples

\[
\mathcal{T} = \{(i, j, k) : i + j + k = 2n + 1, i, j, k \geq 1\}.
\]
the dual LP

• Label the rows \(r_1, r_2, \ldots, r_n \) such that \(r_i \) is the row containing \(i \) squares, and label the columns and diagonals similarly.

• If a cell is in row \(r_i \), column \(c_j \) and diagonal \(d_k \), then it is easy to see that \(i + j + k = 2n + 1 \).

• In fact, there is a bijection from the set of \(n(n + 1)/2 \) cells to the set of triples

\[
\mathcal{T} = \{(i, j, k) : i + j + k = 2n + 1, i, j, k \geq 1\}.
\]

• In the dual LP, the variables are \(r_1, r_2, \ldots, r_n, c_1, c_2, \ldots, c_n, d_1, d_2, \ldots, d_n \).
the dual LP

• Label the rows r_1, r_2, \ldots, r_n such that r_i is the row containing i squares, and label the columns and diagonals similarly.

• If a cell is in row r_i, column c_j and diagonal d_k, then it is easy to see that $i + j + k = 2n + 1$.

• In fact, there is a bijection from the set of $n(n + 1)/2$ cells to the set of triples

\[T = \{(i, j, k) : i + j + k = 2n + 1, i, j, k \geq 1\} . \]

• In the dual LP, the variables are r_1, r_2, \ldots, r_n, c_1, c_2, \ldots, c_n, d_1, d_2, \ldots, d_n.

• There is a constraint for each cell C. If C is in row r_i, column c_j and diagonal d_k, then the corresponding constraint is

\[r_i + c_j + d_k \geq 1. \]
the dual LP

- Label the rows \(r_1, r_2, \ldots, r_n \) such that \(r_i \) is the row containing \(i \) squares, and label the columns and diagonals similarly.
- If a cell is in row \(r_i \), column \(c_j \) and diagonal \(d_k \), then it is easy to see that \(i + j + k = 2n + 1 \).
- In fact, there is a bijection from the set of \(n(n + 1)/2 \) cells to the set of triples
 \[T = \{(i, j, k) : i + j + k = 2n + 1, i, j, k \geq 1\} \].

- In the dual LP, the variables are \(r_1, r_2, \ldots, r_n, c_1, c_2, \ldots, c_n, d_1, d_2, \ldots, d_n \).
- There is a constraint for each cell \(C \). If \(C \) is in row \(r_i \), column \(c_j \) and diagonal \(d_k \), then the corresponding constraint is
 \[r_i + c_j + d_k \geq 1. \]

- The objective function is to minimize \(\sum r_i + \sum c_j + \sum d_k \).
seeking divine intervention?

"I think you should be more explicit here in step two."
optimal solutions for the dual LP: a miracle occurs

It turns out that there exist optimal solutions for the dual LP that have a very simple, regular structure. These were found by Maple.
optimal solutions for the dual LP: a miracle occurs

It turns out that there exist optimal solutions for the dual LP that have a very simple, regular structure. These were found by Maple.

When $n = 3t + 1$, define

$$r_i = c_i = \max \left\{ 0, \frac{i - t - 1}{3t + 1} \right\},$$

$$d_i = \max \left\{ 0, \frac{i - t}{3t + 1} \right\}.$$
optimal solutions for the dual LP: a miracle occurs

It turns out that there exist optimal solutions for the dual LP that have a very simple, regular structure. These were found by Maple.

When \(n = 3t + 1 \), define

\[
\begin{align*}
 r_i &= c_i = \max \left\{ 0, \frac{i - t - 1}{3t + 1} \right\}, \\
 d_i &= \max \left\{ 0, \frac{i - t}{3t + 1} \right\}.
\end{align*}
\]

When \(n = 3t + 2 \), define

\[
\begin{align*}
 r_i &= c_i = d_i = \max \left\{ 0, \frac{i - t - 1}{3t + 2} \right\}.
\end{align*}
\]
optimal solutions for the dual LP: a miracle occurs

It turns out that there exist optimal solutions for the dual LP that have a very simple, regular structure. These were found by Maple.

When $n = 3t + 1$, define

\[
 r_i = c_i = \max \left\{ 0, \frac{i - t - 1}{3t + 1} \right\},

 d_i = \max \left\{ 0, \frac{i - t}{3t + 1} \right\}.
\]

When $n = 3t + 2$, define

\[
 r_i = c_i = d_i = \max \left\{ 0, \frac{i - t - 1}{3t + 2} \right\}.
\]

When $n = 3t$, define

\[
 r_i = c_i = d_i = \max \left\{ 0, \frac{i - t}{3t + 1} \right\}.
\]
a simpler proof strategy

• Suppose we prove that
 1. The solutions presented above are feasible for the dual LP, and
 2. The value of the objective function (for the dual LP) at these solutions is $LP_f(n)$.
a simpler proof strategy

• Suppose we prove that
 1. The solutions presented above are feasible for the dual LP, and
 2. The value of the objective function (for the dual LP) at these solutions is $LP_f(n)$.
• Then, by weak duality, we would have $LP(n) \leq LP_f(n)$.
a simpler proof strategy

• Suppose we prove that
 1. The solutions presented above are feasible for the dual LP, and
 2. The value of the objective function (for the dual LP) at these solutions is $LP_f(n)$.

• Then, by weak duality, we would have $LP(n) \leq LP_f(n)$.

• This is sufficient to prove that $N(n) = N_f(n)$.
a simpler proof strategy

Suppose we prove that

1. The solutions presented above are feasible for the dual LP, and
2. The value of the objective function (for the dual LP) at these solutions is $LP_f(n)$.

Then, by weak duality, we would have $LP(n) \leq LP_f(n)$.

This is sufficient to prove that $N(n) = N_f(n)$.

Note that, using this approach, we do not have to prove the LP conjecture (namely, that $LP(n) = LP_f(n)$).
proof of feasibility

• We present the proof of 1. when \(n = 3t + 1 \).
proof of feasibility

• We present the proof of 1. when \(n = 3t + 1 \).
• Consider any cell \(C \), and suppose \(C \) is in row \(r_i \), column \(c_j \) and diagonal \(d_k \).
proof of feasibility

• We present the proof of 1. when $n = 3t + 1$.
• Consider any cell C, and suppose C is in row r_i, column c_j and diagonal d_k.
• Recall that $i + j + k = 2n + 1$.
proof of feasibility

• We present the proof of 1. when $n = 3t + 1$.
• Consider any cell C, and suppose C is in row r_i, column c_j and diagonal d_k.
• Recall that $i + j + k = 2n + 1$.
• We have that

$$r_i + c_j + d_k \geq \frac{i - t - 1}{3t + 1} + \frac{j - t - 1}{3t + 1} + \frac{k - t}{3t + 1}$$

$$= \frac{i + j + k - (3t + 2)}{3t + 1}$$

$$= \frac{6t + 3 - (3t + 2)}{3t + 1}$$

$$= 1.$$
proof of feasibility

- We present the proof of 1. when $n = 3t + 1$.
- Consider any cell C, and suppose C is in row r_i, column c_j and diagonal d_k.
- Recall that $i + j + k = 2n + 1$.
- We have that

$$r_i + c_j + d_k \geq \frac{i - t - 1}{3t + 1} + \frac{j - t - 1}{3t + 1} + \frac{k - t}{3t + 1}$$

$$= \frac{i + j + k - (3t + 2)}{3t + 1}$$

$$= \frac{6t + 3 - (3t + 2)}{3t + 1}$$

$$= 1.$$

- Therefore all constraints are satisfied.
• We present the proof of 2. when $n = 3t + 1$.

\[
\frac{1}{3}t + 1 \left(\frac{3}{2}t + 1 \right) = \frac{1}{3}t + 1 \left(\frac{2t + 1}{2} \right) = \frac{1}{3}t + 1.
\]
computing the objective function

- We present the proof of 2. when $n = 3t + 1$.

- The value of the objective function is

$$
\frac{1}{3t + 1} \left(\sum_{i=t+1}^{3t+1} (i - t - 1) + \sum_{i=t+1}^{3t+1} (i - t - 1) + \sum_{i=t}^{3t+1} (i - t) \right)
$$

$$
= \frac{1}{3t + 1} \left(\frac{2t(2t + 1)}{2} + \frac{2t(2t + 1)}{2} + \frac{(2t + 1)(2t + 2)}{2} \right)
$$

$$
= \frac{(2t + 1)(3t + 1)}{3t + 1}
$$

$$
= 2t + 1
$$

$$
= LP_f(3t + 1).
$$
The proofs for $n = 3t + 2, 3t$ are very similar. So we have our main result:

\[N(n) = \left\lfloor \frac{2n+1}{3} \right\rfloor \text{ for all integers } n \geq 1. \]
The proofs for $n = 3t + 2, 3t$ are very similar. So we have our main result:

Theorem \(N(n) = \left\lfloor \frac{2n+1}{3} \right\rfloor \) for all integers \(n \geq 1 \).

In the end, the proof is quite short and simple.

Proof summary:

1. By a suitable direct construction, prove that \(N(n) \geq \left\lfloor \frac{2n+1}{3} \right\rfloor \).
2. Show that the dual LP has a feasible solution whose objective function value is less than \(\left\lfloor \frac{2n+1}{3} \right\rfloor + 1 \).
The first conjecture we posed was the LP Conjecture, concerning the optimal solutions to the LP. In general, to prove a feasible solution to an LP is optimal, it is necessary to do the following:

1. Find a feasible solution to the primal LP whose objective function has value C.
2. Find a feasible solution to the dual LP whose objective function has the same value C.

Then the solution to the LP is optimal (this is often called strong duality).

When $n \equiv 1 \mod 3$, our work in fact proves the LP conjecture. However, when $n \not\equiv 1 \mod 3$, we do not have solutions to the primal LP whose objective function value matches the solutions to the dual LP. Although we are confident that the LP conjecture is also true for these values of n, proving it could get messy!
The first conjecture we posed was the LP Conjecture, concerning the optimal solutions to the LP.

In general, to prove a feasible solution to an LP is optimal, it is necessary to do the following:

1. Find a feasible solution to the primal LP whose objective function has value C', say.
2. Find a feasible solution to the dual LP whose objective function has the same value C'.

Then the solution to the LP is optimal (this is often called strong duality).
The first conjecture we posed was the LP Conjecture, concerning the optimal solutions to the LP.

In general, to prove a feasible solution to an LP is optimal, it is necessary to do the following:

1. Find a feasible solution to the primal LP whose objective function has value C, say.
2. Find a feasible solution to the dual LP whose objective function has the same value C.

Then the solution to the LP is optimal (this is often called strong duality).

When $n \equiv 1 \mod 3$, our work in fact proves the LP conjecture.

However, when $n \not\equiv 1 \mod 3$, we do not have solutions to the primal LP whose objective function value matches the solutions to the dual LP. Although we are confident that the LP conjecture is also true for these values of n, proving it could get messy!
recapitulation and lessons learned

the opposite: Don’t always trust your instincts. Try different approaches, even if they seem unpromising.
recapitulation and lessons learned

the opposite: Don’t always trust your instincts. Try different approaches, even if they seem unpromising.

get your hands dirty: Experimental (i.e., computational) results can be invaluable in formulating conjectures and also in proving them.
recapitulation and lessons learned

the opposite: Don’t always trust your instincts. Try different approaches, even if they seem unpromising.

get your hands dirty: Experimental (i.e., computational) results can be invaluable in formulating conjectures and also in proving them.

use theory whenever you can: Theory can make your life easier, because someone has already done the hard work for you. Here, using the linear programming approach, the problem basically “solved itself”.
reapituation and lessons learned

the opposite: Don’t always trust your instincts. Try different approaches, even if they seem unpromising.

get your hands dirty: Experimental (i.e., computational) results can be invaluable in formulating conjectures and also in proving them.

use theory whenever you can: Theory can make your life easier, because someone has already done the hard work for you. Here, using the linear programming approach, the problem basically “solved itself”.

“proofs from the book” are not required: It’s not necessary that the solution to every problem be a “proof from the book”. Good research is possible without possessing amazing levels of ingenuity.
thank you for your attention!